以下に、本願発明を具体化した実施形態を、電気推進船に搭載される発電機構に適用した場合の図面に基づいて説明する。
まず始めに、船舶の概要について説明する。図1〜図3に示すように、本実施形態の船舶1は、船体2と、船体2の船尾側に設けられたキャビン3(船橋)と、キャビン3の後方に配置されたファンネル4(煙突)と、船体2の後方下部に設けられた一対のプロペラ5及び舵6とを備えている。この場合、船尾側の船底7に一対のスケグ8が一体形成されている。各スケグ8には、プロペラ5を回転駆動させる推進軸9が軸支される。各スケグ8は、船体2の左右幅方向を分割する船体中心線CL(図3参照)を基準にして左右対称状に形成されている。すなわち、第1実施形態では、船体2の船尾形状としてツインスケグが採用されている。
船体2内の船首側及び中央部には船倉10が設けられており、船体2内の船尾側には機関室11が設けられている。機関室11には、プロペラ5の駆動源なる推進機構12が船体中心線CLを挟んだ左右に振り分けて一対配置されている。各推進機構12から推進軸9に伝達された回転動力にて、各プロペラ5は回転駆動する。機関室11には、各推進機構12等への電力供給を制御する電力制御盤13と、電力制御盤13を通じて供給する電力を発生させる複数基(本実施形態では3基)の発電機構14とが設けられている。機関室11の内部は、甲板及び内底板にて上下に仕切られている。第1実施形態の推進機構12、電力制御板13、及び発電機構14、機関室11最下段の内底板上に設置されている。なお、詳細は図示していないが、船倉10は複数の区画に分割されている。
図2及び図3に示すように、推進機構12は、プロペラ5の駆動源である推進モータ装置15(実施形態ではデュアルフューエルエンジン)と、推進モータ装置15の動力を推進軸9に伝達する減速機22とを組み合わせたものである。また、発電機構14は、供給する電力を発電する発電機23と、発電機23の駆動源である中速エンジン装置21とを組み合わせたものである。ここで、「中速」のエンジンとは、毎分500〜1000回転程度の回転速度で駆動するものを意味している。ちなみに、「低速」のエンジンは毎分500回転以下の回転速度で駆動し、「高速」のエンジンは毎分1000回転以上の回転速度で駆動する。実施形態のエンジン装置21は中速の範囲内(毎分700〜750回転程度)で定速駆動するように構成されている。
エンジン装置21の後面側からエンジン出力軸24の後端側が突出している。エンジン出力軸24の後端側に発電機23が動力伝達可能に連結されている。発電機構14では、エンジン装置21により発電機23を回転駆動することで、発電機23が発電電力を電力制御盤13に送電する。電力制御盤13は、各発電機23から送電された電力の一部を、推進モータ装置15に供給し、推進モータ装置15を回転駆動させる。また、電力制御盤13は、各発電機23による発電電力を、推進モータ装置15以外の船体2内の電気系統にも供給する。
推進モータ装置15は、電力制御盤13からの電力に基づいて、回転駆動する推進モータ装置15の動力は、モータ出力軸16の後端側から減速機22を介して、推進軸9に伝達される。推進モータ装置15の動力の一部は、減速機22によって減速されて、推進軸9に伝達される。減速機22からの減速動力にてプロペラ5が回転駆動する。なお、プロペラ5には、プロペラ羽根の翼角変更によって船速を調節可能な可変ピッチプロペラが採用されている。
次に、上記船舶1における発電機構14として用いられるエンジン装置であるガスエンジン装置の構成について、図3〜図9を参照して説明する。ガスエンジン装置21(以下、単に「エンジン装置21」と呼ぶ)は、天然ガス等の燃料ガスを空気に混合させて燃焼させる予混合燃焼方式により駆動する。図4は、エンジン装置21における吸排気系統を示す図であり、図5は、エンジン装置21におけるシリンダヘッド内の模式的に表した概略図であり、図6は、エンジン装置21における制御ブロック図である。
図3に示すように、エンジン装置21は、船舶2に設けられたガス燃料タンク32と気化装置34及びガスバルブユニット35を介して接続しており、燃料ガス供給路を構成している。ガス燃料タンク32は、気体である燃料ガスを液化させた液化燃料ガスを貯蔵している。気化装置34は、ガス燃料タンク32の液化燃料(燃料ガス)を気化させ、ガスバルブユニット35を介してエンジン装置21に送る。なお、ガスバルブユニット35では、エンジン装置21から戻る一部の燃料ガスを回収しており、ユニット内のガス圧を検出することで、ガス漏れなどを確認している。
エンジン装置21は、主燃料ガス流路30及び副燃料ガス流路31によりガスバルブユニット35と接続している。主燃料ガス流路30は、主燃料ガス圧力調整器110を具備しており、主燃料ガス圧力調整器110で、ガスバルブユニット35からエンジン装置21に供給する燃料ガスのガス圧を調整している。主燃料ガス流路30は、主燃料ガス圧力調整器110を具備しており、主燃料ガス圧力調整器110で、後述のガスインジェクタ98(図4参照)より主室M(図6参照)に供給する燃料ガスのガス圧を調整している。また、副燃料ガス流路31は、副燃料ガス圧力調整器111を具備しており、副燃料ガス圧力調整器110で、後述のチェックバルブ89(図6参照)より副室S(図6参照)に供給する燃料ガスのガス圧を調整している。
エンジン装置21は、図4に示すように、後述のシリンダブロック25に複数の気筒(シリンダ)36(本実施形態では6気筒)を直列に並べた構成を有している。各気筒36は、シリンダブロック25内に構成される吸気マニホールド(吸気流路)67と吸気ポート37を介して連通している。各気筒36は、後述のシリンダヘッド26上方に配置される排気マニホールド(排気流路)44と排気ポート38を介して連通している。各気筒36における吸気ポート37に、ガスインジェクタ98を配置する。
従って、吸気マニホールド67からの空気が、吸気ポート37を介して各気筒36に供給される一方、各気筒36からの排ガスが、排気ポート38を介して排気マニホールド44に吐出される。ガスインジェクタ98から燃料ガスを吸気ポート37に供給し、吸気マニホールド67からの空気に燃料ガスを混合して、各気筒36に予混合ガスを供給する。また、吸気マニホールド67には、吸気マニホールド67内の空気圧力を測定する吸気マニホールド圧力センサ39を配置している。
なお、本実施形態では、吸気マニホールド67における空気量を吸気マニホールド圧力によるものとするが、これに限定されるものではない。例えば、吸気マニホールド67に供給される空気流量をマスフローメータ又はオリフィス流量計によって検知し、検知した空気流量を吸気マニホールド67の空気量としても良い。
排気マニホールド44の排気出口側に、過給機49のタービン49aの排気入口を接続しており、吸気マニホールド67の空気入口側(新気入口側)に、インタークーラ51の空気吐出口(新気出口)を接続している。インタークーラ51の空気吸入口(新気入口)に、過給機49のコンプレッサ49bの空気吐出口(新気出口)を接続している。コンプレッサ49b及びインタークーラ51の間に、メインスロットル弁V1を配置しており、メインスロットル弁V1の弁開度を調節して、吸気マニホールド67に供給する空気流量を調整する。
コンプレッサ49bをバイパスさせる給気バイパス流路17が、コンプレッサ49bの空気吸入口(新気入口)側とインタークーラ51の空気吸入口側とを連結している。すなわち、給気バイパス流路17は、コンプレッサ49bの空気吸入口よりも上流側で外気に解放される一方で、インタークーラ51とメインスロットル弁V1との接続部分に接続される。この給気バイパス流路17上に、給気バイパス弁V2を配置しており、給気バイパス弁V2の弁開度を調節して、メインスロットル弁V1下流側から給気バイパス流路17を介して外気へ流れる空気流量を調整する。
上記のように、エンジン装置21の吸気系統は、吸気マニホールド67と、インタークーラ51と、メインスロットル弁V1と、コンプレッサ49bと、給気バイパス弁V2とを具備している。エンジン装置21の吸気系統では、吸気マニホールド67から空気の流れの上流側に向かって、インタークーラ51と、メインスロットル弁V1と、コンプレッサ49bと、が順に配置されている。給気バイパス弁V2は、コンプレッサ49bをバイパスするバイパス経路である給気バイパス流路17上に設けられている。また、エンジン装置21の排気系統は、排気マニホールド44と、タービン49aとを具備しており、排気マニホールド44から排気ガス流れの下流側に向かって、タービン49aが配置されている。
エンジン装置21は、図6に示すように、シリンダブロック25内に気筒36を設置しており、気筒36内にピストン78を摺動可能に収納している。シリンダブロック25上部にシリンダヘッド26を配置し、シリンダヘッド26には、着火装置79を挿入しており、着火装置79の外周側に吸気弁80及び排気バルブ81を摺動可能に設置している。そして、着火装置79内における、着火装置79下端側に副室Sを形成している。また、着火装置79に、スパークプラグ82及びチェックバルブ89を、各先端が副室Sの上方に位置するように挿入している。気筒36内には、シリンダブロック25下側とピストン78頂部で囲まれる主室Mを形成する。
すなわち、シリンダブロック25内には、円筒形状の気筒36が挿入されており、気筒36内を上下方向にピストン78が往復動することで、気筒36下側のエンジン出力軸24を回転させる。シリンダブロック25上のシリンダヘッド26それぞれには、スパークプラグ82及びチェックバルブ89を装填している着火装置79が、気筒36に先端を向けて挿入されている。この着火装置79は、気筒36の上端面の中心位置に先端を配置しており、チェックバルブ89が副燃料ガス流路31と接続されている。従って、エンジン装置21が駆動するとき、着火装置79の副室Sでチェックバルブ89から噴射される燃料ガスをスパークプラグ82の火花で引火させ、気筒36内の主室Mの中心位置に着火火炎(燃焼ガス)を発生させる。
吸気ポート37には、ガスインジェクタ89を配置しており、吸気ポート37内の空気流路にガスインジェクタ89のガス噴射ノズルが挿入されている。また、ガスインジェクタ89が主燃料ガス流路30と接続されている。吸気ポート37内の空気流路では、ガス噴射ノズル103から噴射された燃料ガスが、吸気マニホールド67から流入する空気に混合される。従って、吸気弁80を開いたとき、吸気マニホールド67からの空気にガスインジェクタ89からの燃料ガスを混合した予混合ガスを、主室Mに流入させる。
各シリンダヘッド26において、吸気弁80を上下動させることで、吸気ポート37を開閉し、吸気弁80を上下動させることで、排気ポート38を開閉する。すなわち、吸気弁80が開くことで、吸気ポート37を通じて吸気マニホールド67からの空気を気筒36内の主燃焼室に吸気させる一方で、排気弁81が開くことで、排気ポート38を通じて気筒36内の主燃焼室での燃焼ガス(排気ガス)を排気マニホールド44へ排気させる。従って、エンジン装置21が駆動するとき、着火装置79による着火火炎(燃焼ガス)が発生することで、吸気弁80を介して気筒36内の主室Mに供給される予混合ガスが反応し、予混合燃焼を発生させる。
すなわち、エンジン装置21が駆動しているとき、ガスインジェクタ98が燃料ガスを吸気ポート37内に噴射する。そのため、吸気ポート37内では、ガスインジェクタ98から噴射された燃料ガスが、吸気マニホールド67から流入する空気に混合される。そして、この空気に燃料ガス混合させた混合ガスは、吸気ポート37を通じて吸気弁80に向かって流れることとなる。このとき、吸気弁80を開くことで、気筒36内の主室Mに混合ガスを吸気させる。そして、吸気弁80を閉じるとともにピストン78をスライドさせて主室M内の混合ガスを圧縮させた後、着火装置79により着火火炎を主室M内に噴出させて、主室M内で混合ガスを燃焼させる。その後、排気弁81を開くことで、主室M内の燃焼ガス(排ガス)をシリンダヘッド26内の排気ポート38を通じて排気マニホールド44に排気する。
主燃料ガス流路30には、流路内の燃料ガスのガス圧力及びガス温度を測定する主燃料ガス圧センサ112及び主燃料ガス温度センサ113が設置されている。主燃料ガス圧センサ112の測定結果に基づいて、ガスインジェクタ98から吸気ポート37に供給される燃料ガスの流量が計測される。また、主燃料ガス圧センサ113により、ガスインジェクタ89から供給する燃料ガスの温度が測定される。副燃料ガス流路31には、流路内の燃料ガスのガス圧力を測定する副燃料ガス圧センサ114が設置されており、副燃料ガス圧センサ114の測定結果に基づいて、チェックバルブ89に供給される燃料ガスの流量が計測される。
エンジン装置21は、図6に示すように、エンジン装置21の各部を制御するエンジン制御装置73を有し、気筒36毎に、スパークプラグ82及びガスインジェクタ98を設けている。エンジン制御装置73は、スパークプラグ82及びガスインジェクタ98に制御信号を与えて、スパークプラグ82による点火、及びガスインジェクタ98によるガス燃料供給を制御する。
エンジン制御装置73は、主燃料ガス圧力調整器110及び副燃料ガス圧力調整器111を制御して、主燃料ガス流路30及び副燃料ガス流路31から供給する燃料ガスのガス圧力(ガス流量)を調整する。エンジン制御装置73は、メインスロットル弁V1及び給気バイパス弁V2それぞれに制御信号を与えて、それぞれ弁開度を調節し、吸気マニホールド67における空気圧力(吸気マニホールド圧力)を調整する。
エンジン制御装置73は、ワットトランスデューサやトルクセンサなどの負荷測定器(負荷検出センサ)19による測定信号を受け、エンジン装置21にかかる負荷を算出する。エンジン制御装置73は、クランク軸24の回転数を測定するパルスセンサなどのエンジン回転センサ20による測定信号を受け、エンジン装置21のエンジン回転数を検知する。エンジン制御装置73は、吸気マニホールド67における空気圧力を測定する吸気マニホールド圧力センサ(圧力センサ)39より測定信号を受け、吸気マニホールド圧力を検知する。エンジン制御装置73は、潤滑油温度センサ53より測定信号を受け、エンジン装置21内を循環させる潤滑油の潤滑油温度Tjを検知する。
エンジン制御装置73は、主室燃料ガス圧力Pmを検知する主燃料ガス圧センサ112、主燃料ガス温度Tmを検知する主燃料ガス温度センサ113、及び副室燃料流量としての副燃料ガス圧力Psを検知する副燃料ガス圧センサ114から測定信号を受ける。エンジン制御装置73は、主燃料ガス圧センサ112及び主燃料ガス温度センサ113それぞれからの測定信号に基づいて、主燃料ガス圧力調整器110を駆動制御し、各吸気ポート37のガスインジェクタ98に供給する主燃料ガス流量を調整する。エンジン制御装置73は、副燃料ガス圧センサ114からの測定信号に基づいて、副燃料ガス圧力調整器111を駆動制御し、各着火装置79のチェックバルブ89に供給する副燃料ガス流量を調整する。
エンジン制御装置73は、ガスインジェクタ98における弁開度を調節して、各気筒36の主室M内に供給する燃料ガス流量を設定する。そして、エンジン制御装置73は、スパークプラグ82の点火動作を制御して、各気筒36における燃焼を所定タイミングで発生させる。すなわち、ガスインジェクタ98が、弁開度に応じた流量の燃料ガスを吸気ポート37に供給して、吸気マニホールド67からの空気に混合して、予混合燃料を気筒36に供給させる。そして、各気筒36の噴射タイミングに合わせて、スパークプラグ82により、着火装置79における副室S内にチェックバルブ89から供給される副燃料ガスを着火させる。この着火装置79で発生した燃焼ガスが主室M内に噴射され、予混合ガスを供給した気筒36内で発火させる。
次に、ガスエンジン装置21(エンジン装置21)の外観構成について、図7〜図9を参照して説明する。以下の説明において、発電機23との接続側を後側として、エンジン装置21の構成における前後左右の位置関係を指定するものとする。
エンジン装置21は、図7及び図8に示すように、ベース台27上に据置されるシリンダブロック25にエンジン出力軸24を備え、複数のヘッドカバー40が前後一列に配列されたシリンダヘッド26をシリンダブロック25上に搭載している。エンジン装置21は、シリンダヘッド26の右側面に、主燃料ガス流路30の一部である主燃料ガス配管41をヘッドカバー40列と平行に延設する一方、シリンダブロック25の左側面に、副燃料ガス流路31の一部である副燃料ガス配管42をヘッドカバー40列と平行に延設している。
主燃料ガス配管41の上側において、排気マニホールド(排気流路)44がヘッドカバー40列と平行に延設されており、この排気マニホールド44の外周が遮熱カバー45で覆われている。遮熱カバー45は、排気マニホールド44の外周面及び後端を覆うように構成されている。この遮熱カバー45と排気マニホールド44との間に形成される空気層が断熱層として機能するため、排気マニホールド44からの排熱による周囲の影響を低減させる。また、シリンダブロック25の左側面に、副燃料ガス配管42を覆うサイドカバー43を配置している。
図7〜図9に示すように、排気マニホールド44の前端(排気出口側)は、排気中継管48を介して、過給機49と接続されている。従って、排気マニホールド44を通じて排気される排気ガスが、排気中継管48を介して、過給機49のタービン49aに流入することで、タービン49aが回転して、タービン49aと同軸となるコンプレッサ49bを回転させる。過給機49は、エンジン装置21の前端上側に配置されており、その右側にタービン49aを、その左側にコンプレッサ49bをそれぞれ有する。そして、排気出口管50が、過給機49の右側に配置されるとともに、タービン49aの排気出口と連結し、タービン49aからの排気ガスを排気させる。
過給機49の下側には、過給機49のコンプレッサ49bで圧縮空気を冷却させるインタークーラ51が配置されている。即ち、シリンダブロック25の前端側に、インタークーラ51が設置されるとともに、このインタークーラ51の上部に過給機49が載置される。過給機49の左右中層位置には、コンプレッサ49bの空気吐出口が、後方(シリンダブロック25側)に向かって開口するようにして設けられている。一方、インタークーラ51上面には、上方に向かって開口した空気吸入口が設けられており、この空気吸入口を通じて、コンプレッサ49bから吐出される圧縮空気が、インタークーラ51内部に流入する。そして、コンプレッサ49bの空気吐出口とインタークーラ51の空気吸入口とは、一端が接続されている給気中継管52により連通される。この給気中継管52内部には、メインスロットル弁V1を軸支している。
過給機49は、左右それぞれに振り分けて配置されたコンプレッサ49b及びタービン49aを同軸で軸支し、排気中継管49を通じて排気マニホールド44から導入されるタービン49aの回転に基づき、コンプレッサ49bが回転する。また、過給機49は、新気取り入れ側となるコンプレッサ49bの左側に、導入する外気を除塵する吸気フィルタ63と、吸気フィルタ63とコンプレッサ49bとを接続する新気通路管64とを備える。これにより、タービン49aと同期してコンプレッサ49bが回転することにより、吸気フィルタ63により吸引された外気(空気)は、過給機49を通じてコンプレッサ49bに導入される。そして、コンプレッサ49bは、左側から吸引した空気を圧縮して、後側に設置されている給気中継管52に圧縮空気を吐出する。
給気中継管52は、その上部前方を開口させて、コンプレッサ49b後方の吐出口と接続している一方で、その下側を開口させて、インタークーラ51上面の吸気口と接続している。また、インタークーラ51は、前面の通気路に設けた分岐口において、給気バイパス管66(給気バイパス流路17)の一端と接続しており、インタークーラ51で冷却した圧縮空気の一部を給気バイパス管66に吐出する。給気バイパス管66の他端が、新気通路管64の前面に設けた分岐口に接続して、インタークーラ51で冷却された圧縮空気の一部が、給気バイパス管66を通じて新気通路管64に環流し、給気フィルタ63からの外気と合流する。また、給気バイパス管66は、その中途部に、給気バイパス弁V2を軸支している。
インタークーラ51は、給気中継管52を通じてコンプレッサ49bからの圧縮空気を左側後方から流入させると、給水配管62から給水される冷却水との熱交換作用に基づいて、圧縮空気を冷却させる。インタークーラ51内部において、左室で冷却された圧縮空気は、前方の通気路を流れて右室に導入された後、右室後方に設けられた吐出口を通じて、吸気マニホールド67(図4参照)に吐出される。
また、過給機49のタービン49aは、後方の吸込口を排気中継管48と接続させており、右側の吐出口を排気出口管50と接続させている。これにより、過給機49は、排気中継管48を介して排気マニホールド44から排気ガスをタービン49a内部に導入させて、タービン49aを回転させると同時にコンプレッサ49bを回転させ、排気ガスを排気出口管50から排気する。排気中継管48は、その後方を開口させて、排気マニホールド44の吐出口と接続している一方で、その前方を開口させて、タービン49a後方の吸込口と接続している。
また、エンジン装置21各部の動作を制御するエンジン制御装置73が、支持ステー(支持部材)74を介して、シリンダブロック25の後端面に固定される。シリンダブロック25の後端側には、発電機23と連結して回転させるフライホイール76が設置されており、フライホイール76を覆うフライホイールハウジング76aの上部に、エンジン制御装置73が配置されている。このエンジン制御装置73は、エンジン装置21各部におけるセンサ(圧力センサや温度センサ)と電気的に接続して、エンジン装置21各部の温度データや圧力データ等を収集するとともに、エンジン装置21各部における電磁弁等に信号を与え、エンジン装置21の各種動作(プラグ点火、ガス圧調整、弁開度調整、ガス噴射、冷却水温度調整など)を制御する。
上述したように、本実施形態のエンジン装置21は、過給器49の空気排出口とインタークーラ51入口との接続箇所にメインスロットル弁V1を設けている。また、エンジン装置21は、過給器49の空気流入口とインタークーラ51入口とを結ぶ給気バイパス流路66を備えるとともに、給気バイパス流路66に給気バイパス弁V2を配置している。メインスロットル弁V1と給気バイパス弁V2とを備えた構造とすることで、吸気マニホールド67の空気流量を高精度に制御できるため、負荷変動に対しても、応答性よく空気流量を制御できる。給気バイパス流路66が過給器49のコンプレッサ49bと吸気マニホールド67に対する緩衝流路として機能するため、給気バイパス弁V2の開度を制御することで、負荷の増減にあわせて最適に空気流量を設定する応答速度を速めることができる。
エンジン制御装置73は、エンジン負荷が増加したときに、給気バイパス弁V2の開度制御を実行することで、吸気マニホールド67に供給する空気流量を設定する。負荷が高いときに、バイパス弁制御を実行することで、メインスロットル弁V1を通過させる空気流量を最適に制御できるため、吸気マニホールド67に供給する空気流量の不足を防止できる。これにより、負荷の急上昇に対しても応答性よく空気流量を制御できるため、適正な空燃比を提供することが可能となり、エンジン装置21の運転を安定なものとできる。
エンジン制御装置73は、エンジン負荷が減少したときに、給気バイパス弁V2の開度制御を実行することで、吸気マニホールド67に供給する空気流量を設定する。低負荷時においてメインスロットル弁V1のみで制御する場合、過給機49のコンプレッサ49b出口側で急激に空気流量が減少することとなり、コンプレッサ49b内の空気が逆行するサージングが生じるが、給気バイパス弁V2も同時に制御することで、コンプレッサ49b出入口の空気圧力を安定させることができ、サージングの発生を防止できる。
また、本実施形態のエンジン装置21において、エンジン制御装置73は、エンジン負荷が低負荷域となるとき、メインスロットル弁V1に対して開度制御を実行する。一方、エンジン制御装置73は、エンジン負荷が中高負荷域となるとき、メインスロットル弁V1を所定開度とするとともに、給気バイパス弁V2に対して開度制御を実行する。負荷変動による影響の大きい中高負荷領域において、応答性の良いバイパスバルブ制御を実行するため、負荷変動に対して空気流量の過不足を抑え、エンジン装置21を円滑に運転できる。
上記エンジン制御装置73による吸気マニホールド圧力制御の詳細について、図10のフローチャートを参照して以下に説明する。
エンジン制御装置73は、図10に示すように、負荷測定器(負荷検出センサ)19による測定信号を受けると(STEP1)、給気バイパス弁V2の開度制御(バイパス弁制御)を実行しているか否かを確認する(STEP2)。バイパス弁制御を実行していない場合(STEP2でNo)、エンジン制御装置73は、STEP1で受けた測定信号に基づいて、エンジン負荷Acを所定負荷(第1閾値)Ac1と比較する(STEP3)。一方、バイパス弁制御を実行している場合(STEP2でYes)、エンジン制御装置73は、STEP1で受けた測定信号に基づいて、エンジン負荷Acを所定負荷(第2閾値)Ac2(0<Ac2<Ac1)と比較する(STEP4)。
STEP3において、エンジン負荷Acが所定負荷Ac1以下の場合(No)、エンジン制御装置73は、エンジン負荷Acが低負荷域であるものとし、メインスロットル弁V1の弁開度に対してフィードバック制御(PID制御)を行う(STEP5)。このとき、エンジン制御装置73は、エンジン負荷に応じた吸気マニホールド圧力の目標値(目標圧力)を設定する。そして、エンジン制御装置73は、圧力センサ39からの測定信号を受け、吸気マニホールド圧力の測定値(測定圧力)を確認し、目標圧力との差分を求める。これにより、エンジン制御装置73は、目標圧力と測定圧力の差分値に基づき、メインスロットル弁V1の弁開度のPID制御を実行し、吸気マニホールド67の空気圧力を目標圧力に近づける。以下、メインスロットル弁V1の開度制御を「メイン弁制御」と呼ぶ。
一方、STEP3において、エンジン負荷Acが所定負荷Ac1を超えた場合(Yes)、エンジン制御装置73は、エンジン負荷Acが中高負荷域であるものとし、メインスロットル弁V1の弁開度を所定開度に固定する(STEP6)。そして、エンジン制御装置73は、給気バイパス弁V2の弁開度に対してフィードバック制御(PID制御)を行う(STEP7)。このとき、エンジン制御装置73は、メイン弁制御の場合と同様、圧力センサ39からの測定信号を受け、目標圧力と測定圧力の差分値に基づき、給気バイパス弁V2の弁開度のPID制御を実行し、吸気マニホールド67の空気圧力を目標圧力に近づける。
すなわち、エンジン負荷Acが上昇している場合において、所定負荷Ac1を超えたときには、エンジン制御装置73は、吸気マニホールド圧力の圧力制御として、メイン弁制御からバイパス弁制御に切り換える。また、本実施形態では、負荷上昇時に所定負荷Ac1を超えたとき、STEP4において、エンジン制御装置73は、メインスロットル弁V1を全開とし、給気バイパス弁V2の開度制御により、給気バイパス流路17の空気流量を制御して、給気マニホールド圧力を調整する。負荷変動による影響の大きい中高負荷領域において、応答性の良いバイパス弁制御を実行するため、負荷変動に対して空気流量の過不足を抑え、最適な空燃比を設定できる。
STEP4において、エンジン負荷Acが所定負荷Ac2以上の場合(No)、エンジン制御装置73は、エンジン負荷Acが中高負荷域であるものとし、給気バイパス弁V2の弁開度に対するフィードバック制御(バイパス弁制御)を継続させる(STEP8)。一方、STEP4において、エンジン負荷Acが所定負荷Ac2を下回った場合(Yes)、エンジン制御装置73は、エンジン負荷Acが低負荷域であるものとし、給気バイパス弁V2の弁開度を所定開度に固定する(STEP9)。そして、エンジン制御装置73は、メインスロットル弁V1の弁開度に対してフィードバック制御(メイン弁制御)を行う(STEP10)。
すなわち、エンジン負荷Acが下降している場合において、所定負荷Ac1より低い所定負荷Ac2を下回ったときには、エンジン制御装置73は、吸気マニホールド圧力の圧力制御として、メイン弁制御からバイパス弁制御に切り換える。このように、吸気マニホールド圧力の圧力制御の切換について、負荷上昇時と負荷下降時それぞれの閾値にヒステリシスを与えることで、切換動作を円滑に実行できる。
図11に示すように、本実施形態のエンジン装置21において、エンジン制御装置73は、エンジン負荷Acが増加するとき、エンジン負荷Acが第1閾値Ac1より低い場合に、メインスロットル弁V1の開度制御を実行しており、エンジン負荷Acが第1閾値Ac1を超えると、メインスロットル弁の開度制御から給気バイパス弁V2の開度制御に切り換える。一方、エンジン制御装置73は、エンジン負荷Acが減少するとき、エンジン負荷Acが第1閾値Ac1より低い第2閾値Ac2以上である場合は、給気バイパス弁V2の開度制御を実行しており、エンジン負荷Acが第2閾値Ac2を下回ると、給気バイパス弁V2の開度制御からメインスロットル弁V1の開度制御に切り換える。
メインスロットル弁V1と給気バイパス弁V2とを備えた構造とすることで、吸気マニホールド67の空気流量を高精度に制御できるため、負荷変動に対しても、応答性よく空気流量を制御できる。また、負荷変動による影響の大きい高負荷領域において、応答性の良いバイパス弁制御を実行するため、負荷変動に対して空気流量の過不足が少なく、安定して運転できる。更に、制御切換のための閾値にヒステリシスを設けることにより、制御切換を円滑に実行できる。
次に、エンジン制御装置73による燃料噴射量(主燃料ガス噴射量)制御について、以下に説明する。エンジン制御装置73は、図12に示すように、燃料噴射量マップM1を記憶しており、この燃料噴射量マップM1に基づいて、ガスインジェクタ42より噴射させる主燃料ガス流量を決定する。なお、燃料噴射量マップM1は、エンジン回転数Neとエンジン負荷Acと燃料流量としての指令燃料噴射量Qとの相関を表すものであって、エンジン回転数Ne及びエンジン負荷Acに対して指令燃料噴射量Qを決定するものである。
エンジン制御装置73は、負荷測定器(負荷検出センサ)19で測定されたエンジン負荷Acと、エンジン回転センサ20で測定されたエンジン回転数Neとを受けると、燃料噴射量マップM1を参照して、指令燃料噴射量Qを決定する。そして、エンジン制御装置73は、決定した指令燃料噴射量Qに対して、主室燃料ガス圧力Pmによる第1補正量ΔQp、主燃料ガス温度Ptによる第2補正量ΔQt、又は潤滑油温度Tjによる第3補正量ΔQtjによる補正演算を実行し、補正噴射量Q1を算出する。従って、ガスインジェクタ42から噴射される主燃料ガス流量が、エンジン制御装置73により決定された補正噴射量Q1となるように流量制御される。
エンジン装置21は、主燃料ガス圧力Pmが上昇すると、主燃料ガスの密度が上昇し、所定エンジン回転数Neで同じエンジン負荷Acに対応するための必要な燃料噴射量が減少する。そのため、エンジン制御装置73は、主燃料ガス圧センサ112で測定された主燃料ガス圧力Pmを受けると、上記補正噴射量Q1算出のための補正演算において、主燃料ガス圧力Pmの上昇に比例させた第一補正量ΔQpによって指令燃料噴射量Qを減少させて、補正噴射量Q1を算出する。すなわち、第一補正量ΔQpは、主燃料ガス圧力Pmの上昇に比例して減少する補正量である。
エンジン装置21は、主燃料ガス温度Tmが上昇すると、主燃料ガスの密度が低下し、所定エンジン回転数Neで同じエンジン負荷Acに対応するための必要な燃料噴射量が増加する。そのため、エンジン制御装置73は、主燃料ガス温度センサ113で測定された主燃料ガス温度Tmを受けると、上記補正噴射量Q1算出のための補正演算において、主燃料ガス温度Ptの上昇に比例させた第二補正量ΔQtによって指令燃料噴射量Qを増加させて、補正噴射量Q1を算出する。つまり、第二補正量ΔQtは、主室燃料ガス温度Ptの上昇に比例して増加する補正量である。
エンジン装置21は、潤滑油温度Tjが上昇すると、潤滑油の粘度が低下して、所定エンジン回転数Neで同じエンジン負荷Acに対応するための必要な燃料噴射量が減少する。そのため、エンジン制御装置73は、潤滑油温度センサ115で測定された潤滑油温度Tjを受けると、上記補正噴射量Q1算出のための補正演算において、潤滑油温度Tjの上昇に比例させた第三補正量ΔQtjによって指令燃料噴射量Qを減少させて、補正噴射量Q1を算出する。つまり、第三補正量ΔQtjは、潤滑油温度Tjの上昇に比例して減少する補正量である。
エンジン制御装置73は、上述のメイン弁制御又はバイパス弁制御を実行する際に、エンジン負荷に応じた吸気マニホールド圧力の目標値(目標圧力)Pimを設定する。このとき、エンジン制御装置73は、記憶している目標吸気マニホールド圧力マップM2を参照し、目標圧力Pimを決定する。目標吸気マニホールド圧力マップM2は、エンジン回転数Neとエンジン負荷Acと目標圧力Pimとの相関を表すものであって、エンジン回転数Ne及びエンジン負荷Acに対して目標圧力Pimを決定するものである。
また、エンジン制御装置73は、図13に示すように、決定した燃料噴射量以上の燃料噴射量が必要とされる場合に、目標吸気マニホールド圧力マップM2の記憶内容を書き換える。すなわち、エンジン制御装置73は、負荷測定器19で測定されたエンジン負荷Acと、エンジン回転センサ20で測定されたエンジン回転数Neとにより、ガスインジェクタ98からの燃料噴射量が不足しているか否かを判定する(STEP101)。そして、ガスインジェクタ98からの燃料噴射量が不足していると判定した場合(STEP101でYes)、エンジン制御装置73は、目標吸気マニホールド圧力マップM2における目標圧力Pimが小さくなるように補正して(書き換えて)記憶する(STEP102)。
ガスインジェクタ98からの燃料噴射量が設定した燃料噴射量に対して多く必要な場合とは、例えば、設定した燃料噴射量ではエンジン負荷Acに対して目標エンジン回転数Nemに到達しない、或いは、所定のエンジン回転数Neと所定のエンジン負荷Acにおいて、燃料噴射量マップによって算出された燃料噴射量Qよりも多くの燃料噴射量が必要とされる等の場合である。
このような場合に、目標吸気マニホールド圧力マップM2における目標圧力Pimが小さくなるように、目標吸気マニホールド圧力マップM2内の記憶要素を書き換える。従って、燃料噴射量不足となった場合でも、所定のエンジン回転数Neと所定のエンジン負荷Acにおける吸気マニホールド圧力を低下させて、必要な燃焼効果が得られる空燃比とできる。すなわち、エンジン装置21に組成の異なる燃料ガスが供給されると、組成の異なる燃料ガスの発熱量が低いため、通常よりも燃料噴射量が多く必要となる。このとき、目標圧力Pimが小さくなるように補正することによって、適正な空気過剰率を実現し、燃料消費の悪化を防止できる。
また、エンジン制御装置78は、図14に示すように、目標吸気マニホールド圧力マップM2に基づいて決定した目標圧力Pimを、潤滑油温度Tjに基づく補正量ΔPtjにより補正演算を実行し、補正目標圧力Pim1を算出する。従って、エンジン制御装置78は、圧力センサ39からの測定圧力と補正目標圧力Pim1との差分により、メインスロットル弁V1又は給気バイパス弁V2の弁開度に対してPID制御を実行する。
エンジン装置21は、潤滑油温度Tjが上昇すると、冷態(潤滑油温度Tjが低下している状態)では、空気過剰率がリッチ側にシフトするため、燃焼が不安定となって、調速制御ができなくなってエンジンストールに至るおそれがある。そのため、エンジン制御装置73は、潤滑油温度センサ115で測定された潤滑油温度Tjを受けると、上記補正目標圧力Pim1算出のための補正演算において、潤滑油温度Tjの下降に比例させた補正量ΔPtjによって目標圧力Pimを増加させて、補正目標圧力Pim1を算出する。この補正目標圧力Pim1に基づき吸気マニホールド67の圧力制御を実行することで、冷態時であっても適正な空気過剰率を維持できる。
エンジン制御装置73は、上述のメイン弁制御又はバイパス弁制御を実行する際に、エンジン負荷に応じた吸気マニホールド圧力の目標値(目標圧力)Pimを設定する。このとき、エンジン制御装置73は、記憶している目標吸気マニホールド圧力マップM2を参照し、目標圧力Pimを決定する。目標吸気マニホールド圧力マップM2は、エンジン回転数Neとエンジン負荷Acと目標圧力Pimとの相関を表すものであって、エンジン回転数Ne及びエンジン負荷Acに対して目標圧力Pimを決定するものである。
エンジン制御装置73は、図15に示すように、負荷測定器19で測定されたエンジン負荷Acと、エンジン回転センサ20で測定されたエンジン回転数Neとを受けると、目標副燃料ガス圧マップM3を参照して、目標副燃料ガス圧Psmを決定する。目標副燃料ガス圧マップM3は、エンジン回転数Neとエンジン負荷Acと目標副燃料ガス圧Psmとの相関を表すものであり、エンジン回転数Ne及びエンジン負荷Acに対して目標副燃料ガス圧Psmを決定するものである。
また、エンジン制御装置73は、図15に示すように、決定した燃料噴射量以上の燃料噴射量が必要とされる場合に、目標副燃料ガス圧マップM3の記憶内容を書き換える。すなわち、エンジン制御装置73は、図13のSTEP101と同様、負荷測定器19で測定されたエンジン負荷Acと、エンジン回転センサ20で測定されたエンジン回転数Neとにより、ガスインジェクタ98からの燃料噴射量が不足しているか否かを判定する(STEP201)。そして、ガスインジェクタ98からの燃料噴射量が不足していると判定した場合(STEP201でYes)、エンジン制御装置73は、目標副燃料ガス圧マップM3における目標副燃料ガス圧Psmが大きくなるように補正して(書き換えて)記憶する(STEP202)。
エンジン制御装置73は、ガスインジェクタ98からの燃料噴射量の不足を判定したときに、目標副燃料ガス圧Psmを増加させるように補正する。すなわち、エンジン装置21に組成の異なる燃料ガスが供給されると、組成の異なる燃料ガスの発熱量が低いため、通常よりも燃料噴射量が多く必要となる。このとき、目標副燃料ガス圧Psmが大きくなるように補正することによって、適正な空燃比を実現し、燃料消費の悪化を防止することができる。
エンジン制御装置73は、低負荷運転状態から高負荷運転状態に遷移する場合に、吸気マニホールド67の吸気マニホールド圧力が目標圧力Pimに達した後に、ガスインジェクタ98からの燃料噴射量を増加させる。以下では、エンジン制御装置73が、負荷投入時において、メインスロットル弁V1に対する開度制御(メイン弁制御)を実行する場合を例に挙げて、制御動作について説明する。図16は、エンジン制御装置73による負荷投入時の制御動作を示すフローチャートであり、図17は、エンジン制御装置73による負荷投入時の制御動作を示すタイムチャートである。
エンジン制御装置73は、図16に示すように、負荷測定器19で測定されたエンジン負荷Acが所定負荷Ac10以下で運転しており、かつ、外部より負荷投入指令を受信し、かつ、指令された負荷投入が所定負荷投入率rAc1以上であるかを確認する(STEP301)。なお、負荷投入率rAcとは、エンジン定格負荷に対する投入された負荷の割合である。また、負荷投入指令は、例えば、アクセルレバーなどによりエンジン制御装置73に入力される。
エンジン制御装置73は、STEP301における条件が成立したことを確認すると(Yes)、メインスロットル弁V1の開度Dを所定開度ΔDだけ増加させる(STEP302)。なお、エンジン制御装置73は、エンジン回転センサ20で測定されたエンジン回転数Neと、外部から入力される負荷投入率rAcとによって、所定開度ΔDを決定する。そして、エンジン制御装置73は、圧力センサ39により測定した吸気マニホールド圧力(測定圧力)Piが目標吸気マニホールド圧力(目標圧力)Pim以上となったか否かを確認する(STEP303)。
STEP303において、測定圧力Piが目標圧力Pim以上となると(Yes)、エンジン制御装置73は、ガスインジェクタ98からの燃料噴射量を増加させて、噴射させる(STEP304)。実際には、負荷が投入されて、エンジン回転数Neが低下することにより、ガスインジェクタ98からの主燃料ガスの噴射量が増加することとなる。なお、測定圧力Piの状態を確認するSTEP303の制御動作に代わりに、STEP302において、メインスロットル弁V1を所定開度ΔDだけ増加させた後に、所定時間だけ待機させるものとしても構わない。
エンジン制御装置73が、図16のフローチャートに従って各部を制御することで、図17のタイムチャートに示すように、アクセルレバーなどにより、外部から負荷投入指令が入力されると、まず、メインスロットル弁V1の開度をΔDだけ増加させる。そして、エンジン制御装置73が、メイン弁制御を実行した後に、吸気マニホールド圧力Piが目標吸気マニホールド圧力Pimに到達したことを確認すると、ガスインジェクタ98からの主燃料ガスの噴射量Qを増加させる。
なお、説明を簡単にするために、負荷投入時にメイン弁制御により吸気マニホールド67の圧力が調整される例をあげて説明したが、吸気マニホールド67の圧力調整のために、メインスロットル弁V1又は給気バイパス弁V2を制御する場合であっても、負荷投入指令を受けてから測定圧力が目標圧力以上となった後に、ガスインジェクタ98からの燃料噴射量を増加させるものとすればよい。
エンジン制御装置73は、負荷を減少したときにメインスロットル弁V1の開度を閉じる場合に、メインスロットル弁V1の開度を段階的に閉じるようにして、メインスロットル弁V1に対する開度制御を実行する。図18は、エンジン制御装置73によるメインスロットル弁V1に対する開度制御動作を示すフローチャートであり、図19は、エンジン制御装置73による負荷低下時の制御動作を示すタイムチャートである。
エンジン制御装置73は、図18に示すように、メイン弁制御時において、メインスロットル弁V1の開度Dを目標開度Dmまで減少させる負荷低下指令を受けると(STEP401)、メインスロットル弁V1の開度Dを目標開度Dmに向けて段階的に減少させる(STEP402)。例えば、メインスロットル弁V1の開度Dを段階的に減少させるとは、開度Dを10%/sの速度で減少させるものとする。なお、本例における10%/sの速度とは、1秒間に全開を100%としたとき10%の開度だけ開度Dを減少させる速さである。また、STEP401において、エンジン制御装置73は、例えば、アクセルレバーによって負荷が軽減され、上記負荷低下指令を受信する。
エンジン制御装置73は、メインスロットル弁V1の開度Dを段階的に減少させると、圧力センサ39により測定した吸気マニホールド圧力(測定圧力)Piが所定圧力値Pi1以下となったか否かを確認する(STEP403)。そして、吸気マンホールド67における測定圧力Piが所定圧力値Pi1まで低下したことを確認すると(STEP403でYes)、エンジン制御装置73は、メインスロットル弁V1に対する開度制御を終了する。
エンジン制御装置73が、図18のフローチャートに従って各部を制御することで、図19のタイムチャートに示すように、アクセルレバーなどにより、外部から負荷低下指令が入力されると、メインスロットル弁V1の開度を段階的に閉じていく。そして、エンジン制御装置73は、吸気マニホールド圧力Piが徐々に低下して、所定圧力値Pi1に到達したことを確認すると、メインスロットル弁V1の開度を固定して、メインスロットル弁V1に対する開度制御を終了する。このように、負荷低下時にメインスロットル弁V1の開度を徐々に閉じることで、コンプレッサ49bにおける空気の通過流量を段階的に減少させるため、過給機49におけるサージングの発生を防止できる。
その他、各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。また、本実施形態のエンジン装置は、船体内の電気系統に電力を供給するための発電装置や陸上の発電施設における駆動源として構成するなど、上述の推進兼発電機構以外の構成においても適用可能である。