[go: up one dir, main page]

JP6406253B2 - Pathological stain - Google Patents

Pathological stain Download PDF

Info

Publication number
JP6406253B2
JP6406253B2 JP2015528346A JP2015528346A JP6406253B2 JP 6406253 B2 JP6406253 B2 JP 6406253B2 JP 2015528346 A JP2015528346 A JP 2015528346A JP 2015528346 A JP2015528346 A JP 2015528346A JP 6406253 B2 JP6406253 B2 JP 6406253B2
Authority
JP
Japan
Prior art keywords
dispersion
pathological
fluorescent
aqueous dispersion
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015528346A
Other languages
Japanese (ja)
Other versions
JPWO2015012374A1 (en
Inventor
文徳 岡田
文徳 岡田
健作 高梨
健作 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2015012374A1 publication Critical patent/JPWO2015012374A1/en
Application granted granted Critical
Publication of JP6406253B2 publication Critical patent/JP6406253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、病理染色液に関する。   The present invention relates to a pathological stain.

免疫組織化学(Immunohistochemistry; IHC)は、抗体を用いて、病理組織などの生体組織内に存在するタンパク質、多糖又はmRNAなど抗原となりうる物質を検出する組織化学的手法として広く知られている。この免疫組織化学は、本来不可視である抗原抗体反応を可視化するために発色操作を行うことから、「免疫染色」などと呼ばれる。抗原抗体反応の所在を可視化するという特徴により、免疫組織化学は、生体組織内の生体高分子の所在を検出する目的で、医学および生命化学の分野において広く用いられている。   Immunohistochemistry (IHC) is widely known as a histochemical method that uses antibodies to detect substances that can be antigens such as proteins, polysaccharides, or mRNAs present in biological tissues such as pathological tissues. This immunohistochemistry is called “immunostaining” because it performs a color development operation in order to visualize an antigen-antibody reaction that is originally invisible. Due to the feature of visualizing the location of antigen-antibody reaction, immunohistochemistry is widely used in the fields of medicine and biochemistry for the purpose of detecting the location of biopolymers in living tissue.

免疫染色では、DAB(ジアミノベンジジン)法などに代表される酵素を用いた染色法がよく知られているが、この方法は、染色濃度が温度又は時間等の環境条件により大きく左右されるため、目的の抗原分子を正確に測定することが困難である。そこで、これに代わる標識試薬として、定量性能の高い蛍光色素が免疫染色に用いられており、近年、高輝度の蛍光標識体の開発が盛んに進められている。   In immunostaining, staining methods using enzymes typified by the DAB (diaminobenzidine) method and the like are well known, but this method is greatly influenced by environmental conditions such as temperature or time, It is difficult to accurately measure the target antigen molecule. Therefore, fluorescent dyes with high quantitative performance are used for immunostaining as an alternative labeling reagent, and in recent years, development of fluorescent labels with high brightness has been actively promoted.

本発明者は、蛍光物質が複数結合した蛍光ナノ粒子からなる蛍光標識体を用いて、生体組織に対して蛍光免疫染色を行う方法を開発してきており、組織標本に含まれる生体高分子に対して、抗体が結合した蛍光ナノ粒子を含む病理染色液を添加することにより、抗原抗体反応を起こさせ、抗原抗体結合物に励起光を照射することにより観察される輝点を定量する方法を開発してきた(例えば、特許文献1および非特許文献1)。   The present inventor has developed a method for performing fluorescent immunostaining on a biological tissue using a fluorescent label composed of fluorescent nanoparticles to which a plurality of fluorescent substances are bonded. Developed a method for quantifying the bright spots observed by irradiating antigen-antibody conjugates with excitation light by adding a pathological staining solution containing fluorescent nanoparticles to which antibodies are bound. (For example, Patent Document 1 and Non-Patent Document 1).

蛍光免疫染色に用いる病理染色液は通常、高濃度で保存され、蛍光免疫染色を行う際に希釈して用いられる。しかしながら、この病理染色液は、蛍光標識体を分散させた分散液であるため、静置保存中に蛍光標識体の粒子が徐々に凝集又は沈降する。このため、蛍光免疫染色を実施する場合は、病理染色液に超音波をあてて、凝集または沈殿した粒子を再度分散させてから、分散後の病理染色液を希釈する必要がある。   A pathological staining solution used for fluorescent immunostaining is usually stored at a high concentration, and is diluted when used for fluorescent immunostaining. However, since this pathological stain is a dispersion in which a fluorescent label is dispersed, the particles of the fluorescent label gradually aggregate or settle during storage at rest. For this reason, when fluorescent immunostaining is performed, it is necessary to apply ultrasonic waves to the pathological staining liquid to disperse the aggregated or precipitated particles again, and then dilute the dispersed pathological staining liquid.

したがって、蛍光免疫染色に用いる病理染色液として、安定した分散性を維持することができるものであることが望まれている。なお、対策のひとつとして、病理染色液の粘度を上げることが考えられるが、吐出に過大な力が必要となること、また、吐出時に液切れが悪くなる等の問題がある。   Therefore, it is desired that the pathological staining solution used for fluorescent immunostaining can maintain stable dispersibility. As a countermeasure, it is conceivable to increase the viscosity of the pathological staining solution. However, there is a problem that excessive force is required for the discharge, and that the liquid runs out during discharge.

そのため、上記のような問題を解決し、取り扱い容易な病理染色液を提供するという観点から、病理染色液の分散系の粘度と分散性との関係を改善する必要があった。   Therefore, it was necessary to improve the relationship between the viscosity and dispersibility of the pathological staining liquid dispersion from the viewpoint of solving the above problems and providing a pathological staining liquid that is easy to handle.

特開2012−194013号公報JP 2012-194013 A

HER2-Targeted Therapy: Lessons learned and Future Directions, Rita Nahta and Francisco J. Esteva, Clin. Cancer Res., Nov. 2003; 9; 5078-5084HER2-Targeted Therapy: Lessons learned and Future Directions, Rita Nahta and Francisco J. Esteva, Clin. Cancer Res., Nov. 2003; 9; 5078-5084

例えば、特許文献1に記載の蛍光物質内包シリカ粒子を含む病理染色液を、一ヶ月程度保存すると、病理染色液に分散した蛍光標識体の粒子が凝集又は沈降してしまう。
本発明は、蛍光免疫染色に用いる病理染色液であって、調製後、一定の期間保存した後においても、蛍光ナノ粒子が凝集又は沈降しない分散液からなる病理染色液を提供することを課題とする。
For example, when the pathological staining liquid containing the fluorescent substance-encapsulating silica particles described in Patent Document 1 is stored for about one month, the fluorescent label particles dispersed in the pathological staining liquid aggregate or settle.
An object of the present invention is to provide a pathological staining solution used for fluorescent immunostaining, which comprises a dispersion in which fluorescent nanoparticles do not aggregate or settle even after preparation and after storage for a certain period of time. To do.

また、本発明は、病理染色液の調製に用いることができる、長時間保存した後においても標識体粒子が凝集又は沈降しない水分散液を提供することを課題とする。   Another object of the present invention is to provide an aqueous dispersion that can be used for the preparation of a pathological staining solution and that does not aggregate or settle the labeled particles even after being stored for a long time.

本発明者は、蛍光標識体の粒子および分散液の密度と、分散液の粘度とが、凝集又は沈降に影響を及ぼすことに着目し、これらの関係を検討した結果、式(1)を満たす場合に、一定の期間保存した後においても、粒子が凝集又は沈降しないことを見出した。
また、本発明者は、水分散液の粘度が、標識体粒子の凝集又は沈降に影響を及ぼすことに着目し、水分散液にチキソトロピー性を持たせることにより、上記の問題を解決することを見出し、本発明を完成させた。
The present inventor paid attention to the fact that the density of the particles and the dispersion of the fluorescent label and the viscosity of the dispersion affect the aggregation or sedimentation, and as a result of examining these relationships, the formula (1) is satisfied. In some cases, it was found that the particles do not aggregate or settle even after storage for a certain period of time.
Further, the present inventor has paid attention to the fact that the viscosity of the aqueous dispersion affects the aggregation or sedimentation of the labeled particles, and has solved the above problem by imparting thixotropic properties to the aqueous dispersion. The headline and the present invention were completed.

すなわち、本発明は、以下の事項からなる。
[1]平均粒径が50〜200nmの蛍光ナノ粒子からなる蛍光標識体と、溶媒とを含む、下記式(1)を満たす分散液からなる病理染色液。
(ρ−ρw)/η ≦ 0.02 ・・・(1)
(式(1)中、ρは20℃における蛍光ナノ粒子の固体密度(g/cm3)を表し、ρwは20℃における分散液の密度(g/cm3)を表し、ηは20℃における分散液の粘度(g/cm・sec)を表す。)
That is, this invention consists of the following matters.
[1] A pathological staining solution comprising a dispersion satisfying the following formula (1), comprising a fluorescent label comprising fluorescent nanoparticles having an average particle size of 50 to 200 nm and a solvent.
(Ρ−ρ w ) /η≦0.02 (1)
(In the formula (1), ρ represents the solid density (g / cm 3 ) of the fluorescent nanoparticles at 20 ° C., ρ w represents the density of the dispersion (g / cm 3 ) at 20 ° C., and η is 20 ° C. Represents the viscosity (g / cm · sec) of the dispersion liquid.

[2]前記式(1)中、分散液の粘度η(g/cm・sec)が、1<η<100である、[1]に記載の病理染色液。   [2] The pathological staining solution according to [1], wherein in the formula (1), the viscosity η (g / cm · sec) of the dispersion is 1 <η <100.

[3]前記分散液が、前記蛍光標識体と溶媒とに加えて、さらに密度および/または粘度調節用添加剤として単糖類、二糖類またはX線造影剤を含む、[1]又は[2]に記載の病理染色液。   [3] In addition to the fluorescent label and the solvent, the dispersion further contains a monosaccharide, a disaccharide or an X-ray contrast agent as an additive for adjusting density and / or viscosity, [1] or [2] The pathological staining solution described in 1.

[4]前記密度および/または粘度調節用添加剤が、スクロース、グリセロール、ソルビトール、フルクトース、およびイオパミドールからなる群より選ばれる少なくとも一種である、[3]に記載の病理染色液。   [4] The pathological staining solution according to [3], wherein the density and / or viscosity adjusting additive is at least one selected from the group consisting of sucrose, glycerol, sorbitol, fructose, and iopamidol.

[5]微粒子状標識体と、チキソトロピー付与剤と、これら2成分を分散または溶解するための水系溶媒とを含有する水分散液。   [5] An aqueous dispersion containing a particulate marker, a thixotropy-imparting agent, and an aqueous solvent for dispersing or dissolving these two components.

[6]前記チキソトロピー付与剤が水溶性高分子である、[5]に記載の水分散液。
[7]前記水溶性高分子がカルボキシメチルセルロース塩である、[6]に記載の水分散液。
[6] The aqueous dispersion according to [5], wherein the thixotropic agent is a water-soluble polymer.
[7] The aqueous dispersion according to [6], wherein the water-soluble polymer is a carboxymethyl cellulose salt.

[8]B型粘度計を用いて、25℃及び60rpmの条件下で測定したみかけ粘度が10〜50mPa・sである、[5]〜[7]のいずれか一項に記載の水分散液。
[9]pH6〜8である、[5]〜[8]のいずれか一項に記載の水分散液。
[8] The aqueous dispersion according to any one of [5] to [7], which has an apparent viscosity of 10 to 50 mPa · s measured at 25 ° C. and 60 rpm using a B-type viscometer. .
[9] The aqueous dispersion according to any one of [5] to [8], which has a pH of 6 to 8.

[10]前記微粒子状標識体が微粒子状蛍光標識体である、[5]〜[9]のいずれか一項に記載の水分散液。
[11]前記微粒子状蛍光標識体が、蛍光ナノ粒子が標識体化されたものである、[10]に記載の水分散液。
[10] The aqueous dispersion according to any one of [5] to [9], wherein the particulate label is a particulate fluorescent label.
[11] The aqueous dispersion according to [10], wherein the particulate fluorescent label is obtained by labeling fluorescent nanoparticles.

[12]前記微粒子状標識体が、病理染色用の生体関連物質が複合体化されているものである、[5]〜[11]のいずれか一項に記載の水分散液。
[13][12]に記載の水分散液を含有する病理染色液。
[14][12]に記載の病理染色液が充填された、自動染色装置用の試薬ボトル。
[15]分散液が蛍光標識体と、チキソトロピー付与剤と、これら2成分を分散または溶解するための水系溶媒とを含有する水分散液である[1]に記載の病理染色液。
[16]前記チキソトロピー付与剤が水溶性高分子である、[15]に記載の病理染色液。
[12] The aqueous dispersion according to any one of [5] to [11], wherein the particulate marker is a complex of a biological substance for pathological staining.
[13] A pathological staining solution containing the aqueous dispersion according to [12].
[14] A reagent bottle for an automatic staining apparatus, which is filled with the pathological staining solution according to [12].
[15] The pathological staining solution according to [1], wherein the dispersion is an aqueous dispersion containing a fluorescent label, a thixotropy-imparting agent, and an aqueous solvent for dispersing or dissolving these two components.
[16] The pathological staining solution according to [15], wherein the thixotropic agent is a water-soluble polymer.

本発明の病理染色液は、調製後一定の期間(例えば一ヶ月間)保存した後においても、該分散液中の蛍光標識体等の粒子が凝集又は沈降しないため、該分散液に超音波をあてて粒子を分散する操作を行うことなく、蛍光免疫染色に用いることができる。
本発明の病理染色液は、ピペットで容易に吸い上げることができ、また、吐出する際も病理染色液がピペット内に残留しないため、取り扱いが容易である。
The pathological staining solution of the present invention does not aggregate or settle particles such as fluorescent labels in the dispersion even after being stored for a certain period (for example, one month) after preparation. It can be used for fluorescent immunostaining without performing an operation of dispersing the particles.
The pathological staining liquid of the present invention can be easily sucked up with a pipette, and is easy to handle because the pathological staining liquid does not remain in the pipette when discharged.

また、本発明によれば、水分散液にチキソトロピー付与剤を添加して保存時の粘性を高くすることにより、蛍光ナノ粒子のような標識体の沈降または凝集が抑制される病理染色液を調製することができる。標識体が病理染色液中で沈降または凝集せず安定的に分散することで、染色の際に個々の標識体が生体組織上の染色対象分子に偏在することがなく結合でき、輝点数の計測および染色対象分子数の評価を正確に行うことができるようになる。また、このような病理染色液は、使用時には吐出によるせん断力が加わるため粘性が下がり、生体組織上にむらなく載せることができる。   In addition, according to the present invention, by adding a thixotropy-imparting agent to an aqueous dispersion to increase the viscosity during storage, a pathological staining solution is prepared in which sedimentation or aggregation of a label such as fluorescent nanoparticles is suppressed. can do. By stably dispersing the label in the pathological staining solution without sedimentation or aggregation, individual labels can be bound to the target molecule on the living tissue without staining, and the number of bright spots can be measured. In addition, the number of molecules to be stained can be accurately evaluated. Further, such a pathological staining solution is applied with a shearing force due to ejection during use, so that its viscosity is lowered and can be placed evenly on a living tissue.

図1は、自動染色装置の試薬ボトルから生体組織上に病理染色液を吐出する様子を示す概略図である。従来技術では、病理染色液中で蛍光標識体の粒子が凝集又は沈降するため、吐出量や濃度が不安定となり、また、粒子が凝集又は沈降すると生体組織上での粒子の分布が不均一となり、輝点数が正確に測定できないのに対し、本発明では、病理染色液の分散性が保たれるため、沈降や凝集が防止され、蛍光標識体を生体組織上に均一に載せることができる。FIG. 1 is a schematic view showing a state in which a pathological staining solution is discharged onto a living tissue from a reagent bottle of an automatic staining apparatus. In the prior art, since the fluorescently labeled particles aggregate or settle in the pathological staining solution, the discharge amount and concentration become unstable, and when the particles aggregate or settle, the distribution of the particles on the living tissue becomes non-uniform. In contrast, the number of bright spots cannot be measured accurately, but in the present invention, the dispersibility of the pathological staining solution is maintained, so that sedimentation and aggregation are prevented, and the fluorescent label can be uniformly placed on the living tissue. 図2は、比較例5−1および実施例5−1で測定した、水分散液(病理染色液)を自動染色装置の試薬ボトルから、吐出量を150μLに設定して5回吐出したときの吐出量の変動(1回目の吐出量を基準としたときの、各回の吐出量の変化率[%])を示すグラフである。チキソトロピー付与剤を添加しなかった比較例5−1では吐出量が一定しないのに対し、チキソトロピー付与剤である寒天を添加した実施例5−1では水分散液が安定的に吐出されることが分かる。FIG. 2 shows a case where the aqueous dispersion (pathological staining liquid) measured in Comparative Example 5-1 and Example 5-1 is discharged five times from the reagent bottle of the automatic staining apparatus while setting the discharge amount to 150 μL. It is a graph which shows the fluctuation | variation of discharge amount (change rate [%] of the discharge amount of each time when the discharge amount of the 1st time is used as a reference). In Comparative Example 5-1, in which no thixotropy-imparting agent was added, the discharge amount was not constant, whereas in Example 5-1, where agar, a thixotropy-imparting agent was added, the aqueous dispersion was stably ejected. I understand. 図3は、比較例6−1および実施例6−1で測定した、APSコートスライドガラス上に水分散液(病理染色液)を吐出したときの輝度ヒストグラム(縦軸に輝点数、横軸に輝度)である。チキソトロピー付与剤を添加しなかった比較例6−1では、蛍光標識体粒子の凝集により、輝度ヒストグラムがブロードな分布を示すのに対し、チキソトロピー付与剤キサンタンガムを添加した実施例7−1では、水分散液中で蛍光標識体粒子の凝集が抑えられ、輝度ヒストグラムの分布が狭いことが分かる。FIG. 3 shows a luminance histogram (indicated by the number of bright spots on the vertical axis and the horizontal axis on the horizontal axis) when an aqueous dispersion (pathological staining liquid) was discharged onto an APS-coated slide glass, as measured in Comparative Example 6-1 and Example 6-1. Brightness). In Comparative Example 6-1 in which no thixotropy-imparting agent was added, the luminance histogram showed a broad distribution due to aggregation of fluorescent labeling particles, whereas in Example 7-1 in which the thixotropy-imparting agent xanthan gum was added, It can be seen that the aggregation of the fluorescent label particles is suppressed in the dispersion, and the luminance histogram distribution is narrow. 図4は、生体組織上で抗原に結合した蛍光標識体の輝点の様子を示す、蛍光顕微鏡での撮影画像である。FIG. 4 is a photographed image with a fluorescence microscope showing the state of the bright spot of the fluorescent label bonded to the antigen on the living tissue.

本発明の病理染色液について以下に詳細に説明する。
[蛍光ナノ粒子]
本発明の病理染色液は、平均粒径が50〜200nmの蛍光ナノ粒子からなる蛍光標識体と、溶媒とを含む分散液からなる。
The pathological staining solution of the present invention will be described in detail below.
[Fluorescent nanoparticles]
The pathological staining solution of the present invention comprises a dispersion containing a fluorescent label composed of fluorescent nanoparticles having an average particle size of 50 to 200 nm and a solvent.

本発明で用いられる蛍光ナノ粒子は、免疫染色用の標識体および免疫染色に用いることができるものであれば、既存の如何なるものでも構わない。例えば、本発明で用いられる蛍光ナノ粒子は、次に述べる(A)無機蛍光ナノ粒子、(B)蛍光色素内包ナノ粒子、(C)蛍光ナノ粒子内包粒子のいずれであってもよい。   The fluorescent nanoparticles used in the present invention may be any existing one as long as it is a label for immunostaining and can be used for immunostaining. For example, the fluorescent nanoparticles used in the present invention may be any of (A) inorganic fluorescent nanoparticles, (B) fluorescent dye-containing nanoparticles, and (C) fluorescent nanoparticle-containing particles described below.

上記蛍光ナノ粒子は、平均粒径が50〜200nm、好ましくは80〜150nmの粒子である。蛍光ナノ粒子の平均粒径が200nmを超えると、反応効率が低下することにより輝点数が減少する場合があり、蛍光ナノ粒子の平均粒径が50nm未満であると、輝度が低下することにより輝点数が減少する場合がある。   The fluorescent nanoparticles are particles having an average particle size of 50 to 200 nm, preferably 80 to 150 nm. When the average particle diameter of the fluorescent nanoparticles exceeds 200 nm, the number of bright spots may decrease due to a decrease in reaction efficiency. When the average particle diameter of the fluorescent nanoparticles is less than 50 nm, the brightness decreases due to a decrease in luminance. The score may decrease.

上記蛍光ナノ粒子の平均粒径のばらつきを示す変動係数も特に限定されないが、通常15%以下であり、好ましくは10%以下である。
上記蛍光ナノ粒子の平均粒径は、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し、蛍光ナノ粒子の断面積を計測し、その計測値を相当する円の面積としたときの直径(面積円相当径)として測定することができる。蛍光ナノ粒子の集団の粒子サイズの平均(粒径)および変動係数は、充分な数(例えば1000個)の蛍光色素内包ナノ粒子について上記のようにして粒子サイズ(粒径)を測定した後、平均粒径はその算術平均として算出され、変動係数は式:100×粒径の標準偏差/平均粒径、により算出される。
The coefficient of variation indicating the variation in the average particle diameter of the fluorescent nanoparticles is not particularly limited, but is usually 15% or less, preferably 10% or less.
The average particle diameter of the fluorescent nanoparticles is obtained by taking an electron micrograph using a scanning electron microscope (SEM), measuring the cross-sectional area of the fluorescent nanoparticles, and taking the measured value as the area of the corresponding circle. It can be measured as a diameter (area circle equivalent diameter). The average (particle size) and coefficient of variation of the particle size of the population of fluorescent nanoparticles are determined after measuring the particle size (particle size) as described above for a sufficient number (for example, 1000) of fluorescent dye-containing nanoparticles. The average particle diameter is calculated as the arithmetic average thereof, and the coefficient of variation is calculated by the formula: 100 × standard deviation of particle diameter / average particle diameter.

(A)無機蛍光ナノ粒子
無機蛍光ナノ粒子としては、半導体ナノ粒子およびその他の無機蛍光体からなるナノ粒子が挙げられる。
(A) Inorganic fluorescent nanoparticles The inorganic fluorescent nanoparticles include semiconductor nanoparticles and nanoparticles composed of other inorganic phosphors.

半導体には、例えば、II−VI族半導体であるZnSe、ZnTe、CdSe、CdTe、PbS、PbSe、PbTe等やII−VI族半導体であるAlAs、AlSb、GaP、GaAs、GaSb、InP、InAs、InSb等を用いることができ、毒性の観点から、GaP、InPを好適に用いることができる。これらは単独でまたは組み合わせて使用することができる。
その他の無機蛍光体は、例えば、母体にY23、YVO4、ZnO、ZnS等を用い、発光中心にEuやNd等を単独でまたは組み合わせて使用することができる。
Examples of the semiconductor include II-VI group semiconductors such as ZnSe, ZnTe, CdSe, CdTe, PbS, PbSe, and PbTe, and II-VI group semiconductors such as AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. From the viewpoint of toxicity, GaP and InP can be preferably used. These can be used alone or in combination.
As other inorganic phosphors, for example, Y 2 O 3 , YVO 4 , ZnO, ZnS or the like can be used as a base material, and Eu or Nd can be used alone or in combination at the emission center.

(B)蛍光色素内包ナノ粒子
蛍光色素内包ナノ粒子とは、有機物または無機物でできた粒子(母体)中に複数の蛍光色素が内包された構造を有するナノサイズの粒子である。本発明で用いる蛍光色素内包ナノ粒子は、適切な蛍光色素および粒子を形成する有機物または無機物を原料として選択した上で、公知の方法により作製することができる。
(B) Fluorescent dye-encapsulated nanoparticles Fluorescent dye-encapsulated nanoparticles are nano-sized particles having a structure in which a plurality of fluorescent dyes are encapsulated in particles (matrix) made of an organic substance or an inorganic substance. The fluorescent dye-containing nanoparticles used in the present invention can be prepared by a known method after selecting an appropriate fluorescent dye and an organic or inorganic material that forms the particles.

粒子を形成する有機物または無機物としては、例えば、ポリスチレン、ポリアミド、ポリ乳酸、ポリアクリロニトリル、ポリグリシジルメタクリレート、メラミン樹脂、ポリウレア、ポリベンゾグアナミン、ポリフラン、ポリキシレン、フェノール樹脂、多糖、シリカ等、安定的に蛍光色素を内包できるものが挙げられる。メラミン樹脂としては、例えば、水溶性メラミン樹脂「ニカラックMX−035」(日本カーバイド工業社製)が挙げられる。   Examples of organic or inorganic substances that form particles include polystyrene, polyamide, polylactic acid, polyacrylonitrile, polyglycidyl methacrylate, melamine resin, polyurea, polybenzoguanamine, polyfuran, polyxylene, phenol resin, polysaccharide, silica, and the like. The thing which can include fluorescent dye is mentioned. Examples of the melamine resin include a water-soluble melamine resin “Nicalac MX-035” (manufactured by Nippon Carbide Industries Co., Ltd.).

内包される蛍光色素は、例えば、ローダミン系色素分子、スクアリリウム系色素分子、シアニン系色素分子、芳香環系色素分子、オキサジン系色素分子、カルボピロニン系色素分子、ピロメセン系色素分子、等の中から選択することができる。あるいはAlexa Fluor(登録商標、インビトロジェン社製)系色素分子、BODIPY(登録商標、インビトロジェン社製)系色素分子、Cy(登録商標、GEヘルスケア社製)系色素分子、DY(登録商標、DYOMICS社製)系色素分子、HiLyte(登録商標、アナスペック社製)系色素分子、DyLight(登録商標、サーモサイエンティフィック社製)系色素分子、ATTO(登録商標、ATTO−TEC社製)系色素分子、MFP(登録商標、Mobitec社製)系色素分子等の中から選択することができる。なお、これら色素分子の総称は、化合物中の主要な構造(骨格)または登録商標に基づき命名されており、それぞれに属する蛍光色素の範囲は当業者であれば過度の試行錯誤を要することなく適切に把握できるものである。   The encapsulated fluorescent dye is selected from, for example, rhodamine dye molecules, squarylium dye molecules, cyanine dye molecules, aromatic ring dye molecules, oxazine dye molecules, carbopyronine dye molecules, and pyromesene dye molecules. can do. Alternatively, Alexa Fluor (registered trademark, manufactured by Invitrogen) dye molecule, BODIPY (registered trademark, manufactured by Invitrogen) dye molecule, Cy (registered trademark, manufactured by GE Healthcare) dye molecule, DY (registered trademark, DYOMICICS) Manufactured) dye molecule, HiLyte (registered trademark, manufactured by Anaspec) dye molecule, DyLight (registered trademark, manufactured by Thermo Scientific) dye molecule, ATTO (registered trademark, manufactured by ATTO-TEC) dye molecule MFP (registered trademark, manufactured by Mobitec) type dye molecule, and the like. The generic names of these dye molecules are named based on the main structures (skeletons) in the compound or registered trademarks, and the range of fluorescent dyes belonging to each is appropriate for those skilled in the art without undue trial and error. Can be grasped.

ローダミン系色素分子の具体例としては、5−カルボキシ−ローダミン、6−カルボキシ−ローダミン、5,6−ジカルボキシ−ローダミン、ローダミン 6G、テトラメチルローダミン、X−ローダミン、テキサスレッド、スペクトラムレッド(Spectrum Red)、LD700パークロレート(LD700 PERCHLORATE)、などが挙げられる。   Specific examples of rhodamine dye molecules include 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, Texas Red, Spectrum Red (Spectrum Red). ), LD700 PERCHLORATE, and the like.

スクアリリウム系色素分子の具体例としては、SRfluor, 680−carboxylate、1,3−ビス[4−(ジメチルアミノ)−2−ヒドロキシフェニル]−2,4−ジヒドロキシシクロブテンジイリウムジヒドロキシド(1,3-bis[4-(dimethylamino)-2-hydroxyphenyl]-2,4-dihydroxycyclobutenediylium dihydroxide)、ビス、1,3−ビス[4−(ジメチルアミノ)フェニル]−2,4−ジヒドロキシシクロブテンジイリウムジヒドロキシド(bis, 1,3-bis[4-(dimethylamino)phenyl]-2,4-dihydroxycyclobutenediylium dihydroxide)ビス、2−(4−(ジエチルアミノ)−2−ヒドロキシフェニル)−4−(4−(ジエチルイミニオ)−2−ヒドロキシシクロヘキサ−2,5−ジエニリデン)−3−オキソシクロブテ−1−エノレート(bis, 2-(4-(diethylamino)-2-hydroxyphenyl)-4-(4-(diethyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate)、2−(4−(ジブチルアミノ)−2−ヒドロキシフェニル)−4−(4−(ジブチルイミニオ)−2−ヒドロキシシクロヘキサ−2,5−ジエニリデン)−3−オキソシクロブテ−1−エノレート(2-(4-(dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio) -2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate)、2−(8−ヒドロキシ−1,1,7,7−テトラメチル−1,2,3,5,6,7−ヘキサヒドロピリド[3,2,1−ij]キノリン−9−イル)−4−(8−ヒドロキシ−1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H−ピリド[3,2,1−ij]キノリニウム−9(5H)−イリデン)−3−オキソシクロブテ−1−エノレート(2-(8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)-4-(8-hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido[3,2,1-ij]quinolinium-9(5h)-ylidene)-3-oxocyclobut-1-enolate)、などが挙げられる。   Specific examples of the squarylium dye molecule include SRfluor, 680-carboxylate, 1,3-bis [4- (dimethylamino) -2-hydroxyphenyl] -2,4-dihydroxycyclobutenediylium dihydroxide (1,3 -bis [4- (dimethylamino) -2-hydroxyphenyl] -2,4-dihydroxycyclobutenediylium dihydroxide), bis, 1,3-bis [4- (dimethylamino) phenyl] -2,4-dihydroxycyclobutenediylium dihydroxide (Bis, 1,3-bis [4- (dimethylamino) phenyl] -2,4-dihydroxycyclobutenediylium dihydroxide) bis (2- (4- (diethylamino) -2-hydroxyphenyl) -4- (4- (diethyliminio) ) -2-Hydroxycyclohexa-2,5-dienylidene) -3-oxocyclobute-1-enolate (bis, 2- (4- (diethylamino) -2-hydroxyphenyl) -4- (4- (diethyliminio) -2- hydroxycyclohexa-2,5-dienylidene)- 3-oxocyclobut-1-enolate), 2- (4- (dibutylamino) -2-hydroxyphenyl) -4- (4- (dibutyliminio) -2-hydroxycyclohexa-2,5-dienylidene) -3-oxocyclobute -1-enolate (2- (4- (dibutylamino) -2-hydroxyphenyl) -4- (4- (dibutyliminio) -2-hydroxycyclohexa-2,5-dienylidene) -3-oxocyclobut-1-enolate), 2- (8-hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij] quinolin-9-yl) -4- (8-hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido [3,2,1-ij] quinolinium-9 (5H) -ylidene) -3- Oxocyclobute-1-enolate (2- (8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij] quinolin-9-yl )-Four- (8-hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido [3,2,1-ij] quinolinium-9 (5h) -ylidene) -3-oxocyclobut -1-enolate).

シアニン系色素分子の具体例としては、1−ブチル−2−[5−(1−ブチル−1,3−ジヒドロ−3,3−ジメチル−2H−インドール−2−イリデン)−ペンタ−1,3−ジエニル]−3,3−ジメチル−3H−インドリウムヘキサフルオロホスフェート(1-butyl-2-[5-(1-butyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-penta-1,3-dienyl]-3,3-dimethyl-3H-indolium hexafluorophosphate)、1−ブチル−2−[5−(1−ブチル−3,3−ジメチル−1,3−ジヒドロ−インドール−2−イリデン)−3−クロロペンタ−1,3−ジエニル]−3,3−ジメチル−3H−インドリウムヘキサフルオロホスフェート(1-butyl-2-[5-(1-butyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene)-3-chloropenta-1,3-dienyl]-3,3-dimethyl-3H-indolium hexafluorophosphate)、3−エチル−2−[5−(3−エチル−3H−ベンゾチオアゾール−2−イリデン)−ペンタ−1,3−ジエニル]−ベンゾチアゾール−3−イウム-アイオダイド(3 -ethyl-2-[5-(3-ethyl-3H-benzothiazol-2-ylidene)-penta-1,3-dienyl]-benzothiazol-3-ium iodide)、などが挙げられる。   Specific examples of cyanine dye molecules include 1-butyl-2- [5- (1-butyl-1,3-dihydro-3,3-dimethyl-2H-indole-2-ylidene) -penta-1,3. -Dienyl] -3,3-dimethyl-3H-indolium hexafluorophosphate (1-butyl-2- [5- (1-butyl-1,3-dihydro-3,3-dimethyl-2H-indol-2- ylidene) -penta-1,3-dienyl] -3,3-dimethyl-3H-indolium hexafluorophosphate), 1-butyl-2- [5- (1-butyl-3,3-dimethyl-1,3-dihydro-) Indole-2-ylidene) -3-chloropenta-1,3-dienyl] -3,3-dimethyl-3H-indolium hexafluorophosphate (1-butyl-2- [5- (1-butyl-3,3- dimethyl-1,3-dihydro-indol-2-ylidene) -3-chloropenta-1,3-dienyl] -3,3-dimethyl-3H-indolium hexafluorophosphate), 3-ethyl-2- [5- (3- Ethyl H-benzothioazole-2-ylidene) -penta-1,3-dienyl] -benzothiazole-3-ium-iodide (3-ethyl-2- [5- (3-ethyl-3H-benzothiazol-2-ylidene) ) -penta-1,3-dienyl] -benzothiazol-3-ium iodide).

芳香環系色素分子の具体例としては、N, N−ビス−(2,6−ジイソプロピルフェニル)−1,6,7,12−(4−tert−ブチルフェノキシ)−ペリレン−3,4,9,10−テトラカルボン酸ジイミド(N, N-bis-(2,6-diisopropylphenyl)-1,6,7,12-(4-tert-butylphenoxy)-perylen-3,4,9,10-tetracarboxylic acid diimide)、N,N'−ビス(2,6−ジイソプロピルフェニル)−1,6,7,12−テトラフェノキシペリレン−3,4:9,10−テトラカルボキシジイミド(N,N'-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimide)、N,N'−ビス(2,6−ジイソプロピルフェニル)ペリレン−3,4,9,10−ビス(ジカルボイミド)(N,N'-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarbimide))、16N,N'−ビス(2,6−ジメチルフェニル)ペリレン−3,4,9,10−テトラカルボン酸ジイミド(16N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide)、4,4'−[(8,16−ジヒドロ−8,16−ジオキソジベンゾ[a,j]ペリレン−2,10−ジイル)ジオキシ]ジブチル酸(4,4'-[(8,16-dihydro-8,16-dioxodibenzo[a,j]perylene-2,10-diyl)dioxy]dibutyric acid)、2,10−ジヒドロキシ−ジベンゾ[a,j]ペリレン−8,16−ジオン(2,10-dihydroxy-dibenzo[a,j]perylene-8,16-dione)、2,10−ビス(3−アミノプロポキシ)ジベンゾ[a,j]ペリレン−8,16−ジオン(2,10-bis(3-aminopropoxy)dibenzo[a,j]perylene-8,16-dione)、 3,3'−[(8,16−ジヒドロ−8,16−ジオキソジベンゾ [a,j]ペリレン−2,10−ジイル)ジオキシ]ジプロピルアミン(3,3'-[(8,16-dihydro-8,16-dioxodibenzo[a,j]perylen-2,10-diyl)dioxy]dipropylamine])、17−ビス(オクチルオキシ)アントラ[9,1,2−cde−]ベンゾ[rst]ペンタフェン−5−10−ジオン(17-bis(octyloxy)anthra[9,1,2-cde-]benzo[rst]pentaphene-5-10-dione)、オクタデカン酸、 5,10−ジヒドロ−5,10−ジオキソアントラ [9,1,2−cde]ベンゾ[rst]ペンタフェン−16,17−ジイルエステル(octadecanoic acid, 5,10-dihydro-5,10-dioxoanthra[9,1,2-cde]benzo[rst]pentaphene-16,17-diyl ester)、ジヒドロキシジベンズアントロン(dihydroxydibenzanthrone)、ベンゼンスルホン酸,4,4',4'',4'''−[[2,9−ビス[2,6−ビス(1−メチルエチル)フェニル]−1,2,3,8,9,10−ヘキサヒドロ−1,3,8,10−テトラオキソアントラ [2,1,9−def:6,5,10−d'e'f']ジイソキノリン−5,6,12,13−テトライル]テトラキス(オキシ)]テトラキス−,ベンゼンエタンアミニウム(benzenesulfonic acid, 4,4',4'',4'''-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis-,benzeneethanaminium)、 4,4',4'',4'''−[[2,9−ビス[2,6−ビス(1−メチルエチル)フェニル]−1,2,3,8,9,10−ヘキサヒドロ−1,3,8,10−テトラオキソアントラ [2,1,9−def:6,5,10−d'e'f']ジイソキノリン−5,6,12,13−テトライル]テトラキス(オキシ)]テトラキス[N,N,N−トリメチル−](4,4',4'',4'''-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8
,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis[N,N,N-trimethyl-])、などが挙げられる。
Specific examples of the aromatic ring dye molecule include N, N-bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9. , 10-Tetracarboxylic acid diimide (N, N-bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylen-3,4,9,10-tetracarboxylic acid diimide), N, N′-bis (2,6-diisopropylphenyl) -1,6,7,12-tetraphenoxyperylene-3,4: 9,10-tetracarboxydiimide (N, N′-bis (2 , 6-diisopropylphenyl) -1,6,7,12-tetraphenoxyperylene-3,4: 9,10-tetracarboxdiimide), N, N′-bis (2,6-diisopropylphenyl) perylene-3,4,9,10 -Bis (dicarboimide) (N, N'-bis (2,6-diisopropylphenyl) perylene-3,4,9,10-bis (dicarbimide)), 16N, N'-bis (2,6-dimethyl) Phenyl) perylene-3,4,9,10-tetracarboxylic diimide (16N, N'-bis (2,6-dimethylphenyl) perylene-3,4,9,10-tetracarboxylic diimide), 4,4 '-[ (8,16-dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutyric acid (4,4 '-[(8,16-dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutyric acid), 2,10-dihydroxy-dibenzo [a, j] perylene-8,16-dione (2,10-dihydroxy-dibenzo [a, j ] perylene-8,16-dione), 2,10-bis (3-aminopropoxy) dibenzo [a, j] perylene-8,16-dione (2,10-bis (3-aminopropoxy) dibenzo [a, j ] perylene-8,16-dione), 3,3 ′-[(8,16-dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dipropylamine (3 , 3 '-[(8,16-dihydro-8,16-dioxodibenzo [a, j] perylen-2,10-diyl) dioxy] dipropyl amine]), 17-bis (octyloxy) anthra [9,1,2-cde-] benzo [rst] pentaphen-5-10-dione (17-bis (octyloxy) anthra [9,1,2-cde- ] benzo [rst] pentaphene-5-10-dione), octadecanoic acid, 5,10-dihydro-5,10-dioxoanthra [9,1,2-cde] benzo [rst] pentaphen-16,17-diyl Esters (octadecanoic acid, 5,10-dihydro-5,10-dioxoanthra [9,1,2-cde] benzo [rst] pentaphene-16,17-diyl ester), dihydroxydibenzanthrone, benzenesulfonic acid , 4,4 ′, 4 ″, 4 ′ ″-[[2,9-bis [2,6-bis (1-methylethyl) phenyl] -1,2,3,8,9,10-hexahydro -1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d'e'f '] diisoquinoline-5,6,12,13-tetra Ru] tetrakis (oxy)] tetrakis-, benzeneethaneaminium (benzenesulfonic acid, 4,4 ', 4'',4'''-[[2,9-bis [2,6-bis (1-methylethyl) phenyl] -1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d'e'f '] diisoquinoline- 5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis-, benzeneethanaminium), 4,4 ', 4'',4'''-[[2,9-bis [2,6-bis (1 -Methylethyl) phenyl] -1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d'e 'f'] diisoquinoline-5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis [N, N, N-trimethyl-] (4,4 ', 4'',4'''-[[ 2,9-bis [2,6-bis (1-methylethyl) phenyl] -1,2,3,8
, 9,10-hexahydro-1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d'e'f '] diisoquinoline-5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis [N, N, N-trimethyl-]), and the like.

オキサジン系色素分子の具体例としては、Cresyl violet、Oxazine 170、EVOblue30、Nile Blueなどが挙げられる。
カルボピロニン系色素分子の具体例としては、CARBOPYRONIN 149などが挙げられる。
Specific examples of the oxazine dye molecule include Cresyl violet, Oxazine 170, EVOblue30, and Nile Blue.
Specific examples of carbopyronine dye molecules include CARBOPYRONIN 149.

ピロメセン系色素分子の具体例としては、PYRROMETHENE 650などが挙げられる。
Alexa Fluor系色素分子の具体例としては、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750など(以上、インビトロジェン社製)が挙げられる。
Specific examples of the pyromesenic dye molecule include PYRROMETHENE 650.
Specific examples of Alexa Fluor dye molecules include Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 700 Alexa Fluor 750 and the like (manufactured by Invitrogen).

BODIPY系色素分子の具体例としては、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上、インビトロジェン社製)などが挙げられる。   Specific examples of BODIPY dye molecules include BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650 And BODIPY 650/665 (manufactured by Invitrogen).

Cy系色素分子の具体例としては、Cy3.5、Cy5、Cy5.5(以上、GEヘルスケア社製)などが挙げられる。
DY系色素分子の具体例としては、DY-590、DY-610、DY-615、DY-630、DY-631、DY-632、DY-633、DY-634(以上、DYOMICS社製)、などが挙げられる。
Specific examples of the Cy dye molecule include Cy3.5, Cy5, Cy5.5 (above, manufactured by GE Healthcare) and the like.
Specific examples of DY dye molecules include DY-590, DY-610, DY-615, DY-630, DY-631, DY-632, DY-633, DY-634 (above, manufactured by DYOMICICS), etc. Is mentioned.

HiLyte系色素分子の具体例としては、HiLyte Fluor 594、HiLyte Fluor TR(以上、アナスペック社製)などが挙げられる。
DyLight系色素分子の具体例としては、DyLight 594、DyLight 633(以上、サーモサイエンティフィック社製)などが挙げられる。
Specific examples of the HiLyte dye molecule include HiLyte Fluor 594, HiLyte Fluor TR (manufactured by Anaspec) and the like.
Specific examples of the DyLight-based dye molecule include DyLight 594, DyLight 633 (manufactured by Thermo Scientific).

ATTO系色素分子の具体例としては、ATTO590、ATTO610、ATTO620、ATTO633、ATTO655など(以上、ATTO−TEC社製)が挙げられる。
MFP系色素分子の具体例としては、MFP590、MFP631(以上、Mobitec社製)などが挙げられる。
Specific examples of ATTO dye molecules include ATTO590, ATTO610, ATTO620, ATTO633, ATTO655, etc. (above, manufactured by ATTO-TEC).
Specific examples of MFP dye molecules include MFP590, MFP631 (manufactured by Mobitec) and the like.

その他色素としては、C−フィコシアニン(C-phycocyanin)、フィコシアニン(phycocyanin)、APC(アロフィコシアニン(allo phycocyanin))、APC-XL、Northern Lights 637(R&D Systems社製)、等が挙げられる。   Examples of other dyes include C-phycocyanin, phycocyanin, APC (allophycocyanin), APC-XL, Northern Lights 637 (manufactured by R & D Systems), and the like.

また、これらの誘導体(蛍光色素として機能しうるもの、例えば、公知の誘導体)を挙げることができる。
以上のような蛍光色素は、蛍光色素内包ナノ粒子中に、いずれか一種を単独で内包させるようにしても、複数種を混合して内包させるようにしてもよい。
Moreover, these derivatives (what can function as a fluorescent dye, for example, a well-known derivative) can be mentioned.
The fluorescent dyes as described above may be included in the fluorescent dye-containing nanoparticles in a single kind or in a mixture of a plurality of kinds.

例えば、ローダミン系色素分子、芳香環系色素分子などの蛍光色素は比較的耐光性が高いため好ましく、なかでも芳香環系色素分子に属するペリレン(perylene)、特にペリレンジイミド(perylene diimide)が好ましい。一方、比較的耐光性の低い蛍光色素であっても、適切な母体を選択することにより、本発明による所定の輝度保持率の条件を満たす蛍光色素内包ナノ粒子を作製できる可能性がある。   For example, fluorescent dyes such as rhodamine dye molecules and aromatic ring dye molecules are preferred because of their relatively high light resistance, and among them, perylene belonging to aromatic ring dye molecules, particularly perylene diimide, is preferred. On the other hand, even if the fluorescent dye has relatively low light resistance, there is a possibility that fluorescent dye-containing nanoparticles satisfying the predetermined luminance retention rate according to the present invention can be produced by selecting an appropriate matrix.

蛍光色素内包ナノ粒子の製造方法は特に限定されるものではない。粒子原料であるモノマーに色素分子を結合させて粒子を合成する方法、粒子に色素を吸着させて導入する方法等、粒子への色素の導入には如何なる方法を用いても構わない。   The method for producing the fluorescent dye-containing nanoparticles is not particularly limited. Any method may be used for introducing the dye into the particle, such as a method of synthesizing the particle by bonding a dye molecule to the monomer as the particle raw material, or a method of introducing the dye by adsorbing the dye to the particle.

ここで、モノマーとしては、所定の官能基を予め側鎖に有する(コ)モノマーを(共)重合させるか、上記有機物または無機物粒子(母体)の作製後に、それを構成しているモノマー単位に結合した官能基を試薬処理して該所定の官能基に変換する方法が挙げられる。   Here, as the monomer, a (co) monomer having a predetermined functional group in the side chain in advance is (co) polymerized, or after the preparation of the organic or inorganic particles (matrix), There is a method in which a bound functional group is treated with a reagent and converted to the predetermined functional group.

具体的には、スチレンと共にグリシジルメタクリレートをモノマーとして用いて共重合させることにより、表面にエポキシ基を有するポリスチレン系樹脂粒子を製造する実施形態や、メラミンとホルムアルデヒドとをモノマーとして用いて共重合させることにより、メラミン系樹脂を製造する実施形態等が挙げられる。なお、グリシジルメタクリレートが有するエポキシ基は、所定の試薬処理によりアミノ基に変換することもできる。   Specifically, an embodiment in which polystyrene resin particles having an epoxy group on the surface are produced by copolymerization using glycidyl methacrylate as a monomer together with styrene, or copolymerization using melamine and formaldehyde as monomers. The embodiment etc. which manufacture melamine system resin by are mentioned. In addition, the epoxy group which glycidyl methacrylate has can also be converted into an amino group by a predetermined reagent treatment.

(C)無機蛍光ナノ粒子内包粒子
本発明で用いられる無機蛍光ナノ粒子内包粒子とは、有機物または無機物でできた粒子(母体)に対し、上記(A)で説明した無機蛍光ナノ粒子が内包されてなるものである。無機蛍光ナノ粒子は、蛍光色素内包ナノ粒子中に、いずれか一種を単独で内包させるようにしても、複数種を混合して内包させるようにしてもよい。
(C) Inorganic fluorescent nanoparticle-encapsulated particles The inorganic fluorescent nanoparticle-encapsulated particles used in the present invention include the inorganic fluorescent nanoparticles described in (A) above for the organic or inorganic particles (matrix). It will be. The inorganic fluorescent nanoparticles may be included in the fluorescent dye-encapsulated nanoparticles alone or in a mixture of a plurality of types.

蛍光色素内包ナノ粒子の製造方法は特に限定されるものではない。粒子原料である上記モノマーに無機蛍光ナノ粒子を結合させて粒子を合成する方法、粒子に無機蛍光ナノ粒子を吸着させて導入する方法等、粒子への無機蛍光ナノ粒子の導入は如何なる方法を用いても構わない。
上記(A)無機蛍光ナノ粒子、(B)蛍光色素内包ナノ粒子、および(C)無機蛍光ナノ粒子内包粒子のうち、(B)蛍光色素内包ナノ粒子が好ましい。
The method for producing the fluorescent dye-containing nanoparticles is not particularly limited. Use any method to introduce inorganic fluorescent nanoparticles into particles, such as the method of synthesizing particles by bonding inorganic fluorescent nanoparticles to the above monomer, which is the raw material of the particles, or the method of adsorbing and introducing inorganic fluorescent nanoparticles to the particles. It doesn't matter.
Of the (A) inorganic fluorescent nanoparticles, (B) fluorescent dye-containing nanoparticles, and (C) inorganic fluorescent nanoparticle-containing particles, (B) fluorescent dye-containing nanoparticles are preferable.

蛍光標識体
特定の抗原に対して免疫染色を行う際には、蛍光ナノ粒子と一次抗体とを連結させた標識体(コンジュゲート)を作製し、抗原に直接結合させる方法(一次抗体法);蛍光ナノ粒子と二次抗体とを連結させた標識体を作製し、抗原に結合した一次抗体に結合させる方法(二次抗体法);蛍光ナノ粒子とアビジンまたはストレプトアビジンとを連結させた標識体を作製し、抗原に結合したビオチン修飾一次抗体が有するビオチンまたは一次抗体に結合したビオチン修飾二次抗体が有するビオチンに結合させる方法、あるいはこれらの結合様式におけるビオチンとアビジンまたはストレプトアビジンとを入れ替えた方法(ビオチン−アビジン法)などがある。
When immunostaining a fluorescent-labeled specific antigen, a label (conjugate) in which fluorescent nanoparticles and a primary antibody are linked is prepared and directly bound to the antigen (primary antibody method); A method in which a labeled body in which fluorescent nanoparticles and a secondary antibody are linked is prepared and bound to a primary antibody bound to an antigen (secondary antibody method); a labeled body in which fluorescent nanoparticles and avidin or streptavidin are linked The biotin of the biotin-modified primary antibody bound to the antigen or the biotin of the biotin-modified secondary antibody bound to the primary antibody or the biotin and avidin or streptavidin in these binding modes were replaced. Method (biotin-avidin method).

本発明の蛍光ナノ粒子は、これらの方法に基づき、上記のような標識体の形態にして用いられる。ここで、蛍光ナノ粒子は、標識体化していない状態で分散液として保存しておき、免疫染色を行う直前にその蛍光ナノ粒子と標識体化のための試薬とを反応させて標識体化して、病理染色液を調製するようにしてもよいが、免疫染色を行う際に直ちに使用できるよう、あらかじめ標識体化した状態で分散液として保存しておくことが好適である。すなわち、本発明で用いる蛍光ナノ粒子はあらかじめ標識体化されたものが好ましく、本発明に係る病理染色液は、そのような標識体化された蛍光ナノ粒子の分散液からなること、ないし当該分散液と必要に応じて添加されるさらなる成分を含有するものとして規定される。この場合、病理染色液の用途(免疫染色の対象とする抗原)が限定されない汎用的なものとなるよう、蛍光ナノ粒子は、アビジンまたはストレプトアビジンが連結して複合体化されていることが好ましい。   The fluorescent nanoparticles of the present invention are used in the form of a label as described above based on these methods. Here, the fluorescent nanoparticles are stored as a dispersion in a non-labeled state, and immediately before immunostaining, the fluorescent nanoparticles and a reagent for labeling are reacted to form a label. Alternatively, a pathological staining solution may be prepared, but it is preferable to store it as a dispersion in a labeled state so that it can be used immediately when immunostaining is performed. That is, the fluorescent nanoparticles used in the present invention are preferably labeled in advance, and the pathological staining solution according to the present invention is composed of a dispersion of such labeled fluorescent nanoparticles, or the dispersion It is defined as containing the liquid and further ingredients added as needed. In this case, the fluorescent nanoparticles are preferably combined with avidin or streptavidin so that the use of the pathological staining solution (antigen to be immunostained) is not limited. .

なお、蛍光ナノ粒子が複合体化している場合、分散液の密度および粘度については、そのような複合体化した蛍光ナノ粒子を含有した状態で測定される一方、蛍光ナノ粒子の固体密度については、複合体化していない蛍光ナノ粒子の固体密度を、複合体化した蛍光ナノ粒子の固体密度とみなすこととする(これらの固体密度の差は極めて小さい)。   When fluorescent nanoparticles are complexed, the density and viscosity of the dispersion are measured in a state containing such complexed fluorescent nanoparticles, while the solid density of the fluorescent nanoparticles is measured. Let the solid density of the uncomplexed fluorescent nanoparticles be taken as the solid density of the composited fluorescent nanoparticles (the difference between these solid densities is very small).

免疫染色に用いる一次抗体は如何なるものでも構わず、免疫染色を行いたい対象によって変わる。例えば、Ki67を抗原とする免疫染色を行う場合には、抗Ki67抗体を用いる。また、二次抗体は如何なるものを用いても構わず、一次抗体によって変わる。例えば、抗マウス・ラビット・牛・ヤギ・羊・犬・チキン抗体が挙げられる。   Any primary antibody may be used for immunostaining, and it varies depending on the subject to be immunostained. For example, when performing immunostaining using Ki67 as an antigen, an anti-Ki67 antibody is used. Any secondary antibody may be used, and varies depending on the primary antibody. For example, anti-mouse, rabbit, cow, goat, sheep, dog, chicken antibody can be mentioned.

蛍光ナノ粒子と抗体やビオチンの結合は既存の如何なる方法を用いても構わない。例えば、アミンとカルボン酸の反応によるアミド化、マレイミドとチオールの反応によるスルフィド化、アルデヒドとアミンの反応によるイミン化、エポキシとアミンの反応によるアミノ化等を用いることができる。   Any existing method may be used for binding the fluorescent nanoparticles to the antibody or biotin. For example, amidation by reaction of amine and carboxylic acid, sulfidation by reaction of maleimide and thiol, imination by reaction of aldehyde and amine, amination by reaction of epoxy and amine can be used.

免疫染色の対象となりうる抗原には、前述したKi67以外にも、HER−2、HER−3、HER−4(Human Epidermal Growth Factor Receptor(ヒト上皮成長因子受容体))、EGFR(Epidermal Growth Factor Receptor(上皮成長因子受容体))、PDGFR(Platelet-Derived Growth Factor(血小板由来増殖因子受容体))、VEGRR(Vascular Endothelial Growth Factor Receptor(血管内皮細胞増殖因子受容体))、NGFR(Nerve Growth Factor Receptor(神経成長因子受容体))、FGFR(Fibroblast Growth Factor Receptor(繊維芽細胞増殖因子受容体))、IR(Insulin Receptor(インスリン受容体))、ER(Estrogen Receptor(エストロゲン受容体))、PgR(Progesterone Receptor(プロゲステロン受容体))、c−Met(肝細胞増殖因子受容体)、TNF−α(Tumor Necrosis Factor(腫瘍壊死因子))受容体、IL−6(Interleukin(インターロイキン))受容体、c−Kit(幹細胞因子受容体)、ALK(Anaplastic lymphoma kinase(未分化リンパ腫キナーゼ))など、サイトカインのような各種の生体関連物質に対する、細胞表面に発現する受容体;CD31(PECAM−1)(Platelet Endothelial Cell Adhesion Molecule-1(血小板内皮細胞接着分子1))、CD34(Endothelial cell marker(内皮細胞マーカー))、GPC3(Glypican(グリピカン)3)など、細胞表面に発現するマーカー分子(糖タンパク質等);CK7(Cytokeratin(サイトケラチン))、Actin(アクチン)、p53など、細胞内に発現する分子;RSVFタンパク質、B型肝炎ウイルス表面抗原、B型肝炎ウイルスコア抗原、C型肝炎ウイルスコア抗原、NS3(Non-structural protein(非構造タンパク質)3)等のウイルスで発現する分子などが挙げられる。これらの抗原は、特定のウイルスまたは細胞(たとえばがん細胞、白血球)における発現量が多いことなどから、それらを検出するための対象として利用することができる。   Antigens that can be the target of immunostaining include HER-2, HER-3, HER-4 (Human Epidermal Growth Factor Receptor), EGFR (Epidermal Growth Factor Receptor) in addition to Ki67 described above. (Epidermal growth factor receptor)), PDGFR (Platelet-Derived Growth Factor (platelet-derived growth factor receptor)), VEGRR (Vascular Endothelial Growth Factor Receptor (vascular endothelial growth factor receptor)), NGFR (Nerve Growth Factor Receptor) (Nerve growth factor receptor)), FGFR (Fibroblast Growth Factor Receptor (fibroblast growth factor receptor)), IR (Insulin Receptor (insulin receptor)), ER (Estrogen Receptor (estrogen receptor)), PgR ( Progesterone Receptor (progesterone receptor)), c-Met (hepatocyte growth factor receptor), TNF-α (Tumor Necrosis Factor (tumor) Necrosis factor)) receptor, IL-6 (Interleukin) receptor, c-Kit (stem cell factor receptor), ALK (Anaplastic lymphoma kinase), etc. Receptors expressed on the cell surface for biological substances: CD31 (PECAM-1) (Platelet Endothelial Cell Adhesion Molecule-1), CD34 (Endothelial cell marker (endothelial cell marker)), GPC3 (Glypican (Glypican) 3) and other marker molecules expressed on the cell surface (glycoprotein etc.); CK7 (Cytokeratin (cytokeratin)), Actin (actin), p53 and other molecules expressed in cells; RSVF protein, B Hepatitis B surface antigen, hepatitis B virus core antigen, hepatitis C virus core antigen, NS3 (Non-s Examples include molecules expressed in viruses such as tructural protein (nonstructural protein) 3). Since these antigens have a high expression level in specific viruses or cells (for example, cancer cells, leukocytes), they can be used as targets for detecting them.

微粒子状標識体は、免疫染色の目的に応じて、通常用いられる濃度で水分散液中に含まれていればよく、水分散液1mLに対し、通常0.01〜2.00 mmol、好ましくは0.04〜1.00 mmolの割合で添加する。水分散液中の微粒子状標識体の量が上記範囲内にあると、自動染色装置内の試薬ボトルに水分散液を入れて長時間保存しても、粒子の分散性が良好に維持される。   The particulate label may be contained in the aqueous dispersion at a concentration usually used according to the purpose of immunostaining, and is usually 0.01 to 2.00 mmol, preferably 0.04 to 1.00 mmol with respect to 1 mL of the aqueous dispersion. Add at a rate of When the amount of the particulate label in the aqueous dispersion is within the above range, even if the aqueous dispersion is placed in a reagent bottle in the automatic staining apparatus and stored for a long time, the dispersibility of the particles is maintained well. .

[チキソトロピー付与剤]
本発明におけるチキソトロピー付与剤としては、水分散液にチキソトロピー性を付与できるものであれば既存の如何なるものでも構わない。一般的に、増粘多糖類、増粘剤、乳化安定剤などとして知られている物質を、本発明におけるチキソトロピー付与剤として用いることができる。
[Thixotropic agent]
As the thixotropy imparting agent in the present invention, any existing thixotropy may be used as long as it can impart thixotropy to the aqueous dispersion. In general, substances known as thickening polysaccharides, thickeners, emulsion stabilizers and the like can be used as the thixotropic agent in the present invention.

ここで、チキソトロピー性とは、低せん断速度下で粘度が高く、かつ、高せん断速度下で粘度の低下を起こす性質をいう。
上記チキソトロピー付与剤としては、水溶性高分子、例えば、キサンタンガム、ウェランガム、サクシノグリカン、グアーガム、ローカストビーンガム、タマリンドガム、ペクチン及びこれらの誘導体、カルボキシメチルセルロース(CMC)塩類、ヒドロキシエチルセルロース、アルギン酸塩類、グルコマンナン、寒天、カラギナン等、ゲル化能を有する増粘多糖類;メタクリル酸アルキルエステルを主成分とする分子量10万〜15万の重合体、架橋性アクリル酸重合体などの合成樹脂、PEG系のHLB8〜12のノニオン系増粘剤(界面活性剤)などが挙げられる。
Here, the thixotropic property means a property that the viscosity is high at a low shear rate and the viscosity is lowered at a high shear rate.
Examples of the thixotropic agent include water-soluble polymers such as xanthan gum, welan gum, succinoglycan, guar gum, locust bean gum, tamarind gum, pectin and derivatives thereof, carboxymethylcellulose (CMC) salts, hydroxyethylcellulose, alginates, Glycomannan, agar, carrageenan, etc., thickening polysaccharides having gelling ability; polymers having a molecular weight of 100,000 to 150,000 mainly composed of alkyl methacrylate and synthetic resins such as crosslinkable acrylic acid polymers, PEG Nonionic thickeners (surfactants) of HLB8-12.

これらのうち、分散安定性の点から、キサンタンガム、グアーガム、カルボキシメチルセルロース(CMC)塩、及びPEG系のノニオン系増粘剤などの水溶性高分子が、より好ましい。カルボキシメチルセルロース(CMC)塩のようにカルボン酸塩やスルホン酸塩を形成している場合、たとえばナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩、などの1価の塩がより好ましい。   Among these, water-soluble polymers such as xanthan gum, guar gum, carboxymethyl cellulose (CMC) salt, and PEG-based nonionic thickener are more preferable from the viewpoint of dispersion stability. When a carboxylate or a sulfonate is formed like a carboxymethyl cellulose (CMC) salt, a monovalent salt such as a sodium salt, a potassium salt, a lithium salt, or an ammonium salt is more preferable.

上記チキソトロピー付与剤は、水分散液1mL中に、通常1〜800mg、好ましくは1〜100mg添加する。水分散液中のチキソトロピー付与剤の量が上記範囲内にあると、自動染色装置内の試薬ボトルに水分散液を入れて長時間保存しても、病理染色用等の標識体(たとえば蛍光色素内包蛍光ナノ粒子)の分散性が良好に維持される。   The thixotropy-imparting agent is usually added in an amount of 1 to 800 mg, preferably 1 to 100 mg, in 1 mL of an aqueous dispersion. When the amount of the thixotropy-imparting agent in the aqueous dispersion is within the above range, even if the aqueous dispersion is placed in a reagent bottle in the automatic staining apparatus and stored for a long time, a label for pathological staining (for example, a fluorescent dye) The dispersibility of the encapsulated fluorescent nanoparticles) is maintained well.

[溶媒]
本発明で用いられる溶媒は、免疫染色に用いることができる、好ましくは粘度調節用添加剤を溶解させて所定の粘度に調節することができるものであれば、既存の如何なるものでも構わない。一般的には、水(純水)またはPBS(リン酸緩衝液生理的食塩水)等の緩衝液が用いられる。
[solvent]
The solvent used in the present invention may be any existing solvent as long as it can be used for immunostaining, and preferably can be adjusted to a predetermined viscosity by dissolving a viscosity adjusting additive. In general, a buffer solution such as water (pure water) or PBS (phosphate buffer physiological saline) is used.

[水系溶媒]
また、本発明の水分散液は、微粒子状標識体及びチキソトロピー付与剤の他に、これら2成分を分散または溶解させるための水系溶媒を含む。上記水系溶媒としては、免疫染色に用いることができる、具体的にはチキソトロピー付与剤を溶解させて所定の粘度に調節することができるものであれば、既存の如何なるものでも構わない。一般的には、水(純水)又はPBS(リン酸緩衝液生理的食塩水)等の緩衝液が用いられる。本発明の水分散液に配合される溶媒は、病理診断への用途において要求される生体親和性や透明性などを考慮すると、実質的に水系溶媒のみからなり有機溶媒は含有しない(水分散液に配合する各種の成分にその調製時に用いたものが付着しているなど、完全には排除しがたい有機溶媒の混入は許容されるが、意図的には有機溶媒を添加しない)ことが好ましい。
[Aqueous solvent]
The aqueous dispersion of the present invention contains an aqueous solvent for dispersing or dissolving these two components in addition to the particulate marker and the thixotropic agent. As the aqueous solvent, any existing solvent may be used as long as it can be used for immunostaining, specifically, a thixotropy-imparting agent can be dissolved and adjusted to a predetermined viscosity. In general, a buffer solution such as water (pure water) or PBS (phosphate buffer physiological saline) is used. In consideration of biocompatibility and transparency required for pathological diagnosis, the solvent blended in the aqueous dispersion of the present invention consists essentially of an aqueous solvent and does not contain an organic solvent (aqueous dispersion) It is preferable to mix organic solvents that are difficult to completely eliminate, such as those used at the time of preparation, attached to various components to be blended in, but intentionally do not add organic solvents) .

[水分散液]
本発明の水分散液は、上述したような微粒子状標識体、チキソトロピー付与剤、及び水系溶媒を含有する。このような水分散系は、主として後述するような病理染色液として利用する、あるいは病理染色液の調製に利用することが好適であるが、微粒子状標識体が沈殿、凝集しにくいという特性を活かした他の用途において利用することも可能である。
[Water dispersion]
The aqueous dispersion of the present invention contains the particulate labeling body, the thixotropic agent, and the aqueous solvent as described above. Such an aqueous dispersion is suitable mainly for use as a pathological staining solution as described later, or for the preparation of a pathological staining solution, but takes advantage of the property that the particulate labeling substance is difficult to precipitate and aggregate. It can also be used in other applications.

本発明の水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、好ましくは10〜200mPa・sであり、より好ましくは10〜50mPa・sである。
ここで、本発明において、みかけ粘度とは、水分散液の流動の特性について、B型粘度計を使用し、所定の回転数でローターを回転させたときのトルクを測定し、ずり速度とずり応力の関係(ずり応力/ずり速度)を求めたものである。
The apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion of the present invention at 25 ° C. is preferably 10 to 200 mPa · s, more preferably 10 to 50 mPa · s.
Here, in the present invention, the apparent viscosity refers to the flow characteristics of the aqueous dispersion, using a B-type viscometer, measuring the torque when the rotor is rotated at a predetermined rotational speed, and measuring the shear rate and shear. The relationship of stress (shear stress / shear rate) is obtained.

B型粘度計を用いて、1%キサンタンガム水溶液のみかけ粘度を測定する方法を具体例を挙げて説明する。
共栓付き300mL三角フラスコに約2.2gのキサンタンガムを精秤し、次式に従って溶解水を加える。
溶解水(g)=キサンタンガム(g)×(99−水分(%))
A method for measuring the apparent viscosity of a 1% xanthan gum aqueous solution using a B-type viscometer will be described with a specific example.
About 2.2 g of xanthan gum is precisely weighed into a 300 mL Erlenmeyer flask with a stopper, and dissolved water is added according to the following formula.
Dissolved water (g) = xanthan gum (g) × (99-water content (%))

得られた水溶液を一夜間放置後、マグネチックスターラーで約5分間かき混ぜ、完全な溶液とした後、口径約45mm、高さ約145mmのフタ付き容器に移し、25±0.2℃の恒温槽に30分間静置した後、ガラス棒で溶液をゆるくかき混ぜて、B型粘度計(BII形粘度計)に、ローター及びガードを取り付け、ローターを回転させ、3分後にB型粘度計の目盛を読み取る。ローターの種類(No.1〜4)および回転数に応じて、表1の係数を乗じて粘度とする。なお、ローターの種類および回転数は、キサンタンガム水溶液の粘度の高低に応じて選択する。
粘度(mPa・s)=読み取り目盛×係数
The resulting aqueous solution is left overnight and stirred with a magnetic stirrer for about 5 minutes to form a complete solution, which is then transferred to a container with a lid having a diameter of about 45 mm and a height of about 145 mm, and a constant temperature bath at 25 ± 0.2 ° C. After 30 minutes, gently stir the solution with a glass rod, attach the rotor and guard to the B type viscometer (BII type viscometer), rotate the rotor, and after 3 minutes, mark the B type viscometer. read. According to the type of rotor (No. 1 to 4) and the rotational speed, the coefficient in Table 1 is multiplied to obtain the viscosity. In addition, the kind and rotation speed of a rotor are selected according to the level of the viscosity of a xanthan gum aqueous solution.
Viscosity (mPa · s) = Reading scale × Coefficient

水分散液のみかけ粘度が上記範囲を超えると、自動染色装置を使って生体組織上に水分散液を添加する際に水分散液の粘度が高くて正確な量で吐出できなくなることがあり、上記範囲を下回ると、水分散液中で粒子の凝集又は沈降が生じ、生体組織上に均一に標識体を載せることができなくなることがある。   If the apparent viscosity of the aqueous dispersion exceeds the above range, when adding the aqueous dispersion onto the living tissue using an automatic staining device, the aqueous dispersion may have a high viscosity and may not be discharged in an accurate amount. Below the above range, the particles may aggregate or settle in the aqueous dispersion, and it may not be possible to uniformly place the label on the living tissue.

本発明の水分散液のpHは、好ましくは6〜8、より好ましくは7付近である。pHが中性から外れると、すなわち、酸性側又は塩基性側に傾くと、中性のときに比べて、生体組織上に水分散液を吐出した後の生体組織上の輝点数が減少する。これは、pHが酸性又は塩基性であると、中性のときに比べて、例えば、アビジン複合体とビオチン標識タンパク質との反応が起こり難くなるなど、抗原抗体反応が進みにくくなり、免疫染色の染色性が低下するためである。   The pH of the aqueous dispersion of the present invention is preferably 6-8, more preferably around 7. When the pH deviates from neutrality, that is, when the pH is inclined toward the acidic side or the basic side, the number of bright spots on the living tissue after discharging the aqueous dispersion onto the living tissue is reduced as compared with the neutral side. This is because when the pH is acidic or basic, the antigen-antibody reaction is less likely to proceed, for example, the reaction between the avidin complex and the biotin-labeled protein is less likely to occur than in the neutral case. This is because the dyeability is lowered.

本発明の水分散液の密度は、通常1.00〜3.00g/cm3、好ましくは1.00〜2.00g/cm3である。水分散液の密度が上記範囲を超えると、水分散液中の粒子の運動が抑制され、免疫染色の染色性が低下することがある。The density of the aqueous dispersion of the present invention is usually 1.00 to 3.00 g / cm 3 , preferably 1.00 to 2.00 g / cm 3 . When the density of the aqueous dispersion exceeds the above range, the movement of particles in the aqueous dispersion may be suppressed, and the staining property of immunostaining may be reduced.

本発明の水分散液は透明であることが好ましい。水分散液に、不純物などの固体成分が含まれていると、生体組織上に水分散液を吐出した後、励起光を照射したときにこれらの不純物も反射するため、生体組織上の輝点数を正確に計測できなくなることがある。   The aqueous dispersion of the present invention is preferably transparent. If the aqueous dispersion contains solid components such as impurities, the number of bright spots on the biological tissue is reflected when the excitation light is irradiated after the aqueous dispersion is discharged onto the biological tissue. May not be measured accurately.

[分散液]
本発明で用いられる分散液は、上記蛍光ナノ粒子からなる蛍光標識体を上記溶媒に分散させてなる。
[Dispersion]
The dispersion used in the present invention is obtained by dispersing a fluorescent label comprising the fluorescent nanoparticles in the solvent.

上記分散液は、免疫染色の目的に応じて、通常用いられる濃度に分散されていればよく、例えば、上記溶媒1mLに対して、上記蛍光ナノ粒子からなる標識体を通常0.02〜1.2nM、好ましくは0.3nMの割合で分散させる。   The dispersion liquid only needs to be dispersed at a concentration that is usually used according to the purpose of immunostaining. For example, the label formed of the fluorescent nanoparticles is usually 0.02-1 to 1 mL with respect to 1 mL of the solvent. Disperse at a rate of 2 nM, preferably 0.3 nM.

上記分散液は、下記式(1)を満たす。
(ρ−ρw)/η ≦ 0.02 ・・・(1)
上記式(1)中、ρは20℃における蛍光ナノ粒子の固体密度(g/cm3)を表し、ρwは20℃における分散液の密度(g/cm3)を表し、ηは20℃における分散液の粘度(g/cm・sec)を表す。
The dispersion satisfies the following formula (1).
(Ρ−ρ w ) /η≦0.02 (1)
In the above formula (1), ρ represents the solid density (g / cm 3 ) of the fluorescent nanoparticles at 20 ° C., ρ w represents the density of the dispersion at 20 ° C. (g / cm 3 ), and η is 20 ° C. Represents the viscosity (g / cm · sec) of the dispersion liquid.

ここで、20℃における蛍光ナノ粒子の固体密度ρ(g/cm3)は、密度勾配遠心法を用いて測定する。
20℃における分散液の密度ρw(g/cm3)は、メスフラスコで所定の容量の分散液を取り、その重量を秤量することにより測定する。
Here, the solid density ρ (g / cm 3 ) of the fluorescent nanoparticles at 20 ° C. is measured using a density gradient centrifugation method.
The density ρ w (g / cm 3 ) of the dispersion at 20 ° C. is measured by taking a predetermined volume of the dispersion in a volumetric flask and weighing the weight.

20℃における分散液の粘度η(g/cm・sec)は、音叉型振動式粘度計を用いて測定する。
このような条件を満たす分散液は、用いる蛍光標識体の粒子および溶媒、さらに必要に応じて用いられる後述する密度および/粘度調節用添加剤の種類(性状)および量を、好ましくは本明細書中に記載するような範囲内で調節することにより、調製することができる。例えば、固体密度ρが比較的小さな(水の比重に近い)蛍光ナノ粒子からなる標識体を用いる場合は、分散液の密度ρwとの差(つまり式(1)の左辺の分子)が比較的小さくなるので、分散液の粘度ηをあまり大きくしなくとも式(1)を満たす分散液を調製しやすい。逆に、固体密度ρが比較的大きな蛍光ナノ粒子を用いる場合は、分散液の密度ρwとの差が比較的大きくなるので、例えば増粘作用の強い添加剤を用いて、分散液の粘度ηを大きくすると式(1)を満たす分散液を調製しやすい。
The viscosity η (g / cm · sec) of the dispersion at 20 ° C. is measured using a tuning fork type vibration viscometer.
The dispersion satisfying such conditions is preferably the same as that of the fluorescent labeling particles and solvent to be used, and the type (property) and amount of the later-described density and / or viscosity adjusting additive used as necessary. It can be prepared by adjusting within the range as described in. For example, when using a label composed of fluorescent nanoparticles with a relatively low solid density ρ (close to the specific gravity of water), the difference from the density ρ w of the dispersion (that is, the molecule on the left side of equation (1)) is compared. Therefore, it is easy to prepare a dispersion satisfying the formula (1) without increasing the viscosity η of the dispersion too much. Conversely, when using fluorescent nanoparticles with a relatively large solid density ρ, the difference from the density ρ w of the dispersion becomes relatively large. For example, using a highly thickening additive, the viscosity of the dispersion When η is increased, a dispersion satisfying the formula (1) can be easily prepared.

上記式(1)において、分散液の粘度η(g/cm・sec)は1<η<100であることが好ましく、1<η<30であることがより好ましい。
分散液が上記式(1)の関係を満たすと、該分散液からなる病理染色液を調製後、4℃で一定期間(例えば約一ヶ月間)保存した後も、分散液中で蛍光ナノ粒子等の粒子が凝集又は沈降しないため、希釈前に超音波をあてて粒子を分散させる操作をしなくても、病理染色液を直ちに希釈して生体組織上に適用することができる。また、病理組織に適用する際に、病理染色液をピペットで吸い上げて吐出するが、このときにピペット内に病理染色液が残留しないため、取り扱いが容易である。
In the above formula (1), the viscosity η (g / cm · sec) of the dispersion is preferably 1 <η <100, and more preferably 1 <η <30.
When the dispersion satisfies the relationship of the above formula (1), after preparing a pathological staining solution composed of the dispersion, the fluorescent nanoparticles are stored in the dispersion after being stored at 4 ° C. for a certain period (for example, about one month). Since particles such as these do not aggregate or settle, the pathological staining solution can be immediately diluted and applied to the living tissue without the operation of dispersing the particles by applying ultrasonic waves before dilution. Further, when applied to a pathological tissue, the pathological stain is sucked up and discharged by a pipette. At this time, since the pathological stain does not remain in the pipette, the handling is easy.

本発明の病理染色液は、上記蛍光ナノ粒子からなる標識体を上記溶媒に分散させることにより調製される。調製方法は特に限定されるものではなく、室温で蛍光ナノ粒子を溶媒中に添加したのち、ピペットマン等を使ってピペッティングにより攪拌する。   The pathological staining solution of the present invention is prepared by dispersing a label comprising the fluorescent nanoparticles in the solvent. The preparation method is not particularly limited, and after adding fluorescent nanoparticles in a solvent at room temperature, the mixture is stirred by pipetting using a pipetman or the like.

本発明の病理染色液は、分散液中に蛍光ナノ粒子と溶媒とに加えて、さらに密度および/または粘度調節用添加剤(以下単に「添加剤」ともいう。)を含んでいてもよい。
添加剤は、免疫染色に用いることができるものであり、密度および/または粘度を調節することができるものであれば、既存の如何なるものでも構わないが、例えば、スクロース、グリセロール、ソルビトール、フルクトース、マンニトール、ガラクトース、マンノース、リボース、デオキシリボース、ガラクトース、トレハロース、等の単糖類または二糖類(糖アルコール)、又はイオパミドール、イオジキサノール、イオヘキソール、イオトロラン、イオメプロール、イオベルソール、イオプロミド、等のX線造影剤が用いられる。このうち、スクロース、グリセロール、ソルビトール、フルクトースおよびイオパミドール等が好ましい。これらの添加剤は、いずれか一種を単独で用いてもよいし、必要に応じて複数種を組み合わせて用いてもよい。
The pathological staining solution of the present invention may further contain a density and / or viscosity adjusting additive (hereinafter also simply referred to as “additive”) in addition to the fluorescent nanoparticles and the solvent in the dispersion.
The additive may be any one that can be used for immunostaining and can adjust density and / or viscosity. For example, sucrose, glycerol, sorbitol, fructose, X-ray contrast agents such as mannitol, galactose, mannose, ribose, deoxyribose, galactose, trehalose, etc., or monosaccharides or disaccharides (sugar alcohols) or iopamidol, iodixanol, iohexol, iotrolane, iomeprol, ioversol, iopromide, etc. It is done. Of these, sucrose, glycerol, sorbitol, fructose, iopamidol and the like are preferable. Any one of these additives may be used alone, or a plurality of these additives may be used in combination as necessary.

添加剤は、病理染色液の分散系の粘度と分散性との関係が上記式(1)の関係を満たすように添加することができ、例えば、溶媒1mLに対して、通常0.6〜0.9gの割合で添加する。添加剤の添加量は、その種類に応じて、分散液の密度が前述したような所定の範囲となるよう、好ましくはさらに分散液の粘度が前述したような所定の範囲となるよう、適宜調節することができる。
添加剤の添加方法は、特に限定されるものではなく、室温で分散液中に添加し、必要に応じて、ピペットマン等を使ってピペッティングにより攪拌すればよい。
The additive can be added so that the relationship between the viscosity and dispersibility of the dispersion of the pathological staining solution satisfies the relationship of the above formula (1), for example, generally 0.6 to 0 with respect to 1 mL of the solvent. Add at a rate of 9 g. The amount of the additive added is appropriately adjusted according to the type so that the density of the dispersion is in the predetermined range as described above, and preferably the viscosity of the dispersion is further in the predetermined range as described above. can do.
The method of adding the additive is not particularly limited, and the additive may be added to the dispersion at room temperature and, if necessary, stirred by pipetting using a pipetman or the like.

[病理染色液]
病理染色液の使用方法
本発明の病理染色液は、免疫染色に使用される。免疫染色の方法の一例を示す。
[Pathological staining solution]
Method for Using Pathological Staining Solution The pathological staining solution of the present invention is used for immunostaining. An example of the method of immunostaining is shown.

免疫染色の方法は、一般的な生体物質検出方法と同様に、通常は、含アミノ基シランカップリング剤で処理した基材ガラスに病理組織を載せ、脱パラフィン処理をした後、ブロッキング剤を添加する工程(i)と、該病理組織上に上記病理染色液を添加し、病理組織中の抗原に対して抗体を反応させ、免疫染色する工程(ii)とからなる。   The immunostaining method is the same as a general biological substance detection method. Usually, a pathological tissue is placed on a base glass treated with an amino group-containing silane coupling agent, deparaffinized, and then a blocking agent is added. And the step (ii) of adding the pathological staining solution onto the pathological tissue, reacting the antibody with the antigen in the pathological tissue, and immunostaining.

工程(i)で用いられる含アミノ基シランカップリング剤で処理した基材ガラスとは、例えば、アミノシランコートスライドガラスのように、病理組織の切片とガラス面との接着剤として、基材ガラスにシランコートを施したものをいう。この含アミノ基シランカップリング剤で処理した基材ガラスを、以下単に「アミノシランコートスライドガラス」ともいう。   The base glass treated with the amino group-containing silane coupling agent used in step (i) is, for example, an adhesive between a pathological tissue section and a glass surface, such as an aminosilane-coated slide glass. A silane-coated product. The base glass treated with the amino group-containing silane coupling agent is hereinafter simply referred to as “aminosilane-coated slide glass”.

上記アミノシランコートスライドガラスは、例えば、アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン又はアミノプロピルメチルジメトキシシラン等をスライドガラスにコートすることにより作製することができる。アミノシランコートスライドガラスには、S08110(松浪硝子工業社製 APS(アミノシラン)コートスライドグラス)およびシラン1106(武藤化学社製 剥離防止剤コートスライド)などの市販品を使用してもよい。   The aminosilane-coated slide glass can be produced, for example, by coating the slide glass with aminopropyltriethoxysilane, aminopropyltrimethoxysilane, aminopropylmethyldimethoxysilane, or the like. Commercially available products such as S08110 (APS (Aminosilane) coated slide glass manufactured by Matsunami Glass Industrial Co., Ltd.) and Silane 1106 (An anti-peeling agent coated slide manufactured by Muto Chemical Co., Ltd.) may be used for the aminosilane coated slide glass.

脱パラフィン処理とは、ガラス容器等に入れた充分な量の脱パラフィン剤に、病理組織を貼り付けたアミノシランコートスライドガラスを浸漬し、病理組織全体が浸かるようにして、パラフィンを溶かし出して病理組織から除去するものである。脱パラフィン剤を清浄なものに入れ替えて、あるいは脱パラフィン剤を容器ごと替えて、浸漬を複数回繰り返してもよい。脱パラフィン剤には、通常、キシレンが用いられる。   Deparaffinization is a process that involves immersing an aminosilane-coated slide glass with a pathological tissue in a sufficient amount of deparaffinizing agent placed in a glass container, etc. It is to be removed from the tissue. The immersion may be repeated a plurality of times by replacing the deparaffinizing agent with a clean one, or changing the deparaffinizing agent for each container. As the deparaffinizing agent, xylene is usually used.

上記ブロッキング剤には、人工合成ポリマー、正常血清、ウサギ血清、ヤギ血清およびラット血清などの動物血清、ウシ血清アルブミン、ゼラチンおよびカゼインなどの既存のものが特に制限なく用いられる。このうち、動物血清およびウシ血清アルブミンなどが好ましく、動物血清がより好ましい。   As the blocking agent, artificial synthetic polymers, animal sera such as normal serum, rabbit serum, goat serum and rat serum, and existing ones such as bovine serum albumin, gelatin and casein are used without particular limitation. Of these, animal serum and bovine serum albumin are preferable, and animal serum is more preferable.

ブロッキング剤の添加は、アミノシランコートスライドガラスに固定した病理組織に対して添加することにより行う。病理組織に対するブロッキング剤の適切な添加量は、病理組織を覆うことができる程度の量であればよく、通常30〜800μL、好ましくは50〜300μLである。   The blocking agent is added to the pathological tissue fixed on the aminosilane-coated slide glass. The appropriate amount of the blocking agent added to the pathological tissue may be an amount that can cover the pathological tissue, and is usually 30 to 800 μL, preferably 50 to 300 μL.

病理組織には、例えば、癌などの非自己物質を含む病理切片が用いられる。具体的には、乳がんなどの組織を1〜20μm程度の厚さにスライスしたものが用いられる。また、例えば、肝臓がん組織スライド(US Biomax社製T031)などの市販品を使用してもよい。この肝臓がん組織スライドは、肝臓がんのサンプルとして一般的に使用されるものである。   For the pathological tissue, for example, a pathological section containing a non-self substance such as cancer is used. Specifically, a tissue obtained by slicing a tissue such as breast cancer into a thickness of about 1 to 20 μm is used. Further, for example, a commercially available product such as a liver cancer tissue slide (T031 manufactured by US Biomax) may be used. This liver cancer tissue slide is generally used as a sample of liver cancer.

工程(ii)は免疫染色工程である。すなわち、例えば、PBSで5倍程度に希釈した本発明の病理染色液を病理組織切片上に添加して、検出の対象とする病理組織を染色し、次いで、封入剤を添加した後、カバーガラスを載せて、評価スライドとする。   Step (ii) is an immunostaining step. That is, for example, the pathological staining solution of the present invention diluted about 5 times with PBS is added onto a pathological tissue section, the pathological tissue to be detected is stained, and then an encapsulant is added, and then a cover glass To make an evaluation slide.

なお、上記の免疫染色は、組織染色に限定されるものではなく、細胞染色に適用することも可能である。また、検出の対象とする病理組織物質は、蛍光標識体と特異的に結合する物質が存在するものであれば特に限定されるものではない。典型的には、上記のように抗原および抗体の組み合わせが用いられるが、例えば、核酸分子(オリゴヌクレオチド、ポリヌクレオチド)およびそれに相補的に結合しうる配列を有する核酸分子の組み合わせを用いることも可能である。   The immunostaining described above is not limited to tissue staining, and can also be applied to cell staining. The pathological tissue material to be detected is not particularly limited as long as a substance that specifically binds to the fluorescent label exists. Typically, a combination of an antigen and an antibody is used as described above. For example, a combination of a nucleic acid molecule (oligonucleotide, polynucleotide) and a nucleic acid molecule having a sequence capable of complementary binding thereto can be used. It is.

免疫染色をした組織切片は、有機溶媒により脱水および透徹した後、封入剤で封入する。
脱水および透徹は、染色した組織切片をPBS(リン酸緩衝液生理的食塩水)等の水系洗浄液で洗浄後、エタノールによる脱水およびキシレン置換により行う。エタノールによる脱水は、エタノールの水含有率を、例えば、50%、30%、10%、0%というように水含有率を下げたエタノールに組織切片を順次漬けていき、エタノールに置換することにより行う。エタノール置換した切片をキシレンに漬けることで、キシレン置換が行われ、切片が透徹される。キシレン置換した切片に封入剤を載せ、カバーガラス等を載せることで封入が行われる。
封入剤には油系封入剤が好ましく、例えば、コスモバイオ社製マウントクイックなどの他、メルク社製エンテランニューなどの市販品が挙げられる。
The tissue section subjected to immunostaining is dehydrated and permeated with an organic solvent, and then encapsulated with an encapsulating agent.
Dehydration and penetration are performed by washing the stained tissue section with an aqueous washing solution such as PBS (phosphate buffered saline), followed by dehydration with ethanol and replacement with xylene. Dehydration with ethanol is achieved by immersing tissue sections in ethanol with a reduced water content such as 50%, 30%, 10%, and 0%, and replacing it with ethanol. Do. By immersing the ethanol-substituted section in xylene, xylene replacement is performed, and the section is penetrated. Encapsulation is performed by placing an encapsulant on the xylene-substituted section and placing a cover glass or the like.
The encapsulating agent is preferably an oil-based encapsulating agent, and examples thereof include commercial products such as Cosmo Bio's Mount Quick and Merck's Enteran New.

[病理染色液]
・病理染色液の使用方法
本発明の病理染色液は前述したような水分散液を含有するものとして調製することができる。すなわち、前述したような本発明の水分散液をそのまま病理染色液として使用してもよいし、水分散液に病理染色への用途に応じてさらに添加剤を配合して病理染色液を調製してもよい。
[Pathological staining solution]
-Method for Using Pathological Staining Solution The pathological staining solution of the present invention can be prepared as containing an aqueous dispersion as described above. That is, the aqueous dispersion of the present invention as described above may be used as a pathological staining liquid as it is, or a pathological staining liquid is prepared by further adding an additive to the aqueous dispersion according to the use for pathological staining. May be.

本発明の病理染色液は、自動染色装置用、すなわち自動染色装置にセッティングして用いられる試薬ボトルに充填するためのものとして用いることが好適である。
病理染色液を用いた免疫染色の方法の一例を示す。
The pathological staining solution of the present invention is preferably used for an automatic staining apparatus, that is, for filling a reagent bottle that is set and used in the automatic staining apparatus.
An example of a method of immunostaining using a pathological stain is shown.

蛍光観察
上記工程により得られた評価スライドに、所定の波長を有する励起光(例えば、励起波長575〜600nm、蛍光波長612〜682nm)を照射することにより、その蛍光ナノ粒子が発する蛍光を観察する。これにより、その病理組織内に存在する所定の生体分子を検出することができる。
Fluorescence observation By irradiating the evaluation slide obtained by the above process with excitation light having a predetermined wavelength (for example, excitation wavelength 575-600 nm, fluorescence wavelength 612-682 nm), the fluorescence emitted by the fluorescent nanoparticles is observed. . Thereby, a predetermined biomolecule existing in the pathological tissue can be detected.

励起光の照射には、一般的な蛍光観察と同様の照射手段を用いればよく、例えば、蛍光顕微鏡が備えるレーザー光源から、必要に応じて所定の波長を選択的に透過させるフィルターを用いて、適切な波長および出力の励起光を染色された組織切片に照射すればよい。   For irradiation of excitation light, it is only necessary to use the same irradiation means as in general fluorescence observation, for example, from a laser light source provided in a fluorescence microscope, using a filter that selectively transmits a predetermined wavelength as necessary, What is necessary is just to irradiate the dye | stained tissue section with the excitation light of a suitable wavelength and output.

蛍光の観察は、蛍光顕微鏡の鏡筒から行ってもよいし、蛍光顕微鏡に設置されたカメラが撮影した画像を別途、モニタ等の表示手段に表示して行ってもよい。また、必要に応じて所定の波長を選択的に透過させるフィルターを用いてもよい。   The observation of fluorescence may be performed from a lens barrel of a fluorescence microscope, or may be performed by separately displaying an image captured by a camera installed on the fluorescence microscope on a display unit such as a monitor. Moreover, you may use the filter which selectively permeate | transmits a predetermined wavelength as needed.

具体的には、アミノシランコートスライドガラスに載せた病理組織内に存在する輝点数を計測する。観察視野全体の核の面積および核に存在する輝点数を計測し、単位面積当たりの輝点数(個/μm2)を算出し、3視野における平均値を求めることで、シグナルとして算出する。Specifically, the number of bright spots present in the pathological tissue placed on the aminosilane-coated slide glass is measured. The area of the nucleus in the entire observation field and the number of bright spots existing in the nucleus are measured, the number of bright spots per unit area (pieces / μm 2 ) is calculated, and the average value in the three fields is obtained to calculate as a signal.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。
[実施例1−1]
(1)病理染色液の調製
抗体結合蛍光メラミン樹脂粒子(平均粒径150nm)の調製
SulfoRhodamine101(シグマアルドリッチ社製)14.4mgを水22mLに加えて溶解した後、エマルゲン430(花王社製)の5%水溶液を2mL加えた。ホットスターラー上で撹拌しながら70℃に加熱した後、メラミン樹脂原料ニカラックMX−035(日本カーバイド工業社製)0.65gを加えた。ドデシルベンゼンスルホン酸(関東化学社製)の10%水溶液を680μL加え、70℃、50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。得られた粒子液から余剰の樹脂原料や色素等の不純物を取り除くため、純水による洗浄を行なった。遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分遠心分離し、上澄み除去後、超純水を加えて超音波照射し再分散した。遠心分離機、上澄み除去、超純水への再分散を5回繰り返した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
[Example 1-1]
(1) Preparation of pathological stain
Preparation of antibody-bound fluorescent melamine resin particles (average particle size 150 nm) Sulfur Rhodamine 101 (Sigma Aldrich) 14.4 mg was added to 22 mL of water and dissolved, and then 2 mL of a 5% aqueous solution of Emulgen 430 (Kao) was added. After stirring at 70 ° C. while stirring on a hot stirrer, 0.65 g of melamine resin raw material Nicarax MX-035 (manufactured by Nippon Carbide Industries Co., Ltd.) was added. 680 μL of a 10% aqueous solution of dodecylbenzenesulfonic acid (manufactured by Kanto Chemical Co., Inc.) was added and stirred with heating at 70 ° C. for 50 minutes. Thereafter, the temperature was raised to 90 ° C. and stirred for 20 minutes. In order to remove excess impurities such as resin raw materials and pigments from the obtained particle liquid, washing with pure water was performed. Centrifugation was carried out at 20000 G for 15 minutes with a centrifuge (Microcooling Centrifuge 3740 manufactured by Kubota). After removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Centrifugation, supernatant removal, and redispersion in ultrapure water were repeated 5 times.

得られた粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシランLS−3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。   0.1 mg of the obtained particles were dispersed in 1.5 mL of EtOH, and 2 μL of aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added and reacted for 8 hours for surface amination treatment.

得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包粒子を得た。   The obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. By performing washing by the same procedure three times, fluorescent dye-containing particles having a maleimide group at the end were obtained.

一方、ストレプトアビジン(和光純薬工業社製)をN−succinimidyl S−acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、色素内包ナノ粒子に結合可能なストレプトアビジン溶液を得た。   On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) is subjected to thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), then filtered through a gel filtration column, and can be bound to dye-encapsulated nanoparticles. A streptavidin solution was obtained.

上記の蛍光ナノ粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合Texas Red色素内包メラミンナノ粒子を得た。   The above fluorescent nanoparticles and streptavidin were mixed in PBS containing 2 mM EDTA and allowed to react for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-bound Texas Red dye-encapsulated melamine nanoparticles.

病理染色液の調製
抗体結合蛍光メラミン樹脂粒子(平均粒径150nm)0.3nM、および添加剤としてスクロース(ナカライテスク社製、製品名スクロース)7.0gをMilliQ水(比抵抗値が18 MΩ・cmの水)10mLに分散させて、添加剤の濃度が0.7g/mLの分散液を調製し、病理染色液とした。
Preparation of pathological staining solution Antibody-binding fluorescent melamine resin particles (average particle size 150 nm) 0.3 nM and 7.0 g of sucrose (product name: sucrose, manufactured by Nacalai Tesque) as an additive are MilliQ water (specific resistance is 18 MΩ · cm) Water) was dispersed in 10 mL to prepare a dispersion having an additive concentration of 0.7 g / mL, which was used as a pathological staining solution.

病理染色液について、超遠心分離機(日立社製、CS120FNX)を用いて密度勾配遠心法により、粒子の固体密度ρおよび分散液の密度ρwを測定し、音叉型振動式粘度計SV−1H(エー・アンド・デイ社製)を用いて粘度ηを測定した。
病理染色液の粒子の固体密度ρ、密度ρwおよび(ρ−ρw)/ηの値を表2に示す。
For the pathological staining solution, the solid density ρ of the particles and the density ρ w of the dispersion are measured by density gradient centrifugation using an ultracentrifuge (Hitachi, CS120FNX), and the tuning fork type vibration viscometer SV-1H (A & D) was used to measure the viscosity η.
Table 2 shows the values of solid density ρ, density ρ w and (ρ−ρ w ) / η of the pathological staining liquid particles.

(2)分散性の評価
病理染色液を4℃で一ヶ月保存した後、分散液中の沈殿の有無を目視により評価した。
ピペッティングによる分散性の評価は、ピペットマン(ギルソン社製、PIPETMAN P−200)の目盛を200μLに設定して、病理染色液を吸い上げ、吐き出した後に、ピペットチップに残留する病理染色液の有無を目視により行った。
(2) Evaluation of dispersibility After the pathological staining solution was stored at 4 ° C. for one month, the presence or absence of precipitation in the dispersion was visually evaluated.
The evaluation of dispersibility by pipetting is based on whether pipetteman (Pilpetman P-200, manufactured by Gilson Co., Ltd.) has a scale of 200 μL, sucks and discharges the pathological staining liquid, and then checks whether there is pathological staining liquid remaining on the pipette tip. This was done visually.

(3)免疫染色方法および評価
ピペットマンの目盛を200μLに設定して、病理染色液を吸い上げ、吐き出す操作を5回繰り返した後に、この病理染色液にPBS 800μLを添加して濃度0.06nMにまで希釈し、希釈後の病理染色液を遠心フィルター(日本ミリポア社製、ウルトラフリーMC DV 0.65μm)に投入し、卓上遠心機を用いて遠心させることによりろ過した。
(3) Immunostaining method and evaluation The pipetteman scale was set to 200 μL, and the operation of sucking and discharging the pathological staining solution was repeated 5 times, and then 800 μL of PBS was added to the pathological staining solution to a concentration of 0.06 nM. The diluted pathological staining solution was poured into a centrifugal filter (manufactured by Nihon Millipore, Ultra Free MC DV 0.65 μm), and filtered by centrifuging using a desktop centrifuge.

一方、病理組織スライド(US Biomax社製、製品名 Breast Tissue Microarray)上のHER2タンパクに、一次抗体(Ventana Medical Systems社製、製品名PATHWAY anti-HER2/neu(4B5) Rabbit Monoclonal Primary Antibody)を反応させる。次いで、ビオチン標識二次抗体(Ventana Medical Systems社製、製品名Universal Secondary Antibody)を反応させて病理組織スライド上に抗原抗体反応結合物を形成させた。この結合物に、希釈後の病理染色液を添加して染色した。   On the other hand, primary antibody (product name: PATHWAY anti-HER2 / neu (4B5) Rabbit Monoclonal Primary Antibody) is reacted with HER2 protein on pathological tissue slide (product name: Breast Tissue Microarray, manufactured by US Biomax). Let Subsequently, a biotin-labeled secondary antibody (product name: Universal Secondary Antibody, manufactured by Ventana Medical Systems) was reacted to form an antigen-antibody reaction conjugate on the pathological tissue slide. The combined product was stained by adding a diluted pathological staining solution.

染色後、蛍光顕微鏡(カールツァイス社製)を用いて蛍光画像を取得した。励起波長575〜600nm、蛍光波長612〜682nmとした。
添加剤を添加しなかった病理染色液、すなわち、後述する比較例1−1、2−1、3−1および4−1の病理染色液を超音波プローブにより分散させた病理染色液を用いて蛍光免疫染色を行ったサンプルをリファレンスとした。
組織内に存在する輝点数を、画像から目視にて計測した。輝点数がリファレンスの80%以上である場合、染色できたとした。結果を表2に示す。
After staining, a fluorescence image was obtained using a fluorescence microscope (manufactured by Carl Zeiss). The excitation wavelength was 575 to 600 nm, and the fluorescence wavelength was 612 to 682 nm.
Using a pathological staining liquid in which no additive was added, that is, a pathological staining liquid in which the pathological staining liquids of Comparative Examples 1-1, 2-1, 3-1, and 4-1, which will be described later, were dispersed by an ultrasonic probe. A sample subjected to fluorescent immunostaining was used as a reference.
The number of bright spots present in the tissue was visually measured from the images. When the number of bright spots was 80% or more of the reference, it was considered that the dyeing was possible. The results are shown in Table 2.

[実施例1−2]および[実施例1−3]
実施例1−1において、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性(沈殿結果およびピペットによる秤量精度)の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Example 1-2] and [Example 1-3]
In Example 1-1, a pathological staining solution was prepared in the same manner as in Example 1-1 except that the concentration (g / mL) of the additive was changed to the numerical values shown in Table 2. Dispersibility (precipitation result) And weighing accuracy with a pipette) and immunostaining results were evaluated. The results are shown in Table 2.

[比較例1−1]
実施例1−1において、添加剤を用いなかったこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Comparative Example 1-1]
In Example 1-1, except that the additive was not used, a pathological staining solution was prepared in the same manner as in Example 1-1, and evaluation of dispersibility and evaluation of immunostaining were performed. The results are shown in Table 2.

[比較例1−2]
実施例1−1において、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色の評価を行った。結果を表2に示す。
[Comparative Example 1-2]
In Example 1-1, except that the concentration (g / mL) of the additive was changed to the values shown in Table 2, a pathological staining solution was prepared in the same manner as in Example 1-1, and evaluation of dispersibility and Immunostaining was evaluated. The results are shown in Table 2.

[実施例1−4]
実施例1−1において、添加剤として、スクロースに代えてグリセロールを用いたことと、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Example 1-4]
In Example 1-1, except that glycerol was used as an additive instead of sucrose, and the additive concentration (g / mL) was changed to the values shown in Table 2, the same as Example 1-1 Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 2.

[比較例1−3]および[比較例1−4]
実施例1−4において、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−4と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Comparative Example 1-3] and [Comparative Example 1-4]
In Example 1-4, except that the concentration (g / mL) of the additive was changed to the numerical values shown in Table 2, a pathological staining solution was prepared in the same manner as in Example 1-4 to evaluate dispersibility and The immunostaining results were evaluated. The results are shown in Table 2.

[実施例1−5]および[実施例1−6]
実施例1−1において、添加剤として、スクロースに代えてソルビトールを用いたことと、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Example 1-5] and [Example 1-6]
In Example 1-1, except that sorbitol was used instead of sucrose as an additive, and the concentration (g / mL) of the additive was changed to the numerical values shown in Table 2, the same as Example 1-1 Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 2.

[比較例1−5]
実施例1−5において、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−5と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Comparative Example 1-5]
In Example 1-5, except that the concentration (g / mL) of the additive was changed to the values shown in Table 2, a pathological staining solution was prepared in the same manner as in Example 1-5, and evaluation of dispersibility and The immunostaining results were evaluated. The results are shown in Table 2.

[実施例1−7]および[実施例1−8]
実施例1−1において、添加剤として、スクロースに代えてフルクトースを用いたことと、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Example 1-7] and [Example 1-8]
In Example 1-1, it was the same as Example 1-1 except that fructose was used instead of sucrose as an additive, and the concentration (g / mL) of the additive was changed to the numerical values shown in Table 2. Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 2.

[比較例1−6]
実施例1−7において、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−7と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Comparative Example 1-6]
In Example 1-7, except that the concentration (g / mL) of the additive was changed to the values shown in Table 2, a pathological staining solution was prepared in the same manner as in Example 1-7, and evaluation of dispersibility and The immunostaining results were evaluated. The results are shown in Table 2.

[実施例1−9]
実施例1−1において、添加剤として、スクロースに代えてイオパミドールを用いたことと、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Example 1-9]
In Example 1-1, except that iopamidol was used instead of sucrose as an additive, and the concentration (g / mL) of the additive was changed to the numerical values shown in Table 2, the same as Example 1-1 Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 2.

[比較例1−7]
実施例1−1において、添加剤として、スクロースに代えてトレハロースを用いたことと、添加剤の濃度(g/mL)を表2に示す数値にしたこと以外は、実施例1−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Comparative Example 1-7]
In Example 1-1, except that trehalose was used instead of sucrose as an additive, and the additive concentration (g / mL) was changed to the values shown in Table 2, the same as Example 1-1 Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 2.

[比較例1−8]
比較例1−7において、添加剤として、トレハロースに代えてマルトースを用いたこと以外は、比較例1−7と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表2に示す。
[Comparative Example 1-8]
In Comparative Example 1-7, except that maltose was used instead of trehalose as an additive, a pathological staining solution was prepared in the same manner as Comparative Example 1-7, and evaluation of dispersibility and evaluation of immunostaining results Went. The results are shown in Table 2.

[実施例2−1]
(1)病理染色液の調製
抗体結合蛍光メラミン樹脂粒子(平均粒径50nm)の調製
SulfoRhodamine101(シグマアルドリッチ社製)8.1mgを水22mLに加えて溶解した後、エマルゲン430(花王社製)の5%水溶液を2mL加えた。ホットスターラー上で撹拌しながら70℃に加熱した後、メラミン樹脂原料ニカラックMX−035(日本カーバイド工業社製)0.37gを加えた。ドデシルベンゼスルホン酸(関東化学社製)の10%水溶液を680μL加え、70℃、50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。得られた粒子液から余剰の樹脂原料や色素等の不純物を取り除くため、純水による洗浄を行なった。遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分遠心分離し、上澄み除去後、超純水を加えて超音波照射し再分散した。遠心分離機、上澄み除去、超純水への再分散を5回繰り返した。
[Example 2-1]
(1) Preparation of pathological stain
Preparation of antibody-bound fluorescent melamine resin particles (average particle size 50 nm) SulfoRhodamine 101 (Sigma Aldrich) 8.1 mg was dissolved in 22 mL of water, and then 2 mL of 5% aqueous solution of Emulgen 430 (Kao Corporation) was added. After heating to 70 ° C. while stirring on a hot stirrer, 0.37 g of melamine resin raw material Nicalac MX-035 (manufactured by Nippon Carbide Industries Co., Ltd.) was added. 680 μL of a 10% aqueous solution of dodecyl benzene sulfonic acid (manufactured by Kanto Chemical Co., Inc.) was added and stirred with heating at 70 ° C. for 50 minutes. Thereafter, the temperature was raised to 90 ° C. and stirred for 20 minutes. In order to remove excess impurities such as resin raw materials and pigments from the obtained particle liquid, washing with pure water was performed. Centrifugation was carried out at 20000 G for 15 minutes with a centrifuge (Microcooling Centrifuge 3740 manufactured by Kubota). After removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Centrifugation, supernatant removal, and redispersion in ultrapure water were repeated 5 times.

得られた粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシランLS−3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。   0.1 mg of the obtained particles were dispersed in 1.5 mL of EtOH, and 2 μL of aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added and reacted for 8 hours for surface amination treatment.

得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包粒子を得た。   The obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. By performing washing by the same procedure three times, fluorescent dye-containing particles having a maleimide group at the end were obtained.

一方、ストレプトアビジン(和光純薬工業社製)をN−succinimidyl S−acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、色素内包ナノ粒子に結合可能なストレプトアビジン溶液を得た。   On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) is subjected to thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), then filtered through a gel filtration column, and can be bound to dye-encapsulated nanoparticles. A streptavidin solution was obtained.

上記の蛍光ナノ粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合Texas Red色素内包メラミンナノ粒子を得た。   The above fluorescent nanoparticles and streptavidin were mixed in PBS containing 2 mM EDTA and allowed to react for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-bound Texas Red dye-encapsulated melamine nanoparticles.

病理染色液の調製
抗体結合蛍光メラミン樹脂粒子(平均粒径50nm)0.3nM、および添加剤としてスクロース(ナカライテスク社製、製品名スクロース)7.0gをMilliQ水(比抵抗値が18 MΩ・cmの水)10mLに分散させて、添加剤の濃度が0.7g/mLの分散液を調製し、病理染色液とした。
Preparation of pathological staining solution Antibody-binding fluorescent melamine resin particles (average particle size 50 nm) 0.3 nM, and 7.0 g of sucrose (product name: sucrose, manufactured by Nacalai Tesque) as an additive, MilliQ water (specific resistance 18 MΩ · cm) Water) was dispersed in 10 mL to prepare a dispersion having an additive concentration of 0.7 g / mL, which was used as a pathological staining solution.

病理染色液について、超遠心分離機(日立工機社製、CS120FNX)を用いて密度勾配遠心法により、粒子の固体密度ρおよび分散液の密度ρwを測定し、音叉型振動式粘度計SV−1H(エー・アンド・デイ社製)を用いて粘度ηを測定した。
病理染色液の粒子の固体密度ρ、密度ρwおよび(ρ−ρw)/ηの値を表3に示す。
For the pathological stain, the solid density ρ of the particles and the density ρ w of the dispersion are measured by density gradient centrifugation using an ultracentrifuge (Hitachi Koki Co., Ltd., CS120FNX), and a tuning-fork vibration viscometer SV is obtained. The viscosity η was measured using -1H (manufactured by A & D).
Table 3 shows values of solid density ρ, density ρ w and (ρ−ρ w ) / η of the pathological staining liquid particles.

(2)分散性の評価
病理染色液を4℃で一ヶ月保存した後、分散液中の沈殿の有無を目視により評価した。
ピペッティングによる分散性の評価は、ピペットマン(ギルソン社製、PIPETMAN P−200)の目盛を200μLに設定して、病理染色液を吸い上げ、吐き出した後に、ピペットチップに残留する病理染色液の有無を目視により行った。
(2) Evaluation of dispersibility After the pathological staining solution was stored at 4 ° C. for one month, the presence or absence of precipitation in the dispersion was visually evaluated.
The evaluation of dispersibility by pipetting is based on whether pipetteman (Pilpetman P-200, manufactured by Gilson Co., Ltd.) has a scale of 200 μL, sucks and discharges the pathological staining liquid, and then checks whether there is pathological staining liquid remaining on the pipette tip. This was done visually.

(3)免疫染色方法および評価
ピペットマンの目盛を200μLに設定して、病理染色液を吸い上げ、吐き出す操作を5回繰り返した後に、この病理染色液にPBS 800μLを添加して濃度0.06nMにまで希釈し、希釈後の病理染色液を遠心フィルター(日本ミリポア社製、ウルトラフリーMC DV 0.65μm)に投入し、卓上遠心機を用いて遠心させることによりろ過した。
(3) Immunostaining method and evaluation The pipetteman scale was set to 200 μL, and the operation of sucking and discharging the pathological staining solution was repeated 5 times, and then 800 μL of PBS was added to the pathological staining solution to a concentration of 0.06 nM. The diluted pathological staining solution was poured into a centrifugal filter (manufactured by Nihon Millipore, Ultra Free MC DV 0.65 μm), and filtered by centrifuging using a desktop centrifuge.

一方、病理組織スライド(US Biomax社製、製品名 Breast Tissue Microarray)上のHER2タンパクに、一次抗体(Ventana Medical Systems社製、製品名PATHWAY anti-HER2/neu(4B5) Rabbit Monoclonal Primary Antibody)を反応させる。次いで、ビオチン標識二次抗体(Ventana Medical Systems社製、製品名Universal Secondary Antibody)を反応させて病理組織スライド上に抗原抗体反応結合物を形成させた。この結合物に、希釈後の病理染色液を添加して染色した。   On the other hand, primary antibody (product name: PATHWAY anti-HER2 / neu (4B5) Rabbit Monoclonal Primary Antibody) is reacted with HER2 protein on pathological tissue slide (product name: Breast Tissue Microarray, manufactured by US Biomax). Let Subsequently, a biotin-labeled secondary antibody (product name: Universal Secondary Antibody, manufactured by Ventana Medical Systems) was reacted to form an antigen-antibody reaction conjugate on the pathological tissue slide. The combined product was stained by adding a diluted pathological staining solution.

染色後、蛍光顕微鏡(カールツァイス社製)を用いて蛍光画像を取得した。
励起波長575〜600nm、蛍光波長612〜682nmとした。
組織内に存在する輝点数を、画像から目視にて計測した。輝点数がリファレンスの80%以上である場合、染色できたとした。結果を表3に示す。
After staining, a fluorescence image was obtained using a fluorescence microscope (manufactured by Carl Zeiss).
The excitation wavelength was 575 to 600 nm, and the fluorescence wavelength was 612 to 682 nm.
The number of bright spots present in the tissue was visually measured from the images. When the number of bright spots was 80% or more of the reference, it was considered that the dyeing was possible. The results are shown in Table 3.

[実施例2−2]および[実施例2−3]
実施例2−1において、添加剤の濃度(g/mL)を表3に示す数値にしたこと以外は、実施例2−1と同様にして、病理染色液を調製し、分散性(沈殿結果およびピペットによる秤量精度)の評価および免疫染色結果の評価を行った。結果を表3に示す。
[Example 2-2] and [Example 2-3]
In Example 2-1, except that the concentration (g / mL) of the additive was changed to the numerical values shown in Table 3, a pathological staining solution was prepared in the same manner as in Example 2-1, and the dispersibility (precipitation result) And weighing accuracy with a pipette) and immunostaining results were evaluated. The results are shown in Table 3.

[実施例2−4]
実施例2−1において、添加剤として、スクロースに代えてイオパミドールを用いたことと、添加剤の濃度(g/mL)を表3に示す数値にしたこと以外は、実施例2−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表3に示す。
[Example 2-4]
In Example 2-1, as in Example 2-1, except that iopamidol was used instead of sucrose as an additive and the concentration (g / mL) of the additive was changed to the values shown in Table 3. Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 3.

[比較例2−1]
実施例2−1において、添加剤を用いなかったこと以外は、実施例2−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表3に示す。
[Comparative Example 2-1]
In Example 2-1, except that an additive was not used, a pathological staining solution was prepared in the same manner as in Example 2-1, and evaluation of dispersibility and evaluation of immunostaining were performed. The results are shown in Table 3.

[比較例2−2]
実施例2−1において、添加剤の濃度(g/mL)を表3に示す数値にしたこと以外は、実施例2−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色の評価を行った。結果を表3に示す。
[Comparative Example 2-2]
In Example 2-1, except that the concentration (g / mL) of the additive was changed to the values shown in Table 3, a pathological staining solution was prepared in the same manner as in Example 2-1, and evaluation of dispersibility and Immunostaining was evaluated. The results are shown in Table 3.

[実施例3−1]
(1)病理染色液の調製
抗体結合蛍光メラミン樹脂粒子(平均粒径200nm)の調製
SulfoRhodamine101(シグマアルドリッチ社製)17.6mgを水22mLに加えて溶解した後、エマルゲン430(花王社製)の5%水溶液を2mL加えた。ホットスターラー上で撹拌しながら70℃に加熱した後、メラミン樹脂原料ニカラックMX−035(日本カーバイド工業社製)0.80gを加えた。ドデシルベンゼンスルホン酸(関東化学社製)の10%水溶液を680μL加え、70℃、50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。得られた粒子液から余剰の樹脂原料や色素等の不純物を取り除くため、純水による洗浄を行なった。遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分遠心分離し、上澄み除去後、超純水を加えて超音波照射し再分散した。遠心分離機、上澄み除去、超純水への再分散を5回繰り返した。
[Example 3-1]
(1) Preparation of pathological stain
Preparation of antibody-bound fluorescent melamine resin particles (average particle size 200 nm) 17.6 mg of SulfoRhodamine 101 (Sigma Aldrich) was added to 22 mL of water and dissolved, and then 2 mL of a 5% aqueous solution of Emulgen 430 (manufactured by Kao) was added. After heating to 70 ° C. with stirring on a hot stirrer, 0.80 g of melamine resin raw material Nicalac MX-035 (manufactured by Nippon Carbide Industries Co., Ltd.) was added. 680 μL of a 10% aqueous solution of dodecylbenzenesulfonic acid (manufactured by Kanto Chemical Co., Inc.) was added and stirred with heating at 70 ° C. for 50 minutes. Thereafter, the temperature was raised to 90 ° C. and stirred for 20 minutes. In order to remove excess impurities such as resin raw materials and pigments from the obtained particle liquid, washing with pure water was performed. Centrifugation was carried out at 20000 G for 15 minutes with a centrifuge (Microcooling Centrifuge 3740 manufactured by Kubota). After removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Centrifugation, supernatant removal, and redispersion in ultrapure water were repeated 5 times.

得られた粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシランLS−3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。   0.1 mg of the obtained particles were dispersed in 1.5 mL of EtOH, and 2 μL of aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added and reacted for 8 hours for surface amination treatment.

得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包粒子を得た。   The obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. By performing washing by the same procedure three times, fluorescent dye-containing particles having a maleimide group at the end were obtained.

一方、ストレプトアビジン(和光純薬工業社製)をN−succinimidyl S−acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、色素内包ナノ粒子に結合可能なストレプトアビジン溶液を得た。   On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) is subjected to thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), then filtered through a gel filtration column, and can be bound to dye-encapsulated nanoparticles. A streptavidin solution was obtained.

上記の蛍光ナノ粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合Texas Red色素内包メラミンナノ粒子を得た。   The above fluorescent nanoparticles and streptavidin were mixed in PBS containing 2 mM EDTA and allowed to react for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-bound Texas Red dye-encapsulated melamine nanoparticles.

病理染色液の調製
抗体結合蛍光メラミン樹脂粒子0.3nM、および添加剤としてスクロース(ナカライテスク社製、製品名スクロース)7.0gをMilliQ水(比抵抗値が18MW・cmの水)10mLに分散させて、添加剤の濃度が0.7g/mLの分散液を調製し、病理染色液とした。
Preparation of pathological staining solution Antibody-bound fluorescent melamine resin particles 0.3 nM and 7.0 g of sucrose (product name: sucrose, manufactured by Nacalai Tesque) as an additive were dispersed in 10 mL of MilliQ water (water with a specific resistance of 18 MW · cm). Thus, a dispersion having an additive concentration of 0.7 g / mL was prepared and used as a pathological staining solution.

病理染色液について、超遠心分離機(日立工機社製、CS120FNX)を用いて密度勾配遠心法により、粒子の固体密度ρおよび分散液の密度ρwを測定し、音叉型振動式粘度計SV−1H(エー・アンド・デイ社製)を用いて粘度ηを測定した。
病理染色液の粒子の固体密度ρ、密度ρwおよび(ρ−ρw)/ηの値を表4に示す。
For the pathological stain, the solid density ρ of the particles and the density ρ w of the dispersion are measured by density gradient centrifugation using an ultracentrifuge (Hitachi Koki Co., Ltd., CS120FNX), and a tuning-fork vibration viscometer SV is obtained. The viscosity η was measured using -1H (manufactured by A & D).
Table 4 shows the values of solid density ρ, density ρ w and (ρ−ρ w ) / η of the pathological staining liquid particles.

(2)分散性の評価
病理染色液を4℃で一ヶ月保存した後、分散液中の沈殿の有無を目視により評価した。
ピペッティングによる分散性の評価は、ピペットマン(ギルソン社製、PIPETMAN P−200)の目盛を200μLに設定して、病理染色液を吸い上げ、吐き出した後に、ピペットチップに残留する病理染色液の有無を目視により行った。
(2) Evaluation of dispersibility After the pathological staining solution was stored at 4 ° C. for one month, the presence or absence of precipitation in the dispersion was visually evaluated.
The evaluation of dispersibility by pipetting is based on whether pipetteman (Pilpetman P-200, manufactured by Gilson Co., Ltd.) has a scale of 200 μL, sucks and discharges the pathological staining liquid, and then checks whether there is pathological staining liquid remaining on the pipette tip. This was done visually.

(3)免疫染色方法および評価
ピペットマンの目盛を200μLに設定して、病理染色液を吸い上げ、吐き出す操作を5回繰り返した後に、この病理染色液にPBS800μLを添加して濃度0.06nMにまで希釈し、希釈後の病理染色液を遠心フィルター(日本ミリポア社製、ウルトラフリーMC DV 0.65μm)に投入し、卓上遠心機を用いて遠心させることによりろ過した。
(3) Immunostaining method and evaluation The pipetteman scale was set to 200 μL, and the operation of sucking up and discharging the pathological staining solution was repeated 5 times. Then, 800 μL of PBS was added to the pathological staining solution and diluted to a concentration of 0.06 nM. Then, the diluted pathological staining solution was put into a centrifugal filter (manufactured by Nihon Millipore, Ultra Free MC DV 0.65 μm), and filtered by centrifuging using a tabletop centrifuge.

病理組織スライド(US Biomax社製、製品名 Breast Tissue Microarray)上のHER2タンパクに一次抗体(Ventana Medical Systems社製、製品名PATHWAY anti-HER2/neu(4B5) Rabbit Monoclonal Primary Antibody)を反応させる。次いで、ビオチン標識二次抗体(Ventana Medical Systems社製、製品名Universal Secondary Antibody)を反応させて病理組織スライド上に抗原抗体反応結合物を形成させた。この結合物に、希釈後の病理染色液を添加して染色した。   A primary antibody (product name: PATHWAY anti-HER2 / neu (4B5) Rabbit Monoclonal Primary Antibody, manufactured by Ventana Medical Systems, Inc.) is reacted with the HER2 protein on a pathological tissue slide (product name: Breast Tissue Microarray, manufactured by US Biomax). Subsequently, a biotin-labeled secondary antibody (product name: Universal Secondary Antibody, manufactured by Ventana Medical Systems) was reacted to form an antigen-antibody reaction conjugate on the pathological tissue slide. The combined product was stained by adding a diluted pathological staining solution.

染色後、蛍光顕微鏡(カールツァイス社製)を用いて蛍光画像を取得した。
励起波長575〜600nm、蛍光波長612〜682nmとした。
組織内に存在する輝点数を、画像から目視にて計測した。輝点数がリファレンスの80%以上である場合、染色できたとした。結果を表4に示す。
After staining, a fluorescence image was obtained using a fluorescence microscope (manufactured by Carl Zeiss).
The excitation wavelength was 575 to 600 nm, and the fluorescence wavelength was 612 to 682 nm.
The number of bright spots present in the tissue was visually measured from the images. When the number of bright spots was 80% or more of the reference, it was considered that the dyeing was possible. The results are shown in Table 4.

[実施例3−2]および[実施例3−3]
実施例3−1において、添加剤の濃度(g/mL)を表4に示す数値にしたこと以外は、実施例3−1と同様にして、病理染色液を調製し、分散性(沈殿結果およびピペットによる秤量精度)の評価および免疫染色結果の評価を行った。結果を表4に示す。
[Example 3-2] and [Example 3-3]
In Example 3-1, a pathological staining solution was prepared in the same manner as in Example 3-1, except that the concentration (g / mL) of the additive was changed to the numerical values shown in Table 4. Dispersibility (precipitation result) And weighing accuracy with a pipette) and immunostaining results were evaluated. The results are shown in Table 4.

[実施例3−4]
実施例3−1において、添加剤として、スクロースに代えてイオパミドールを用いたことと、添加剤の濃度(g/mL)を表4に示す数値にしたこと以外は、実施例3−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表4に示す。
[Example 3-4]
In Example 3-1, the same as Example 3-1 except that iopamidol was used instead of sucrose as an additive and the concentration (g / mL) of the additive was changed to the numerical values shown in Table 4. Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 4.

[比較例3−1]
実施例3−1において、添加剤を用いなかったこと以外は、実施例3−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表4に示す。
[Comparative Example 3-1]
In Example 3-1, except that no additive was used, a pathological staining solution was prepared in the same manner as in Example 3-1, and evaluation of dispersibility and evaluation of immunostaining were performed. The results are shown in Table 4.

[比較例3−2]
実施例3−1において、添加剤の濃度(g/mL)を表4に示す数値にしたこと以外は、実施例3−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色の評価を行った。結果を表4に示す。
[Comparative Example 3-2]
In Example 3-1, a pathological staining solution was prepared in the same manner as in Example 3-1, except that the additive concentration (g / mL) was changed to the numerical values shown in Table 4, and evaluation of dispersibility and Immunostaining was evaluated. The results are shown in Table 4.

[実施例4−1]
(1)病理染色液の調製
抗体結合蛍光シリカ粒子(平均粒径150nm)の調製
SulfoRhodamine101(シグマアルドリッチ社製)14.4mgをDMF1mlに加えて溶解したものと、3−アミノプロピルトリメトキシシラン(3−aminopropyltrimetoxysilane、信越シリコーン社製、KBM903)3μLとを混合し、オルガノアルコキシシラン化合物を得た。得られたオルガノアルコキシシラン化合物0.6mlを、48mlのエタノール、0.6mlのTEOS(テトラエトキシシラン)、2mlの水、2mlの28%アンモニア水と3時間混合した。上記工程で作製した混合液を遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分遠心分離し、上澄みを除去した。上澄み除去後、超純水を加えて超音波照射し再分散した。遠心分離機、上澄み除去、超純水への再分散を5回繰り返した。
[Example 4-1]
(1) Preparation of pathological stain
Preparation of antibody-bound fluorescent silica particles (average particle size: 150 nm) Sulfur Rhodamine 101 (Sigma Aldrich) 14.4 mg was added to 1 ml of DMF and dissolved, and 3-aminopropyltrimethoxysilane (3-aminopropyltrimethoxysilane, Shin-Etsu Silicone, KBM903) ) 3 μL was mixed to obtain an organoalkoxysilane compound. 0.6 ml of the obtained organoalkoxysilane compound was mixed with 48 ml of ethanol, 0.6 ml of TEOS (tetraethoxysilane), 2 ml of water, 2 ml of 28% ammonia water for 3 hours. The mixed solution prepared in the above step was centrifuged at 20000 G for 15 minutes with a centrifuge (Microcooled Centrifuge 3740 manufactured by Kubota), and the supernatant was removed. After removing the supernatant, ultrapure water was added, and ultrasonic dispersion was performed to redisperse. Centrifugation, supernatant removal, and redispersion in ultrapure water were repeated 5 times.

得られた粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシランLS−3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。   0.1 mg of the obtained particles were dispersed in 1.5 mL of EtOH, and 2 μL of aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added and reacted for 8 hours for surface amination treatment.

得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包粒子を得た。   The obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. By performing washing by the same procedure three times, fluorescent dye-containing particles having a maleimide group at the end were obtained.

一方、ストレプトアビジン(和光純薬工業社製)をN−succinimidyl S−acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、色素内包ナノ粒子に結合可能なストレプトアビジン溶液を得た。   On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) is subjected to thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), then filtered through a gel filtration column, and can be bound to dye-encapsulated nanoparticles. A streptavidin solution was obtained.

上記の蛍光ナノ粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合Texas Red色素内包シリカナノ粒子を得た。   The above fluorescent nanoparticles and streptavidin were mixed in PBS containing 2 mM EDTA and allowed to react for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-bound Texas Red dye-encapsulated silica nanoparticles.

病理染色液の調製
抗体結合蛍光シリカ粒子0.3nM、および添加剤としてスクロース(ナカライテスク社製、製品名スクロース)7.0gをMilliQ水(比抵抗値が18 MΩ・cmの水)10mLに分散させて、添加剤の濃度が0.8g/mLの分散液を調製し、病理染色液とした。
Preparation of pathological staining solution Antibody-bound fluorescent silica particles 0.3 nM, and 7.0 g of sucrose (product name: sucrose, manufactured by Nacalai Tesque) as an additive were dispersed in 10 mL of MilliQ water (water with a specific resistance of 18 MΩ · cm). A dispersion having an additive concentration of 0.8 g / mL was prepared as a pathological staining solution.

一方、病理染色液について、超遠心分離機(日立工機社製、CS120FNX)を用いて密度勾配遠心法により、粒子の固体密度ρおよび分散液の密度ρwを測定し、音叉型振動式粘度計SV−1H(エー・アンド・デイ社製)を用いて粘度ηを測定した。
病理染色液の粒子の固体密度ρ、密度ρwおよび(ρ−ρw)/ηの値を表5に示す。
On the other hand, for the pathological staining solution, the solid density ρ of the particles and the density ρ w of the dispersion are measured by density gradient centrifugation using an ultracentrifuge (manufactured by Hitachi Koki Co., Ltd., CS120FNX). The viscosity η was measured using a total SV-1H (manufactured by A & D).
Table 5 shows values of solid density ρ, density ρ w and (ρ−ρ w ) / η of the pathological staining liquid particles.

(2)分散性の評価
病理染色液を4℃で一ヶ月保存した後、分散液中の沈殿の有無を目視により評価した。
ピペッティングによる分散性の評価は、ピペットマン(ギルソン社製、PIPETMAN P−200)の目盛を200μLに設定して、病理染色液を吸い上げ、吐き出した後に、ピペットチップに残留する病理染色液の有無を目視により行った。
(2) Evaluation of dispersibility After the pathological staining solution was stored at 4 ° C. for one month, the presence or absence of precipitation in the dispersion was visually evaluated.
The evaluation of dispersibility by pipetting is based on whether pipetteman (Pilpetman P-200, manufactured by Gilson Co., Ltd.) has a scale of 200 μL, sucks and discharges the pathological staining liquid, and then checks whether there is pathological staining liquid remaining on the pipette tip. This was done visually.

(3)免疫染色方法および評価
ピペットマンの目盛を200μLに設定して、病理染色液を吸い上げ、吐き出す操作を5回繰り返した後に、この病理染色液にPBS 800μLを添加して濃度0.06nMにまで希釈し、希釈後の病理染色液を遠心フィルター(日本ミリポア社製、ウルトラフリーMC DV 0.65μm)に投入し、卓上遠心機を用いて遠心させることによりろ過した。
(3) Immunostaining method and evaluation The pipetteman scale was set to 200 μL, and the operation of sucking and discharging the pathological staining solution was repeated 5 times, and then 800 μL of PBS was added to the pathological staining solution to a concentration of 0.06 nM. The diluted pathological staining solution was poured into a centrifugal filter (manufactured by Nihon Millipore, Ultra Free MC DV 0.65 μm), and filtered by centrifuging using a desktop centrifuge.

病理組織スライド(US Biomax社製、製品名 Breast Tissue Microarray)上のHER2タンパクに、一次抗体(Ventana Medical Systems社製、製品名PATHWAY anti-HER2/neu(4B5) Rabbit Monoclonal Primary Antibody)を反応させる。次いで、ビオチン標識二次抗体(Ventana Medical Systems社製、製品名Universal Secondary Antibody)を反応させて病理組織スライド上に抗原抗体反応結合物を形成させた。この結合物に、希釈後の病理染色液を添加して染色した。   A primary antibody (product name: PATHWAY anti-HER2 / neu (4B5) Rabbit Monoclonal Primary Antibody) manufactured by Ventana Medical Systems is reacted with the HER2 protein on a pathological tissue slide (product name: Breast Tissue Microarray, product of US Biomax). Subsequently, a biotin-labeled secondary antibody (product name: Universal Secondary Antibody, manufactured by Ventana Medical Systems) was reacted to form an antigen-antibody reaction conjugate on the pathological tissue slide. The combined product was stained by adding a diluted pathological staining solution.

染色後、蛍光顕微鏡(カールツァイス社製)を用いて蛍光画像を取得した。
励起波長575〜600nm、蛍光波長612〜682nmとした。
組織内に存在する輝点数を、画像から目視にて計測した。輝点数がリファレンスの80%以上である場合、染色できたとした。結果を表5に示す。
After staining, a fluorescence image was obtained using a fluorescence microscope (manufactured by Carl Zeiss).
The excitation wavelength was 575 to 600 nm, and the fluorescence wavelength was 612 to 682 nm.
The number of bright spots present in the tissue was visually measured from the images. When the number of bright spots was 80% or more of the reference, it was considered that the dyeing was possible. The results are shown in Table 5.

[実施例4−2]
実施例4−1において、添加剤の濃度(g/mL)を表5に示す数値にしたこと以外は、実施例4−1と同様にして、病理染色液を調製し、分散性(沈殿結果およびピペットによる秤量精度)の評価および免疫染色結果の評価を行った。結果を表5に示す。
[Example 4-2]
In Example 4-1, except that the concentration (g / mL) of the additive was changed to the values shown in Table 5, a pathological staining solution was prepared in the same manner as in Example 4-1, and the dispersibility (precipitation result) And weighing accuracy with a pipette) and immunostaining results were evaluated. The results are shown in Table 5.

[比較例4−1]
実施例4−1において、添加剤を用いなかったこと以外は、実施例4−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表5に示す。
[Comparative Example 4-1]
In Example 4-1, except that the additive was not used, a pathological staining solution was prepared in the same manner as in Example 4-1, and evaluation of dispersibility and evaluation of immunostaining were performed. The results are shown in Table 5.

[比較例4−2]および[比較例4−3]
実施例4−1において、添加剤の濃度(g/mL)を表5に示す数値にしたこと以外は、実施例4−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表5に示す。
[Comparative Example 4-2] and [Comparative Example 4-3]
In Example 4-1, except that the concentration (g / mL) of the additive was changed to the numerical values shown in Table 5, a pathological staining solution was prepared in the same manner as in Example 4-1, and evaluation of dispersibility and The immunostaining results were evaluated. The results are shown in Table 5.

[比較例4−4]
実施例4−1において、添加剤として、スクロースに代えてイオパミドールを用いたことと、添加剤の濃度(g/mL)を表5に示す数値にしたこと以外は、実施例4−1と同様にして、病理染色液を調製し、分散性の評価および免疫染色結果の評価を行った。結果を表5に示す。
[Comparative Example 4-4]
In Example 4-1, similar to Example 4-1, except that iopamidol was used instead of sucrose as an additive and that the concentration (g / mL) of the additive was changed to the numerical values shown in Table 5. Thus, a pathological staining solution was prepared, and the dispersibility was evaluated and the immunostaining result was evaluated. The results are shown in Table 5.

[調製例1]抗体結合蛍光メラミン樹脂粒子の調製
蛍光色素としてSulfoRhodamine101(シグマアルドリッチ社製)14.4mgを水22mLに加えて溶解した。その後、この溶液に乳化重合用乳化剤のエマルゲン(登録商標)430(ポリオキシエチレンオレイルエーテル、花王社製)の5%水溶液を2mL加えた。この溶液をホットスターラー上で撹拌しながら70℃まで昇温させた後、この溶液にメラミン樹脂原料ニカラックMX−035(日本カーバイド工業社製)を0.65g加えた。さらに、この溶液に反応触媒兼界面活性剤としてドデシルベンゼンスルホン酸(関東化学社製)の10%水溶液を1000μL加え、70℃で50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。得られた色素樹脂粒子の分散液から、余剰の樹脂原料や蛍光色素等の不純物を除くため、純水による洗浄を行った。
[Preparation Example 1] Preparation of antibody-bound fluorescent melamine resin particles 14.4 mg of Sulfur Rhodamine 101 (manufactured by Sigma Aldrich) as a fluorescent dye was added to 22 mL of water and dissolved. Thereafter, 2 mL of a 5% aqueous solution of Emulgen (registered trademark) 430 (polyoxyethylene oleyl ether, manufactured by Kao Corporation), an emulsifier for emulsion polymerization, was added to this solution. This solution was heated to 70 ° C. while stirring on a hot stirrer, and then 0.65 g of melamine resin raw material Nicalak MX-035 (manufactured by Nippon Carbide Industries Co., Ltd.) was added to this solution. Further, 1000 μL of a 10% aqueous solution of dodecylbenzenesulfonic acid (manufactured by Kanto Chemical Co., Inc.) as a reaction catalyst and surfactant was added to this solution, and the mixture was heated and stirred at 70 ° C. for 50 minutes. Then, it heated up at 90 degreeC and heat-stirred for 20 minutes. In order to remove impurities such as excess resin raw materials and fluorescent dyes from the obtained dispersion of the dye resin particles, washing with pure water was performed.

具体的には、遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分間、遠心分離し、上澄み除去後、超純水を加えて超音波照射して再分散した。遠心分離、上澄み除去および超純水への再分散による洗浄を5回繰り返した。得られたメラミン粒子はメラミン樹脂自体が骨格に多くのアミノ基を含むことから、プラス電荷となった。樹脂粒子の電荷の評価は、IR等による樹脂組成分析と、ゼータ電位測定により行なった。   Specifically, the mixture was centrifuged at 20000 G for 15 minutes in a centrifuge (Kubota Micro Cooling Centrifuge 3740), and after removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Centrifugation, supernatant removal, and washing by redispersion in ultrapure water were repeated 5 times. The obtained melamine particles were positively charged because the melamine resin itself contains many amino groups in the skeleton. The charge of the resin particles was evaluated by resin composition analysis by IR or the like and zeta potential measurement.

上記洗浄したメラミン樹脂粒子0.67nM水分散液1mLと1,2-Bis(2-aminoethoxy)ethane 20mgを混合し、温度70℃で20分反応させ、表面をアミノ基に変換するアミノ化処理を行なった。すなわち、メラミン樹脂粒子の水酸基に1,2-Bis(2-aminoethoxy)ethaneのアミノ基を反応させて、アミノ基を導入した。得られたメラミン樹脂粒子を、遠心による上澄み除去および超純水への再分散による洗浄を3回繰り返した。   Mixing 1 mL of the washed 0.67 nM aqueous dispersion of melamine resin particles with 20 mg of 1,2-Bis (2-aminoethoxy) ethane and reacting at a temperature of 70 ° C. for 20 minutes to convert the surface into amino groups I did it. That is, amino groups of 1,2-Bis (2-aminoethoxy) ethane were reacted with hydroxyl groups of melamine resin particles to introduce amino groups. The obtained melamine resin particles were repeatedly washed three times by removing the supernatant by centrifugation and redispersing in ultrapure water.

アミノ基を導入したメラミン粒子は、THFに分散後、遠心により粒子沈殿し、再度THFに分散することで脱水を行なった。その際の粒子濃度が0.67nMとなるようにした。その後、濃度調整した色素樹脂粒子の分散液に対して、SM(PEG)12(Succinimidyl−[(N−maleоmidopropionamid)−dodecaethyleneglycol]ester、サーモサイエンティフィック社製)3mgを混合し、20℃1時間反応させて、末端にマレイミドがついた蛍光色素を有する色素樹脂粒子を含む混合液を得た。   The melamine particles into which amino groups were introduced were dispersed in THF, then precipitated by centrifugation, and dehydrated by being dispersed again in THF. The particle concentration at that time was 0.67 nM. Thereafter, 3 mg of SM (PEG) 12 (Succinimidyl-[(N-maleimidepropionamid) -dodecaethyleneglycol) ester, manufactured by Thermo Scientific Co., Ltd.) was mixed with the dispersion of the dye resin particles whose concentration was adjusted, and 20 ° C. for 1 hour. By reacting, a mixed liquid containing dye resin particles having a fluorescent dye with a maleimide at the end was obtained.

この混合液を10000Gで20分間遠心分離を行い、上澄みを除去した後、2mMのEDTAを含有したPBSを加えて沈降物を分散させ、再度遠心分離を行った。同様の手順による上記洗浄を3回行った。   The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM EDTA was added to disperse the precipitate, and the mixture was centrifuged again. The above washing according to the same procedure was performed three times.

(ストレプトアビジンの調製)
一方、ストレプトアビジン(和光純薬工業社製)と2-Iminothiolane・HCl(略称:Traut's試薬)を用いて、ストレプトアビジンに対してチオール基の付加処理を行い、ゲル濾過を行って色素樹脂粒子に結合可能なストレプトアビジンを別途用意した。
(Preparation of streptavidin)
On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) and 2-Iminothiolane · HCl (abbreviation: Traut's reagent) are used to add a thiol group to streptavidin, and gel filtration is performed on the dye resin particles. A streptavidin capable of binding was prepared separately.

(樹脂粒子とストレプトアビジンの結合)
上記色素樹脂粒子とストレプトアビジンを、2mMのEDTAを含有したPB中で混合後、室温で1時間反応させて、両者を結合させる反応を行った。反応後、10mMメルカプトエタノールを添加して反応を停止させた。得られた溶液をφ=0.65μmの遠心フィルターで濃縮後、精製用ゲル濾過カラムを用いて未反応のストレプトアビジン等を除去し、ストレプトアビジンが結合した色素樹脂粒子を得た。
(Binding of resin particles and streptavidin)
The dye resin particles and streptavidin were mixed in PB containing 2 mM EDTA and then reacted at room temperature for 1 hour to carry out a reaction for bonding them. After the reaction, 10 mM mercaptoethanol was added to stop the reaction. The obtained solution was concentrated with a centrifugal filter of φ = 0.65 μm, and then unreacted streptavidin and the like were removed using a purification gel filtration column to obtain dye resin particles bound with streptavidin.

[実施例5−1]
水分散液の調製
抗体結合蛍光メラミン樹脂粒子を0.3nMの濃度で含む1%BSA(ダコ社製)/PBS分散液1mLに、チキソトロピー付与剤としてキサンタンガムを0.5mg添加し、キサンタンガムの濃度が0.5mg/mLの水分散液を調製した。なお、BSAには、ダコ社製BSA(ウシ血清アルブミン)を用いた。
水分散液を一週間保存した後の安定性の評価(以下「評価1」という。)
[Example 5-1]
Preparation of aqueous dispersion 0.5 mg of xanthan gum as a thixotropic agent was added to 1 mL of 1% BSA (manufactured by Dako) / PBS dispersion containing 0.3 nM antibody-bound fluorescent melamine resin particles, and the concentration of xanthan gum was 0.5 A mg / mL aqueous dispersion was prepared. As BSA, BSA (bovine serum albumin) manufactured by Dako was used.
Evaluation of stability after storage of aqueous dispersion for one week (hereinafter referred to as “Evaluation 1”)

自動染色装置(ベンタナ社製、XTシステム ディスカバリー)の試薬ボトルに水分散液を投入し、150μLずつ5回吐出し、それぞれの粒子濃度から標準偏差を計算した。水分散液を試薬ボトルに入れたまま一週間経った後、再び150μLずつ5回吐出し、それぞれの粒子濃度から標準偏差を計算した。粒子濃度は蛍光光度計(日立製作所社製 F−7000)による輝度とし、吐出前の同量の分散液輝度を100として計算した。   The aqueous dispersion was put into a reagent bottle of an automatic staining apparatus (manufactured by Ventana, XT System Discovery), and 150 μL was discharged 5 times, and the standard deviation was calculated from the concentration of each particle. After one week with the aqueous dispersion in the reagent bottle, 150 μL was again discharged five times, and the standard deviation was calculated from the concentration of each particle. The particle concentration was calculated by setting the luminance with a fluorometer (F-7000, manufactured by Hitachi, Ltd.) and setting the luminance of the same amount of dispersion before discharge as 100.

標準偏差が小さい値であるほど、水分散液中の粒子のばらつきが少ないことを示し、水分散液を投入してすぐに測定したときの標準偏差と、一週間経過後に測定したときの標準偏差の差が小さいほど、保存安定性に優れることを示す。
結果を以下に示す。
標準偏差(投入後すぐに測定) 5
標準偏差(一週間経過後) 8
The smaller the standard deviation, the smaller the dispersion of particles in the aqueous dispersion. The standard deviation when measured immediately after adding the aqueous dispersion and the standard deviation measured after one week has passed. The smaller the difference, the better the storage stability.
The results are shown below.
Standard deviation (measured immediately after input) 5
Standard deviation (after one week) 8

みかけ粘度の測定
水分散液10mLを一夜間放置後、マグネチックスターラーで約5分間かき混ぜ、完全な溶液とした後、口径約45mm、高さ約145mmのフタ付き容器に移し、25±0.2℃の恒温槽に30分間静置した後、ガラス棒で溶液をゆるくかき混ぜて、B型粘度計(東機産業社製BII形粘度計)のローター(No.1)及びガードを取り付け、ローターを回転させ、3分後の目盛を読み取った。
粘度(mPa・s)=読み取り目盛×係数
水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、45mPa.sであった。
Measurement of apparent viscosity After leaving overnight 10 mL of aqueous dispersion, stir with a magnetic stirrer for about 5 minutes to make a complete solution, transfer to a container with a lid of about 45 mm in diameter and about 145 mm in height, 25 ± 0.2 After standing for 30 minutes in a thermostat at ℃, gently stir the solution with a glass rod, attach the rotor (No.1) and guard of B type viscometer (BII viscometer manufactured by Toki Sangyo Co., Ltd.) Rotate and read scale after 3 minutes.
Viscosity (mPa · s) = reading scale × coefficient The apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C. is 45 mPa.s. s.

[実施例5−2]
実施例5−1において、チキソトロピー付与剤として、キサンタンガムの代わりにカルボキシメチルセルロースナトリウム塩(CMC−Na)を用いたこと以外は、実施例5−1と同様にして、CMC−Naの濃度が20mg/mLの水分散液を調製した。
上記水分散液を用いて評価1を行った結果を以下に示す。
標準偏差(投入後すぐに測定) 4
標準偏差(一週間静置後) 5
[Example 5-2]
In Example 5-1, the concentration of CMC-Na was 20 mg / ml in the same manner as in Example 5-1, except that carboxymethyl cellulose sodium salt (CMC-Na) was used instead of xanthan gum as the thixotropic agent. mL aqueous dispersion was prepared.
The results of evaluation 1 using the above aqueous dispersion are shown below.
Standard deviation (measured immediately after input) 4
Standard deviation (after standing for one week) 5

みかけ粘度の測定
実施例5−1と同条件でみかけ粘度を測定し、水分散液の25℃におけるみかけ粘度(B型粘度計、70rpm)は、56mPa.sであった。
Measurement of apparent viscosity The apparent viscosity was measured under the same conditions as in Example 5-1, and the apparent viscosity (B-type viscometer, 70 rpm) of the aqueous dispersion at 25 ° C was 56 mPa.s. s.

[実施例5−3]
実施例5−1において、チキソトロピー付与剤として、キサンタンガムの代わりにグアーガムを用いたこと以外は、実施例5−1と同様にして、グアーガムの濃度が1mg/mLの水分散液を調製した。
上記水分散液を用いて評価1を行った結果を以下に示す。
標準偏差(投入後すぐに測定) 6
標準偏差(一週間静置後) 8
[Example 5-3]
In Example 5-1, an aqueous dispersion having a guar gum concentration of 1 mg / mL was prepared in the same manner as in Example 5-1, except that guar gum was used instead of xanthan gum as the thixotropic agent.
The results of evaluation 1 using the above aqueous dispersion are shown below.
Standard deviation (measured immediately after input) 6
Standard deviation (after standing for one week) 8

みかけ粘度の測定
実施例5−1と同条件でみかけ粘度を測定し、水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、72mPa.sであった。
Measurement of apparent viscosity The apparent viscosity was measured under the same conditions as in Example 5-1, and the apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C was 72 mPa.s. s.

[実施例5−4]
実施例5−1において、チキソトロピー付与剤として、キサンタンガムの代わりにPEG系のノニオン系増粘剤であるエマノーン3299V(花王社)を用いたこと以外は、実施例5−1と同様にして、エマノーン3299Vの濃度が10mg/mLの水分散液を調製した。
上記水分散液を用いて評価1を行った結果を以下に示す。
標準偏差(投入後すぐに測定) 5
標準偏差(一週間静置後) 6
[Example 5-4]
In Example 5-1, as the thixotropy-imparting agent, Emanon 3299V (Kao Corporation), which is a PEG nonionic thickener, was used instead of xanthan gum. An aqueous dispersion having a concentration of 3299 V of 10 mg / mL was prepared.
The results of evaluation 1 using the above aqueous dispersion are shown below.
Standard deviation (measured immediately after input) 5
Standard deviation (after standing for one week) 6

みかけ粘度の測定
実施例5−1と同条件でみかけ粘度を測定し、水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、80mPa.sであった。
Measurement of apparent viscosity The apparent viscosity was measured under the same conditions as in Example 5-1, and the apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C was 80 mPa.s. s.

[比較例5−1]
実施例5−1において、チキソトロピー付与剤を用いなかったこと以外は、実施例5−1と同様にして、水分散液を調製した。
上記水分散液を用いて評価1を行った結果を以下に示す。
標準偏差(投入後すぐに測定) 13
標準偏差(一週間静置後) 85
[Comparative Example 5-1]
In Example 5-1, an aqueous dispersion was prepared in the same manner as in Example 5-1, except that the thixotropic agent was not used.
The results of evaluation 1 using the above aqueous dispersion are shown below.
Standard deviation (measured immediately after input) 13
Standard deviation (after standing for one week) 85

みかけ粘度の測定
実施例5−1と同条件でみかけ粘度を測定し、水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、1.8mPa.sであった。
Measurement of apparent viscosity The apparent viscosity was measured under the same conditions as in Example 5-1, and the apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C was 1.8 mPa.s. s.

[比較例5−2]
実施例5−1において、チキソトロピー付与剤の代わりにスクロースを用いたこと以外は、実施例5−1と同様にして、スクロースの濃度が750mg/mLの水分散液を調製した。
上記水分散液を用いて評価1を行った結果を以下に示す。
標準偏差(投入後すぐに測定) 8
標準偏差(一週間静置後) 52
[Comparative Example 5-2]
In Example 5-1, an aqueous dispersion having a sucrose concentration of 750 mg / mL was prepared in the same manner as in Example 5-1, except that sucrose was used instead of the thixotropic agent.
The results of evaluation 1 using the above aqueous dispersion are shown below.
Standard deviation (measured immediately after input) 8
Standard deviation (after standing for one week) 52

みかけ粘度の測定
実施例5−1と同条件でみかけ粘度を測定し、水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、50mPa.sであった。
Measurement of apparent viscosity The apparent viscosity was measured under the same conditions as in Example 5-1, and the apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C was 50 mPa.s. s.

[比較例5−3]
実施例5−1において、チキソトロピー付与剤の代わりにグリセロールを用いたこと以外は、実施例5−1と同様にして、グリセロールの濃度が950mg/mLの水分散液を調製した。
上記水分散液を用いて評価1を行った結果を以下に示す。
標準偏差(投入後すぐに測定) 11
標準偏差(一週間静置後) −(測定不能)
[Comparative Example 5-3]
In Example 5-1, an aqueous dispersion having a glycerol concentration of 950 mg / mL was prepared in the same manner as in Example 5-1, except that glycerol was used instead of the thixotropic agent.
The results of evaluation 1 using the above aqueous dispersion are shown below.
Standard deviation (measured immediately after input) 11
Standard deviation (after standing for one week)-(not measurable)

比較例5−1〜5−3では、実施例5−1〜5−3と比べて、水分散液を投入してすぐに測定したときと、一週間静置後に測定したときのいずれにおいても、標準偏差の値が大きく、また、水分散液を投入してすぐに測定したときの標準偏差と、一週間静置後に測定したときの標準偏差との差(ばらつきの上がり方)も大きいことがわかる。   In Comparative Examples 5-1 to 5-3, compared with Examples 5-1 to 5-3, both when the water dispersion was measured immediately after measurement and when measured after standing for one week The standard deviation value is large, and the difference between the standard deviation when measured immediately after adding the aqueous dispersion and the standard deviation measured after standing for one week (how to increase the dispersion) is large. I understand.

したがって、実施例5−1〜5−3は、比較例5−1〜5−3と比べて、チキソトロピー付与剤を添加することにより、水分散液中の粒子のばらつきが少なく、一週間静置後の保存安定性にも優れることがわかる。   Therefore, in Examples 5-1 to 5-3, compared with Comparative Examples 5-1 to 5-3, by adding the thixotropy-imparting agent, the dispersion of the particles in the aqueous dispersion is small, and the mixture is allowed to stand for one week. It turns out that it is excellent also in the storage stability after.

みかけ粘度の測定
実施例5−1と同条件でみかけ粘度を測定し、水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、40mPa.sであった。
Measurement of apparent viscosity The apparent viscosity was measured under the same conditions as in Example 5-1, and the apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C was 40 mPa.s. s.

[実施例6−1]
水分散液の調製
抗体結合蛍光メラミン樹脂粒子を0.3nMの濃度で含む1%BSA/PBS分散液1mLに、チキソトロピー付与剤としてキサンタンガムを1.0mg添加し、キサンタンガムの濃度が1.0mg/mLの水分散液を調製した。
[Example 6-1]
Preparation of aqueous dispersion 1.0 mg of xanthan gum as a thixotropic agent was added to 1 mL of 1% BSA / PBS dispersion containing antibody-bound fluorescent melamine resin particles at a concentration of 0.3 nM, and water with xanthan gum concentration of 1.0 mg / mL A dispersion was prepared.

みかけ粘度の測定
水分散液10mLを一夜間放置後、マグネチックスターラーで約5分間かき混ぜ、完全な溶液とした後、口径約45mm、高さ約145mmのフタ付き容器に移し、25±0.2℃の恒温槽に30分間静置した後、ガラス棒で溶液をゆるくかき混ぜて、B型粘度計(東機産業社製BII形粘度計)のローター(No.1)及びガードを取り付け、ローターを回転させ、3分後の目盛を読み取った。
粘度(mPa・s)=読み取り目盛×係数
水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、80mPa.sであった。
Measurement of apparent viscosity After leaving overnight 10 mL of aqueous dispersion, stir with a magnetic stirrer for about 5 minutes to make a complete solution, transfer to a container with a lid of about 45 mm in diameter and about 145 mm in height, 25 ± 0.2 After standing for 30 minutes in a thermostat at ℃, gently stir the solution with a glass rod, attach the rotor (No.1) and guard of B type viscometer (BII viscometer manufactured by Toki Sangyo Co., Ltd.) Rotate and read scale after 3 minutes.
Viscosity (mPa · s) = reading scale × coefficient The apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C. is 80 mPa.s. s.

APSコートスライドガラス上の粒子の分散性評価(以下「評価2」という。)
自動染色装置(ベンタナ社製、XTシステム ディスカバリー)の試薬ボトルに、水分散液を投入し、5枚のAPS(アミノシラン)コートスライドガラス(松浪硝子工業社製)上にそれぞれ150μLずつ続けて吐出し、各APSコートスライドガラス上の輝点数を蛍光顕微鏡(オリンパス社製、BX53)により計測し、輝点数から標準偏差を計算した。
Evaluation of dispersibility of particles on APS-coated glass slide (hereinafter referred to as “Evaluation 2”)
Aqueous dispersion is put into a reagent bottle of an automatic staining apparatus (manufactured by Ventana Co., Ltd., XT System Discovery), and 150 μL each is continuously discharged onto five APS (aminosilane) coated slide glasses (manufactured by Matsunami Glass Industrial Co., Ltd.) The number of bright spots on each APS-coated slide glass was measured with a fluorescence microscope (manufactured by Olympus, BX53), and the standard deviation was calculated from the number of bright spots.

輝点数が多いほど、水分散液中で粒子が凝集又は沈殿を起こさず、良好な分散性を維持していることを示す。したがって、輝点数の平均値が高く、標準偏差が小さいほど、APSコートスライドガラス上における輝点数の分散性が良好であることを示す。
5回実施した輝点数の平均値及び標準偏差を以下に示す。
輝点数(平均値) 2930
標準偏差 14
The larger the number of bright spots, the more the particles are not aggregated or precipitated in the aqueous dispersion and the better dispersibility is maintained. Therefore, the higher the average value of the number of bright spots and the smaller the standard deviation, the better the dispersibility of the number of bright spots on the APS-coated slide glass.
The average value and standard deviation of the number of bright spots carried out 5 times are shown below.
Number of bright spots (average) 2930
Standard deviation 14

[実施例6−2]
実施例6−1において、チキソトロピー付与剤としてキサンタンガムを1.0mgではなく、0.5mg添加し、キサンタンガムの濃度を1.0mg/mLではなく、0.5mg/mLとしたこと以外は、実施例6−1と同様にして、分散液を調製した。
[Example 6-2]
In Example 6-1, Example 6-1, except that 0.5 mg of xanthan gum was added instead of 1.0 mg as a thixotropy imparting agent, and the concentration of xanthan gum was set to 0.5 mg / mL instead of 1.0 mg / mL. Similarly, a dispersion was prepared.

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、45mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 4632
標準偏差 7
The apparent viscosity (B-type viscometer, 60 rpm) at 25 ° C. of the aqueous dispersion was 45 mPa.s. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average value) 4632
Standard deviation 7

[実施例6−3]
実施例6−1において、チキソトロピー付与剤として、キサンタンガムの代わりにカルボキシメチルセルロースナトリウム塩(CMC−Na)を用いたこと以外は実施例6−1と同様にして、分散液を調製した。濃度も22mg/mLと実施例6−1と同じとした。
[Example 6-3]
In Example 6-1, a dispersion was prepared in the same manner as in Example 6-1, except that carboxymethyl cellulose sodium salt (CMC-Na) was used instead of xanthan gum as the thixotropy-imparting agent. The concentration was 22 mg / mL, which was the same as in Example 6-1.

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、70mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 2239
標準偏差 12
The apparent viscosity (B-type viscometer, 60 rpm) at 25 ° C. of the aqueous dispersion was 70 mPa.s. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average) 2239
Standard deviation 12

[実施例6−4]
実施例6−3において、カルボキシメチルセルロースナトリウム塩(CMC−Na)の濃度を1.0mg/mLではなく、20mg/mLとしたこと以外は、実施例6−3と同様にして、分散液を調製した。
[Example 6-4]
In Example 6-3, a dispersion was prepared in the same manner as in Example 6-3 except that the concentration of carboxymethylcellulose sodium salt (CMC-Na) was 20 mg / mL instead of 1.0 mg / mL. .

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、56mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 3150
標準偏差 11
The apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C. is 56 mPa.s. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average value) 3150
Standard deviation 11

[実施例6−5]
実施例6−3において、カルボキシメチルセルロースナトリウム塩(CMC−Na)の濃度を1.0mg/mLではなく、16mg/mLとしたこと以外は、実施例6−3と同様にして、分散液を調製した。
[Example 6-5]
In Example 6-3, a dispersion was prepared in the same manner as in Example 6-3, except that the concentration of carboxymethylcellulose sodium salt (CMC-Na) was 16 mg / mL instead of 1.0 mg / mL. .

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、30mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 5212
標準偏差 4
The apparent viscosity (B-type viscometer, 60 rpm) at 25 ° C. of the aqueous dispersion was 30 mPa.s. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average value) 5212
Standard deviation 4

[実施例6−6]
実施例6−1において、チキソトロピー付与剤として、キサンタンガムの代わりにグアーガムを用いたこと以外は実施例6−1と同様にして、分散液を調製した。濃度も1.0mg/mLと実施例6−1と同じとした。
[Example 6-6]
In Example 6-1, a dispersion was prepared in the same manner as in Example 6-1, except that guar gum was used instead of xanthan gum as the thixotropy-imparting agent. The concentration was 1.0 mg / mL, which was the same as in Example 6-1.

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、72mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 3042
標準偏差 10
The apparent viscosity (B-type viscometer, 60 rpm) at 25 ° C. of the aqueous dispersion was 72 mPa.s. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average value) 3042
Standard deviation 10

[実施例6−7]
実施例6−1において、チキソトロピー付与剤として、キサンタンガムの代わりにPEG系のノニオン系増粘剤であるエマノーン3299V(花王社)を用いたこと以外は実施例6−1と同様にして、分散液を調製した。濃度も1.2mg/mLと実施例6−1と同じとした。
[Example 6-7]
In Example 6-1, as a thixotropy-imparting agent, a dispersion liquid was used in the same manner as in Example 6-1, except that Emanon 3299V (Kao Corporation), which is a PEG nonionic thickener, was used instead of xanthan gum. Was prepared. The concentration was also 1.2 mg / mL, the same as in Example 6-1.

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、80mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 3120
標準偏差 12
The apparent viscosity (B-type viscometer, 60 rpm) at 25 ° C. of the aqueous dispersion was 80 mPa.s. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average value) 3120
Standard deviation 12

[比較例6−1]
実施例6−1において、チキソトロピー付与剤を用いなかったこと以外は実施例6−1と同様にして、分散液を調製した。
[Comparative Example 6-1]
In Example 6-1, a dispersion was prepared in the same manner as in Example 6-1, except that the thixotropic agent was not used.

水分散液の粘度をB型粘度計(東機産業社製BII形粘度計)で測定し、1.8mPa.sであった。
上記水分散液を用いて評価2を行った結果を以下に示す。
輝点数(平均値) 750
標準偏差 15
The viscosity of the aqueous dispersion was measured with a B-type viscometer (BII-type viscometer manufactured by Toki Sangyo Co., Ltd.) and 1.8 mPa. s.
The results of evaluation 2 using the above aqueous dispersion are shown below.
Number of bright spots (average value) 750
Standard deviation 15

比較例6−1では、実施例6−1〜6−5と比べて、粘度が低く、輝点数の平均値が小さい。これは、粘度が低いために分散液中で粒子が凝集又は沈殿し、吐出時に液詰まりを起こし、水分散液をAPSコートスライドガラス上に正確な量で載せることができなかったためである。   In Comparative Example 6-1, the viscosity is low and the average number of bright spots is small compared to Examples 6-1 to 6-5. This is because the particles are aggregated or precipitated in the dispersion due to low viscosity, causing clogging during discharge, and the aqueous dispersion could not be placed on the APS-coated slide glass in an accurate amount.

すなわち、実施例6−1〜6−5は、比較例6−1と比べて、チキソトロピー付与剤を添加することにより、APSコートスライドガラス上における粒子の分散性が向上することがわかる。   That is, in Examples 6-1 to 6-5, it can be seen that the dispersibility of particles on the APS-coated slide glass is improved by adding the thixotropy imparting agent as compared with Comparative Example 6-1.

[参考例6−1]
ここで、参考として、濃度が0.05%、0.25%、0.50%及び1.00%であるキサンタンガム水溶液について、B型粘度計(東機産業社製BII形粘度計)およびローター(NO.1)を使って、ローター(NO.1)の回転数を6rpm、12rpm、30rpm及び60rpmとしたときのローターの回転数とみかけ粘度との関係を表6に示す。
[Reference Example 6-1]
Here, as a reference, for xanthan gum aqueous solutions having concentrations of 0.05%, 0.25%, 0.50% and 1.00%, a B-type viscometer (BII viscometer manufactured by Toki Sangyo Co., Ltd.) and a rotor Table 6 shows the relationship between the rotational speed of the rotor and the apparent viscosity when the rotational speed of the rotor (NO.1) is 6 rpm, 12 rpm, 30 rpm, and 60 rpm using (NO.1).

表6から、キサンタンガム水溶液が上記いずれの濃度であっても、粘度計のローターの回転数が多くなるほど、みかけ粘度が低下するのがわかる。 From Table 6, it can be seen that the apparent viscosity decreases as the rotational speed of the rotor of the viscometer increases, regardless of the concentration of the xanthan gum aqueous solution.

[実施例7−1]
水分散液の調製
抗体結合蛍光メラミン樹脂粒子を0.3nMの濃度を含む1%BSA/PBS分散液1mLに、チキソトロピー付与剤としてカルボキシメチルセルロースナトリウム塩(CMC−Na)を20mg添加し、カルボキシメチルセルロースナトリウム塩(CMC−Na)の濃度が20mg/mLの水分散液を調製した。この水分散液に、酢酸を添加し、pHメーター(堀場製作所社製)を用いて、pHを5とした。
[Example 7-1]
Preparation of aqueous dispersion 20 mg of carboxymethylcellulose sodium salt (CMC-Na) as a thixotropic agent was added to 1 mL of 1% BSA / PBS dispersion containing 0.3 nM of antibody-bound fluorescent melamine resin particles, An aqueous dispersion having a salt (CMC-Na) concentration of 20 mg / mL was prepared. Acetic acid was added to this aqueous dispersion, and the pH was adjusted to 5 using a pH meter (manufactured by Horiba, Ltd.).

水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、56mPa.sであった。
所定のpH条件下での免疫組織染色の評価(以下「評価3」という。)
自動染色装置(ベンタナ社製、XTシステム ディスカバリー)の試薬ボトルに水分散液を投入し、組織切片を載せたAPSコートスライドガラス上に150μL吐出し、APSコートスライドガラス上の輝点数を蛍光顕微鏡(オリンパス社製、BX53)により計測し、目視で確認した。
結果を以下に示す。
輝点数 2342
The apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C. is 56 mPa.s. s.
Evaluation of immunohistochemical staining under a predetermined pH condition (hereinafter referred to as “Evaluation 3”)
An aqueous dispersion is put into a reagent bottle of an automatic staining apparatus (manufactured by Ventana, XT System Discovery), 150 μL is discharged onto an APS-coated slide glass on which a tissue section is placed, and the number of bright spots on the APS-coated slide glass is measured with a fluorescence microscope ( It measured by Olympus BX53) and confirmed visually.
The results are shown below.
Number of bright spots 2342

[実施例7−2]
実施例7−1において、pHを5ではなく、9としたこと以外は、実施例7−1と同様にして分散液を調製し、評価3を行った。
結果を以下に示す。
輝点数 2845
[Example 7-2]
A dispersion was prepared in the same manner as in Example 7-1 except that the pH was changed to 9 instead of 5 in Example 7-1, and Evaluation 3 was performed.
The results are shown below.
Number of bright spots 2845

[実施例7−3]
実施例7−1において、pHを5ではなく、7としたこと以外は、実施例7−1と同様にして分散液を調製し、評価3を行った。
結果を以下に示す。
輝点数 4532
[Example 7-3]
In Example 7-1, a dispersion was prepared and evaluated 3 in the same manner as in Example 7-1 except that the pH was set to 7 instead of 5.
The results are shown below.
Number of bright spots 4532

実施例7−3では、実施例7−1及び7−2に比べ、輝点数が多く観察されることから、pHが中性に近いほど、染色性が良いことがわかる。この原因として、pHが中性から外れると、アビジン−ビオチン反応が進みにくくなることが考えられる。   In Example 7-3, since the number of bright spots is observed more than in Examples 7-1 and 7-2, it can be seen that the closer the pH is to neutral, the better the dyeability. A possible cause of this is that when the pH deviates from neutrality, the avidin-biotin reaction becomes difficult to proceed.

[参考例7−1]
実施例7−3において、チキソトロピー付与剤を用いなかったことと、水分散液の25℃におけるみかけ粘度(B型粘度計、60rpm)は、56mPa.sではなく、1.8mPa.sとしたこと以外は、実施例3−3と同様にして、分散液を調製し、評価3を行った。
結果を以下に示す。
輝点数 532
[Reference Example 7-1]
In Example 7-3, the thixotropic agent was not used, and the apparent viscosity (B-type viscometer, 60 rpm) of the aqueous dispersion at 25 ° C. was 56 mPa.s. s, not 1.8 mPa.s. A dispersion was prepared and evaluated 3 in the same manner as in Example 3-3 except that s was set.
The results are shown below.
Number of bright spots 532

Claims (6)

平均粒径が50〜200nmの蛍光ナノ粒子からなる蛍光標識体と、溶媒とを含む、下記式(1)を満たす分散液からなる病理染色液。
(ρ−ρw)/η ≦ 0.02 ・・・(1)
(式(1)中、ρは20℃における蛍光ナノ粒子の固体密度(g/cm3)を表し、ρwは20℃における分散液の密度(g/cm3)を表し、ηは20℃における分散液の粘度(g/cm・sec)を表し、1<η<100である。)
A pathological staining solution comprising a dispersion satisfying the following formula (1), comprising a fluorescent label comprising fluorescent nanoparticles having an average particle diameter of 50 to 200 nm and a solvent.
(Ρ−ρ w ) /η≦0.02 (1)
(In the formula (1), ρ represents the solid density (g / cm 3 ) of the fluorescent nanoparticles at 20 ° C., ρ w represents the density of the dispersion (g / cm 3 ) at 20 ° C., and η is 20 ° C. Represents the viscosity (g / cm · sec) of the dispersion liquid in which 1 <η <100 .)
前記蛍光標識体と溶媒とに加えて、さらに密度および/または粘度調節用添加剤として単糖類、二糖類またはX線造影剤を含む、請求項に記載の病理染色液。 The pathological staining solution according to claim 1 , further comprising a monosaccharide, a disaccharide or an X-ray contrast agent as an additive for adjusting density and / or viscosity in addition to the fluorescent label and the solvent. 前記密度および/または粘度調節用添加剤が、スクロース、グリセロール、ソルビトール、フルクトース、およびイオパミドールからなる群より選ばれる少なくとも一種である、請求項に記載の病理染色液。 The pathological stain according to claim 2 , wherein the additive for adjusting density and / or viscosity is at least one selected from the group consisting of sucrose, glycerol, sorbitol, fructose, and iopamidol. 分散液が蛍光標識体と、チキソトロピー付与剤と、これら2成分を分散または溶解するための水系溶媒とを含有する水分散液である請求項1に記載の病理染色液。   The pathological stain according to claim 1, wherein the dispersion is an aqueous dispersion containing a fluorescent label, a thixotropy imparting agent, and an aqueous solvent for dispersing or dissolving these two components. 前記チキソトロピー付与剤が水溶性高分子である、請求項に記載の病理染色液。 The pathological staining solution according to claim 4 , wherein the thixotropic agent is a water-soluble polymer. 前記分散液の密度が、1.00〜3.00g/cm3である請求項1〜5のいずれか一項に記載の病理染色液。 The density of the said dispersion liquid is 1.00-3.00g / cm < 3 >, The pathological stain liquid as described in any one of Claims 1-5.
JP2015528346A 2013-07-26 2014-07-24 Pathological stain Active JP6406253B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013155496 2013-07-26
JP2013155496 2013-07-26
PCT/JP2014/069616 WO2015012374A1 (en) 2013-07-26 2014-07-24 Pathological stain solution

Publications (2)

Publication Number Publication Date
JPWO2015012374A1 JPWO2015012374A1 (en) 2017-03-02
JP6406253B2 true JP6406253B2 (en) 2018-10-17

Family

ID=52393407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015528346A Active JP6406253B2 (en) 2013-07-26 2014-07-24 Pathological stain

Country Status (2)

Country Link
JP (1) JP6406253B2 (en)
WO (1) WO2015012374A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217985A1 (en) * 2019-04-26 2020-10-29 コニカミノルタ株式会社 Light emitting dye-containing particles and labeling agent for pathological diagnosis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174728B1 (en) * 1998-04-03 2001-01-16 Avl Medical Instruments Ag Control or calibration standard for use with instruments for optical measurement of hemoglobin concentration in blood samples
JP5442179B2 (en) * 2005-10-21 2014-03-12 アルフレッサファーマ株式会社 Method for suppressing sedimentation of fine particles bound with reactive substance and reagent containing the fine particles
US7575934B2 (en) * 2006-07-07 2009-08-18 Nativis, Inc. Oriented magnetic particle-fluorescence detectable moiety compositions and methods of making and using the same
EP2075581A1 (en) * 2006-09-14 2009-07-01 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle aggregate, process for producing the semiconductor nanoparticle aggregate, and biological substance labeling agent using the semiconductor nanoparticle aggregate
WO2009150879A1 (en) * 2008-06-11 2009-12-17 コニカミノルタエムジー株式会社 Semiconductor nanoparticle phosphor
JP2012194013A (en) * 2011-03-16 2012-10-11 Konica Minolta Medical & Graphic Inc Immunohistochemical staining method and reaction reagent

Also Published As

Publication number Publication date
JPWO2015012374A1 (en) 2017-03-02
WO2015012374A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6236881B2 (en) Immunostaining method, fluorescent immunostaining pretreatment liquid and immunostaining kit
JP6112169B2 (en) Fluorescent label for detection of biological materials
JP5974892B2 (en) Biological substance detection method
JP6593482B2 (en) Staining for tissue staining, method for producing staining for tissue staining, and tissue staining kit including staining for tissue staining
JP6354754B2 (en) Fluorescent nanoparticles for biomolecule staining and method for producing the same
JP6241239B2 (en) Fluorescent dye-encapsulated nanoparticles, method for producing fluorescent dye-encapsulated nanoparticles, fluorescent labeling agent, and fluorescent immunostaining method
JP6424826B2 (en) Determination of biological substances in tissue sections
JP6107244B2 (en) Fluorescent dye labeling resin particles, production method thereof, and tissue immunostaining kit containing the particles
WO2015045961A1 (en) Fluorescent nanoparticle label, multiple immunostain kit, and multiple immunostaining method
JP6493085B2 (en) Method for selecting fluorescent dye-containing resin particle solution and method for adjusting concentration
JP2019090816A (en) Pathological specimens and method for producing pathological specimens
JP2017227502A (en) Method of preventing dissociation of fluorescent nanoparticles from tissue section
JP6406253B2 (en) Pathological stain
JP6303313B2 (en) Reagent bottles for aqueous dispersions, pathological stains and automatic stainers
JP5863057B2 (en) Organization evaluation method
JP6187170B2 (en) Fluorescent dye-containing resin particles, fluorescent dye-containing resin particle set for tissue multiple staining containing the fluorescent dye-containing resin particles, and tissue multiple staining method using the fluorescent dye-containing resin particles
JP6881564B2 (en) Particle surface condition evaluation method and evaluation system
JP6583011B2 (en) Method for washing immunostained slides using acidic aqueous solution
JP6834981B2 (en) Fluorescent substance-accumulated nanoparticles and labeling agents using them
JP2023109473A (en) fluorescent nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6406253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150