[go: up one dir, main page]

JP6401117B2 - Method for producing negative electrode material for lithium ion secondary battery - Google Patents

Method for producing negative electrode material for lithium ion secondary battery Download PDF

Info

Publication number
JP6401117B2
JP6401117B2 JP2015122917A JP2015122917A JP6401117B2 JP 6401117 B2 JP6401117 B2 JP 6401117B2 JP 2015122917 A JP2015122917 A JP 2015122917A JP 2015122917 A JP2015122917 A JP 2015122917A JP 6401117 B2 JP6401117 B2 JP 6401117B2
Authority
JP
Japan
Prior art keywords
particles
negative electrode
electrode material
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015122917A
Other languages
Japanese (ja)
Other versions
JP2016027557A (en
Inventor
智 時田
智 時田
江口 邦彦
邦彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2015122917A priority Critical patent/JP6401117B2/en
Publication of JP2016027557A publication Critical patent/JP2016027557A/en
Application granted granted Critical
Publication of JP6401117B2 publication Critical patent/JP6401117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、鱗片状黒鉛粒子、焼成炭素、およびリチウムと合金化可能な金属粒子からなるリチウムイオン二次電池用負極材料用複合粒子の製造方法に関する。   The present invention relates to a method for producing composite particles for a negative electrode material for a lithium ion secondary battery comprising scaly graphite particles, calcined carbon, and metal particles that can be alloyed with lithium.

リチウムイオン二次電池は、他の二次電池に比べて高電圧、高エネルギー密度という優れた特性を有するため、電子機器の電源として広く普及している。近年、電子機器の小型化および高性能化が進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在リチウムイオン二次電池は、正極にLiCoO、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiCに相当する理論値372mAh/gに近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
金属リチウムは負極材料として最高の放電容量を有するが、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、短絡する可能性もある。
そのため、金属リチウムに替わる負極材料として、リチウムと合金を形成する金属質物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かに凌ぐ放電容量を有する。しかし、合金化に伴う体積膨張により活物質の粉化、剥離が発生し、未だ実用レベルのサイクル特性は得られていない。
Lithium ion secondary batteries have excellent characteristics such as high voltage and high energy density compared to other secondary batteries, and are therefore widely used as power sources for electronic devices. In recent years, electronic devices have been reduced in size and performance, and there has been an increasing demand for further increase in energy density of lithium ion secondary batteries.
Currently, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, its discharge capacity has already reached a value close to the theoretical value 372 mAh / g corresponding to the intercalation compound LiC 6 in order to achieve further higher energy density. Needs to develop a negative electrode material having a larger discharge capacity than graphite.
Although metallic lithium has the highest discharge capacity as a negative electrode material, there is a problem that lithium is deposited in a dendritic state during charging, the negative electrode is deteriorated, and the charge / discharge cycle is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, causing a short circuit.
Therefore, metallic materials that form an alloy with lithium have been studied as negative electrode materials that replace metallic lithium. These alloy negative electrodes have discharge capacities far surpassing that of graphite, although they do not reach metal lithium. However, the active material is pulverized and peeled off due to volume expansion accompanying alloying, and the practical cycle characteristics have not yet been obtained.

前述のような合金負極の欠点を改善するため、金属質物と、黒鉛質物または炭素質物のどちらか一方または両方との複合化が検討されている。大別すると金属質物、黒鉛質物、炭素質物前駆体を混合後、熱処理するもの(特許文献1)(2)CVD法を用いて金属質物に炭素質層を被覆するもの(特許文献2)(3)上記(2)にメカニカルアロイングを併用するもの(特許文献3)などである。しかしながら、上記(1)〜(3)のいずれにおいても粒子内部の空隙については記載がない。これらの方法では、充電時の金属質物の膨張を緩和するための空隙を設けることができないため、活物質の粉化、剥離といった問題を解決するには至っていない。   In order to improve the drawbacks of the above-described alloy negative electrode, a composite of a metal material and one or both of a graphitic material and a carbonaceous material has been studied. When roughly classified, a metal material, a graphite material, and a carbonaceous material precursor are mixed and then heat-treated (Patent Document 1) (2) A metal material is coated with a carbonaceous layer using a CVD method (Patent Document 2) (3 ) (2) using mechanical alloying together (Patent Document 3). However, in any of the above (1) to (3), there is no description about voids inside the particles. In these methods, since it is not possible to provide a gap for relaxing the expansion of the metallic material during charging, problems such as powdering and peeling of the active material have not been solved.

特許文献4では、平均粒径が2〜5μmで、アスペクト比が3以下である黒鉛質粒子表面に、該黒鉛質粒子の平均粒径の1/2以下の平均粒径である、リチウムと合金化可能な金属粒子をメカノケミカル処理して付着させた後、該メカノケミカル処理物を樹脂などで造粒(例えばスプレードライ)し、該造粒物に炭素質前駆体を含浸させ、600℃以上で熱処理して、金属−黒鉛質系粒子を製造する金属−黒鉛質系粒子の製造方法が記載されている。しかしながら、この方法では金属粒子は黒鉛上に付着しているのみであり、密着性が十分でない。そのため、造粒操作の際に金属粒子が黒鉛から脱落・偏析し、金属粒子の周りに適切に空隙を配置することができないという問題がある。   In Patent Document 4, lithium and an alloy having an average particle diameter of 2 to 5 μm and an average particle diameter of 1/2 or less of the average particle diameter of the graphite particles on the surface of the graphite particles having an aspect ratio of 3 or less. After the mechanochemical treatment is applied to the metal particles that can be converted, the mechanochemically treated product is granulated with a resin or the like (for example, spray-dried), and the granulated product is impregnated with a carbonaceous precursor. Describes a method for producing metal-graphitic particles, which is heat-treated to produce metal-graphitic particles. However, in this method, the metal particles are only adhered on the graphite, and the adhesion is not sufficient. For this reason, there is a problem in that the metal particles fall off and segregate from the graphite during the granulation operation, and the voids cannot be appropriately disposed around the metal particles.

特開2002−231225号公報JP 2002-231225 A 特開2002−151066号公報JP 2002-151066 A 特開2002−216751号公報Japanese Patent Laid-Open No. 2002-216751 特開2006−294476号公報JP 2006-294476 A

本発明は、上記のような状況を鑑みてなされたものであり、リチウムイオン二次電池負極材料として用いて、充電時の金属質物の膨張を充分に緩和でき、黒鉛の理論容量を超える高い放電容量と、優れた初期充放電効率およびサイクル特性を示す材料の製造方法を提供することを目的とする。   The present invention has been made in view of the situation as described above, and can be used as a negative electrode material for a lithium ion secondary battery, which can sufficiently relax expansion of a metallic material during charging, and has a high discharge exceeding the theoretical capacity of graphite. It is an object of the present invention to provide a method for producing a material exhibiting capacity and excellent initial charge / discharge efficiency and cycle characteristics.

前記課題を解決するため、本発明は、鱗片状黒鉛粒子、焼成炭素、およびリチウムと合金化可能な金属粒子からなる球状の複合体の製造方法であって、鱗片状黒鉛粒子上に炭素質前駆体を介して金属粒子を固定化する工程、前記粒子を結着剤の溶液に分散させ、噴霧乾燥処理を行って球状の粒子とする工程、および、前記球状粒子を熱処理し、前記炭素質前駆体および結着剤を焼成炭素とする工程からなる、リチウムイオン二次電池用負極材の製造方法を提供する。 In order to solve the above-mentioned problems, the present invention is a method for producing a spherical composite comprising scaly graphite particles, calcined carbon, and metal particles that can be alloyed with lithium, the carbonaceous precursor on the scaly graphite particles A step of fixing metal particles through a body , a step of dispersing the particles in a binder solution and performing spray drying to form spherical particles, and heat-treating the spherical particles to form the carbonaceous precursor Provided is a method for producing a negative electrode material for a lithium ion secondary battery, comprising a step of using a body and a binder as calcined carbon.

すなわち本発明は、以下を提供する。
(1)鱗片状黒鉛粒子、焼成炭素、およびリチウムと合金化可能な金属粒子からなる球状の複合体の製造方法であって、1)前記金属粒子および前記鱗片状黒鉛粒子を混合する工程,2)該混合物に炭素質前駆体を加えたのち熱処理を行って、鱗片状黒鉛粒子上に金属粒子が固定化された一次粒子とする工程、3)前記一次粒子を結着剤の溶液に分散させ、噴霧乾燥処理を行って球状の二次粒子とする工程、および、4)前記二次粒子を700℃以上1200℃以下の温度範囲で熱処理し、前記した炭素質前駆体および結着剤を焼成炭素とする工程を有する、リチウムイオン二次電池用負極材の製造方法。
(2)前記金属粒子および鱗片状黒鉛粒子を混合する工程として、メカノケミカル処理を行うことを特徴とする(1)に記載のリチウムイオン二次電池用負極材の製造方法。
(3)前記金属粒子および鱗片状黒鉛粒子を混合する工程として、機械的粉砕処理を行うことを特徴とする(1)または(2)に記載のリチウムイオン二次電池用負極材の製造方法。
(4)前記金属粒子および鱗片黒鉛粒子を混合する工程において、さらに黒鉛質炭素繊維を添加することを特徴とする(1)から(3)のいずれかに記載のリチウム二次電池用負極材の製造方法。
(5)前記一次粒子を結着剤の溶液に分散する工程において、さらに黒鉛質炭素繊維を添加することを特徴とする請求項(1)から(3)のいずれかに記載のリチウム二次電池用負極材の製造方法。
(6)前記二次粒子に、さらに炭素質前駆体を付着させたのち前記熱処理を行うことを特徴とする(1)から(5)のいずれかに記載のリチウムイオン二次電池用負極材の製造方法。
That is, the present invention provides the following.
(1) A method for producing a spherical composite comprising scaly graphite particles, calcined carbon, and metal particles that can be alloyed with lithium, 1) a step of mixing the metal particles and the scaly graphite particles, 2 ) A step of adding a carbonaceous precursor to the mixture and then performing a heat treatment to form primary particles in which metal particles are immobilized on scaly graphite particles. 3) Dispersing the primary particles in a binder solution. A step of performing spray drying to form spherical secondary particles, and 4) heat-treating the secondary particles in a temperature range of 700 ° C. or higher and 1200 ° C. or lower, and firing the carbonaceous precursor and binder described above. The manufacturing method of the negative electrode material for lithium ion secondary batteries which has the process made into carbon.
(2) The method for producing a negative electrode material for a lithium ion secondary battery according to (1), wherein a mechanochemical treatment is performed as the step of mixing the metal particles and the scaly graphite particles.
(3) The method for producing a negative electrode material for a lithium ion secondary battery according to (1) or (2), wherein mechanical pulverization is performed as the step of mixing the metal particles and the scaly graphite particles.
(4) In the step of mixing the metal particles and the flaky graphite particles, a graphitic carbon fiber is further added. The negative electrode material for a lithium secondary battery according to any one of (1) to (3), Production method.
(5) The lithium secondary battery according to any one of (1) to (3), wherein a graphite carbon fiber is further added in the step of dispersing the primary particles in the binder solution. Manufacturing method for negative electrode material.
(6) The negative electrode material for a lithium ion secondary battery according to any one of (1) to (5), wherein a carbonaceous precursor is further adhered to the secondary particles and then the heat treatment is performed. Production method.

本発明の製造方法により得られる複合体は,リチウムイオン二次電池用負極材料に用いた場合に、充電時の金属粒子の膨張を十分に緩和するとともに、金属粒子の黒鉛粒子からの剥離を防ぎ、黒鉛の理論容量を超える高い放電容量と、優れた初期充放電効率、サイクル特性のいずれかを示す。   The composite obtained by the production method of the present invention, when used as a negative electrode material for a lithium ion secondary battery, sufficiently relaxes the expansion of metal particles during charging and prevents the metal particles from peeling off from the graphite particles. It exhibits either high discharge capacity exceeding the theoretical capacity of graphite, excellent initial charge / discharge efficiency, or cycle characteristics.

図1は実施例1で得られた複合体の外観を示す電子顕微鏡写真である。1 is an electron micrograph showing the appearance of the composite obtained in Example 1. FIG. 図2は実施例1で得られた複合体の断面を示す電子顕微鏡写真と、同じ視野に存在するエネルギー分散型X線分光法で測定されるSi元素を示すEDXマッピング像である。FIG. 2 is an electron micrograph showing the cross section of the composite obtained in Example 1, and an EDX mapping image showing the Si element measured by energy dispersive X-ray spectroscopy in the same field of view. 図3は比較例1で得られた複合体の断面を示す電子顕微鏡写真と、同じ視野に存在するエネルギー分散型X線分光法で測定されるSi元素を示すEDXマッピング像である。FIG. 3 is an electron micrograph showing a cross section of the composite obtained in Comparative Example 1, and an EDX mapping image showing Si elements measured by energy dispersive X-ray spectroscopy existing in the same field of view. 図4は本発明の負極の電池特性を評価するための評価電池の断面図である。FIG. 4 is a cross-sectional view of an evaluation battery for evaluating the battery characteristics of the negative electrode of the present invention.

以下に、本発明によるリチウム二次電池用負極材の製造方法の内容を詳述する。
(鱗片状黒鉛粒子)
本発明で用いられる鱗片状黒鉛粒子は、リチウムイオンを吸蔵・放出できるものであればよく、特に限定されない。その一部または全部が黒鉛質で形成されているもの、例えば天然黒鉛や、タール、ピッチ類を最終的に1500℃以上で熱処理してなる人造黒鉛が挙げられる。具体的には、易黒鉛化性炭素材料とよばれる石油系、石炭系のタールピッチ類を熱処理して重縮合させたメソフェーズ焼成体、コークス類を1500℃以上、望ましくは2800〜3300℃で黒鉛化処理して得ることができる。
鱗片状黒鉛粒子平均粒子径は0.1μm〜20μmの範囲であることが好ましく、0.3μm〜10μmの範囲であることがさらに好ましい。本発明において、平均粒子径はレーザー回折式粒度分布計の累積度数が体積分布率で50%となる粒子径(D50)である。
鱗片状黒鉛粒子の割合は、複合体粒子全量に対して98〜60質量%であるのが好ましい。より好ましくは95〜60質量%である。
Below, the content of the manufacturing method of the negative electrode material for lithium secondary batteries by this invention is explained in full detail.
(Flaky graphite particles)
The scaly graphite particles used in the present invention are not particularly limited as long as they can occlude and release lithium ions. A part or all of which is made of graphite, for example, natural graphite, and artificial graphite obtained by finally heat-treating tar and pitch at 1500 ° C. or higher. Specifically, mesophase fired bodies obtained by heat-condensing petroleum-based and coal-based tar pitches called carbonitizable carbon materials and subjected to polycondensation, and cokes are graphite at 1500 ° C. or higher, preferably 2800-3300 ° C. It can be obtained by the chemical treatment.
The average particle diameter of the flaky graphite particles is preferably in the range of 0.1 μm to 20 μm, and more preferably in the range of 0.3 μm to 10 μm. In the present invention, the average particle size is a particle size (D 50 ) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% in terms of volume distribution.
The ratio of the scale-like graphite particles is preferably 98 to 60% by mass with respect to the total amount of the composite particles. More preferably, it is 95-60 mass%.

鱗片状黒鉛の平均粒子径D50は6μm以下であることが好ましく、1μm〜5μmの範囲であることがさらに好ましい。1μm未満であると黒鉛のエッジ面の露出の影響が大きく充放電効率が低下する。6μmを超えると鱗片状黒鉛が非平行に重なり合って形成する空隙が大きくなり過ぎる。形状については、平均偏平度(Ly/t)が2以上であるのが好ましく、5〜40であるのがより好ましい。ここで平均偏平度とは、鱗片状黒鉛の1粒子の厚さtに対する短軸長Lyの比(Ly/t)を意味し、走査型電子顕微鏡によって100個の鱗片状黒鉛粒子を観察して測定した各粒子の偏平度の単純平均値として算出する。平均偏平度がこの範囲であると黒鉛が非平衡に重なり合ったときの空隙の形成が適切で、小さすぎることがなく、また非平衡に重なり合ったときの空隙が大きくなり過ぎることもない。 The average particle diameter D50 of the flaky graphite is preferably 6 μm or less, and more preferably in the range of 1 μm to 5 μm. If it is less than 1 μm, the influence of the exposure of the edge surface of graphite is large, and the charge / discharge efficiency is lowered. When it exceeds 6 μm, the void formed by overlapping the flake graphite non-parallelly becomes too large. About a shape, it is preferable that average flatness (Ly / t) is 2 or more, and it is more preferable that it is 5-40. Here, the average flatness means the ratio of the short axis length Ly to the thickness t of one particle of scaly graphite (Ly / t), and 100 scaly graphite particles are observed with a scanning electron microscope. Calculated as a simple average value of the measured flatness of each particle. When the average flatness is within this range, the formation of voids when graphite overlaps in a non-equilibrium state is appropriate and is not too small, and the voids do not become too large when overlapping in a non-equilibrium state.

(リチウムと合金化可能な金属粒子)
リチウムと合金化可能な金属としては、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Ni等の金属が挙げられ、好ましくはSi、Snである。また金属粒子は上記金属の二種以上の合金であってもよく、合金中に上述の金属以外にさらに他の元素を含有していてもよい。金属の一部が、酸化物、窒化物、炭化物を形成していてもよく、特に酸化物を少なくとも一部含むことが好ましい。
金属粒子の平均粒子径は10μm以下であるのが好ましく、5μm以下であるのがより好ましく、1μm以下であるのが特に好ましい。金属粒子の平均粒子径が10μmを超える場合はサイクル特性の改良効果が小さくなることがある。
金属粒子の形状には特に制約はない。粒状、球状、板状、鱗片状、針状、糸状などのいずれであってもよい。
金属粒子の割合は、複合粒子全量に対して1質量%以上、20質量%以下であるのが好ましく、2質量%以上20質量%以下であるのが特に好ましい。金属または金属化合物が1質量%未満の場合は容量向上の効果が小さくなることがあり、20質量%超の場合はサイクル特性の改良効果が小さくなることがある。
(Metal particles that can be alloyed with lithium)
Examples of metals that can be alloyed with lithium include metals such as Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, and Ni. Preferably, Si and Sn are used. Further, the metal particles may be an alloy of two or more of the above metals, and the alloy may further contain other elements in addition to the above metal. Part of the metal may form an oxide, nitride, or carbide, and it is particularly preferable that at least a part of the oxide is included.
The average particle diameter of the metal particles is preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 1 μm or less. When the average particle diameter of the metal particles exceeds 10 μm, the effect of improving the cycle characteristics may be reduced.
There are no particular restrictions on the shape of the metal particles. Any of a granular shape, a spherical shape, a plate shape, a scale shape, a needle shape, a thread shape and the like may be used.
The ratio of the metal particles is preferably 1% by mass or more and 20% by mass or less, and particularly preferably 2% by mass or more and 20% by mass or less with respect to the total amount of the composite particles. When the amount of the metal or metal compound is less than 1% by mass, the effect of improving the capacity may be small, and when it is more than 20% by mass, the effect of improving the cycle characteristics may be small.

(鱗片状黒鉛粒子と金属粒子を混合する工程)
本発明は、リチウムと合金化可能な金属粒子および鱗片状黒鉛粒子を混合する工程を含む。本発明の混合工程は例えばニーダー等の機械力によって混合する工程である。金属粒子と黒鉛粒子の混合には、一般的な混合機または混練機を使用することができる。混合に代えてメカノケミカル処理もしくは機械的粉砕処理を行ってもよく、またはこれらを組み合わせてもよい。
ここでメカノケミカル処理は、黒鉛粒子と金属粒子に圧縮力と剪断力を同時にかける処理を言い、圧縮力と剪断力により黒鉛粒子と金属粒子の密着性を高めることができる。メカノケミカル処理装置は、黒鉛粒子と金属粒子に圧縮力と剪断力を同時にかけることができる装置であれば、装置の種類、構造は特に限定されない。例えば、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロシステム((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株))、乾式アトライタ(日本コークス工業(株))などを使用することができる。
機械的粉砕処理は、粉砕と混合を同時に行うことにより、金属粒子と黒鉛粒子をより均一に分散させることができる。機械的粉砕処理には、一般的な粉砕機を使用することができ、湿式法、乾式法のいずれも適用可能であるが、湿式法がより好ましい。
(Process of mixing scaly graphite particles and metal particles)
The present invention includes a step of mixing metal particles that can be alloyed with lithium and scaly graphite particles. The mixing step of the present invention is a step of mixing by mechanical force such as a kneader. A general mixer or a kneader can be used for mixing the metal particles and the graphite particles. Instead of mixing, mechanochemical treatment or mechanical pulverization treatment may be performed, or these may be combined.
Here, the mechanochemical treatment refers to a treatment in which a compression force and a shear force are simultaneously applied to the graphite particles and the metal particles, and the adhesion between the graphite particles and the metal particles can be enhanced by the compression force and the shear force. As long as the mechanochemical treatment apparatus is an apparatus that can simultaneously apply a compressive force and a shearing force to graphite particles and metal particles, the type and structure of the apparatus are not particularly limited. For example, hybridization systems (manufactured by Nara Machinery Co., Ltd.), mechano-micro systems (manufactured by Nara Machinery Co., Ltd.), mechano-fusion systems (Hosokawa Micron Corp.), dry attritors (Nippon Coke Industrial Co., Ltd.), etc. Can be used.
In the mechanical pulverization treatment, the metal particles and the graphite particles can be more uniformly dispersed by simultaneously performing pulverization and mixing. A general pulverizer can be used for the mechanical pulverization treatment, and either a wet method or a dry method can be applied, but a wet method is more preferable.

金属粒子と鱗片状黒鉛粒子を混合する際に、黒鉛質炭素繊維を添加してもよい。黒鉛質炭素繊維は導電性を有する繊維状の黒鉛であればよく、特に限定されない。好ましい形状は、平均繊維径10〜1000nm、平均繊維長1〜20μmであり、カーボンナノチューブ、カーボンナノファイバー、気相成長炭素繊維などが例示される。黒鉛質炭素繊維は、乾粉、または、適当な溶媒に分散させた分散液のいずれであってもよく、分散液に分散剤を加えたものであってもよい。
黒鉛質炭素繊維の割合は、最終的な複合体全体に対して0.5質量%以上、5質量%以下であるのが好ましく、1質量%以上、3質量%以下であることがより好ましい。黒鉛質炭素繊維が0.5質量%未満の場合はサイクル特性向上の効果が小さくなることがあり、5質量%超の場合は初期効率が低下することがある。
Graphite carbon fibers may be added when mixing the metal particles and the scaly graphite particles. The graphitic carbon fiber is not particularly limited as long as it is fibrous graphite having conductivity. Preferred shapes are an average fiber diameter of 10 to 1000 nm and an average fiber length of 1 to 20 μm, and examples include carbon nanotubes, carbon nanofibers, and vapor grown carbon fibers. The graphitic carbon fiber may be either dry powder or a dispersion liquid dispersed in an appropriate solvent, or a dispersion liquid added with a dispersant.
The ratio of the graphitic carbon fiber is preferably 0.5% by mass or more and 5% by mass or less, and more preferably 1% by mass or more and 3% by mass or less with respect to the entire final composite. When the graphitic carbon fiber is less than 0.5% by mass, the effect of improving the cycle characteristics may be reduced, and when it exceeds 5% by mass, the initial efficiency may be decreased.

(鱗片状黒鉛粒子上に金属粒子を固定化する工程)
本発明は、前記混合物に炭素質前駆体を加えたのち熱処理を行って、鱗片状黒鉛粒子上に金属粒子が固定化された一次粒子とする工程を含む。金属粒子を黒鉛粒子上に固定化することで、次工程における造粒操作において金属粒子が脱落・偏析することを防ぐことができる。
炭素質前駆体は、熱処理により容易に炭化する材料であれば特に限定されず、タールピッチ類および/または樹脂類が例示される。具体的には、タールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタレン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸化架橋石油ピッチ、ヘビーオイルなどが挙げられる。樹脂類としては、ポリビニルアルコール、ポリアクリル酸、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリ塩化ビニルなどのハロゲン化ビニル樹脂などの熱可塑性樹脂、フェノール樹脂、フラン樹脂、フルフリルアルコール樹脂、セルロース樹脂、ポリアクリロニトリル、ポリアミドイミド樹脂、ポリアミド樹脂などの熱硬化性樹脂が例示される。これらの炭素質前駆体を後述の温度で熱処理することにより炭素質材料を得ることができる。
炭素質前駆体の割合は、該混合物に対して0.5質量%以上5質量%以下であるのが好ましく、1質量%以上3質量%以下であるのがより好ましい。炭素質前駆体が0.5質量%未満の場合は金属粒子の固定化が不十分となることがあり、5質量%以上の場合は放電容量が低下することがある。
黒鉛粒子、金属粒子および炭素質前駆体の混合物を非酸化性雰囲気下で熱処理することで、鱗片状黒鉛粒子上に金属粒子が固定化された一次粒子を得ることができる。熱処理温度は300℃以上700℃以下であるのが好ましい。非酸化性雰囲気下とは、例えば、酸素濃度が1000ppm以下の窒素、アルゴンなどの不活性ガス雰囲気下;水素、一酸化炭素などの還元性ガスを含む還元性ガス雰囲気下;等のことをいう。焼成を非酸化性雰囲気下で行うのは、酸化を防止するためである。
(Step of immobilizing metal particles on scaly graphite particles)
The present invention includes a step of adding a carbonaceous precursor to the mixture and then performing a heat treatment to obtain primary particles in which metal particles are immobilized on scaly graphite particles. By immobilizing the metal particles on the graphite particles, it is possible to prevent the metal particles from dropping and segregating in the granulation operation in the next step.
The carbonaceous precursor is not particularly limited as long as it is a material that is easily carbonized by heat treatment, and examples thereof include tar pitches and / or resins. Specifically, tar pitches include coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxidized cross-linked petroleum pitch, heavy oil, and the like. . Examples of resins include polyvinyl alcohol, polyacrylic acid, polyvinyl chloride, polyvinylidene chloride, thermoplastic resins such as vinyl halide resins such as chlorinated polyvinyl chloride, phenol resins, furan resins, furfuryl alcohol resins, and cellulose resins. And thermosetting resins such as polyacrylonitrile, polyamideimide resin, and polyamide resin. A carbonaceous material can be obtained by heat-treating these carbonaceous precursors at a temperature described below.
The proportion of the carbonaceous precursor is preferably 0.5% by mass or more and 5% by mass or less, and more preferably 1% by mass or more and 3% by mass or less with respect to the mixture. When the carbonaceous precursor is less than 0.5% by mass, immobilization of the metal particles may be insufficient, and when it is 5% by mass or more, the discharge capacity may be reduced.
By heat-treating the mixture of graphite particles, metal particles and carbonaceous precursor in a non-oxidizing atmosphere, primary particles in which the metal particles are immobilized on the scaly graphite particles can be obtained. The heat treatment temperature is preferably 300 ° C. or higher and 700 ° C. or lower. The non-oxidizing atmosphere means, for example, an inert gas atmosphere such as nitrogen or argon having an oxygen concentration of 1000 ppm or less; a reducing gas atmosphere containing a reducing gas such as hydrogen or carbon monoxide; . The reason why baking is performed in a non-oxidizing atmosphere is to prevent oxidation.

(噴霧乾燥造粒工程)
本発明は、前記一次粒子を結着剤の溶液に分散させ、噴霧乾燥処理を行って球状の二次粒子とする工程を含む。
結着剤としては、適当な溶媒に溶解するものであればいかなる結着剤でもよく、前記炭素質前駆体として例示したものを同様に使用することができる。結着剤の原料としての添加量は、一次粒子10質量%に対して1〜30質量%が好ましい。より好ましくは、1〜15質量%である。結着剤の溶液として用いられるのは水溶液、アルコール溶液、有機溶媒溶液等いずれでもよい。水に界面活性剤、粘度調製剤としてのポリビニルアルコール等を加えた溶液が好ましい。
一次粒子と結着剤溶液の分散液に黒鉛質炭素繊維を添加してもよい。使用できる黒鉛質炭素繊維およびその割合は前記と同様である。また、前記一次粒子の一部を黒鉛粒子に置き換えてもよい。
噴霧乾燥処理は、前記一次粒子と結着剤溶液の分散液を気流とともにスプレー散布し、熱風によって瞬時に溶媒を乾燥させる方法であればいかなる方法でもよく、スプレー式、ディスク式、二流体ノズル式などを用いることができる。分散液の表面張力によって乾燥後の粒子は真球状の二次粒子を形成する。この際、分散液の固形分比や気流の調整によって、スプレーの液滴の中に気泡が介在しないようにすることで、完全な中空構造ではなく、内部にも鱗片状黒鉛粒子が存在した構造を形成することができる。
例えば、分散液の固形分比は全量中の5〜25質量%、噴霧乾燥器の入口温度は150〜250℃、ノズル空気量は20〜100リットル/分などが好ましい。
噴霧乾燥処理では、原液の固形分比や気流の調整によって任意の粒度に調整可能であり、最終的に粉砕して粒度調整するという工程は不要である。また主原料として黒鉛粒子を用いているので黒鉛化処理は不要であり、焼成処理だけでリチウムイオン二次電池の負極材料として充分な容量を発現できる。
(Spray drying granulation process)
The present invention includes a step of dispersing the primary particles in a binder solution and performing a spray drying process to obtain spherical secondary particles.
The binder may be any binder as long as it dissolves in a suitable solvent, and those exemplified as the carbonaceous precursor can be used in the same manner. The addition amount of the binder as a raw material is preferably 1 to 30% by mass with respect to 10% by mass of the primary particles. More preferably, it is 1-15 mass%. Any of an aqueous solution, an alcohol solution, an organic solvent solution, and the like may be used as the binder solution. A solution obtained by adding a surfactant, polyvinyl alcohol or the like as a viscosity adjusting agent to water is preferable.
Graphite carbon fibers may be added to the dispersion of primary particles and binder solution. The graphitic carbon fibers that can be used and the proportions thereof are the same as described above. Further, some of the primary particles may be replaced with graphite particles.
The spray drying treatment may be any method as long as the dispersion of the primary particles and the binder solution is sprayed together with an air stream and the solvent is instantaneously dried with hot air. A spray type, a disk type, a two-fluid nozzle type Etc. can be used. Due to the surface tension of the dispersion, the dried particles form spherical secondary particles. At this time, by adjusting the solid content ratio of the dispersion and the air flow so that bubbles do not intervene in the droplets of the spray, it is not a complete hollow structure, but a structure in which scaly graphite particles existed inside Can be formed.
For example, the solid content ratio of the dispersion is preferably 5 to 25% by mass in the total amount, the inlet temperature of the spray dryer is 150 to 250 ° C., and the nozzle air amount is preferably 20 to 100 liter / min.
In the spray drying treatment, the particle size can be adjusted to an arbitrary particle size by adjusting the solid content ratio of the stock solution and the air flow, and a step of finally pulverizing and adjusting the particle size is unnecessary. In addition, since graphite particles are used as the main raw material, graphitization is not necessary, and sufficient capacity can be developed as a negative electrode material for a lithium ion secondary battery only by firing.

(焼成工程)
本発明は、前記二次粒子を不活性雰囲気下、700℃以上1200℃以下の温度範囲で熱処理し、前記した炭素質前駆体および結着剤を焼成炭素とする工程を含む。焼成温度が700℃未満または1200℃超である場合は、容量が低下することがある。不活性雰囲気は、N、Ar、He、真空雰囲気等およびこれらの混合物を用いることができる。
焼成処理の前に、異種の黒鉛材料、炭素質または黒鉛質の繊維、非晶質ハードカーボンなどの炭素材料、有機材料、無機材料、金属材料を付着、埋設、複合してもよい。焼成処理の前に炭素質前駆体の溶液中に噴霧乾燥処理品を浸漬して、炭素質前駆体を噴霧乾燥品に付着させてもよい。これは、造粒構造の強化、および被覆により反応性(充放電ロス)を低減させることができる。好ましい炭素質前駆体の付着量(焼成前の量)は鱗片状黒鉛粒子100質量%に対して1〜30質量%が好ましい。より好ましくは、1〜15質量%である。
炭素の割合は複合粒子全体に対して1〜15質量%、好ましくは3〜12質量%である。
(Baking process)
The present invention includes a step of heat-treating the secondary particles in a temperature range of 700 ° C. or more and 1200 ° C. or less in an inert atmosphere, and using the carbonaceous precursor and the binder as calcined carbon. When the firing temperature is lower than 700 ° C. or higher than 1200 ° C., the capacity may decrease. As the inert atmosphere, N 2 , Ar, He, a vacuum atmosphere, or the like, or a mixture thereof can be used.
Prior to the firing treatment, different types of graphite materials, carbonaceous or graphite fibers, carbon materials such as amorphous hard carbon, organic materials, inorganic materials, and metal materials may be attached, embedded, and combined. Baking by dipping the spray dried product in a solution of carbonaceous precursor before processing, it may be attached a carbonaceous precursor to the spray dried product. This can reduce the reactivity (charge / discharge loss) by strengthening the granulated structure and coating. The preferable adhesion amount (the amount before firing) of the carbonaceous precursor is preferably 1 to 30% by mass with respect to 100% by mass of the scaly graphite particles. More preferably, it is 1-15 mass%.
Proportion of baked formed carbon 1-15% by weight, based on the total composite particles, preferably from 3 to 12% by weight.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図4に示すように、少なくとも表面の一部に本発明の負極材料を有する負極合剤2が付着した集電体(負極)7bとリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In the following Examples and Comparative Examples, as shown in FIG. 4, a current collector (negative electrode) 7b having a negative electrode mixture 2 having the negative electrode material of the present invention attached to at least a part of its surface and a counter electrode comprising a lithium foil A button type secondary battery for single electrode evaluation composed of (positive electrode) 4 was prepared and evaluated. An actual battery can be produced according to a known method based on the concept of the present invention.

(実施例1)
[負極材料の作製]
平均粒子径5μm、平均扁平度20の鱗片状黒鉛粒子と、平均粒子径0.15μmのシリコン粒子を二軸ニーダ―で混合し、さらにコールタールピッチのタール中油溶液を加えて混練した。次いで混練品を窒素雰囲気で500℃で熱処理し、鱗片状黒鉛粒子上にシリコン粒子が固定化された一次粒子を得た。得られた一次粒子をポリアクリル酸水溶液に分散し、スプレードライ装置で噴霧乾燥処理して球状の二次粒子を得た。最後に,得られた二次粒子を窒素雰囲気で1000℃で熱処理をし、鱗片状黒鉛粒子、焼成炭素、およびシリコン粒子からなる球状の最終製品である複合体を得た。各素材の配合量は、複合体におけるそれぞれの存在比率が表1に示す通りになるように調整した。図1に示すSEM像から、複合体が球状であることが分かった。また図2に示す断面のSEM像とEDX−Siマッピング像から、シリコン粒子が複合体内部において均一に分散していることが分かった。
Example 1
[Production of negative electrode material]
A scaly graphite particle having an average particle diameter of 5 μm and an average flatness of 20 and silicon particles having an average particle diameter of 0.15 μm were mixed with a biaxial kneader, and further, an oil-in-tar solution of tar with a coal tar pitch was added and kneaded. Next, the kneaded product was heat-treated at 500 ° C. in a nitrogen atmosphere to obtain primary particles in which silicon particles were immobilized on scaly graphite particles. The obtained primary particles were dispersed in an aqueous polyacrylic acid solution and spray-dried with a spray dryer to obtain spherical secondary particles. Finally, the obtained secondary particles were heat-treated at 1000 ° C. in a nitrogen atmosphere to obtain a composite which is a spherical final product composed of scaly graphite particles, calcined carbon, and silicon particles. The blending amount of each material was adjusted so that the respective abundance ratios in the composite were as shown in Table 1. From the SEM image shown in FIG. 1, it was found that the composite was spherical. Moreover, it was found from the SEM image and EDX-Si mapping image of the cross section shown in FIG. 2 that the silicon particles were uniformly dispersed inside the composite.

[負極合剤ペーストの作製]
次に、負極材料を用いて負極を作製した。まず、前記複合体からなる負極材料を96質量部、結合剤としてのカルボキシメチルセルロース2質量部、およびスチレン−ブタジエンゴム2質量部を水に入れ、攪拌して負極合剤ペーストを調整した。次いで、この銅箔上に塗布された負極合剤層をハンドプレスによって加圧した。さらに、銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、銅箔に密着した負極合剤層を有する作用電極(負極)を作製した。負極合剤層の密度は1.4g/cmであった。
[Preparation of negative electrode mixture paste]
Next, a negative electrode was produced using the negative electrode material. First, 96 parts by mass of the negative electrode material composed of the composite, 2 parts by mass of carboxymethyl cellulose as a binder, and 2 parts by mass of styrene-butadiene rubber were placed in water and stirred to prepare a negative electrode mixture paste. Next, the negative electrode mixture layer applied on the copper foil was pressed by a hand press. Further, the copper foil and the negative electrode mixture layer were punched into a columnar shape having a diameter of 15.5 mm to produce a working electrode (negative electrode) having a negative electrode mixture layer adhered to the copper foil. The density of the negative electrode mixture layer was 1.4 g / cm 3 .

[対極(正極)の作製]
次に、前記負極を用いて単極評価用のボタン型二次電池を作製した。正極にはニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔からなる極板を用いた。
[Production of counter electrode (positive electrode)]
Next, a button type secondary battery for single electrode evaluation was produced using the negative electrode. As the positive electrode, a current collector made of nickel net and an electrode plate made of lithium metal foil in close contact with the current collector were used.

[電解液、セパレータ]
電解液は、エチレンカーボネート33体積%とメチルエチルカーボネート67体積%の混合溶剤に、LiPFを1mol/Lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をセパレータとして厚さ20μmのポリプロピレン多孔質体に含浸させ、電解液が含浸したセパレータを作製した。なお、実電池については、本発明の概念に基づき、公知の方法に準じて作製することができる。
[Electrolyte, separator]
The electrolytic solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of 33% by volume of ethylene carbonate and 67% by volume of methyl ethyl carbonate to prepare a nonaqueous electrolytic solution. The obtained nonaqueous electrolytic solution was impregnated into a 20 μm-thick polypropylene porous body as a separator to produce a separator impregnated with the electrolytic solution. In addition, about a real battery, it can produce according to a well-known method based on the concept of this invention.

[評価電池の構成]
図4に評価電池の構成としてボタン型二次電池を示す。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極合剤2が付着した銅箔からなる集電体7bが積層された電池系である。
前記評価電池は電解液を含浸させたセパレータ5を集電体7bと負極合剤2からなる作用電極(負極)と、集電体7aに密着した対極4との間に挟んで積層した後、集電体7bを外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
以上により作製された評価電池について、25℃の温度下で以下に示す充放電試験を行い、初期充放電効率、充電膨張率およびサイクル特性を計算した。結果を表2に示した。
[Configuration of evaluation battery]
FIG. 4 shows a button type secondary battery as a configuration of the evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. A copper current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolytic solution, and a negative electrode mixture 2 are attached to the inside of the outer can 3 in that order. A battery system in which current collectors 7b made of foil are laminated.
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was sandwiched between the current collector 7b and the working electrode (negative electrode) made of the negative electrode mixture 2, and the counter electrode 4 in close contact with the current collector 7a. The current collector 7b is accommodated in the exterior cup 1, the counter electrode 4 is accommodated in the exterior can 3, the exterior cup 1 and the exterior can 3 are combined, and an insulating gasket is provided at the peripheral edge between the exterior cup 1 and the exterior can 3. 6 was interposed, and both peripheral portions were caulked and sealed.
About the evaluation battery produced by the above, the following charging / discharging test was done at the temperature of 25 degreeC, and the initial stage charging / discharging efficiency, the charge expansion coefficient, and the cycle characteristic were calculated. The results are shown in Table 2.

[初期充放電効率]
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から質量当たりの充電容量(単位:mAh/g)を求めた。その後、120分間休止した。次に0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から質量当たりの放電容量(単位:mAh/g)を求めた。下記式により初期充放電効率を計算した。
初期充放電効率(%)=(放電容量/充電容量)×100
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とした。
[Initial charge / discharge efficiency]
After constant current charging of 0.9 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was performed when the circuit voltage reached 0 mV, and charging was continued until the current value reached 20 μA. The charging capacity per unit mass (unit: mAh / g) was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity per unit mass (unit: mAh / g) was determined from the amount of electricity supplied during this period. The initial charge / discharge efficiency was calculated according to the following formula.
Initial charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching from the negative electrode material was discharged.

[充電膨張率]
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。充電状態で評価電池を解体し、負極をアルゴン雰囲気下でエチルメチルカーボネートにより洗浄し、マイクロメーターで厚みを測定した。充電前後の負極の厚みと銅箔の厚み(15μm)から、次式により負極活物質の充電膨張率を計算した。
充電膨張率(%)=((充電後の負極の厚み−充電前の負極の厚み)/(充電前の負極の厚み−銅箔の厚み))×100
[Charge expansion rate]
After constant current charging of 0.9 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The evaluation battery was disassembled in a charged state, the negative electrode was washed with ethyl methyl carbonate under an argon atmosphere, and the thickness was measured with a micrometer. From the thickness of the negative electrode before and after charging and the thickness of the copper foil (15 μm), the charge expansion coefficient of the negative electrode active material was calculated by the following formula.
Charge expansion coefficient (%) = ((Thickness of negative electrode after charging−Thickness of negative electrode before charging) / (Thickness of negative electrode before charging−Thickness of copper foil)) × 100

[サイクル特性]
質量当たりの放電容量、急速充電率、急速放電率を評価した評価電池とは別の評価電池を作製し、以下のような評価を行なった。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。20回充放電を繰返し、得られた質量当たりの放電容量から、次式を用いてサイクル特性を計算した。
サイクル特性(%)=(第20サイクルにおける放電容量/第1サイクルにおける放電容量)×100
[Cycle characteristics]
An evaluation battery different from the evaluation battery that evaluated the discharge capacity per mass, the rapid charge rate, and the rapid discharge rate was produced and evaluated as follows.
After performing 4.0 mA constant current charging until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity per mass using the following formula.
Cycle characteristics (%) = (discharge capacity in 20th cycle / discharge capacity in 1st cycle) × 100

(実施例2)
実施例1において、得られた二次粒子にコールタールピッチを含浸させた後、1000℃で熱処理を行って、鱗片状黒鉛粒子、焼成炭素、およびシリコン粒子からなる球状の最終製品である複合体を得た。これ以外は実施例1と同様に複合体を製造し、電池特性の評価試験を行った。
(Example 2)
In Example 1, the obtained secondary particles were impregnated with coal tar pitch, and then heat-treated at 1000 ° C. to form a composite that is a spherical final product composed of scaly graphite particles, calcined carbon, and silicon particles. Got. Except for this, a composite was produced in the same manner as in Example 1, and an evaluation test of battery characteristics was performed.

(実施例3)
実施例2における鱗片状黒鉛粒子とシリコン粒子を混合する工程について、さらに黒鉛質炭素繊維を加え(以下表中では繊維添加と略記する)、二軸ニーダーで混合し、さらにコールタールピッチのタール中油溶液を加えて混練した。次いで混練品を実施例2と同様に複合体を製造し、電池特性の評価試験を行った。
(Example 3)
In the step of mixing the scaly graphite particles and the silicon particles in Example 2, graphite carbon fiber is further added (hereinafter abbreviated as fiber addition in the table), mixed with a biaxial kneader, and further, tar tar oil in coal tar pitch. The solution was added and kneaded. Next, a composite was produced from the kneaded product in the same manner as in Example 2, and an evaluation test of battery characteristics was performed.

(実施例4)
実施例2における噴霧乾燥工程について、黒鉛質炭素繊維をポリアクリル酸の水溶液に分散させたものを予め用意し、ここに、鱗片状黒鉛粒子上にシリコン粒子が固定化された一次粒子を加え、分散液とした。これ以外は実施例2と同様に複合体を製造し、電池特性の評価試験を行った。
Example 4
For the spray drying step in Example 2, prepared in advance a graphite carbon fiber dispersed in an aqueous solution of polyacrylic acid, and here, primary particles in which silicon particles are immobilized on scaly graphite particles are added, A dispersion was obtained. Except for this, a composite was produced in the same manner as in Example 2, and an evaluation test of battery characteristics was performed.

(実施例5)
平均粒子径5μmの鱗片状黒鉛粒子、平均粒子径0.15μmのシリコン粒子、および溶媒のイソプロピルアルコールをビーズミルに入れ、湿式粉砕処理を行った。混合物の分散液と水溶性フェノール樹脂を二軸ニーダーに加え、混練しながら100℃に加熱し、溶媒を除去した。次いで混練品を500℃で熱処理し、鱗片状黒鉛粒子上にシリコン粒子が固定化された一次粒子を得た。これ以外は実施例2と同様に最終製品の複合体を製造し電池特性の評価試験を行った。
(Example 5)
A scaly graphite particle having an average particle size of 5 μm, silicon particles having an average particle size of 0.15 μm, and isopropyl alcohol as a solvent were placed in a bead mill and subjected to wet pulverization. The dispersion of the mixture and the water-soluble phenol resin were added to a biaxial kneader and heated to 100 ° C. while kneading to remove the solvent. Next, the kneaded product was heat-treated at 500 ° C. to obtain primary particles in which silicon particles were fixed on scaly graphite particles. Except for this, a composite of the final product was produced in the same manner as in Example 2, and a battery characteristic evaluation test was performed.

(実施例6)
実施例5における鱗片状黒鉛粒子とシリコン粒子を湿式粉砕処理について、さらに黒鉛質炭素繊維を加え、湿式粉砕処理を行った。得られた湿式粉砕処理物を実施例5と同様に複合体を製造し、電池特性の評価試験を行った。
(Example 6)
The scaly graphite particles and silicon particles in Example 5 were subjected to wet pulverization treatment, and further added with graphitic carbon fiber to perform wet pulverization treatment. A composite was produced from the obtained wet pulverized product in the same manner as in Example 5, and an evaluation test of battery characteristics was performed.

(実施例7)
実施例5に従って、噴霧乾燥を行い、二次粒子を得た。得られた二次粒子にコールタールピッチおよび黒鉛質炭素繊維を添加、混合した後、1000℃で熱処理を行って、鱗片状黒鉛粒子、焼成炭素、黒鉛質炭素繊維およびシリコン粒子からなる球状の最終製品である複合体を製造し、電池特性の評価試験を行った。
(Example 7)
According to Example 5, spray drying was performed to obtain secondary particles. After adding and mixing coal tar pitch and graphitic carbon fibers to the obtained secondary particles, heat treatment is performed at 1000 ° C. to form a spherical final product composed of scaly graphite particles, calcined carbon, graphitic carbon fibers and silicon particles. A composite as a product was manufactured, and an evaluation test of battery characteristics was performed.

(実施例8)
実施例2における鱗片状黒鉛粒子とシリコン粒子を混合する工程について、二軸ニーダーに替えてメカノフュージョンシステム(ホソカワミクロン(株)製)を用い、メカノケミカル処理を行った。その後混合物とコールタールピッチのタール中油溶液を二軸ニーダーに加えて混練した。次いで混練品を500℃で熱処理し、鱗片状黒鉛粒子上にシリコン粒子が固定化された一次粒子を得た。これ以外は実施例2と同様に複合体を製造し、電池特性の評価試験を行った。
(Example 8)
About the process which mixes the scaly graphite particle | grains and silicon particle in Example 2, it replaced with the biaxial kneader and performed the mechanochemical process using the mechano fusion system (made by Hosokawa Micron Corporation). Thereafter, the mixture and a tar oil solution of coal tar pitch were added to a biaxial kneader and kneaded. Next, the kneaded product was heat-treated at 500 ° C. to obtain primary particles in which silicon particles were fixed on scaly graphite particles. Except for this, a composite was produced in the same manner as in Example 2, and an evaluation test of battery characteristics was performed.

(実施例9)
実施例2における鱗片状黒鉛粒子とシリコン粒子を混合する工程について、さらに黒鉛質炭素繊維を加え、メカノフュージョンシステムを用いてメカノケミカル処理を行った。これ以外は実施例2と同様に複合体を製造し、電池特性の評価試験を行った。
Example 9
In the step of mixing the scaly graphite particles and silicon particles in Example 2, a graphitic carbon fiber was further added, and mechanochemical treatment was performed using a mechanofusion system. Except for this, a composite was produced in the same manner as in Example 2, and an evaluation test of battery characteristics was performed.

(実施例10)
実施例8に従って、噴霧乾燥を行い、二次粒子を得た。得られた二次粒子にコールタールピッチおよび黒鉛質炭素繊維を添加、混合した後、1000℃で熱処理を行って、鱗片状黒鉛粒子、焼成炭素、黒鉛質炭素繊維およびシリコン粒子からなる球状の最終製品である複合体を製造し、電池特性の評価試験を行った。
(Example 10)
According to Example 8, spray drying was performed to obtain secondary particles. After adding and mixing coal tar pitch and graphitic carbon fibers to the obtained secondary particles, heat treatment is performed at 1000 ° C. to form a spherical final product composed of scaly graphite particles, calcined carbon, graphitic carbon fibers and silicon particles. A composite as a product was manufactured, and an evaluation test of battery characteristics was performed.

(比較例1)
平均粒子径5μmの鱗片状黒鉛粒子と、平均粒子径0.15μmのシリコン粒子をポリアクリル酸水溶液に分散し、スプレードライ装置で噴霧乾燥処理して球状の粒子を得た。次いでプラネタリミキサを用い、前記球状粒子にコールタールピッチを含浸させた後、1000℃で熱処理を行って複合体を得た。これ以外は実施例1と同様に電池特性の評価試験を行った。
図3に示す断面のSEM像とEDX−Siマッピング像から、シリコン粒子が複合体内部において、複合体の表面付近に偏析して存在していることが分かった。
(Comparative Example 1)
The scaly graphite particles having an average particle diameter of 5 μm and silicon particles having an average particle diameter of 0.15 μm were dispersed in an aqueous polyacrylic acid solution and spray-dried with a spray drying apparatus to obtain spherical particles. Next, using a planetary mixer, the spherical particles were impregnated with coal tar pitch, and then heat treated at 1000 ° C. to obtain a composite. Except for this, the battery characteristics were evaluated in the same manner as in Example 1.
From the SEM image and EDX-Si mapping image of the cross section shown in FIG. 3, it was found that silicon particles were segregated near the surface of the composite in the composite.

(比較例2)
平均粒子径5μmの鱗片状黒鉛粒子と、平均粒子径0.15μmのシリコン粒子を二軸ニーダーで混合し、さらにコールタールピッチのタール中油溶液を加えて混練した。次いで混練品を500℃で熱処理し、鱗片状黒鉛粒子上にシリコン粒子が固定化された一次粒子を得た。得られた一次粒子にポリアクリル酸水溶液を加えて混練したのち、1000℃で熱処理を行って複合体を得た。これ以外は実施例1と同様に電池特性の評価試験を行った。
(Comparative Example 2)
The scaly graphite particles having an average particle diameter of 5 μm and silicon particles having an average particle diameter of 0.15 μm were mixed with a biaxial kneader, and further, a tar-in-oil solution of coal tar pitch was added and kneaded. Next, the kneaded product was heat-treated at 500 ° C. to obtain primary particles in which silicon particles were fixed on scaly graphite particles. A polyacrylic acid aqueous solution was added to the obtained primary particles and kneaded, followed by heat treatment at 1000 ° C. to obtain a composite. Except for this, the battery characteristics were evaluated in the same manner as in Example 1.

(比較例3)
平均粒子径5μmの鱗片状黒鉛粒子と、平均粒子径0.15μmのシリコン粒子をメカノフュージョンシステム(ホソカワミクロン(株)製)を用い、メカノケミカル処理を行った。該メカノケミカル処理品をポリアクリル酸水溶液に分散し、スプレードライ装置で噴霧乾燥処理して球状の粒子を得た。次いでプラネタリミキサを用い、前記球状粒子にコールタールピッチを含浸させた後、1000℃で熱処理を行って複合体を得た。これ以外は実施例1と同様に電池特性の評価試験を行った。
(Comparative Example 3)
A mechanochemical treatment was performed on flaky graphite particles having an average particle diameter of 5 μm and silicon particles having an average particle diameter of 0.15 μm using a mechanofusion system (manufactured by Hosokawa Micron Corporation). The mechanochemically treated product was dispersed in an aqueous polyacrylic acid solution and spray-dried with a spray dryer to obtain spherical particles. Next, using a planetary mixer, the spherical particles were impregnated with coal tar pitch, and then heat treated at 1000 ° C. to obtain a composite. Except for this, the battery characteristics were evaluated in the same manner as in Example 1.

以上の評価結果を表1〜3に示した。実施例1〜10から、本発明の製造方法により得られる負極材料を用いたリチウムイオン二次電池は、黒鉛の理論容量を超える高い放電容量を有していることが分かる。また、実施例1〜10と比較例1および2の比較から、本発明の製造方法により得られる負極材料を用いることで、初期充放電効率が高く、膨張率を緩和でき、サイクル特性に優れたものになることが分かる。さらに混合より、湿式粉砕を用いる混合、メカノケミカル処理を行なう混合を行うと、この順で膨張率をより緩和できサイクル特性がより向上することがわかった。   The above evaluation results are shown in Tables 1 to 3. From Examples 1-10, it turns out that the lithium ion secondary battery using the negative electrode material obtained by the manufacturing method of this invention has the high discharge capacity exceeding the theoretical capacity | capacitance of graphite. Moreover, from the comparison of Examples 1 to 10 and Comparative Examples 1 and 2, by using the negative electrode material obtained by the production method of the present invention, the initial charge and discharge efficiency is high, the expansion rate can be relaxed, and the cycle characteristics are excellent. I understand that it will be something. Furthermore, it was found that when mixing using wet pulverization and mechanochemical treatment were performed, the expansion coefficient could be further relaxed in this order and the cycle characteristics would be further improved.

本発明は、リチウムイオン二次電池用負極材料として、充電時の金属質物の膨張を十分に緩和でき、黒鉛の理論容量を超える高い放電容量と、優れた初期充放電効率およびサイクル特性を示す負極材料の製造方法を提供する。そのため、本発明による負極材料を用いるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。本発明による負極材料は、その特性を活かして、小型から大型までの高性能リチウムイオン二次電池に使用することができる。   As a negative electrode material for a lithium ion secondary battery, the present invention can sufficiently relax expansion of a metal material during charging, and has a high discharge capacity exceeding the theoretical capacity of graphite, and excellent initial charge / discharge efficiency and cycle characteristics. A method for manufacturing a material is provided. Therefore, the lithium ion secondary battery using the negative electrode material according to the present invention satisfies the recent demand for higher energy density of the battery and is effective for downsizing and higher performance of the equipment to be mounted. The negative electrode material according to the present invention can be used for high-performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.

1 外装カップ
2 負極合剤
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Negative electrode mixture 3 Exterior can 4 Counter electrode 5 Separator 6 Insulation gasket 7a, 7b Current collector

Claims (6)

鱗片状黒鉛粒子、焼成炭素、およびリチウムと合金化可能な金属粒子からなる球状または略球状の複合体の製造方法であって、
1)前記金属粒子および前記鱗片状黒鉛粒子を混合する工程、
2)該混合物に炭素質前駆体を加えたのち熱処理を行って、鱗片状黒鉛粒子上に金属粒子が固定化された一次粒子とする工程、
3)前記一次粒子を結着剤の溶液に分散させ、噴霧乾燥処理を行って球状の二次粒子とする工程、および、
4)前記二次粒子を700℃以上1200℃以下の温度範囲で熱処理し、前記した炭素質前駆体および結着剤を焼成炭素とする工程を有する、リチウムイオン二次電池用負極材の製造方法。
A method for producing a spherical or substantially spherical composite comprising scaly graphite particles, calcined carbon, and metal particles that can be alloyed with lithium,
1) a step of mixing the metal particles and the scaly graphite particles;
2) A step of adding a carbonaceous precursor to the mixture and then performing a heat treatment to obtain primary particles in which metal particles are immobilized on scaly graphite particles,
3) A step of dispersing the primary particles in a binder solution and performing spray drying to form spherical secondary particles; and
4) A method for producing a negative electrode material for a lithium ion secondary battery, comprising a step of heat-treating the secondary particles in a temperature range of 700 ° C. or more and 1200 ° C. or less and using the carbonaceous precursor and the binder as calcined carbon. .
前記金属粒子および鱗片状黒鉛粒子を混合する工程が、メカノケミカル処理であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材の製造方法。   The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the step of mixing the metal particles and the scaly graphite particles is a mechanochemical treatment. 前記金属粒子および鱗片状黒鉛粒子を混合する工程が、機械的粉砕処理であることを特徴とする請求項1または2に記載のリチウムイオン二次電池用負極材の製造方法。   The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein the step of mixing the metal particles and the flaky graphite particles is a mechanical pulverization treatment. 前記金属粒子および鱗片状黒鉛粒子を混合する工程において,さらに黒鉛質炭素繊維を添加することを特徴とする請求項1ないし3のいずれか1項に記載のリチウム二次電池用負極材の製造方法。   4. The method for producing a negative electrode material for a lithium secondary battery according to claim 1, further comprising adding a graphitic carbon fiber in the step of mixing the metal particles and the scaly graphite particles. 5. . 前記一次粒子を結着剤の溶液に分散する工程において、さらに黒鉛質炭素繊維を添加することを特徴とする請求項1ないし3のいずれか1項に記載のリチウム二次電池用負極材の製造方法。   4. The production of a negative electrode material for a lithium secondary battery according to claim 1, wherein a graphite carbon fiber is further added in the step of dispersing the primary particles in the binder solution. 5. Method. 前記二次粒子に、さらに炭素質前駆体を付着させたのち前記熱処理を行うことを特徴とする請求項1ないし5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the heat treatment is performed after further adhering a carbonaceous precursor to the secondary particles.
JP2015122917A 2014-06-25 2015-06-18 Method for producing negative electrode material for lithium ion secondary battery Active JP6401117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122917A JP6401117B2 (en) 2014-06-25 2015-06-18 Method for producing negative electrode material for lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014130454 2014-06-25
JP2014130454 2014-06-25
JP2015122917A JP6401117B2 (en) 2014-06-25 2015-06-18 Method for producing negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016027557A JP2016027557A (en) 2016-02-18
JP6401117B2 true JP6401117B2 (en) 2018-10-03

Family

ID=55352846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122917A Active JP6401117B2 (en) 2014-06-25 2015-06-18 Method for producing negative electrode material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6401117B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733248B2 (en) * 2016-03-22 2020-07-29 東ソー株式会社 Method for producing composite active material for lithium secondary battery
JP6409027B2 (en) * 2016-07-07 2018-10-17 株式会社豊田中央研究所 Power converter
CN114514638B (en) * 2019-10-04 2025-02-18 株式会社Lg新能源 Spheroidized carbonaceous negative electrode active material, method for producing the same, and negative electrode and lithium secondary battery containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996830B2 (en) * 2005-04-12 2012-08-08 Jfeケミカル株式会社 Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR100830612B1 (en) * 2006-05-23 2008-05-21 강원대학교산학협력단 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP5798678B2 (en) * 2012-03-22 2015-10-21 中央電気工業株式会社 Silicon graphite composite particles, method for producing the same, electrode, and nonaqueous electrolyte secondary battery including the electrode
JP5993337B2 (en) * 2012-07-03 2016-09-14 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016027557A (en) 2016-02-18

Similar Documents

Publication Publication Date Title
JP5738761B2 (en) Composite electrode material
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5993337B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5416128B2 (en) Non-aqueous secondary battery
JP6040022B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101919470B1 (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
KR100855166B1 (en) Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor and method for manufacturing same
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004178922A (en) Negative electrode material and secondary battery using the same
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2012216545A (en) Graphite particle for nonaqueous secondary battery and method for producing the same, negative electrode and nonaqueous secondary battery
JP5953249B2 (en) Composite graphite particles and their use in lithium ion secondary batteries
JP2022533993A (en) Anode active material containing low-defect turbostratic carbon
JP2014067639A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6401117B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP6401102B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2007173156A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022185838A1 (en) Method for producing carbonaceous substance-coated graphite material
JP6070016B2 (en) Non-aqueous secondary battery composite carbon material and method for producing the same, negative electrode, and non-aqueous secondary battery
JP2024061074A (en) Negative electrode material for secondary battery and manufacturing method thereof, negative electrode for secondary battery, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180906

R150 Certificate of patent or registration of utility model

Ref document number: 6401117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250