[go: up one dir, main page]

JP6385090B2 - Cooling structure of bearing device - Google Patents

Cooling structure of bearing device Download PDF

Info

Publication number
JP6385090B2
JP6385090B2 JP2014059359A JP2014059359A JP6385090B2 JP 6385090 B2 JP6385090 B2 JP 6385090B2 JP 2014059359 A JP2014059359 A JP 2014059359A JP 2014059359 A JP2014059359 A JP 2014059359A JP 6385090 B2 JP6385090 B2 JP 6385090B2
Authority
JP
Japan
Prior art keywords
nozzle hole
spacer
compressed air
rotating
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014059359A
Other languages
Japanese (ja)
Other versions
JP2015183739A (en
Inventor
真人 吉野
真人 吉野
庸平 山本
庸平 山本
裕士 恩田
裕士 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2014059359A priority Critical patent/JP6385090B2/en
Priority to PCT/JP2015/056967 priority patent/WO2015146569A1/en
Priority to CN201580015046.3A priority patent/CN106104036B/en
Priority to EP15768644.5A priority patent/EP3124812B1/en
Priority to TW104108700A priority patent/TWI661137B/en
Publication of JP2015183739A publication Critical patent/JP2015183739A/en
Priority to US15/263,888 priority patent/US10428875B2/en
Application granted granted Critical
Publication of JP6385090B2 publication Critical patent/JP6385090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Turning (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、軸受装置の冷却構造に関し、例えば、工作機械の主軸および主軸に組み込まれる軸受の冷却構造に関する。   The present invention relates to a cooling structure for a bearing device, for example, a main shaft of a machine tool and a cooling structure for a bearing incorporated in the main shaft.

工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇は小さく抑える必要がある。しかしながら最近の工作機械では、加工能率を向上させるため高速化の傾向にあり、主軸を支持する軸受からの発熱も高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだいわゆるモータビルトインタイプが多くなってきており、装置の発熱要因ともなってきている。   In a spindle device of a machine tool, it is necessary to suppress the temperature rise of the device to be small in order to ensure machining accuracy. However, recent machine tools have a tendency to increase the speed in order to improve the processing efficiency, and the heat generated from the bearing supporting the main shaft is also increasing as the speed increases. In addition, so-called motor built-in types in which a driving motor is incorporated in the apparatus are becoming more and more a cause of heat generation of the apparatus.

発熱による軸受の温度上昇は、予圧の増加をもたらす結果となり、主軸の高速化、高精度化を考えると極力抑えたい。主軸装置の温度上昇を抑える方法として、冷却用の圧縮エアを軸受に送り、軸と軸受の冷却を行う方法がある(例えば、特許文献1)。なお、特許文献1では、2つの軸受間の空間に冷風を、回転方向に角度を付けて噴射して旋回流とすることで、軸と軸受の冷却を行っている。   The rise in the temperature of the bearing due to heat generation results in an increase in preload, and we want to suppress it as much as possible in consideration of higher speed and higher accuracy of the spindle. As a method of suppressing the temperature rise of the main shaft device, there is a method of cooling the shaft and the bearing by sending compressed air for cooling to the bearing (for example, Patent Document 1). In Patent Document 1, the shaft and the bearing are cooled by injecting cold air into the space between the two bearings at an angle in the rotational direction to form a swirling flow.

特開2000−161375号公報JP 2000-161375 A

圧縮エアによる冷却では、潤滑等との関係から、圧縮エアを軸や軸受に直接吹き付けるのではなく、外輪間座に設けたノズルから内輪間座に吹き付けて、内輪間座を介して軸と軸受を冷却することが多い。その場合、ノズルから吐出された圧縮エアは、内輪間座の外周面に沿って軸方向に流れつつ内輪間座の熱を奪った後、軸受外部へ排出される。この空冷方式は、圧縮エアの流速が速く、かつ流量が多いほど冷却効果が大きい。   In cooling with compressed air, the compressed air is not blown directly onto the shaft or bearing because of lubrication, etc., but it is blown from the nozzle provided in the outer ring spacer to the inner ring spacer, and the shaft and bearing via the inner ring spacer. Is often cooled. In that case, the compressed air discharged from the nozzle is exhausted to the outside of the bearing after taking heat of the inner ring spacer while flowing in the axial direction along the outer peripheral surface of the inner ring spacer. This air cooling system has a higher cooling effect as the flow rate of compressed air is higher and the flow rate is higher.

しかし、単に出口付近の孔径を絞っただけの単純な形状のノズルでは、ノズル出口でチョークし、流速が音速よりも速くならないため、大きな冷却効果を期待できない。流速を音速より速くするには、ラバール・ノズル等のように孔径が中間部で細くなって微妙に変化した超高速ノズルとする必要があるが、そのような複雑なノズル孔を金属材料からなる外輪間座に切削により加工することは難しい。   However, in the case of a nozzle having a simple shape in which the hole diameter in the vicinity of the outlet is simply squeezed, a large cooling effect cannot be expected because choking is performed at the nozzle outlet and the flow velocity does not become higher than the speed of sound. In order to make the flow velocity faster than the sonic velocity, it is necessary to make a very high speed nozzle with a small change in the hole diameter, such as a Laval nozzle, etc., but such a complicated nozzle hole is made of a metal material. It is difficult to machine the outer ring spacer by cutting.

また、冷却効果を上げるために圧縮エアの流量を多くするとしても、流量は空気圧縮機の容量に依存するため、流量を限りなく多くすることはできない。ノズル孔の圧縮エア流れ方向の中間部に軸受装置外部と通じる空気孔を設けることで、軸受外部から空気を取り込んで冷却用エアの流量を増やすことができるが、前記同様に、ノズル孔と空気孔を金属材料からなる外輪間座に切削により加工することは難しい。   Even if the flow rate of the compressed air is increased in order to increase the cooling effect, the flow rate depends on the capacity of the air compressor, and therefore the flow rate cannot be increased as much as possible. By providing an air hole that communicates with the outside of the bearing device in the middle of the compressed air flow direction of the nozzle hole, air can be taken in from the outside of the bearing and the flow rate of cooling air can be increased. It is difficult to cut a hole in an outer ring spacer made of a metal material by cutting.

さらに、ノズル孔の圧縮エアの流れ方向と直交する横断面形状を非円形とするのが望ましい場合があるが、この場合も、非円形孔のノズルを金属材料からなる外輪間座に切削により加工するのは困難である。   Furthermore, it may be desirable to make the cross-sectional shape perpendicular to the flow direction of the compressed air in the nozzle hole non-circular, but in this case as well, the nozzle of the non-circular hole is processed by cutting into an outer ring spacer made of a metal material. It is difficult to do.

この発明の目的は、圧縮エアにより軸受装置を効率良く冷却することができ、かつ用途に応じた形状のノズル孔を固定側間座に高精度にかつ生産性良く設けることができる軸受装置の冷却構造を提供することである。   An object of the present invention is to cool a bearing device that can efficiently cool the bearing device with compressed air, and can provide a nozzle hole having a shape according to the application in the fixed side spacer with high accuracy and high productivity. Is to provide a structure.

前提構成の軸受装置の冷却構造は、転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および回転側間座が、前記固定部材および回転部材のうちの回転部材に設置される軸受装置に適用される。この軸受装置において、前記固定側間座に、前記回転側間座の間座同士が対向する周面に向けて冷却用の圧縮エアを吐出するノズル孔を設け、このノズル孔が、前記固定側間座の前記周面における前記ノズル孔の出口の中心を通る法線に対して、前記回転側間座の回転方向の前方へ傾斜し、前記固定側間座における前記ノズル孔を構成する部分を他の部分とは別体とし、前記ノズル孔は、前記圧縮エアの流れ方向と直交する横断面および前記圧縮エアの流れ方向に沿う縦断面の一方または両方の断面の形状が一様ではないことを特徴とする。例えば、前記固定側軌道輪が外輪であり、前記回転側軌道輪が内輪である。その場合、前記固定部材および回転部材は、例えばそれぞれハウジングおよび軸である。 The bearing structure cooling structure of the premise includes a stationary spacer and a rotating spacer adjacent to the stationary bearing ring and the rotating bearing ring facing the inside and outside of the rolling bearing, respectively. A bearing device in which a fixed spacer is installed on a fixed member of a fixed member and a rotating member, and the rotating raceway and the rotating spacer are installed on a rotating member of the fixed member and rotating member. Applied. In this bearing device, the fixed side spacer is provided with a nozzle hole for discharging compressed air for cooling toward a circumferential surface where the rotary side spacers face each other, and the nozzle hole is formed on the fixed side spacer. A portion that inclines forward in the rotation direction of the rotary side spacer with respect to a normal passing through the center of the outlet of the nozzle hole on the peripheral surface of the spacer and constitutes the nozzle hole in the fixed side spacer. Separately from other parts, the nozzle hole has a non-uniform shape in one or both of a cross section perpendicular to the flow direction of the compressed air and a vertical cross section along the flow direction of the compressed air. It is characterized by. For example, the stationary side race is an outer race and the rotation side race is an inner race. In this case, the fixing member and the rotating member are, for example, a housing and a shaft, respectively.

この構成によると、固定側間座に設けたノズル孔より冷却用の圧縮エアを回転側間座の周面に向けて吐出することで、まず回転側間座に冷却し、この回転側間座を介して転がり軸受の回転側軌道輪および回転軸を冷却する。固定側間座に設けたノズル孔が回転側間座の回転方向の前方へ傾斜させてあるため、ノズル孔から吐出された圧縮エアは、回転側間座の周面に沿って旋回しながら軸方向に流れて軸受外部へ排出される。圧縮エアが旋回するため、軸方向にまっすぐ流れる場合と比べて、圧縮エアが回転側間座の周面を接している時間が長く、回転側間座を効率良く冷却することができる。このため、軸受装置および回転軸を冷却する効果が高い。   According to this configuration, the compressed air for cooling is discharged from the nozzle hole provided in the fixed side spacer toward the peripheral surface of the rotation side spacer, so that the rotation side spacer is first cooled. The rotating side bearing ring and the rotating shaft of the rolling bearing are cooled via the. Since the nozzle hole provided in the fixed spacer is inclined forward in the rotational direction of the rotating spacer, the compressed air discharged from the nozzle hole is swung along the peripheral surface of the rotating spacer It flows in the direction and is discharged to the outside of the bearing. Since the compressed air swirls, it takes a longer time for the compressed air to contact the peripheral surface of the rotating spacer compared to the case where it flows straight in the axial direction, and the rotating spacer can be efficiently cooled. For this reason, the effect which cools a bearing apparatus and a rotating shaft is high.

固定側間座におけるノズル孔を構成する部分を他の部分とは別体としたことで、ノズル孔を構成する部分を樹脂材等の加工が容易な材料で製作することができる。それにより、圧縮エアの流れ方向と直交する横断面および圧縮エアの流れ方向に沿う縦断面の一方または両方の断面の形状が一様ではないノズル孔を、固定側間座に高精度にかつ生産性良く設けることができる。このようなノズル孔を切削で加工するのは難しいが、樹脂材の射出成形なら容易に製作することができる。   By making the portion constituting the nozzle hole in the stationary spacer different from the other portions, the portion constituting the nozzle hole can be made of a material that can be easily processed, such as a resin material. As a result, nozzle holes in which the shape of one or both of the cross section perpendicular to the flow direction of the compressed air and the vertical cross section along the flow direction of the compressed air are not uniform are produced in the fixed spacer with high accuracy. Can be provided with good performance. Such nozzle holes are difficult to machine by cutting, but can be easily manufactured by injection molding of a resin material.

この発明において、前記固定側間座が前記ノズル孔を円周方向に複数有する場合、それぞれのノズル孔を構成する部分を個別に、前記他の部分に設けられた嵌合用孔に嵌め込むと良い。
各ノズル孔を構成する部分を共通とすると、このノズル孔を構成する部分が環状または環状に近い形状となり、他の部分が、各ノズル孔を構成する部分を挟んで軸方向の両側に分断された形態となる。この形態は、ノズル孔を構成する部分が樹脂材である場合、固定側間座の軸方向の剛性が小さくなる。それぞれのノズル孔を構成する部分を個別に、他の部分に設けられた嵌合用孔に嵌め込んだ形態とすると、他の部分が軸方向の両側に分断されないため、固定側間座の軸方向の剛性の低下を防ぐことができる。
In this invention, when the fixed side spacer has a plurality of the nozzle holes in the circumferential direction, it is preferable that the portions constituting the respective nozzle holes are individually fitted into the fitting holes provided in the other portions. .
If the parts that make up each nozzle hole are common, the parts that make up the nozzle hole have an annular shape or a shape close to a ring, and the other parts are divided on both sides in the axial direction across the parts that make up each nozzle hole. It becomes a form. In this embodiment, when the portion constituting the nozzle hole is a resin material, the axial rigidity of the fixed side spacer is reduced. If the parts constituting each nozzle hole are individually fitted into the fitting holes provided in the other parts, the other parts are not divided on both sides in the axial direction, so the axial direction of the fixed side spacer It is possible to prevent a decrease in rigidity.

この発明における第1の発明の軸受装置の冷却構造は、前記前提構成において、前記ノズル孔の出口近傍の横断面形状が、周方向寸法に比較して軸方向寸法が長い扁平形状である。この明細書で言う前記扁平形状とは、周方向寸法に比較して軸方向寸法が極端に長い平べったい形状に限定されず、周方向寸法に比較して軸方向寸法が少しだけ長い形状も含む。
多量の圧縮エアをノズル孔から回転側間座に向けて吐出すると、圧縮エアはノズル孔の出口で流速が最大速度(例えば音速)となる。このとき、ノズル孔の出口と回転側間座の間のすきまが狭く、かつノズル孔の出口近傍の横断面形状が円形である場合、ノズル孔の出口と固定側間座の間の圧力が高くなりやすく、圧縮波が発生する。圧縮波が発生すると、ノズル孔の出口から吐出される圧縮エアの直進流れが阻害され、軸方向に拡散する。それにより、圧縮エアが回転側間座の周面と接する時間が短くなり、冷却効果が低下する。
ノズル孔の出口近傍の横断面形状が円形である場合に圧縮波が発生しやすいのは、ノズル孔の出口と回転側間座の間のすきまへの圧縮エアの流入量(質量流量)が、ノズル孔の中心の延長線上である軸方向の中央部で局所的に大きくなるためと考えられる。ノズル孔の出口近傍の横断面形状が扁平形状であると、圧縮エアの流入量が軸方向に均等化されるため、強い圧縮波が発生せず、圧縮エアが軸方向に拡散することなく、周方向に流すことができる。
Cooling structure of the bearing device of the present invention to definitive first invention, the premise construction smell Te, cross-sectional shape of the vicinity of an outlet of the nozzle holes, the axial direction dimension is long flat shape compared to circumferential dimension . The flat shape referred to in this specification is not limited to a flat shape whose axial dimension is extremely long compared to the circumferential dimension, but a shape whose axial dimension is slightly longer than the circumferential dimension. Including.
When a large amount of compressed air is discharged from the nozzle hole toward the rotary spacer, the flow rate of the compressed air becomes the maximum speed (for example, sound speed) at the outlet of the nozzle hole. At this time, when the clearance between the nozzle hole outlet and the rotary spacer is narrow and the cross-sectional shape in the vicinity of the nozzle hole outlet is circular, the pressure between the nozzle hole outlet and the fixed spacer is high. Compressive waves are generated easily. When the compression wave is generated, the straight flow of the compressed air discharged from the outlet of the nozzle hole is inhibited and diffused in the axial direction. Thereby, the time for the compressed air to contact the peripheral surface of the rotating spacer is shortened, and the cooling effect is reduced.
When the cross-sectional shape in the vicinity of the nozzle hole outlet is circular, compression waves are likely to occur because the amount of compressed air flowing into the gap between the nozzle hole outlet and the rotating spacer (mass flow rate) This is considered to be due to a local increase in the central portion in the axial direction on the extension line of the center of the nozzle hole. If the cross-sectional shape near the outlet of the nozzle hole is a flat shape, the amount of compressed air inflow is equalized in the axial direction, so strong compression waves do not occur and compressed air does not diffuse in the axial direction, Can flow in the circumferential direction.

この発明において、前記ノズル孔の縦断面が、長さ方向の中間部が狭く、超音速流れを可能とする形状であっても良い。
この場合、ノズル孔から吐出される圧縮エアの流速が速くなり、冷却効果が向上する。
In this invention, the longitudinal section of the nozzle hole may have a shape in which the middle portion in the length direction is narrow and allows supersonic flow.
In this case, the flow rate of the compressed air discharged from the nozzle hole is increased, and the cooling effect is improved.

この発明における第2の発明の軸受装置の冷却構造は、前記前提構成において、前記ノズル孔の前記圧縮エアの流れ方向の中間部に、軸受装置外部と通じる空気孔を設けたものである。
この場合、ノズル孔を流れる圧縮エアの動圧によって生じる負圧により、空気孔を通って軸受装置外部から空気がノズル孔に吸引される。それにより、ノズル孔から吐出される流量が多くなり、冷却効果が向上する。
Cooling structure of the bearing device of the present invention to definitive second invention, the premise construction smell Te, the intermediate portion of the compressed air flow direction of the nozzle holes, those digits set the air hole communicating with the bearing device outside .
In this case, air is sucked into the nozzle hole from the outside of the bearing device through the air hole due to the negative pressure generated by the dynamic pressure of the compressed air flowing through the nozzle hole. Thereby, the flow rate discharged from the nozzle hole is increased and the cooling effect is improved.

この発明において、前記固定側間座の間座同士が対向する周面に環状の凹み部を設け、この凹み部に出口を開口させて前記ノズル孔を設けても良い。
この場合、圧縮エアがノズル孔から凹み部の空間に吐出されることで、圧縮エアが断熱膨張して、圧縮エアの温度が下がると共に流速が増す。これにより、冷却効果が向上する。
また、凹み部が設けられていると、前記凹み部の空間からこれよりも狭い固定側間座と回転側間座の間のすきまに圧縮エアが流れるため、前記すきまを流れる圧縮エアの周方向の各部の流速が均一化され、軸受内に流入する圧縮エアの流速が均一になる。それにより、圧縮エアと回転中の転動体との衝突音を小さくすることができる。
In the present invention, an annular recess may be provided on the peripheral surface of the fixed spacers facing each other, and the nozzle hole may be provided by opening an outlet in the recess.
In this case, the compressed air is discharged from the nozzle hole into the space of the recessed portion, so that the compressed air is adiabatically expanded, the temperature of the compressed air is lowered and the flow velocity is increased. Thereby, a cooling effect improves.
In addition, if a recess is provided, compressed air flows from the space of the recess to a gap between the fixed spacer and the rotary spacer that is narrower than this, so the circumferential direction of the compressed air that flows through the gap The flow velocity of each part is made uniform, and the flow velocity of the compressed air flowing into the bearing becomes uniform. Thereby, the collision sound between the compressed air and the rotating rolling element can be reduced.

この発明における第1の発明の軸受装置の冷却構造は、転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および回転側間座が、前記固定部材および回転部材のうちの回転部材に設置される軸受装置において、前記固定側間座に、前記回転側間座の間座同士が対向する周面に向けて冷却用の圧縮エアを吐出するノズル孔を設け、このノズル孔が、前記固定側間座の前記周面における前記ノズル孔の出口の中心を通る法線に対して、前記回転側間座の回転方向の前方へ傾斜し、前記固定側間座における前記ノズル孔を構成する部分を他の部分とは別体とし、前記ノズル孔は、前記圧縮エアの流れ方向と直交する横断面および前記圧縮エアの流れ方向に沿う縦断面の一方または両方の断面の形状が一様ではなく、前記ノズル孔の出口近傍の横断面形状が、周方向寸法に比較して軸方向寸法が長い扁平形状であるため、圧縮エアにより軸受装置を効率良く冷却することができ、かつ用途に応じた形状のノズル孔を固定側間座に高精度にかつ生産性良く設けることができる
この発明における第2の発明の軸受装置の冷却構造は、転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および回転側間座が、前記固定部材および回転部材のうちの回転部材に設置される軸受装置において、前記固定側間座に、前記回転側間座の間座同士が対向する周面に向けて冷却用の圧縮エアを吐出するノズル孔を設け、このノズル孔が、前記固定側間座の前記周面における前記ノズル孔の出口の中心を通る法線に対して、前記回転側間座の回転方向の前方へ傾斜し、前記固定側間座における前記ノズル孔を構成する部分を他の部分とは別体とし、前記ノズル孔は、前記圧縮エアの流れ方向と直交する横断面および前記圧縮エアの流れ方向に沿う縦断面の一方または両方の断面の形状が一様ではなく、前記ノズル孔の前記圧縮エアの流れ方向の中間部に、軸受装置外部と通じる空気孔を設けたため、圧縮エアにより軸受装置を効率良く冷却することができ、かつ用途に応じた形状のノズル孔を固定側間座に高精度にかつ生産性良く設けることができる。
The cooling structure of the bearing device of the first invention in the inventions, the fixed side raceway and the rotating side raceway between rings on the fixed side adjacent each seat and the rotation-side spacer facing is provided on the inside and outside of the rolling bearing, The fixed side raceway and the fixed side spacer are installed on a fixed member of the fixed member and the rotary member, and the rotary side raceway and the rotary side spacer are on the rotary member of the fixed member and the rotary member. In the bearing device to be installed, the stationary spacer is provided with a nozzle hole for discharging compressed air for cooling toward the circumferential surface where the spacers of the rotating side are opposed to each other. The nozzle hole in the fixed side spacer is inclined forward with respect to the normal line passing through the center of the outlet of the nozzle hole in the peripheral surface of the fixed side spacer, thereby forming the nozzle hole in the fixed side spacer. Make the part separate from other parts The nozzle hole is not said in the shape of one or both of the cross-section of the cross section and longitudinal section along the flow direction of the compressed air perpendicular to the flow direction of the compressed air is uniform, cross-section near the outlet of the nozzle hole shape, because the axial dimension as compared to the circumferential dimension has a long flat shape, the compressed air can be a bearing device efficiently cooled, and the fixed-side spacer the shape of the nozzle hole according to the application Can be provided with high accuracy and high productivity .
According to a second aspect of the present invention, there is provided a cooling structure for a bearing device, wherein a stationary spacer and a rotating spacer are provided adjacent to a stationary bearing ring and a rotating bearing ring facing the inside and outside of a rolling bearing, respectively. The stationary side race ring and the stationary side spacer are installed on a stationary member of the stationary member and the rotating member, and the rotational side race ring and the rotational side spacer are installed on the rotating member of the stationary member and the rotational member. In the bearing device, the fixed side spacer is provided with a nozzle hole for discharging compressed air for cooling toward the circumferential surface where the rotary side spacers face each other, and the nozzle hole is fixed to the fixed side spacer. A portion that inclines forward in the rotation direction of the rotary side spacer with respect to a normal passing through the center of the outlet of the nozzle hole in the peripheral surface of the side spacer, and constitutes the nozzle hole in the fixed side spacer Separate from other parts The shape of one or both of the cross section perpendicular to the flow direction of the compressed air and the vertical cross section along the flow direction of the compressed air is not uniform in the nozzle hole, and the flow of the compressed air in the nozzle hole Since the air hole communicating with the outside of the bearing device is provided in the middle part of the direction, the bearing device can be efficiently cooled by compressed air, and the nozzle hole having a shape according to the application is provided in the fixed side spacer with high accuracy. It can be provided with high productivity.

この発明の一実施形態に係る軸受装置の冷却構造を備えた工作機械主軸装置の断面図である。It is sectional drawing of the machine tool spindle apparatus provided with the cooling structure of the bearing apparatus which concerns on one Embodiment of this invention. 同軸受装置の冷却構造の主要部の拡大断面図である。It is an expanded sectional view of the principal part of the cooling structure of the bearing device. 図1のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 1. 同軸受装置の冷却構造のノズル取付部の分解斜視図である。It is a disassembled perspective view of the nozzle attachment part of the cooling structure of the same bearing device. この発明の異なる実施形態に係る軸受装置の冷却構造の主要部の断面図である。It is sectional drawing of the principal part of the cooling structure of the bearing apparatus which concerns on different embodiment of this invention. この発明のさらに異なる実施形態に係る軸受装置の冷却構造の主要部の断面図である。It is sectional drawing of the principal part of the cooling structure of the bearing apparatus which concerns on further different embodiment of this invention. この発明のさらに異なる実施形態に係る軸受装置の冷却構造の断面図である。It is sectional drawing of the cooling structure of the bearing apparatus which concerns on further different embodiment of this invention. 同軸受装置の冷却構造のノズル出口の周辺部を軸方向から見た図である。It is the figure which looked at the peripheral part of the nozzle exit of the cooling structure of the said bearing apparatus from the axial direction. 図8のIX−IX断面図で、(A),(B)は互いに異なる例を示す。In the IX-IX sectional view of FIG. 8, (A) and (B) show different examples. 圧縮波が発生している状態におけるノズル孔の出口付近の圧力分布を示す図である。It is a figure which shows the pressure distribution near the exit of a nozzle hole in the state in which the compression wave has generate | occur | produced. 圧縮波が発生している状態におけるノズル孔の出口付近の温度分布を示す図である。It is a figure which shows temperature distribution near the exit of a nozzle hole in the state in which the compression wave has generate | occur | produced. (A),(B),(C)はノズル孔の出口近傍の横断面形状と質量流量との関係を示す図である。(A), (B), (C) is a figure which shows the relationship between the cross-sectional shape of the exit vicinity of a nozzle hole, and mass flow rate.

この発明の一実施形態に係る軸受装置の冷却構造を図1ないし図4と共に説明する。この例の軸受装置の冷却構造は、工作機械の主軸装置に適用されている。ただし、工作機械の主軸装置だけに限定されるものではない。   A cooling structure for a bearing device according to an embodiment of the present invention will be described with reference to FIGS. The cooling structure of the bearing device in this example is applied to a spindle device of a machine tool. However, it is not limited only to the spindle device of the machine tool.

図1に示すように、軸受装置Jは、軸方向に並ぶ2つの転がり軸受1,1を備え、各転がり軸受1,1の外輪2,2間および内輪3,3間に、外輪間座4および内輪間座5がそれぞれ介在している。外輪2および外輪間座4がハウジング6に設置され、内輪3および内輪間座5が主軸7に嵌合している。転がり軸受1はアンギュラ玉軸受であり、内外輪3,2の軌道面間に複数の転動体8が介在している。各転動体8は、保持器9により円周等配に保持される。2つの転がり軸受1,1は互いに背面組合せで配置されており、外輪間座4と内輪間座5の幅寸法差により、各転がり軸受1,1の初期予圧を設定して使用される。
この実施形態では、転がり軸受1は内輪回転で使用される。よって、外輪2、内輪3が、それぞれ請求項で言う「固定側軌道輪」、「回転側軌道輪」であり、外輪間座4、内輪間座5が「固定側間座」、「回転側間座」である。また、主軸7が「回転部材」、ハウジング6が「固定部材」である。後で示す他の実施形態についても同様である。
As shown in FIG. 1, the bearing device J includes two rolling bearings 1 and 1 arranged in the axial direction, and an outer ring spacer 4 between the outer rings 2 and 2 and between the inner rings 3 and 3 of each rolling bearing 1 and 1. And an inner ring spacer 5 are interposed. The outer ring 2 and the outer ring spacer 4 are installed in the housing 6, and the inner ring 3 and the inner ring spacer 5 are fitted to the main shaft 7. The rolling bearing 1 is an angular ball bearing, and a plurality of rolling elements 8 are interposed between the raceway surfaces of the inner and outer rings 3 and 2. The rolling elements 8 are held by the cage 9 at an equal circumference. The two rolling bearings 1 and 1 are arranged in combination with each other on the back surface, and are used by setting the initial preload of each rolling bearing 1 and 1 depending on the width dimension difference between the outer ring spacer 4 and the inner ring spacer 5.
In this embodiment, the rolling bearing 1 is used for inner ring rotation. Therefore, the outer ring 2 and the inner ring 3 are the “fixed side race ring” and “rotation side race ring”, respectively, and the outer ring spacer 4 and the inner ring spacer 5 are “fixed side spacer” and “rotation side”. It ’s a “space”. The main shaft 7 is a “rotating member” and the housing 6 is a “fixing member”. The same applies to other embodiments described later.

外輪2,2および外輪間座4は、例えばハウジング6に対してすきま嵌めとされ、ハウジング6の段部6aと端面蓋40とにより軸方向の位置決めがされる。また、内輪3,3および内輪間座5は、例えば主軸7に対して締まり嵌めとされ、両側の位置決め間座41,42により軸方向の位置決めがされる。なお、図の左側の位置決め間座42は、主軸7に螺着させたナット43により固定される。   The outer rings 2, 2 and the outer ring spacer 4 are, for example, a clearance fit with respect to the housing 6, and are positioned in the axial direction by the step portion 6 a of the housing 6 and the end surface cover 40. The inner rings 3 and 3 and the inner ring spacer 5 are, for example, an interference fit with respect to the main shaft 7 and are positioned in the axial direction by the positioning spacers 41 and 42 on both sides. Note that the positioning spacer 42 on the left side of the figure is fixed by a nut 43 screwed onto the main shaft 7.

冷却構造について説明する。
図1の部分拡大図である図2に示すように、外輪間座4は、外輪間座本体11と、この外輪間座本体11とは別部材からなるリング状の潤滑用ノズル12,12とを有する。外輪間座本体11は断面略T字形状に形成され、この外輪間座本体11の軸方向両側に潤滑用ノズル12,12がそれぞれ対称配置で固定されている。外輪間座本体11の内径寸法は、潤滑用ノズル12,12の内径寸法よりも大きい。これにより、外輪間座4の内周面に、外輪間座本体11の内周面と、この内周面に続く潤滑用ノズル12,12の側面とで構成される凹み部13が形成されている。この凹み部13は、断面長方形の環状溝である。外輪間座4の凹み部13以外の内周面、すなわち潤滑用ノズル12,12の内周面と、内輪間座5の外周面とは、微小な径方向すきまδaを介して対向している。これにより、前記凹み部13と内輪間座5の外周面との間に、他よりも径方向幅の広い空間14が形成されている。
The cooling structure will be described.
As shown in FIG. 2, which is a partially enlarged view of FIG. 1, the outer ring spacer 4 includes an outer ring spacer body 11, and ring-shaped lubricating nozzles 12, 12 made of members different from the outer ring spacer body 11. Have The outer ring spacer main body 11 is formed in a substantially T-shaped cross section, and the lubricating nozzles 12 and 12 are fixed to the both sides in the axial direction of the outer ring spacer main body 11 in a symmetrical arrangement. The inner diameter of the outer ring spacer body 11 is larger than the inner diameter of the lubricating nozzles 12 and 12. As a result, a recess 13 is formed on the inner peripheral surface of the outer ring spacer 4, which is composed of the inner peripheral surface of the outer ring spacer main body 11 and the side surfaces of the lubricating nozzles 12, 12 following the inner peripheral surface. Yes. The recess 13 is an annular groove having a rectangular cross section. The inner peripheral surface of the outer ring spacer 4 other than the recess 13, that is, the inner peripheral surfaces of the lubricating nozzles 12 and 12, and the outer peripheral surface of the inner ring spacer 5 are opposed to each other via a minute radial clearance δa. . Thereby, a space 14 having a wider radial width than the others is formed between the recessed portion 13 and the outer peripheral surface of the inner ring spacer 5.

前記外輪間座本体11には、内輪間座5の外周面に向けて冷却用の圧縮エアAを吐出するノズル孔15が設けられている。この例では、複数個(例えば3個)のノズル孔15が設けられており、それぞれが円周方向等配に配置されている。各ノズル孔15は、長さ方向の中間部が狭くなり、超音速流れを可能とする形状とされている。例えば、ラバール・ノズルの形状である。ノズル孔15の出口は、外輪間座4の内周面の前記凹み部13に開口している。   The outer ring spacer body 11 is provided with a nozzle hole 15 for discharging compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 5. In this example, a plurality of (for example, three) nozzle holes 15 are provided, and each of them is arranged in a uniform manner in the circumferential direction. Each nozzle hole 15 has a shape in which an intermediate portion in the length direction is narrowed to enable supersonic flow. For example, the shape of a Laval nozzle. The outlet of the nozzle hole 15 opens into the recessed portion 13 on the inner peripheral surface of the outer ring spacer 4.

また、図3に示すように、各ノズル孔15は、それぞれ内輪間座5の回転方向の前方へ傾斜させてある。つまり、外輪間座4の軸心に垂直な断面における任意の半径方向の直線Lから、この直線Lと直交する方向にオフセットした位置にある。ノズル孔15をオフセットさせる理由は、圧縮エアAを内輪間座5の回転方向に旋回流として作用させて、冷却効果を向上させるためである。なお、図1、図2では、外輪間座4を、ノズル孔15の中心線を通る断面で表示している。   As shown in FIG. 3, each nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. That is, the position is offset from an arbitrary radial straight line L in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction orthogonal to the straight line L. The reason why the nozzle hole 15 is offset is to improve the cooling effect by causing the compressed air A to act as a swirling flow in the rotation direction of the inner ring spacer 5. In FIGS. 1 and 2, the outer ring spacer 4 is indicated by a cross section passing through the center line of the nozzle hole 15.

外輪間座本体11の外周面には、軸受外部から各ノズル孔15に圧縮エアAを導入するための導入溝16が形成されている。この導入溝16は、外輪間座4の外周面における軸方向中間部に設けられ、各ノズル孔15に連通する円弧状に形成されている。導入溝16は、外輪間座本体11の外周面において、後述のエアオイル供給経路(図示せず)が設けられる円周方向位置を除く円周方向の大部分を示す角度範囲αにわたって設けられている。図1のように、ハウジング6に圧縮エア導入経路45が設けられ、この圧縮エア導入経路45に導入溝16が連通するように構成されている。ハウジング5の外部には、圧縮エア導入孔45に圧縮エアAを供給するエア供給装置(図示せず)が設けられている。   On the outer peripheral surface of the outer ring spacer main body 11, an introduction groove 16 for introducing the compressed air A into each nozzle hole 15 from the outside of the bearing is formed. The introduction groove 16 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4 and is formed in an arc shape communicating with each nozzle hole 15. The introduction groove 16 is provided on the outer peripheral surface of the outer ring spacer main body 11 over an angular range α indicating most of the circumferential direction except a circumferential position where an air oil supply path (not shown) described later is provided. . As shown in FIG. 1, a compressed air introduction path 45 is provided in the housing 6, and the introduction groove 16 communicates with the compressed air introduction path 45. An air supply device (not shown) for supplying the compressed air A to the compressed air introduction hole 45 is provided outside the housing 5.

図4に示すように、外輪間座本体11におけるノズル孔15を構成する部分(以下、「ノズル孔構成部」とする)20はノズル孔15毎にそれぞれ設けられ、各ノズル孔構成部20は、外輪間座本体11の大半部分を占める他の部分11aとは別体に形成されている。図の例では、各ノズル孔構成部20は、径方向から見て略長方形の形状とされているが、他の形状であっても良い。これら各ノズル孔構成部20は、外輪間座本体11に径方向に貫通して設けられた嵌合用孔21に圧入等により嵌め込むことで、他の部分11aに固定される。前記導入溝16は、ノズル孔構成部20と他の部分11aの外周面にそれぞれ形成された溝部16a,16bで構成される。   As shown in FIG. 4, a portion (hereinafter referred to as “nozzle hole component”) 20 constituting the nozzle hole 15 in the outer ring spacer body 11 is provided for each nozzle hole 15, and each nozzle hole component 20 is The outer ring spacer main body 11 is formed separately from the other part 11a occupying the most part. In the example of the figure, each nozzle hole constituting portion 20 has a substantially rectangular shape when viewed from the radial direction, but may have another shape. Each of these nozzle hole constituting portions 20 is fixed to the other portion 11a by being fitted into a fitting hole 21 provided in the outer ring spacer body 11 so as to penetrate in the radial direction by press fitting or the like. The introduction groove 16 includes groove portions 16a and 16b formed on the outer peripheral surface of the nozzle hole constituting portion 20 and the other portion 11a, respectively.

ノズル孔構成部20は、例えば樹脂材からなり、射出成形等により製作される。このため、ラバール・ノズルのような、圧縮エアAの流れ方向の中間部が狭く、流れ方向に沿う縦断面が一様でない複雑な形状のノズル孔15も、高精度にかつ生産性良く形成することができる。なお、外輪間座本体11の他の部分11a、および外輪間座本体11以外の各部品(保持器9は除く)は、軸受鋼等の金属製である。   The nozzle hole component 20 is made of, for example, a resin material and is manufactured by injection molding or the like. For this reason, the nozzle hole 15 having a complicated shape with a narrow middle portion in the flow direction of the compressed air A and a non-uniform longitudinal section along the flow direction, such as a Laval nozzle, is also formed with high accuracy and high productivity. be able to. The other part 11a of the outer ring spacer main body 11 and the parts other than the outer ring spacer main body 11 (excluding the cage 9) are made of metal such as bearing steel.

潤滑構造について説明する。
図1に示すように、外輪間座4は、軸受内にエアオイルを供給する前記潤滑用ノズル12,12を有する。各潤滑用ノズル12は、軸受内に突出して内輪3の外周面との間でエアオイル通過用の環状すきまδbを介して対向する先端部30を含む。換言すれば、潤滑用ノズル12の先端部30が、内輪3の外周面に被さるように軸受内に進入して配置される。また、潤滑用ノズル12の先端部30は、保持器9の内周面よりも半径方向の内方に配置されている。
The lubrication structure will be described.
As shown in FIG. 1, the outer ring spacer 4 has the lubricating nozzles 12 and 12 for supplying air oil into the bearing. Each of the lubricating nozzles 12 includes a tip portion 30 that protrudes into the bearing and faces the outer peripheral surface of the inner ring 3 through an air oil passage annular clearance δb. In other words, the tip portion 30 of the lubricating nozzle 12 is disposed so as to enter the bearing so as to cover the outer peripheral surface of the inner ring 3. Further, the tip portion 30 of the lubricating nozzle 12 is disposed radially inward from the inner peripheral surface of the cage 9.

図2に示すように、潤滑用ノズル12には、この潤滑用ノズル12と内輪3の外周面間の前記環状すきまδbにエアオイルを供給するエアオイル供給孔31が設けられている。このエアオイル供給孔31は、軸受側に向かうに従い内径側に至るように傾斜し、先端部30の内周側に出口が開口している。エアオイル供給孔31には、ハウジング6および外輪間座本体11に設けられたエアオイル供給経路(図示せず)を通ってエアオイルが供給される。内輪3の外周面におけるエアオイル供給孔31の延長線上の箇所には、環状凹み部3aが設けられている。
潤滑用ノズル12から吐出されたエアオイルの油が前記環状凹み部3aに溜り、この油が、内輪3の回転に伴う遠心力により、傾斜面である内輪3の外周面に沿って軸受中心側へと導かれる。
As shown in FIG. 2, the lubricating nozzle 12 is provided with an air oil supply hole 31 for supplying air oil to the annular clearance δb between the lubricating nozzle 12 and the outer peripheral surface of the inner ring 3. The air oil supply hole 31 is inclined so as to reach the inner diameter side toward the bearing side, and an outlet is opened on the inner peripheral side of the tip portion 30. Air oil is supplied to the air oil supply hole 31 through an air oil supply path (not shown) provided in the housing 6 and the outer ring spacer main body 11. An annular recess 3 a is provided at a location on the extended line of the air oil supply hole 31 on the outer peripheral surface of the inner ring 3.
The oil of the air oil discharged from the lubricating nozzle 12 accumulates in the annular recess 3a, and this oil moves to the bearing center side along the outer peripheral surface of the inner ring 3 which is an inclined surface by the centrifugal force accompanying the rotation of the inner ring 3. It is guided.

排気構造について説明する。
この軸受装置Jには、冷却用の圧縮エアおよび潤滑用のエアオイルを排気する排気経路46が設けられている。排気経路46は、外輪間座本体11における円周方向の一部に設けられた排気溝47と、ハウジング6に設けられ前記排気溝47に連通する径方向排気孔48および軸方向排気孔49とを有する。前記外輪間座本体11の排気溝47は、エアオイル供給経路が設けられる位置とは対角の円周方向位置にわたって形成されている。
The exhaust structure will be described.
The bearing device J is provided with an exhaust path 46 for exhausting compressed air for cooling and air oil for lubrication. The exhaust passage 46 includes an exhaust groove 47 provided in a part of the outer ring spacer body 11 in the circumferential direction, a radial exhaust hole 48 provided in the housing 6 and communicating with the exhaust groove 47, and an axial exhaust hole 49. Have The exhaust groove 47 of the outer ring spacer body 11 is formed across a circumferential position diagonal to the position where the air oil supply path is provided.

上記構成からなる軸受装置の冷却構造の作用について説明する。
外輪間座4に設けたノズル孔15より冷却用の圧縮エアAを内輪間座5の外周面に向けて吐出することで、まず内輪間座5に冷却し、この内輪間座5を介して転がり軸受1の内輪3および主軸7を冷却する。その際、以下の理由により、内輪間座5を効率良く冷却することができる。
The effect | action of the cooling structure of the bearing apparatus which consists of the said structure is demonstrated.
By cooling the compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 5 from the nozzle hole 15 provided in the outer ring spacer 4, first, the inner ring spacer 5 is cooled, The inner ring 3 and the main shaft 7 of the rolling bearing 1 are cooled. At that time, the inner ring spacer 5 can be efficiently cooled for the following reason.

第1の理由は、ノズル孔15がラバール・ノズルのような超音速流れを可能とする形状である点である。前記エア供給装置により圧縮エアAの圧力、流量等を調整することで、ノズル孔15から超音速の圧縮エアAが吐出される。また、図の例の場合、外輪間座4の内周面の凹み部13と内輪間座5の外周面との間の空間14に圧縮エアAが吐出されるため、空間14で圧縮エアAが断熱膨張して、温度が下がると共に、体積が増加する。体積が増加することで、さらに流速が増大する。このように、低温で超高速の圧縮エアAを内輪間座5に吹き付けることで、内輪間座5を効率良く冷却する。
なお、前記凹み部13が設けられていると、凹み部13の空間14からこれよりも狭い外輪間座4と内輪間座の間の径方向すきまδaに圧縮エアAが流れるため、内輪間座5の外周面に沿って流れる圧縮エアAの周方向の各部の流速が均一化され、軸受内に流入する圧縮エアAの流速が均一になる。それにより、圧縮エアAと回転中の転動体9との衝突音を小さくすることができるという効果もある。
The first reason is that the nozzle hole 15 has a shape that enables supersonic flow like a Laval nozzle. The supersonic compressed air A is discharged from the nozzle hole 15 by adjusting the pressure, flow rate and the like of the compressed air A by the air supply device. In the case of the example in the figure, since the compressed air A is discharged into the space 14 between the recess 13 on the inner peripheral surface of the outer ring spacer 4 and the outer peripheral surface of the inner ring spacer 5, the compressed air A in the space 14 is discharged. Expands adiabatically, decreasing in temperature and increasing in volume. As the volume increases, the flow rate further increases. In this way, the inner ring spacer 5 is efficiently cooled by blowing the compressed air A at a low temperature and at a high speed onto the inner ring spacer 5.
If the recess 13 is provided, the compressed air A flows from the space 14 of the recess 13 to the radial clearance δa between the outer ring spacer 4 and the inner ring spacer, which is narrower than the space 14. 5, the flow velocity of each part of the compressed air A flowing along the outer peripheral surface in the circumferential direction is made uniform, and the flow velocity of the compressed air A flowing into the bearing becomes uniform. Thereby, there is also an effect that the collision sound between the compressed air A and the rotating rolling element 9 can be reduced.

第2の理由は、ノズル孔15が内輪間座5の回転方向の前方へ傾斜していることである。これにより、ノズル孔15から吐出された圧縮エアAは、内輪間座5の外周面に沿って旋回しながら軸方向に流れて、前記排気経路46を通って軸受外部へ排出される。圧縮エアAが旋回するため、軸方向にまっすぐ流れる場合と比べて、圧縮エアAが内輪間座5の外周面と接している時間が長く、内輪間座5をより一層効率良く冷却することができる。   The second reason is that the nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. Thereby, the compressed air A discharged from the nozzle hole 15 flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 5, and is discharged to the outside of the bearing through the exhaust path 46. Since the compressed air A turns, the time during which the compressed air A is in contact with the outer peripheral surface of the inner ring spacer 5 is longer than when the straight air flows in the axial direction, and the inner ring spacer 5 can be cooled more efficiently. it can.

ノズル孔構成部20を樹脂材等により製作したことにより、ノズル孔15がラバール・ノズルのような、圧縮エアAの流れ方向の中間部が狭く、流れ方向に沿う縦断面が一様でない形状であっても、高精度にかつ生産性良く製作することができる。金属の鋳造品に対して切削により、縦断面が一様ではないノズル孔を加工することは難しい。   Since the nozzle hole component 20 is made of a resin material or the like, the nozzle hole 15 has a narrow intermediate portion in the flow direction of the compressed air A, such as a Laval nozzle, and the longitudinal section along the flow direction is not uniform. Even so, it can be manufactured with high accuracy and high productivity. It is difficult to machine a nozzle hole whose longitudinal section is not uniform by cutting a metal casting.

また、この実施形態は、ノズル孔15毎に個別にノズル孔構成部20に設け、各ノズル孔構成部20を、外輪間座本体11の他の部分11aに設けられた嵌合用孔21に嵌め込む構成としてある。ノズル孔構成部20を各ノズル孔15で共通とすると、ノズル孔構成部20が環状または環状に近い形状となり、他の部分11aがノズル孔構成部20により軸方向の両側に分断された形態となる。この形態は、ノズル孔構成部20が樹脂材である場合、外輪間座4の軸方向の剛性が小さい。この実施形態の構成であると、ノズル孔構成部20によって他の部分11aが軸方向の両側に分断されることがなく、外輪間座4の軸方向の剛性の低下を防ぐことができる。   Further, in this embodiment, each nozzle hole 15 is individually provided in the nozzle hole constituting portion 20, and each nozzle hole constituting portion 20 is fitted in the fitting hole 21 provided in the other portion 11 a of the outer ring spacer main body 11. It is configured to include. If the nozzle hole component 20 is common to the nozzle holes 15, the nozzle hole component 20 has an annular shape or a shape close to an annular shape, and the other portion 11a is divided by the nozzle hole component 20 on both sides in the axial direction. Become. In this embodiment, when the nozzle hole component 20 is a resin material, the axial rigidity of the outer ring spacer 4 is small. With the configuration of this embodiment, the nozzle hole component 20 does not divide the other portion 11a on both sides in the axial direction, and can prevent a decrease in the axial rigidity of the outer ring spacer 4.

以下、この発明の異なる実施形態について説明する。
図5に示す実施形態は、ノズル孔15の圧縮エアAの流れ方向の中間部に、軸受装置外部と通じる空気孔33を設けてある。この場合、ノズル孔15を流れる圧縮エアAの動圧によって生じる負圧により、空気孔33を通って軸受装置外部から空気Bがノズル孔15に吸引される。それにより、ノズル孔15から吐出される圧縮エアAの流量が多くなり、冷却効果が向上する。
Hereinafter, different embodiments of the present invention will be described.
In the embodiment shown in FIG. 5, an air hole 33 communicating with the outside of the bearing device is provided in an intermediate portion of the nozzle hole 15 in the flow direction of the compressed air A. In this case, air B is sucked into the nozzle hole 15 from the outside of the bearing device through the air hole 33 due to the negative pressure generated by the dynamic pressure of the compressed air A flowing through the nozzle hole 15. Thereby, the flow rate of the compressed air A discharged from the nozzle hole 15 is increased, and the cooling effect is improved.

図6は、一般的な形状のノズル孔15に空気孔33を設けた例を示すが、図5のように、超音速流れを生じさせることが可能な形状のノズル孔15に空気孔33を設けても良い。図5および図6のいずれについても、空気孔33を設けたことにより、ノズル孔構成部20および嵌合用孔21の断面形状が図2のものと若干異なっている。他の構成は、図2のものと同じである。   6 shows an example in which the air hole 33 is provided in the nozzle hole 15 having a general shape. As shown in FIG. 5, the air hole 33 is formed in the nozzle hole 15 having a shape capable of generating a supersonic flow. It may be provided. 5 and 6, the air holes 33 are provided, so that the cross-sectional shapes of the nozzle hole constituting portion 20 and the fitting hole 21 are slightly different from those in FIG. 2. The other structure is the same as that of FIG.

図7ないし図9はさらに異なる実施形態を示す。前記各実施形態のノズル孔15が、圧縮エアAの流れ方向に沿う縦断面が一様でない形状であるの対し、この実施形態のノズル孔15は、圧縮エアAの流れ方向と直交する横断面が一様でない形状である。すなわち、冷却効率を向上させるために、ノズル孔出口15a近傍の横断面形状を、周方向寸法に比較して軸方向寸法が扁平形状としている。例えば、図9(A)のように軸方向に細長い長方形とするか、または図9(B)のように軸方向に細長い楕円形とする。ここで、前記扁平形状とは、周方向寸法に比較して軸方向寸法が極端に長い平べったい形状に限定されず、周方向寸法に比較して軸方向寸法が少しだけ長い形状も含む。   7 to 9 show further different embodiments. The nozzle hole 15 of each of the above embodiments has a non-uniform longitudinal cross section along the flow direction of the compressed air A, whereas the nozzle hole 15 of this embodiment has a cross section perpendicular to the flow direction of the compressed air A. Is a non-uniform shape. That is, in order to improve the cooling efficiency, the cross-sectional shape in the vicinity of the nozzle hole outlet 15a has a flat shape in the axial direction compared to the circumferential size. For example, a rectangular shape elongated in the axial direction as shown in FIG. 9A or an elliptical shape elongated in the axial direction as shown in FIG. Here, the flat shape is not limited to a flat shape whose axial dimension is extremely long compared to the circumferential dimension, and includes a shape whose axial dimension is slightly longer than the circumferential dimension. .

ノズル孔出口15a近傍の横断面形状を扁平形状とすると冷却効率が向上する理由について説明する。
図8のように、多量の圧縮エアAをノズル孔15から内輪間座5に向けて吐出すると、圧縮エアAはノズル孔出口15aで流速が最大速度(例えば音速)となる。このとき、ノズル孔出口15aと回転間座5の間のすきまδaが狭く、かつノズル孔出口15a近傍の横断面形状が円形である場合、ノズル孔出口15aと内輪間座5の間の圧力が高くなりやすく、前記すきまδaにおけるノズル孔出口15a付近Cで圧縮波が発生する。圧縮エアAの供給量が多いほど、強い圧縮波が発生する。圧縮波が発生すると、ノズル孔15から吐出される圧縮エアAの直進流れが阻害され、図10、図11のように、軸方向に拡散する。それにより、圧縮エアAが内輪間座5の外周面と接する時間が短くなり、冷却効果が低下する。図10は、圧縮波が発生している状態におけるノズル孔の出口付近の圧力分布を示し、図11は、圧縮波が発生している状態におけるノズル孔の出口付近に温度分布を示す。
The reason why the cooling efficiency is improved when the cross-sectional shape in the vicinity of the nozzle hole outlet 15a is a flat shape will be described.
As shown in FIG. 8, when a large amount of compressed air A is discharged from the nozzle hole 15 toward the inner ring spacer 5, the flow rate of the compressed air A reaches the maximum speed (for example, sound speed) at the nozzle hole outlet 15a. At this time, when the clearance δa between the nozzle hole outlet 15a and the rotation spacer 5 is narrow and the cross-sectional shape near the nozzle hole outlet 15a is circular, the pressure between the nozzle hole outlet 15a and the inner ring spacer 5 is It tends to be high, and a compression wave is generated near the nozzle hole outlet 15a in the clearance δa. As the supply amount of the compressed air A increases, a stronger compression wave is generated. When the compression wave is generated, the straight flow of the compressed air A discharged from the nozzle hole 15 is inhibited and diffused in the axial direction as shown in FIGS. Thereby, the time for the compressed air A to contact the outer peripheral surface of the inner ring spacer 5 is shortened, and the cooling effect is reduced. FIG. 10 shows the pressure distribution near the outlet of the nozzle hole in a state where the compression wave is generated, and FIG. 11 shows the temperature distribution near the outlet of the nozzle hole in a state where the compression wave is generated.

ノズル孔出口15a近傍の横断面形状が円形である場合に圧縮波が発生しやすいのは、ノズル孔出口15aと内輪間座5の間のすきまδaへの圧縮エアAの流入量(質量流量)が、図12(C)のように、ノズル孔15の中心の延長線上である軸方向の中央部で局所的に大きくなるためと考えられる。図9(A),(B)のノズル15のように、ノズル孔出口15a近傍の横断面形状が扁平形状であると、図12(A),(B)のように、圧縮エアAの流入量が軸方向に均等化されるため、強い圧縮波が発生せず、圧縮エアAが軸方向に拡散することなく、周方向にスムーズに流すことができる。   When the cross-sectional shape in the vicinity of the nozzle hole outlet 15a is circular, a compression wave is likely to be generated. The amount of compressed air A flowing into the clearance δa between the nozzle hole outlet 15a and the inner ring spacer 5 (mass flow rate). However, as shown in FIG. 12C, this is considered to be locally increased at the central portion in the axial direction, which is an extension of the center of the nozzle hole 15. When the cross-sectional shape in the vicinity of the nozzle hole outlet 15a is a flat shape like the nozzle 15 in FIGS. Since the amount is equalized in the axial direction, strong compression waves are not generated, and the compressed air A can flow smoothly in the circumferential direction without diffusing in the axial direction.

なお、この実施形態の軸受装置Jは、外輪間座4が潤滑用ノズルを有していないため、外輪間座と外輪間座本体の区別がない。そのため、各ノズル孔構成部20は、外輪間座4の大半部分を占める他の部分4aとは別体に形成されて、他の部分4aに設けられた嵌合用孔21に嵌め込んである。   In the bearing device J of this embodiment, since the outer ring spacer 4 does not have a lubricating nozzle, there is no distinction between the outer ring spacer and the outer ring spacer body. Therefore, each nozzle hole constituting part 20 is formed separately from the other part 4a occupying the most part of the outer ring spacer 4, and is fitted in the fitting hole 21 provided in the other part 4a.

以上の各実施形態では、転がり軸受1を内輪回転で使用する場合を示したが、外輪回転で使用する場合も、この発明を適用することができる。その場合、例えば内輪3の内周に嵌合する軸(図示せず)が固定部材、外輪2の外周に嵌合するローラ(図示せず)が回転部材である。   In each of the above embodiments, the case where the rolling bearing 1 is used for inner ring rotation has been shown, but the present invention can also be applied when used for outer ring rotation. In this case, for example, a shaft (not shown) fitted to the inner circumference of the inner ring 3 is a fixed member, and a roller (not shown) fitted to the outer circumference of the outer ring 2 is a rotating member.

1…転がり軸受
2…外輪(固定側軌道輪)
3…内輪(回転側軌道輪)
4…外輪間座(固定側間座)
4a…他の部分
5…内輪間座(回転側間座)
6…ハウジング(固定部材)
7…主軸(回転軸)
11a…他の部分
15…ノズル孔
15a…ノズル孔出口
20…ノズル孔構成部(ノズル孔を構成する部分)
21…嵌合用孔
33…空気孔
A…圧縮エア
J…軸受装置
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring (fixed side ring)
3. Inner ring (rotating raceway)
4. Outer ring spacer (fixed side spacer)
4a ... other part 5 ... inner ring spacer (rotating side spacer)
6 ... Housing (fixing member)
7 ... Spindle (Rotating shaft)
11a ... other part 15 ... nozzle hole 15a ... nozzle hole outlet 20 ... nozzle hole constituent part (part constituting the nozzle hole)
21 ... Fitting hole 33 ... Air hole A ... Compressed air J ... Bearing device

Claims (5)

転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および回転側間座が、前記固定部材および回転部材のうちの回転部材に設置される軸受装置において、
前記固定側間座に、前記回転側間座の間座同士が対向する周面に向けて冷却用の圧縮エアを吐出するノズル孔を設け、このノズル孔が、前記固定側間座の前記周面における前記ノズル孔の出口の中心を通る法線に対して、前記回転側間座の回転方向の前方へ傾斜し、前記固定側間座における前記ノズル孔を構成する部分を他の部分とは別体とし、前記ノズル孔は、前記圧縮エアの流れ方向と直交する横断面および前記圧縮エアの流れ方向に沿う縦断面の一方または両方の断面の形状が一様ではなく、前記ノズル孔の出口近傍の横断面形状が、周方向寸法に比較して軸方向寸法が長い扁平形状である軸受装置の冷却構造。
A stationary spacer and a rotating spacer are provided adjacent to the stationary bearing ring and the rotating bearing ring facing the inside and outside of the rolling bearing, respectively, and the stationary bearing ring and the stationary spacer are fixed members and rotating. In the bearing device installed in the fixed member of the members, the rotating side raceway and the rotating side spacer are installed in the rotating member of the fixed member and the rotating member,
The fixed side spacer is provided with a nozzle hole for discharging compressed air for cooling toward a circumferential surface where the rotary side spacers face each other, and the nozzle hole is formed in the periphery of the fixed side spacer. With respect to the normal passing through the center of the outlet of the nozzle hole on the surface, the part that constitutes the nozzle hole in the fixed side spacer is inclined to the front in the rotation direction of the rotating side spacer and the other part. Separately, the nozzle hole is not uniform in the shape of one or both of a cross section perpendicular to the flow direction of the compressed air and a vertical cross section along the flow direction of the compressed air, and the outlet of the nozzle hole cooling structure of bearings device cross-sectional shape in the vicinity of the axial dimension as compared to the circumferential dimension is long flat shape.
転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および回転側間座が、前記固定部材および回転部材のうちの回転部材に設置される軸受装置において、
前記固定側間座に、前記回転側間座の間座同士が対向する周面に向けて冷却用の圧縮エアを吐出するノズル孔を設け、このノズル孔が、前記固定側間座の前記周面における前記ノズル孔の出口の中心を通る法線に対して、前記回転側間座の回転方向の前方へ傾斜し、前記固定側間座における前記ノズル孔を構成する部分を他の部分とは別体とし、前記ノズル孔は、前記圧縮エアの流れ方向と直交する横断面および前記圧縮エアの流れ方向に沿う縦断面の一方または両方の断面の形状が一様ではなく、前記ノズル孔の前記圧縮エアの流れ方向の中間部に、軸受装置外部と通じる空気孔を設けた軸受装置の冷却構造。
A stationary spacer and a rotating spacer are provided adjacent to the stationary bearing ring and the rotating bearing ring facing the inside and outside of the rolling bearing, respectively, and the stationary bearing ring and the stationary spacer are fixed members and rotating. In the bearing device installed in the fixed member of the members, the rotating side raceway and the rotating side spacer are installed in the rotating member of the fixed member and the rotating member,
The fixed side spacer is provided with a nozzle hole for discharging compressed air for cooling toward a circumferential surface where the rotary side spacers face each other, and the nozzle hole is formed in the periphery of the fixed side spacer. With respect to the normal passing through the center of the outlet of the nozzle hole on the surface, the part that constitutes the nozzle hole in the fixed side spacer is inclined to the front in the rotation direction of the rotating side spacer and the other part. Separately, the nozzle hole is not uniform in the shape of one or both of a cross section perpendicular to the flow direction of the compressed air and a vertical cross section along the flow direction of the compressed air. the middle portion in the flow direction of the compressed air, the cooling structure of the shaft receiving apparatus provided with air hole communicating with the bearing device outside.
請求項1または請求項2に記載の軸受装置の冷却構造において、前記固定側間座は前記ノズル孔を円周方向に複数有し、それぞれのノズル孔を構成する部分が個別に、前記他の部分に設けられた嵌合用孔に嵌め込まれた軸受装置の冷却構造。 3. The cooling structure for a bearing device according to claim 1 , wherein the stationary spacer has a plurality of the nozzle holes in a circumferential direction, and each of the portions constituting the nozzle holes individually, A cooling structure for a bearing device fitted in a fitting hole provided in a portion. 請求項1ないし請求項3のいずれか1項に記載の軸受装置の冷却構造において、前記ノズル孔の縦断面が、長さ方向の中間部が狭く、超音速流れを可能とする形状である軸受装置の冷却構造。   The cooling structure of the bearing device according to any one of claims 1 to 3, wherein a longitudinal section of the nozzle hole has a shape having a narrow middle portion in a length direction and capable of supersonic flow. Equipment cooling structure. 請求項1ないし請求項のいずれか1項に記載の軸受装置の冷却構造において、前記固定側間座の間座同士が対向する周面に環状の凹み部を設け、この凹み部に出口を開口させて前記ノズル孔を設けた軸受装置の冷却構造。 The cooling structure for a bearing device according to any one of claims 1 to 4 , wherein an annular recess is provided on a peripheral surface of the fixed-side spacers facing each other, and an outlet is provided in the recess. A cooling structure of a bearing device that is opened and provided with the nozzle hole.
JP2014059359A 2014-03-22 2014-03-22 Cooling structure of bearing device Active JP6385090B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014059359A JP6385090B2 (en) 2014-03-22 2014-03-22 Cooling structure of bearing device
PCT/JP2015/056967 WO2015146569A1 (en) 2014-03-22 2015-03-10 Cooling structure for bearing device
CN201580015046.3A CN106104036B (en) 2014-03-22 2015-03-10 The cooling construction of bearing arrangement
EP15768644.5A EP3124812B1 (en) 2014-03-22 2015-03-10 Cooling structure for bearing device
TW104108700A TWI661137B (en) 2014-03-22 2015-03-19 Cooling structure for bearing assembly
US15/263,888 US10428875B2 (en) 2014-03-22 2016-09-13 Cooling structure for bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059359A JP6385090B2 (en) 2014-03-22 2014-03-22 Cooling structure of bearing device

Publications (2)

Publication Number Publication Date
JP2015183739A JP2015183739A (en) 2015-10-22
JP6385090B2 true JP6385090B2 (en) 2018-09-05

Family

ID=54350519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059359A Active JP6385090B2 (en) 2014-03-22 2014-03-22 Cooling structure of bearing device

Country Status (1)

Country Link
JP (1) JP6385090B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168886A (en) * 2017-03-29 2018-11-01 Ntn株式会社 Cooling structure for bearing device
JP6899306B2 (en) * 2017-10-11 2021-07-07 Ntn株式会社 Bearing device cooling structure
CN113107969B (en) * 2020-01-09 2024-12-06 珠海格力电器股份有限公司 Rotor assembly and processing method thereof, compressor and air conditioning equipment
CN118793775B (en) * 2024-09-14 2024-12-03 北京子牛亦东科技有限公司 Bearing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055063A (en) * 1998-08-11 2000-02-22 Nippon Seiko Kk Lubricating device for bearing
JP4003343B2 (en) * 1999-04-07 2007-11-07 いすゞ自動車株式会社 Bearing cooling device
JP2008075882A (en) * 2007-12-11 2008-04-03 Nsk Ltd Bearing device
JP5515022B2 (en) * 2008-11-28 2014-06-11 大久保精工株式会社 Bearing lubrication equipment
JP2011167799A (en) * 2010-02-18 2011-09-01 Ntn Corp Main spindle device

Also Published As

Publication number Publication date
JP2015183739A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2015146569A1 (en) Cooling structure for bearing device
JP6385090B2 (en) Cooling structure of bearing device
JP6013112B2 (en) Cooling structure of bearing device
WO2015072383A1 (en) Cooling structure for bearing device
JP6050072B2 (en) Cooling structure of bearing device
JP2015194244A (en) Ball bearing
US10001170B2 (en) Rolling bearing
JPWO2016133050A1 (en) Spindle device and machine tool
JP2016089975A (en) Cooling structure of bearing device
JP6385089B2 (en) Cooling structure of bearing device
KR102448407B1 (en) Cooling structure of bearing device
JP6609003B2 (en) Cooling structure of bearing device
JP2014025525A (en) Oil air lubrication type rolling bearing device
JP2014169730A (en) Rolling bearing device
EP3851692A1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP6899306B2 (en) Bearing device cooling structure
WO2018181032A1 (en) Cooling structure for bearing device
WO2018074375A1 (en) Cooling structure for bearing device
JP2008240946A (en) Lubricating device for rolling bearing
JPH08270660A (en) Conical roller bearing device
JP7011439B2 (en) Bearing device cooling structure
JP6983029B2 (en) Bearing device cooling structure
JP7096742B2 (en) Bearing device cooling structure
WO2018181033A1 (en) Cooling structure for bearing device
JP2014132182A (en) Rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180807

R150 Certificate of patent or registration of utility model

Ref document number: 6385090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250