JP6394480B2 - Manufacturing method of all solid state battery - Google Patents
Manufacturing method of all solid state battery Download PDFInfo
- Publication number
- JP6394480B2 JP6394480B2 JP2015090827A JP2015090827A JP6394480B2 JP 6394480 B2 JP6394480 B2 JP 6394480B2 JP 2015090827 A JP2015090827 A JP 2015090827A JP 2015090827 A JP2015090827 A JP 2015090827A JP 6394480 B2 JP6394480 B2 JP 6394480B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- electrode
- solid
- electrode body
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007787 solid Substances 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 38
- 229920005989 resin Polymers 0.000 claims description 121
- 239000011347 resin Substances 0.000 claims description 121
- 239000011888 foil Substances 0.000 claims description 56
- 238000002347 injection Methods 0.000 claims description 52
- 239000007924 injection Substances 0.000 claims description 52
- 238000000465 moulding Methods 0.000 claims description 21
- 238000009792 diffusion process Methods 0.000 claims description 18
- 239000011247 coating layer Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000012790 confirmation Methods 0.000 claims description 13
- 238000012806 monitoring device Methods 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 43
- 239000007784 solid electrolyte Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000002203 sulfidic glass Substances 0.000 description 6
- -1 polypropylene Polymers 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 229910018091 Li 2 S Inorganic materials 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 2
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 2
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910012425 Li3Fe2 (PO4)3 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010945 LiGe0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910010835 LiI-Li2S-P2S5 Inorganic materials 0.000 description 1
- 229910010833 LiI-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910010823 LiI—Li2S—B2S3 Inorganic materials 0.000 description 1
- 229910010840 LiI—Li2S—P2S5 Inorganic materials 0.000 description 1
- 229910010855 LiI—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910014411 LiNi1/2Mn1/2O2 Inorganic materials 0.000 description 1
- 229910014395 LiNi1/2Mn3/2O4 Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
Description
本発明は、全固体電池の製造方法に関し、さらに詳しくはインサート成形における樹脂の端部への注入不足を抑制し且つ樹脂注入による電極箔変形や箔切れの抑制を可能として電池の厚さ方向の樹脂層を薄肉化し得る全固体電池の製造方法に関する。 The present invention relates to a method for manufacturing an all-solid battery, and more specifically, suppresses insufficient injection of resin into an end portion in insert molding, and enables electrode foil deformation and foil breakage due to resin injection to be suppressed in the thickness direction of the battery. The present invention relates to a method for producing an all-solid battery capable of thinning a resin layer.
近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて電解液を用いないため、非水電解液を用いる場合の安全性向上のために必要なシステムを簡略化し得て構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、全固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, since the electrolyte is not used compared to the conventional non-aqueous electrolyte lithium battery, the system required for improving the safety when using the non-aqueous electrolyte can be simplified. Therefore, it is expected that the all-solid-state battery will be put to practical use because it can have many advantages such as an increased degree of freedom and a reduced number of auxiliary devices.
しかし、全固体電池の実用化が実現するためには様々な改良が必要である。
その1つとして、全固体電池は、注液、ガス抜き工程が不要なことから外装の簡素化が期待されていて、例えば、全固体電池の樹脂インサートにより電極体周囲を覆う構造とすることによる外装の簡素化がある。一方、全固体電池のエネルギー密度の向上には、電池厚さ方向の樹脂層の薄肉化が最も効果的であるが、樹脂注入の際の流路を確保して薄肉でのインサート成形技術が確立されておらず、エネルギー密度の向上が困難であった。
このため、全固体電池のインサート成形技術について様々な検討がなされている。
However, various improvements are necessary in order to realize practical use of all solid state batteries.
As one of them, the all-solid-state battery is expected to simplify the exterior because no injection or degassing steps are required. For example, the all-solid-state battery has a structure in which the periphery of the electrode body is covered with a resin insert of the all-solid battery. There is simplification of the exterior. On the other hand, thinning the resin layer in the battery thickness direction is the most effective for improving the energy density of all-solid-state batteries, but a thin-wall insert molding technology is established by securing a flow path for resin injection. It was difficult to improve the energy density.
For this reason, various studies have been made on the insert molding technology for all solid state batteries.
例えば、特許文献1には、樹脂被覆して外装体を形成する全固体電池の製造方法が記載されていて、具体例として全固体電池素子を電極端子としての2枚の金属板で挟み、圧力を印加しながら樹脂を注入して封止するインサート成形による全固体電池の製造方法が示されているが、樹脂層の薄肉化については示されていない。
また、特許文献2には、積層した電極積層体の側面を、切り欠きを有する型に挿入し、型内に樹脂を注入し、硬化させて封止する積層電池の製造方法が記載されている。
For example,
Patent Document 2 describes a method of manufacturing a laminated battery in which the side surfaces of the laminated electrode laminate are inserted into a notched mold, a resin is injected into the mold, and cured to be sealed. .
また、特許文献3には、固体電池素子を樹脂封止用金型に装填し樹脂組成物をキャビティーに注入し、冷却して樹脂を硬化させる外装材で封止したインサート成形による全固体電池の製造方法が示されている。
また、特許文献4には、全固体電池素子の厚さ方向に設ける樹脂被覆層を内層の樹脂型と外層のインサート樹脂とからなる二層形状とするインサート成形による全固体電池の製造方法が記載されている。
さらに、特許文献5には、全固体電池電極体の厚さ方向の両面に予め樹脂フィルムを配置し、次いでインサート樹脂を用いて電極体の側面を封止する全固体電池の製造方法が記載されている。
Patent Document 3 discloses an all-solid battery by insert molding in which a solid battery element is loaded into a resin sealing mold, a resin composition is injected into a cavity, and the resin is cooled and sealed with an exterior material that cures the resin. The manufacturing method is shown.
Patent Document 4 describes a method for manufacturing an all-solid battery by insert molding in which a resin coating layer provided in the thickness direction of the all-solid battery element is formed into a two-layer shape including an inner resin mold and an outer insert resin. Has been.
Furthermore, Patent Document 5 describes a method for producing an all-solid battery in which resin films are arranged in advance on both surfaces in the thickness direction of an all-solid battery electrode body, and then the side surfaces of the electrode body are sealed using an insert resin. ing.
しかし、これら公知の技術を適用して電極体の側面にインサート成形にて樹脂被覆層を形成して、樹脂の端部への注入不足を抑制し且つ樹脂注入による電極箔変形や箔切れの抑制を可能とし、電池の厚さ方向の樹脂層を薄肉化した全固体電池を得ることは困難であった。 However, by applying these known techniques, a resin coating layer is formed on the side surface of the electrode body by insert molding to suppress insufficient injection of resin into the edge, and to prevent deformation of electrode foil and breakage of the foil due to resin injection It was difficult to obtain an all-solid battery in which the resin layer in the thickness direction of the battery was thinned.
従って、本発明の目的は、全固体電池にインサート成形を適用して樹脂被覆層を形成して樹脂の端部への注入不足を抑制し且つ樹脂注入による電極箔変形や箔切れの抑制を可能とし得る全固体電池の製造方法を提供することである。 Therefore, the object of the present invention is to apply insert molding to an all-solid-state battery to form a resin coating layer to suppress insufficient injection of resin into the end, and to suppress electrode foil deformation and foil breakage due to resin injection. And providing an all-solid-state battery manufacturing method.
本発明者らは、前記目的を達成するために鋭意検討を行った結果、全固体電池に従来技術によるインサート成形を適用して樹脂被覆層を形成すると、電極体側面に樹脂を注入しても注入部位から遠い部分まで樹脂が流動しづらく、一方、注入速度を上げると部分的に集中して注入されて電極箔変形や箔切れが生じ、特に電極体の厚さが小さい場合には、電極箔の積層間隔が狭く、上記の現象が顕著に表れることを見出し、さらに検討を行った結果、本発明を完成した。
なお、前記の「遠い部分」とは、電極体の一方の端部から注入する場合に注入入口から注入方向に向かって反対側の端部、あるいは電極体における電極箔のうちで合材層と積層されていない部分で合材層側の端部を示す。
本発明は、複数の電極箔が積層された電極体側面にインサート成形にて樹脂被覆層を形成する全固体電池の製造方法において、
前記電極体側面に樹脂を注入する注入工程、次いで
注入した樹脂を積層された電極箔間に拡散させる拡散工程を有し、
真空環境下に前記注入工程を行い、
注入工程後に前記拡散工程を大気圧下に行う、前記製造方法に関する。
As a result of intensive studies to achieve the above object, the present inventors have applied the insert molding according to the prior art to an all-solid-state battery to form a resin coating layer. Resin does not flow easily to the part far from the injection site. On the other hand, when the injection speed is increased, the resin is partly concentrated and injected, resulting in electrode foil deformation or foil breakage, especially when the electrode body is thin. As a result of finding out that the above-mentioned phenomenon appears remarkably with a narrow foil stacking interval, and further studies, the present invention was completed.
The “distant part” means that when the injection is performed from one end portion of the electrode body, the end portion on the opposite side from the injection inlet toward the injection direction, or the electrode layer in the electrode body and the composite layer. An end portion on the side of the composite material layer is shown in a portion that is not laminated.
The present invention provides a method for producing an all-solid battery in which a resin coating layer is formed by insert molding on a side surface of an electrode body in which a plurality of electrode foils are laminated.
An injection step of injecting a resin into the side surface of the electrode body, and then a diffusion step of diffusing the injected resin between the laminated electrode foils,
Performing the injection step in a vacuum environment;
It is related with the said manufacturing method which performs the said diffusion process under atmospheric pressure after an injection | pouring process.
前記のインサート成形とは、金型内に予め成形品である全固体電池素電極体を装着し、金型を閉じて金型と電極体(成形品)の端部面との間に樹脂を注入して成形品と樹脂とを一体化して目的物を成形する成形方法を呼ぶ。 In the insert molding, an all-solid battery element electrode body, which is a molded product, is mounted in advance in a mold, the mold is closed, and a resin is placed between the mold and the end surface of the electrode body (molded product). A molding method in which a molded article and a resin are integrated to form a target product is called.
本発明によれば、全固体電池にインサート成形を適用して樹脂被覆層を形成して樹脂の端部への注入不足を抑制し且つ樹脂注入による電極箔変形や箔切れの抑制を可能とし得る。 According to the present invention, insert molding is applied to an all-solid-state battery to form a resin coating layer to suppress insufficient injection into the end portion of the resin and to enable suppression of electrode foil deformation and foil breakage due to resin injection. .
特に、本発明において、以下の実施態様を挙げることができる。
1) 前記注入工程の前に、電極体端部に樹脂流動確認部材を配置し、
前記注入工程を前記樹脂流動確認部材に樹脂が到達するまで樹脂を注入して行う、前記製造方法。
2) さらに、前記拡散工程後に樹脂流動確認工程を有し、
前記樹脂流動確認工程を熱監視装置(サーモビュアーということもある)により、樹脂の流動位置を確認することによって行い、
樹脂流動が不足の場合には再度注入工程から繰り返す、前記製造方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) Before the injection step, arrange a resin flow confirmation member at the end of the electrode body,
The manufacturing method, wherein the injecting step is performed by injecting resin until the resin reaches the resin flow confirmation member.
2) Furthermore, it has a resin flow confirmation step after the diffusion step,
The resin flow confirmation step is performed by confirming the resin flow position with a heat monitoring device (sometimes called a thermoviewer),
The said manufacturing method which repeats from an injection | pouring process again when resin flow is insufficient.
以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様における電極体としては、負極電極箔、負極活物質と固体電解質とを含む負極合材層、固体電解質層、正極電極箔、および正極活物質と固体電解質とを含む正極合材層を具備する薄い複数の電極箔が層状に積層された電極体であれば制限はなく、例えば、図1に示すように、電極体1として、順に固体電解質層2、負極電極箔3の両面に負極活物質と固体電解質とを含む負極合材層4、固体電解質層2、正極電極箔5の両面に正極活物質と固体電解質とを含む正極合材層6、固体電解質層2、負極電極箔3の両面に負極活物質と固体電解質とを含む負極合材層4、固体電解質層2、正極電極箔5の両面に正極活物質と固体電解質とを含む正極合材層6、固体電解質層2、負極電極箔3の両面に負極活物質と固体電解質とを含む負極合材層4、および固体電解質層2を具備し薄い複数の電極箔が層状に積層された電極体が挙げられる。前記の電極体は、任意の長さ、幅および厚さを有し得て、例えば、図2に示すように、長さ(20〜100mm、典型的には74mm)、幅(1〜10mm、典型的には2mm)に比べて厚さ(1mm未満、典型的には0.1mm)が小さい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As an electrode body in an embodiment of the present invention, a negative electrode foil, a negative electrode mixture layer containing a negative electrode active material and a solid electrolyte, a solid electrolyte layer, a positive electrode foil, and a positive electrode mixture containing a positive electrode active material and a solid electrolyte There are no limitations as long as the electrode body is formed by laminating a plurality of thin electrode foils having layers. For example, as shown in FIG. 1, as the
本発明の実施態様の全固体電池の製造方法によれば、複数の電極箔が積層された電極体側面にインサート成形にて樹脂被覆層を形成する全固体電池の製造方法において、
前記電極体側面に樹脂を注入する注入工程、次いで
注入した樹脂を積層された電極箔間に拡散させる拡散工程を有し、
真空環境下に前記注入工程を行い、
注入工程後に前記拡散工程を大気圧下に行う、前記製造方法によって、積層された電極箔間、特に電極体端部部位への樹脂の注入不足の抑制と、電極箔変形や箔切れ抑制の両立が可能となる。
本発明の実施態様の全固体電池の製造方法により電極体端部部位への樹脂の注入不足の抑制と電極箔変形や箔切れ抑制の両立が可能となる理論的な解明は十分にはなされていないが、樹脂を注入する注入工程を真空環境下に行い、次いで拡散工程を大気圧下に行うことにより、電極体の四方向から樹脂が注入され、図3に示すように、注入工程後の拡散工程において大気圧に解放されて毛管現象で電極箔間に樹脂が入り得ることによると考えられる。
According to the method for producing an all solid state battery of an embodiment of the present invention, in the method for producing an all solid state battery, a resin coating layer is formed by insert molding on the side surface of an electrode body in which a plurality of electrode foils are laminated.
An injection step of injecting a resin into the side surface of the electrode body, and then a diffusion step of diffusing the injected resin between the laminated electrode foils,
Performing the injection step in a vacuum environment;
The diffusion process is performed under atmospheric pressure after the injection process. By the manufacturing method, the suppression of insufficient injection of the resin between the laminated electrode foils, particularly the electrode body end portion, and the deformation of the electrode foil and the foil breakage are compatible. Is possible.
Theoretically elucidating that the method of manufacturing an all-solid-state battery according to an embodiment of the present invention can achieve both suppression of insufficient resin injection into the end portion of the electrode body and suppression of electrode foil deformation and foil breakage. However, the injection process for injecting the resin is performed in a vacuum environment, and then the diffusion process is performed under atmospheric pressure, so that the resin is injected from the four directions of the electrode body, and as shown in FIG. It is considered that the resin can enter between the electrode foils by capillarity due to being released to atmospheric pressure in the diffusion process.
これに対して、従来技術により電極体をインサート成形により樹脂被覆する場合、図4に示すように、被覆樹脂層の厚さが薄いと狭い隙間を樹脂流路として溶融樹脂(あるいは樹脂溶液)を流す必要がある。このため、樹脂注入の速度を下げると電極体端部、例えば角部において注入抜け(注入不足)が多く発生し、注入抜けを避けるために樹脂注入の速度を上げると、図5に示すように、樹脂の注入集中による電極箔変形や箔切れが起こり得る。 On the other hand, when the electrode body is resin-coated by insert molding according to the prior art, as shown in FIG. 4, when the coating resin layer is thin, a molten resin (or resin solution) is used with a narrow gap as a resin flow path. Need to flow. For this reason, when the resin injection speed is reduced, many injection omissions (insufficient injection) occur at the end of the electrode body, for example, at the corners. When the resin injection speed is increased to avoid injection omission, as shown in FIG. Electrode foil deformation and foil breakage due to resin injection concentration can occur.
本発明の他の実施態様の全固体電池の製造方法は、複数の電極箔が積層された電極体側面にインサート成形にて樹脂被覆層を形成する全固体電池の製造方法において、
前記電極体側面に樹脂を注入する注入工程、次いで
注入した樹脂を積層された電極箔間に拡散させる拡散工程を有し、
真空環境下に前記注入工程を行い、
注入工程後に前記拡散工程を大気圧下に行い、
前記注入工程の前に、図6に示すように、電極体端部に樹脂流動確認部材を配置し、前記注入工程を前記樹脂流動確認部材に樹脂が到達するまで樹脂を注入して行う。
The method for producing an all-solid battery according to another embodiment of the present invention is a method for producing an all-solid battery in which a resin coating layer is formed by insert molding on the side surface of an electrode body in which a plurality of electrode foils are laminated.
An injection step of injecting a resin into the side surface of the electrode body, and then a diffusion step of diffusing the injected resin between the laminated electrode foils,
Performing the injection step in a vacuum environment;
Perform the diffusion step under atmospheric pressure after the injection step,
Prior to the injection step, as shown in FIG. 6, a resin flow confirmation member is disposed at the end of the electrode body, and the injection step is performed by injecting resin until the resin reaches the resin flow confirmation member.
前記樹脂流動確認部材としては、耐熱性基材、例えば耐熱性樹脂、例えばテフロン(登録商標)製の電極体の端部(例えば角部)に挿入し得る構造、例えば2方向の短冊が直角をなして他方向に把持部を有する3方向の薄片樹脂帯からなる成形体が挙げられる。前記樹脂流動確認部材は、図6に示すように電極箔間に挿入して配置し得る。
前記の実施態様によれば、図7に示すように、電極体の角部に樹脂が到達後の滲み出しにより、角部までの樹脂注入・拡散を確認し得るので、非破壊で電極体角部への拡散を確認することができ、品質の安定した樹脂被覆層を形成した全固体電池を得ることができるので好適である。
As the resin flow confirmation member, a heat-resistant base material, for example, a heat-resistant resin, for example, a structure that can be inserted into an end portion (for example, a corner) of an electrode body made of Teflon (registered trademark), for example, a rectangular strip in two directions has a right angle. In addition, a molded body made of a thin resin strip in three directions having a grip portion in the other direction can be mentioned. The resin flow confirmation member may be inserted between the electrode foils as shown in FIG.
According to the above-described embodiment, as shown in FIG. 7, the resin body can be confirmed to be injected and diffused to the corners by the seepage after the resin has reached the corners of the electrode body. It is possible to confirm the diffusion to the part, and it is preferable because an all-solid battery in which a resin coating layer having a stable quality is formed can be obtained.
特に、本発明のさらに他の実施態様において、図8に示すように、全固体電池の製造方法は、複数の電極箔が積層された電極体側面にインサート成形にて樹脂被覆層を形成する全固体電池の製造方法において、
前記電極体側面に樹脂を注入する注入工程、次いで
注入した樹脂を積層された電極箔間に拡散させる拡散工程を有し、
真空環境下に前記注入工程を行い、
注入工程後に前記拡散工程は大気圧下に行い、
さらに、図8に示すように、前記拡散工程後に樹脂流動確認工程を有し、前記樹脂流動確認工程はサーモビュアーにより、樹脂の流動位置を確認することによって行い、樹脂流動が不足の場合には再度注入工程から繰り返して行う。
In particular, in still another embodiment of the present invention, as shown in FIG. 8, the method for producing an all-solid battery is a method for forming a resin coating layer by insert molding on the side surface of an electrode body in which a plurality of electrode foils are laminated. In the method for producing a solid battery,
An injection step of injecting a resin into the side surface of the electrode body, and then a diffusion step of diffusing the injected resin between the laminated electrode foils,
Performing the injection step in a vacuum environment;
The diffusion step is performed under atmospheric pressure after the injection step,
Furthermore, as shown in FIG. 8, it has a resin flow confirmation step after the diffusion step, and the resin flow confirmation step is performed by confirming the flow position of the resin with a thermoviewer. Repeat from the injection step again.
前記の実施態様によれば、電極体の上方からサーモビュアーにより熱監視を行い、樹脂流動が不足の場合には再度注入工程、次いで注入した樹脂を拡散させる拡散工程に進むことによって、電極体の角部への樹脂の拡散を確認し得るので、非破壊で電極体角部への拡散を確認することができ、品質の安定した樹脂被覆層を形成した全固体電池を得ることができるので好適である。 According to the above-described embodiment, heat monitoring is performed from above the electrode body by a thermoviewer, and when the resin flow is insufficient, the process proceeds to the injection process again, and then proceeds to the diffusion process for diffusing the injected resin. Since the diffusion of the resin to the corner can be confirmed, it is possible to confirm the diffusion to the corner of the electrode body in a non-destructive manner, and it is possible to obtain an all-solid-state battery in which a resin coating layer having a stable quality is obtained. It is.
本発明の実施態様における前記電極体側面に注入する樹脂としては、熱可塑性樹脂、例えばポリプロピレン、ポリエチレン、ポリアミドなどや、熱硬化性樹脂、例えばエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂など、好適には熱可塑性樹脂が挙げられる。
前記注入する樹脂として、成形温度、電池耐久性の観点からポリプロピレンが望ましい。
前記の樹脂、好適には熱可塑性樹脂、例えばポリプロピレンには、それ自体公知の添加剤あるいはフィラーを含有し得る。
As the resin to be injected into the side surface of the electrode body in the embodiment of the present invention, a thermoplastic resin such as polypropylene, polyethylene, polyamide or the like, or a thermosetting resin such as epoxy resin, phenol resin or unsaturated polyester resin is preferably used. Is a thermoplastic resin.
As the resin to be injected, polypropylene is desirable from the viewpoint of molding temperature and battery durability.
Said resin, preferably a thermoplastic resin, for example polypropylene, can contain additives or fillers known per se.
前記の全固体電池の電極体は以下のようにして得ることができる。例えば、正極活物質、固体電解質、例えば硫化物固体電解質材料、バインダーおよび溶媒を含む正極スラリーを正極電極箔の両面に塗布して正極を得る。一方、負極活物質、固体電解質、バインダーおよび溶媒を含む負極スラリーを負極電極箔の両面に塗布して負極を得る。上記の正極と負極とを固体電解質を介して複数積層し、電極体を得ることができる。前記の積層は、最終プレス圧にて、例えば冷間静水等方圧プレス(CIP)によりプレスを行って実施し得る。 The electrode body of the all solid state battery can be obtained as follows. For example, a positive electrode slurry containing a positive electrode active material, a solid electrolyte such as a sulfide solid electrolyte material, a binder and a solvent is applied to both surfaces of the positive electrode foil to obtain a positive electrode. On the other hand, a negative electrode slurry containing a negative electrode active material, a solid electrolyte, a binder and a solvent is applied to both surfaces of a negative electrode foil to obtain a negative electrode. A plurality of the positive electrodes and the negative electrodes can be stacked via a solid electrolyte to obtain an electrode body. The lamination can be performed by pressing at the final pressing pressure, for example, by cold isostatic pressing (CIP).
前記の正極電極箔として金属箔、例えばAl(アルミニウム)箔を、前記の負極電極箔として金属箔、例えばCu箔を用い得る。
前記正極電極箔および負極電極箔は、各々厚さが0.1〜10μm、より好ましくは0.5〜5μmである。
A metal foil such as an Al (aluminum) foil can be used as the positive electrode foil, and a metal foil such as a Cu foil can be used as the negative electrode foil.
Each of the positive electrode foil and the negative electrode foil has a thickness of 0.1 to 10 μm, more preferably 0.5 to 5 μm.
前記正極活物質としては、Liを挿入することができる材料、例えばLi(NiaCobAl1−a−b)O2[a、bは1未満の任意の数字である。但し、a+b≦1]、Li(NiaCobMn2−a−b)O4[a、bは2未満の任意の数字である。但し、a+b≦2]など、例えばLiNi1/2Mn1/2O2、LiNi1/3Co1/3Mn1/3O2、LiNi3/5Co1/5Mn1/5O2、LiMn2O4、LiNi1/2Mn3/2O4や、LiNiPO4、LiMnPO4、Li3Fe2(PO4)3、Li3V2(PO4)3等、好適にはLiCoO2やLiNi1/3Co1/3Mn1/3O2を挙げることができる。また、正極合材層に含有される固体電解質としては任意の硫化物固体電解質、例えばLi2S:P2S5=50:50〜100:0(質量比)となるようにLi2SおよびP2S5をメカニカルミリングして得られる硫化物固体電解質を用い得る。
また、正極合材層は結着用バインダー、例えばポリフッ化ビニリデンなどのフッ素含有樹脂、SBRや導電助剤、例えばアセチレンブラック、ケッチェンブラック等の炭素などを含有し得る。
前記の正極合材層の厚さは、1つの正極において合計で100nm〜20μmの範囲、例えば0.5〜5μmであり得る。
As the positive electrode active material, a material into which Li can be inserted, for example, Li (Ni a Co b Al 1-ab ) O 2 [a, b is an arbitrary number less than 1. However, a + b ≦ 1], Li (Ni a Co b Mn 2-a-b) O 4 [a, b is any number less than 2. However, for example, LiNi 1/2 Mn 1/2 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 3/5 Co 1/5 Mn 1/5 O 2 , etc. LiMn 2 O 4 , LiNi 1/2 Mn 3/2 O 4 , LiNiPO 4 , LiMnPO 4 , Li 3 Fe 2 (PO 4 ) 3 , Li 3 V 2 (PO 4 ) 3, etc., preferably LiCoO 2 LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be mentioned. The solid electrolyte contained in the positive electrode mixture layer is an arbitrary sulfide solid electrolyte, for example, Li 2 S: P 2 S 5 = 50: 50 to 100: 0 (mass ratio) and Li 2 S and A sulfide solid electrolyte obtained by mechanical milling P 2 S 5 can be used.
Further, the positive electrode mixture layer may contain a binder, for example, a fluorine-containing resin such as polyvinylidene fluoride, SBR or a conductive auxiliary agent such as carbon such as acetylene black or ketjen black.
The thickness of the positive electrode mixture layer may be in the range of 100 nm to 20 μm in total, for example, 0.5 to 5 μm, in one positive electrode.
前記負極活物質としては、Liを挿入することができる材料、例えばグラファイトなどの公知のカーボン系負極合材、好適にはアモルファスカーボン、例えばハードカーボンを用い得る。
また、負極合材層に含有される固体電解質としては正極合材層に適用され得る硫化物固体電解質を用い得る。
また、負極合材層は結着用バインダー、例えばポリフッ化ビニリデンなどのフッ素含有樹脂、SBRや導電助剤、例えばアセチレンブラック、ケッチェンブラック等の炭素などを含有し得る。
前記の負極合材層の厚さは、1つの負極において合計で100nm〜20μmの範囲、例えば0.5〜5μmであり得る。
As the negative electrode active material, a material into which Li can be inserted, for example, a known carbon-based negative electrode mixture such as graphite, preferably amorphous carbon, for example, hard carbon can be used.
The solid electrolyte contained in the negative electrode mixture layer may be a sulfide solid electrolyte that can be applied to the positive electrode mixture layer.
Further, the negative electrode mixture layer can contain a binder for binding, for example, a fluorine-containing resin such as polyvinylidene fluoride, SBR and a conductive auxiliary agent such as carbon such as acetylene black and ketjen black.
The thickness of the negative electrode mixture layer may be in the range of 100 nm to 20 μm in total, for example, 0.5 to 5 μm, in one negative electrode.
前記固体電解質としては、例えば、硫化物系固体電解質及び酸化物系固体電解質等を挙げることができ、好適には硫化物系固体電解質、例えば、Li2S−SiS2、LiI−Li2S−SiS2、liI−li2S−P2S5、LiI−Li2S−B2S3、Li3PS4、Li2S−P2S5など、その中でもLi2S:P2S5=50:50〜100:0(質量比)となるようにLi2SおよびP2S5を混合してメカニカルミリングして得られる硫化物固体電解質、例えばLi2S−P2S5、70Li2S−30P2S5、80Li2S−20P2S5、Li2S−SiS2、及びLiGe0.25P0.75S4等、特に許容電圧が高くLiイオン伝導性の高さから、75Li2S−25P2S5硫化物ガラスを挙げることができる。
前記固体電解質層の厚さは、0.1〜5μmが好ましく、より好ましくは1〜2μmであり得る。
Examples of the solid electrolyte include sulfide-based solid electrolytes and oxide-based solid electrolytes. Suitably, sulfide-based solid electrolytes such as Li 2 S—SiS 2 , LiI-Li 2 S— SiS 2 , liI-li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PS 4 , Li 2 S—P 2 S 5 , among them Li 2 S: P 2 S 5 = 50:50 to 100: 0 (mass ratio) Li 2 S and P 2 S 5 are mixed and mechanically milled to obtain a sulfide solid electrolyte, such as Li 2 S—P 2 S 5 , 70Li 2 S-30P 2 S 5 , 80Li 2 S-20P 2 S 5 , Li 2 S—SiS 2 , LiGe 0.25 P 0.75 S 4, etc. , 75Li It can be mentioned S-25P 2 S 5 sulfide glass.
The thickness of the solid electrolyte layer is preferably 0.1 to 5 μm, more preferably 1 to 2 μm.
本発明の実施態様における電極体においては、図1に示されているように、正極合材層と負極合材層の容量比(正極合材層/負極合材層)が、1以下、例えば0.9以下であって、0.5以上であることが適している。 In the electrode body in the embodiment of the present invention, as shown in FIG. 1, the capacity ratio of the positive electrode mixture layer and the negative electrode mixture layer (positive electrode mixture layer / negative electrode mixture layer) is 1 or less, for example, It is suitably 0.9 or less and 0.5 or more.
本発明の実施態様の全固体電池の製造方法によって、インサート成形における樹脂の端部への注入不足を抑制し且つ樹脂注入による電極箔変形や箔切れが抑制された全固体電池を得ることができる。 By the method for producing an all solid state battery of the embodiment of the present invention, an all solid state battery in which insufficient injection into the end portion of resin in insert molding is suppressed and electrode foil deformation and foil breakage due to resin injection are suppressed can be obtained. .
以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
実施例1
図9に示す真空室11を備えた製造装置10に、電極体1を配置して、
装置内の空気を空気排出口12から排出させて真空環境とした後、前記電極体1側面に樹脂を樹脂ディスペンサー13から注入し、
次いで、空気入口14から空気を入れて装置内を大気圧として樹脂を拡散させ、
サーモビュアー15により樹脂の流動位置を確認し、樹脂が電極体の角部に達したと確できたら樹脂被覆層を形成した全固体電池を取出すことによって、また樹脂が電極体の角部に達してなく樹脂流動が不足と確認された場合には、装置内の空気を空気排出口12から排出させて真空環境とした後、再度注入工程から繰り返して行って、樹脂被覆層を形成した全固体電池を作製し得る。
前記の方法によって樹脂を封入後の電極体の部分拡大断面図を図10に示す。
図10から、実施例1の帆製造方法によれば、電極体における電極箔のうちで合材層と積層されていない部分で合剤層側の端部(付け根部)まで樹脂が入って注入されていることが確認された。
Example 1
The
After exhausting the air in the apparatus from the
Next, air is introduced from the
The flow position of the resin is confirmed by the
FIG. 10 shows a partially enlarged cross-sectional view of the electrode body after encapsulating the resin by the above method.
From FIG. 10, according to the sail manufacturing method of Example 1, the resin enters and is injected to the end portion (base portion) on the side of the mixture layer in the portion of the electrode foil in the electrode body that is not laminated with the mixture layer. It has been confirmed.
比較例1
従来法を適用して樹脂を封入後の電極体の部分拡大断面図を図11に示す。
図11から、従来法によれば、電極体における電極箔の合材層と積層されていない部分まで樹脂が入っていないことが確認された。
Comparative Example 1
FIG. 11 shows a partially enlarged cross-sectional view of the electrode body after applying the conventional method and encapsulating the resin.
From FIG. 11, according to the conventional method, it was confirmed that the resin was not contained up to the portion of the electrode body that was not laminated with the composite layer of the electrode foil.
本発明によって、全固体電池にインサート成形を適用して樹脂被覆層を形成して樹脂の端部への注入不足を抑制し且つ樹脂注入による電極箔変形や箔切れの抑制を可能とし、電池の厚さ方向の樹脂層を薄肉化した全固体電池を容易に得ることができる。 According to the present invention, insert molding is applied to an all-solid-state battery to form a resin coating layer to suppress insufficient injection of resin into the end, and to suppress electrode foil deformation and foil breakage due to resin injection. An all-solid battery having a thin resin layer in the thickness direction can be easily obtained.
1 本発明の実施態様における電極体
2 固体電解質層
3 負極電極箔
4 負極合材層
5 正極電極箔
6 正極合材層
10 製造装置
11 真空室
12 空気排出口
13 樹脂ディスペンサー
14 空気入口
15 サーモビュアー
DESCRIPTION OF
Claims (1)
前記電極体の側面に樹脂を真空環境下で注入する、注入工程、次いで
注入工程後に、注入した前記樹脂を積層された電極箔間に大気圧下で拡散させる、拡散工程、
を有し、かつ
前記注入工程の前に、前記電極体の端部に樹脂流動確認部材を配置し、前記注入工程を、前記樹脂流動確認部材に前記樹脂が到達するまで前記樹脂を注入して行うこと、及び/又は
前記拡散工程後に、熱監視装置により前記樹脂の流動位置を確認する、樹脂流動確認工程を有し、前記樹脂の流動が不足の場合には、再度、前記注入工程から繰り返して行うこと
を含む、全固体電池の製造方法。 In the method for producing an all-solid battery in which a resin coating layer is formed by insert molding on the side surface of an electrode body in which a plurality of electrode foils are laminated,
Injected in a vacuum environment with a resin side of the electrode body, injection step, then
After implantation process, is diffused at atmospheric pressure the injected the resin between laminated electrode foil, a diffusion process,
Have, and
Before the injection step, a resin flow confirmation member is disposed at an end of the electrode body, and the injection step is performed by injecting the resin until the resin reaches the resin flow confirmation member. Or
After the diffusion step, there is a resin flow confirmation step in which the flow position of the resin is confirmed by a heat monitoring device, and when the resin flow is insufficient, it is repeated from the injection step again.
A method for producing an all-solid battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015090827A JP6394480B2 (en) | 2015-04-27 | 2015-04-27 | Manufacturing method of all solid state battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015090827A JP6394480B2 (en) | 2015-04-27 | 2015-04-27 | Manufacturing method of all solid state battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016207582A JP2016207582A (en) | 2016-12-08 |
JP6394480B2 true JP6394480B2 (en) | 2018-09-26 |
Family
ID=57490372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015090827A Active JP6394480B2 (en) | 2015-04-27 | 2015-04-27 | Manufacturing method of all solid state battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6394480B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210032689A (en) | 2019-09-17 | 2021-03-25 | 현대자동차주식회사 | A cathode for all-solid state battery for preventing a short and A manufacturing method of the same |
WO2021235718A1 (en) * | 2020-05-20 | 2021-11-25 | 주식회사 엘지에너지솔루션 | System and method for ultrasonic inspection |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7065323B2 (en) * | 2017-02-09 | 2022-05-12 | パナソニックIpマネジメント株式会社 | All-solid-state battery and its manufacturing method |
JP6916151B2 (en) * | 2018-06-26 | 2021-08-11 | トヨタ自動車株式会社 | Manufacturing method of all-solid-state battery |
JP7017484B2 (en) * | 2018-08-10 | 2022-02-08 | トヨタ自動車株式会社 | Manufacturing method of all-solid-state battery |
JP2024064694A (en) * | 2022-10-28 | 2024-05-14 | 日立造船株式会社 | Manufacturing method for all-solid-state batteries |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5114950B2 (en) * | 2006-02-13 | 2013-01-09 | 日産自動車株式会社 | Battery module, assembled battery, and vehicle equipped with these batteries |
JP4741559B2 (en) * | 2006-08-31 | 2011-08-03 | 株式会社国際基盤材料研究所 | Secondary battery and secondary battery unit |
JP2015050004A (en) * | 2013-08-30 | 2015-03-16 | トヨタ自動車株式会社 | Method of manufacturing all-solid-state battery |
-
2015
- 2015-04-27 JP JP2015090827A patent/JP6394480B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210032689A (en) | 2019-09-17 | 2021-03-25 | 현대자동차주식회사 | A cathode for all-solid state battery for preventing a short and A manufacturing method of the same |
WO2021235718A1 (en) * | 2020-05-20 | 2021-11-25 | 주식회사 엘지에너지솔루션 | System and method for ultrasonic inspection |
Also Published As
Publication number | Publication date |
---|---|
JP2016207582A (en) | 2016-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6394480B2 (en) | Manufacturing method of all solid state battery | |
JP6673249B2 (en) | Manufacturing method of laminated all solid state battery | |
JP6975392B2 (en) | Electrode body for all-solid-state battery and its manufacturing method | |
CN103443994B (en) | The manufacture method of solid state battery and solid state battery | |
JP5382130B2 (en) | Method for producing solid electrolyte battery | |
JP5585622B2 (en) | Bipolar battery manufacturing method | |
EP2003723A1 (en) | Stacked cell and method for manufacturing same | |
CN107683543A (en) | All-solid secondary battery and manufacturing method thereof | |
CN111095605B (en) | Separator for lithium ion battery | |
JP2015162353A (en) | Method for manufacturing all-solid battery | |
JP2011204510A (en) | All solid lithium ion secondary battery | |
WO2015147122A1 (en) | All-solid-state secondary battery | |
JP2002015773A (en) | Cell and its manufacturing method | |
JP2022177249A (en) | battery | |
WO2013100001A1 (en) | All-solid cell and method for manufacturing same | |
WO2022264583A1 (en) | Method for manufacturing power storage device | |
JP7017484B2 (en) | Manufacturing method of all-solid-state battery | |
JP2004207253A (en) | Non-aqueous electrolyte rechargeable battery | |
JP2015032495A (en) | Manufacturing method of solid-state battery | |
JP5402853B2 (en) | Method for producing power generation element of solid battery | |
WO2020004453A1 (en) | Negative electrode for lithium ion battery, lithium ion battery using said negative electrode, and method for producing lithium ion battery | |
KR102550029B1 (en) | Stacked electrode body, resin-fixed stacked electrode body, and all-solid-state battery | |
JP2020004663A5 (en) | ||
EP4142004A1 (en) | Battery and battery manufacturing method | |
JP2004193006A (en) | Manufacturing method of layer-built cell, battery pack, and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180813 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6394480 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |