[go: up one dir, main page]

JP6377021B2 - Al alloy sputtering target - Google Patents

Al alloy sputtering target Download PDF

Info

Publication number
JP6377021B2
JP6377021B2 JP2015115184A JP2015115184A JP6377021B2 JP 6377021 B2 JP6377021 B2 JP 6377021B2 JP 2015115184 A JP2015115184 A JP 2015115184A JP 2015115184 A JP2015115184 A JP 2015115184A JP 6377021 B2 JP6377021 B2 JP 6377021B2
Authority
JP
Japan
Prior art keywords
sputtering target
ray diffraction
plane
diffraction peak
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115184A
Other languages
Japanese (ja)
Other versions
JP2017002343A (en
Inventor
高木 勝寿
勝寿 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015115184A priority Critical patent/JP6377021B2/en
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to CN201680029641.7A priority patent/CN107614745B/en
Priority to PCT/JP2016/062571 priority patent/WO2016194508A1/en
Priority to KR1020207007179A priority patent/KR20200029634A/en
Priority to KR1020177034931A priority patent/KR20180004214A/en
Priority to CN201910619403.7A priority patent/CN110205591B/en
Priority to TW105115267A priority patent/TWI585214B/en
Publication of JP2017002343A publication Critical patent/JP2017002343A/en
Application granted granted Critical
Publication of JP6377021B2 publication Critical patent/JP6377021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、Al合金スパッタリングターゲットに関する。特にはAl合金薄膜を高い成膜速度で形成することのできるAl合金スパッタリングターゲットに関する。   The present invention relates to an Al alloy sputtering target. In particular, the present invention relates to an Al alloy sputtering target capable of forming an Al alloy thin film at a high deposition rate.

タッチパネル等の表示装置、例えば液晶ディスプレイ等の生産性を向上させる方法の一つとして、該タッチパネルを構成する例えば引き出し配線膜およびタッチパネルセンサーの配線膜の形成時に、薄膜を速く成膜することが挙げられる。薄膜をスパッタリング法で成膜する場合、スパッタリングパワー即ち電力を高くすることで成膜速度を高めることができる。しかし、スパッタリングパワーを高くすると、アーキングやスプラッシュ等の成膜異常が発生しやすく、タッチパネル等の歩留まりが低下する等の不具合が生じる。そのため、スパッタリングパワーを高くしなくとも成膜速度を高めることのできるスパッタリングターゲットが望まれている。   One method for improving the productivity of a display device such as a touch panel, such as a liquid crystal display, is to form a thin film quickly when forming the wiring film of, for example, a lead wiring film and a touch panel sensor constituting the touch panel. It is done. When a thin film is formed by a sputtering method, the film formation rate can be increased by increasing the sputtering power, that is, the electric power. However, when the sputtering power is increased, film formation abnormalities such as arcing and splash are likely to occur, and problems such as a decrease in the yield of touch panels and the like occur. Therefore, a sputtering target that can increase the deposition rate without increasing the sputtering power is desired.

ところで、前記液晶ディスプレイの配線膜には、低電気抵抗率と高耐熱性を兼備するAl−Nd合金薄膜が使用されている。このAl−Nd合金薄膜の成膜方法にはスパッタリング法が採用され、Al−Nd合金スパッタリングターゲットが薄膜形成の原材料として使用されている。該Al−Nd合金スパッタリングターゲットとしては、これまでに次の特許文献1〜5の技術が提案されている。   By the way, an Al—Nd alloy thin film having both low electrical resistivity and high heat resistance is used for the wiring film of the liquid crystal display. A sputtering method is employed as a method for forming the Al—Nd alloy thin film, and an Al—Nd alloy sputtering target is used as a raw material for forming the thin film. As the Al—Nd alloy sputtering target, the techniques of the following Patent Documents 1 to 5 have been proposed so far.

特許文献1には、Al基合金スパッタリングターゲットのFe含有量を低減することにより、表示デバイス用の耐アルカリ腐食性に優れたAl合金膜を提供できることが示されている。特許文献2には、Al合金スパッタリングターゲットの表面のビッカース硬度のばらつきを低減させることにより、膜均一性に優れた液晶等のAl合金膜を作製できることが示されている。   Patent Document 1 shows that an Al alloy film excellent in alkali corrosion resistance for display devices can be provided by reducing the Fe content of an Al-based alloy sputtering target. Patent Document 2 shows that an Al alloy film such as a liquid crystal having excellent film uniformity can be produced by reducing variations in the Vickers hardness of the surface of the Al alloy sputtering target.

特許文献3には、所定の合金組成のAl基合金スパッタリングターゲットを用いることにより、耐熱性、ボイド耐性、およびヒロック耐性等に優れたサーマルプリンターのAl合金電極を形成できることが示されている。また特許文献4には、所定の合金組成のAl−Nd合金スパッタリングターゲットを用いることにより、液晶ディスプレイ用導電部のAl−Nd合金薄膜の、アニール処理後のヒロック発生を抑制できると共に、抵抗値を低減できることが示されている。   Patent Document 3 shows that an Al alloy electrode of a thermal printer excellent in heat resistance, void resistance, hillock resistance, and the like can be formed by using an Al-based alloy sputtering target having a predetermined alloy composition. Further, in Patent Document 4, by using an Al—Nd alloy sputtering target having a predetermined alloy composition, generation of hillocks after annealing of the Al—Nd alloy thin film of the conductive part for liquid crystal display can be suppressed, and the resistance value can be reduced. It has been shown that it can be reduced.

特許文献5には、酸素含有量を低減させたAl−Nd合金スパッタリングターゲットを用いることにより、液晶ディスプレイ用電極を構成する合金薄膜のヒロック発生を抑制できると共に比抵抗値を低減できることが示されている。   Patent Document 5 shows that by using an Al—Nd alloy sputtering target with a reduced oxygen content, generation of hillocks in an alloy thin film constituting an electrode for a liquid crystal display can be suppressed and a specific resistance value can be reduced. Yes.

特開2012−132091号公報JP 2012-132091 A 特開2004−204284号公報JP 2004-204284 A 特開2003−103821号公報JP 2003-103821 A 特開2001−125123号公報JP 2001-125123 A 特開2001−93862号公報JP 2001-93862 A

上記の通り、特許文献1〜5には、形成される膜の特性等を高めるべく、スパッタリングターゲットの成分組成を制御すること等が示されているが、成膜速度を高めて表示装置の生産性を向上させるといった課題は挙げられておらず、この課題を解決するための手段も開示されていない。   As described above, Patent Documents 1 to 5 show that the component composition of the sputtering target is controlled in order to improve the characteristics of the film to be formed. The problem of improving the property is not listed, and no means for solving this problem is disclosed.

本発明は以上のような状況に鑑みてなされたものであり、その目的は、従来のAl−Nd合金スパッタリングターゲットに比較して高い成膜速度が得られ、タッチパネル等の生産性を格段に向上させることが可能なAl−Nd合金スパッタリングターゲットを提供することにある。   The present invention has been made in view of the situation as described above, and its purpose is to obtain a higher film formation rate than a conventional Al—Nd alloy sputtering target, and to significantly improve productivity of touch panels and the like. An object of the present invention is to provide an Al—Nd alloy sputtering target that can be produced.

上記課題を解決し得た本発明のAl合金スパッタリングターゲットは、Ndを0.1原子%以上3原子%以下含有するAl合金からなり、X線回析パターンにおけるAl(200)面のX線回折ピーク強度、Al(311)面のX線回折ピーク強度、Al(220)面のX線回折ピーク強度、およびAl(111)面のX線回折ピーク強度が下記式(1)の関係を満たし、且つ、ビッカース硬さHvが29以上、36以下を満たすところに要旨を有するものである。
Al(200)>IAl(311)>IAl(220)>IAl(111) …(1)
式中、IAl(200)はAl(200)面のX線回折ピーク強度を、IAl(311)はAl(311)面のX線回折ピーク強度を、IAl(220)はAl(220)面のX線回折ピーク強度を、IAl(111)はAl(111)面のX線回折ピーク強度を示す。
The Al alloy sputtering target of the present invention that has solved the above problems is made of an Al alloy containing Nd of 0.1 atomic% to 3 atomic%, and X-ray diffraction of the Al (200) plane in the X-ray diffraction pattern. The peak intensity, the X-ray diffraction peak intensity of the Al (311) plane, the X-ray diffraction peak intensity of the Al (220) plane, and the X-ray diffraction peak intensity of the Al (111) plane satisfy the relationship of the following formula (1): And it has a summary in the place where Vickers hardness Hv satisfies 29 or more and 36 or less.
I Al (200) > I Al (311) > I Al (220) > I Al (111) (1)
In the formula, I Al (200) represents the X-ray diffraction peak intensity of the Al (200) plane, I Al (311) represents the X-ray diffraction peak intensity of the Al (311) plane, and I Al (220) represents Al (220 ) Plane X-ray diffraction peak intensity, and I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.

本発明の好ましい実施形態において、上記Al合金スパッタリングターゲットは、平均結晶粒径が10μm以上100μm以下である。   In a preferred embodiment of the present invention, the Al alloy sputtering target has an average crystal grain size of 10 μm to 100 μm.

本発明の好ましい実施形態において、上記Al合金スパッタリングターゲットは、タッチパネルの引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いられるものである。   In a preferred embodiment of the present invention, the Al alloy sputtering target is used for forming a lead wiring film for a touch panel and a wiring film for a touch panel sensor.

本発明によれば、Al−Nd合金スパッタリングターゲットの、特にX線回折ピーク強度とビッカース硬さを制御しているため、該スパッタリングターゲットをAl−Nd合金薄膜の形成に用いた時に、成膜速度を十分高めることができる。その結果、上記薄膜を例えば引き出し配線膜およびタッチパネルセンサーの配線膜に用いたタッチパネル等の生産性を格段に向上させることができる。   According to the present invention, since the X-ray diffraction peak intensity and Vickers hardness of the Al—Nd alloy sputtering target are controlled in particular, when the sputtering target is used for forming an Al—Nd alloy thin film, the film formation rate Can be increased sufficiently. As a result, productivity of a touch panel or the like using the thin film as, for example, a lead wiring film or a wiring film of a touch panel sensor can be significantly improved.

図1は、本発明のAl合金スパッタリングターゲットのAlの(111)面、(200)面、(220)面、および(311)面のX線回折ピーク強度の一例を示す。FIG. 1 shows an example of X-ray diffraction peak intensities of the Al (111), (200), (220), and (311) planes of the Al alloy sputtering target of the present invention.

本発明者は上記課題の下で、Al−Nd合金薄膜を高速で形成できるAl−Nd合金スパッタリングターゲットを提供すべく鋭意研究を重ねてきた。その結果、後述する成分組成のAl−Nd合金スパッタリングターゲットの、スパッタリング面のAl(200)面、Al(311)面、Al(220)面、およびAl(111)面のX線回折ピーク強度を、下記式(1)の関係を満たすように制御し、且つ、ビッカース硬さを29以上、36以下に制御すれば、上記Al−Nd合金スパッタリングターゲットを実現できることを見出した。
Al(200)>IAl(311)>IAl(220)>IAl(111) …(1)
式中、IAl(200)はAl(200)面のX線回折ピーク強度を、IAl(311)はAl(311)面のX線回折ピーク強度を、IAl(220)はAl(220)面のX線回折ピーク強度を、IAl(111)はAl(111)面のX線回折ピーク強度を示す。
Under the above-mentioned problems, the inventor has intensively studied to provide an Al—Nd alloy sputtering target capable of forming an Al—Nd alloy thin film at high speed. As a result, the X-ray diffraction peak intensities of the Al (200) plane, Al (311) plane, Al (220) plane, and Al (111) plane of the sputtering surface of the Al—Nd alloy sputtering target having the component composition described later are obtained. It has been found that the Al—Nd alloy sputtering target can be realized by controlling to satisfy the relationship of the following formula (1) and controlling the Vickers hardness to 29 or more and 36 or less.
I Al (200) > I Al (311) > I Al (220) > I Al (111) (1)
In the formula, I Al (200) represents the X-ray diffraction peak intensity of the Al (200) plane, I Al (311) represents the X-ray diffraction peak intensity of the Al (311) plane, and I Al (220) represents Al (220 ) Plane X-ray diffraction peak intensity, and I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.

更にAl−Nd合金スパッタリングターゲットの平均結晶粒径を、好ましくは10μm以上100μm以下に制御すれば、成膜速度を更に高めることができることを見出し、本発明を完成した。   Furthermore, the present inventors have found that the film formation rate can be further increased by controlling the average crystal grain size of the Al—Nd alloy sputtering target to preferably 10 μm or more and 100 μm or less, thereby completing the present invention.

本明細書において、Al−Nd合金薄膜を高速で形成できる特性を「高成膜速度を有する」ということがある。   In this specification, the characteristic that an Al—Nd alloy thin film can be formed at a high speed is sometimes referred to as “having a high film formation speed”.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

まず、Al−Nd合金スパッタリングターゲットのX線回折パターンについて説明する。本発明は、X線回折ピーク強度の大小関係がIAl(200)>IAl(311)>IAl(220)>IAl(111)を満たすところに特徴がある。 First, the X-ray diffraction pattern of the Al—Nd alloy sputtering target will be described. The present invention is characterized in that the magnitude relationship between the X-ray diffraction peak intensities satisfies I Al (200) > I Al (311) > I Al (220) > I Al (111) .

上記X線回折ピーク強度の大小関係を満たすことにより、高成膜速度を実現できることを見出した経緯は以下の通りである。
(a)スパッタリング時のArイオンの衝突エネルギーは、金属の結晶面の原子の充填度の高い方向に効率良く伝わることが知られていた。
(b)特にAlの結晶面は(200)面、(311)面、(220)面、(111)面の順序で、その結晶面の法線方向の原子充填度が高く、上記法線方向に上記衝突エネルギーが、より効率良く伝わり易いことが知られていた。
(c)しかし、Al基合金スパッタリングターゲットを対象とした場合、例えばSi含有Al基スパッタリングターゲットにおいて、<111>の結晶方位の比率を高めて成膜速度を向上させている技術が存在する一方で、<111>の結晶方位の比率は低い方がよいとする技術も存在していた。このように結晶方位と成膜速度の関係については不明な部分が多かった。本発明者は、結晶面と成膜速度の関係について鋭意検討した結果、Al−Nd合金スパッタリングターゲットにおいて、Alの結晶面の法線方向の原子充填度が高い順序の(200)面、(311)面、(220)面、(111)面の上記X線回折ピーク強度の大小関係を満たすことにより、多くのスパッタ粒子が射出され、高成膜速度を実現することができることを見出した。なお上記大小関係は、X線回折の測定範囲2θ=30〜90゜のX線回折パターンにおいて、(222)面等も含む複数のピークの中から(200)面、(311)面、(220)面、(111)面のピークを選出し、X線回折ピーク強度を比較することによって決定される。
The history of finding that a high film formation rate can be realized by satisfying the magnitude relationship of the X-ray diffraction peak intensity is as follows.
(A) It has been known that the collision energy of Ar ions during sputtering is efficiently transmitted in a direction in which the degree of filling of atoms on a metal crystal plane is high.
(B) In particular, the crystal plane of Al is in the order of (200) plane, (311) plane, (220) plane, and (111) plane, and the degree of atomic filling in the normal direction of the crystal plane is high. In addition, it has been known that the collision energy is more easily transmitted efficiently.
(C) However, when an Al-based alloy sputtering target is targeted, for example, in a Si-containing Al-based sputtering target, there is a technique for improving the film formation rate by increasing the ratio of <111> crystal orientations. Also, there has been a technique in which a lower ratio of <111> crystal orientation is better. As described above, there are many unclear parts regarding the relationship between the crystal orientation and the film formation rate. As a result of intensive studies on the relationship between the crystal plane and the film formation rate, the present inventor found that in the Al—Nd alloy sputtering target, the (200) plane with the highest atomic filling degree in the normal direction of the Al crystal plane was (311). It was found that by satisfying the magnitude relationship of the X-ray diffraction peak intensities of the ()) plane, (220) plane, and (111) plane, a large number of sputtered particles are ejected and a high deposition rate can be realized. Note that the magnitude relationship is as follows: in the X-ray diffraction pattern in the X-ray diffraction measurement range 2θ = 30 to 90 °, the (200) plane, (311) plane, (220) among a plurality of peaks including the (222) plane. ) Plane and (111) plane are selected and X-ray diffraction peak intensities are compared.

次に、Al−Nd合金スパッタリングターゲットのビッカース硬さHvについて説明する。Al−Nd合金スパッタリングターゲットのビッカース硬さが36を超える場合、スパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくいため、高成膜速度が得られない。よって本発明ではビッカース硬さの上限を36以下とする。ビッカース硬さの上限は、好ましくは35以下、より好ましくは34以下、更に好ましくは33以下である。   Next, the Vickers hardness Hv of the Al—Nd alloy sputtering target will be described. When the Vickers hardness of the Al—Nd alloy sputtering target exceeds 36, the collision energy of Ar ions at the time of sputtering is not efficiently propagated, and the sputtered particles are difficult to be ejected from the sputtering target, so that a high film forming speed cannot be obtained. . Therefore, in this invention, the upper limit of Vickers hardness shall be 36 or less. The upper limit of the Vickers hardness is preferably 35 or less, more preferably 34 or less, and still more preferably 33 or less.

但し、ビッカース硬さが29を下回り、低すぎてもスパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくいため、高成膜速度が得られにくい。よって、ビッカース硬さの下限を29以上とする。ビッカース硬さの下限は、好ましくは30以上、より好ましくは31以上である。   However, even if the Vickers hardness is less than 29 and is too low, the collision energy of Ar ions at the time of sputtering is not efficiently propagated, and the sputtered particles are difficult to be ejected from the sputtering target, so that it is difficult to obtain a high deposition rate. Therefore, the lower limit of the Vickers hardness is 29 or more. The lower limit of the Vickers hardness is preferably 30 or more, more preferably 31 or more.

Al−Nd合金スパッタリングターゲットの平均結晶粒径は、10μm以上100μm以下であることが、優れた高成膜速度を確保する観点から好ましい。10μm未満では、スパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくい。その結果、高成膜速度が得られない場合があるため、上述の通り10μm以上が好ましい。平均結晶粒径の下限は、より好ましくは20μm以上、更に好ましくは30μm以上、更により好ましくは40μm以上である。   The average crystal grain size of the Al—Nd alloy sputtering target is preferably 10 μm or more and 100 μm or less from the viewpoint of securing an excellent high film formation rate. If it is less than 10 μm, the collision energy of Ar ions during sputtering is not efficiently propagated, and sputtered particles are difficult to be ejected from the sputtering target. As a result, since a high film formation rate may not be obtained, 10 μm or more is preferable as described above. The lower limit of the average crystal grain size is more preferably 20 μm or more, further preferably 30 μm or more, and even more preferably 40 μm or more.

一方、平均結晶粒径が大きくなり過ぎて100μmを超えてもスパッタリング時のArイオンの衝突エネルギーが効率良く伝播されず、スパッタ粒子がスパッタリングターゲットから射出されにくい。その結果、高成膜速度が得られにくいため、上述の通り100μm以下が好ましい。平均結晶粒径の上限は、より好ましくは90μm以下、更に好ましくは80μm以下である。   On the other hand, even if the average crystal grain size becomes too large and exceeds 100 μm, the collision energy of Ar ions during sputtering is not efficiently propagated, and the sputtered particles are not easily ejected from the sputtering target. As a result, it is difficult to obtain a high deposition rate, and therefore, 100 μm or less is preferable as described above. The upper limit of the average crystal grain size is more preferably 90 μm or less, still more preferably 80 μm or less.

なお、上記平均結晶粒径は次のようにして求める。Al−Nd合金スパッタリングターゲットのスパッタリング面の光学顕微鏡写真を撮影する。顕微鏡倍率が大きい程正確に結晶粒径を求めることができ、通常、100〜500倍程度に設定する。次に、得られた写真に井桁状に4本以上の直線を引く。なお直線の数が多い程正確に結晶粒径を求めることができる。上記直線上にある結晶粒界の数nを調べ、各直線ごとに下記式に基づいて結晶粒径dを算出する。その後、複数本の直線それぞれから求めた結晶粒径dの平均値をスパッタリングターゲットの平均結晶粒径とする。
d(単位:μm)=L/n/m
式中、Lは直線の長さLを示し、nは直線上の結晶粒界の数nを示し、mは光学顕微鏡写真の倍率を示す。
The average crystal grain size is determined as follows. An optical micrograph of the sputtering surface of the Al—Nd alloy sputtering target is taken. The larger the microscope magnification, the more accurately the crystal grain size can be obtained, and it is usually set to about 100 to 500 times. Next, draw four or more straight lines in a cross pattern on the obtained photo. Note that the larger the number of straight lines, the more accurately the crystal grain size can be obtained. The number n of crystal grain boundaries on the straight line is examined, and the crystal grain size d is calculated based on the following formula for each straight line. Thereafter, the average value of the crystal grain sizes d obtained from each of the plurality of straight lines is set as the average crystal grain size of the sputtering target.
d (unit: μm) = L / n / m
In the formula, L represents the length L of the straight line, n represents the number n of crystal grain boundaries on the straight line, and m represents the magnification of the optical micrograph.

次に、本発明に係るAl−Nd合金スパッタリングターゲットの成分組成とその限定理由を説明する。   Next, the component composition of the Al—Nd alloy sputtering target according to the present invention and the reason for the limitation will be described.

本発明のスパッタリングターゲットは、原子%で、Ndを0.1%以上3%以下含有するAl合金からなる。以下、化学成分について「%」は「原子%」を意味する。   The sputtering target of the present invention is made of an Al alloy containing at least 0.1% and not more than 3% of Nd in atomic%. Hereinafter, “%” means “atomic%” for chemical components.

[Nd:0.1%以上3%以下]
Ndは、ヒロックの発生を防止し、耐熱性向上に有用な元素である。Al合金中の含有率が0.1%未満の場合は、高耐熱性を有するAl合金薄膜を成膜できない。そのため、Nd含有率の下限は0.1%以上である。Nd含有率の下限は、好ましくは0.15%以上、より好ましくは0.20%以上である。一方、Nd含有率が3%を超える場合は、低電気抵抗率を有するAl合金薄膜を成膜できない。そのため、Nd含有率の上限は3%以下である。Nd含有率の上限は、好ましくは2%以下、より好ましくは1%以下である。
[Nd: 0.1% to 3%]
Nd is an element that prevents generation of hillocks and is useful for improving heat resistance. When the content in the Al alloy is less than 0.1%, an Al alloy thin film having high heat resistance cannot be formed. Therefore, the lower limit of the Nd content is 0.1% or more. The lower limit of the Nd content is preferably 0.15% or more, more preferably 0.20% or more. On the other hand, when the Nd content exceeds 3%, an Al alloy thin film having a low electrical resistivity cannot be formed. Therefore, the upper limit of the Nd content is 3% or less. The upper limit of the Nd content is preferably 2% or less, more preferably 1% or less.

本発明で規定する含有元素は上記の通りであって、残部はAlおよび不可避不純物である。不可避不純物として、原料、資材、製造設備等から持ち込まれる元素、例えばFe、Si、Cu、C、O、N等の元素の混入が許容され得る。   The contained elements specified in the present invention are as described above, and the balance is Al and inevitable impurities. As an unavoidable impurity, an element such as Fe, Si, Cu, C, O, N or the like introduced from raw materials, materials, manufacturing equipment, etc. can be allowed to be mixed.

Al−Nd合金スパッタリングターゲットは、上記の通り、実質的にAlとNdのみからなるAl合金スパッタリングターゲットであってもよいが、本発明に悪影響を与えない範囲で、以下の元素を含有しても良い。   As described above, the Al—Nd alloy sputtering target may be an Al alloy sputtering target consisting essentially of only Al and Nd. However, the Al—Nd alloy sputtering target may contain the following elements as long as the present invention is not adversely affected. good.

[Ti:0.0005%以上0.01%以下]
TiはAlの結晶粒の微細化に有効な元素である。このような効果を有効に発揮させるために、Ti含有率の下限は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。しかし、Ti含有率が過剰になると、低電気抵抗率を有するAl合金薄膜を成膜できない。そのため、Ti含有率の上限は、好ましくは0.01%以下、より好ましくは0.005%以下である。
[Ti: 0.0005% to 0.01%]
Ti is an effective element for refining Al crystal grains. In order to effectively exhibit such an effect, the lower limit of the Ti content is preferably 0.0005% or more, more preferably 0.0010% or more. However, when the Ti content is excessive, an Al alloy thin film having a low electrical resistivity cannot be formed. Therefore, the upper limit of the Ti content is preferably 0.01% or less, more preferably 0.005% or less.

[B:0.0005%以上0.01%以下]
BはAlの結晶粒の微細化に有効な元素である。このような効果を有効に発揮させるために、B含有率の下限は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。しかし、B含有率が過剰になると、低電気抵抗率を有するAl合金薄膜を成膜できない。そのため、B含有率の上限は、好ましくは0.01%以下、より好ましくは0.005%以下である。
[B: 0.0005% to 0.01%]
B is an element effective for refining Al crystal grains. In order to effectively exhibit such an effect, the lower limit of the B content is preferably 0.0005% or more, more preferably 0.0010% or more. However, when the B content is excessive, an Al alloy thin film having a low electrical resistivity cannot be formed. Therefore, the upper limit of the B content is preferably 0.01% or less, more preferably 0.005% or less.

スパッタリングターゲットの形状は特に限定されず、円板、四角板等の平板形状や、円筒形状などの公知の種々の形状のものとすることができる。例えば、円板形状とすることができる。このような円板形状のスパッタリングターゲットは、例えば、鍛造と熱処理によって金属組織とNd分布が均一化された円柱形状の鍛造体を輪切り加工;圧延と熱処理によって金属組織とNd分布が均一化された平板形状の圧延体を丸抜き加工;あるいは鍛造と圧延と熱処理によって金属組織とNd分布が均一化された平板形状の圧延体を丸抜き加工;されたものであるため、均一性に優れたAl系薄膜を継続かつ安定して形成することができる。   The shape of the sputtering target is not particularly limited, and can be various known shapes such as a flat plate shape such as a disk or a square plate, or a cylindrical shape. For example, it can be a disk shape. Such a disk-shaped sputtering target is formed by, for example, round-cutting a cylindrical forged body in which the metal structure and Nd distribution are made uniform by forging and heat treatment; and the metal structure and Nd distribution are made uniform by rolling and heat treatment. A flat rolled body is rounded; or a flat rolled body with a uniform metal structure and Nd distribution is rounded by forging, rolling, and heat treatment; The system thin film can be formed continuously and stably.

本発明のAl−Nd合金スパッタリングターゲットは、生産性の向上、特に高い成膜速度が求められるタッチパネルの引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いられることが好ましい。該引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いることによって、タッチパネルの生産性を格段に向上させることができる。   The Al—Nd alloy sputtering target of the present invention is preferably used for forming a lead-out wiring film for a touch panel and a wiring film for a touch panel sensor, which are required to improve productivity, particularly at a high film formation rate. By using the lead-out wiring film and the wiring film of the touch panel sensor, productivity of the touch panel can be remarkably improved.

次に、上記Al−Nd合金スパッタリングターゲットを製造する方法について説明する。本発明のAl−Nd合金スパッタリングターゲットは、Al材料とNd材料を大気溶解し、鋳造した後、鍛造および圧延のうち少なくとも1つの塑性加工を行い、熱処理し、機械加工して、必要に応じてバッキングプレートにボンディングを行うことによって製造することができる。   Next, a method for producing the Al—Nd alloy sputtering target will be described. In the Al—Nd alloy sputtering target of the present invention, Al material and Nd material are dissolved in the atmosphere, cast, and then subjected to at least one plastic working among forging and rolling, heat treatment, machining, and as necessary. It can be manufactured by bonding the backing plate.

例えば、本発明のAl−Nd合金スパッタリングターゲットを以下の条件で製造することができる。   For example, the Al—Nd alloy sputtering target of the present invention can be manufactured under the following conditions.

Al材料とNd材料を大気溶解し、DC(Direct Chill Casting)鋳造法によって厚み150〜180mmの鋳塊を造塊した後、冷間鍛造と熱間圧延を行ない焼鈍する。次いで、丸抜き加工、旋盤加工等の機械加工を行なって、Al−Nd合金スパッタリングターゲットを製造すれば良い。   An Al material and an Nd material are dissolved in the atmosphere, and an ingot having a thickness of 150 to 180 mm is ingoted by a DC (Direct Chill Casting) casting method, and then cold forging and hot rolling are performed and annealing is performed. Next, mechanical processing such as rounding and lathe processing may be performed to manufacture an Al—Nd alloy sputtering target.

このうち、上記式(1)のX線回折パターンおよびビッカース硬さを確保するためには、特に熱間圧延の加熱温度および圧下率の上限と下限、並びに焼鈍の加熱温度の上限と下限を下記の範囲に制御することが重要である。以下、冷間鍛造以後の工程について詳述する。   Among these, in order to ensure the X-ray diffraction pattern and the Vickers hardness of the above formula (1), the upper limit and lower limit of the heating temperature and reduction ratio of the hot rolling and the upper limit and lower limit of the heating temperature of annealing are shown below. It is important to control within the range. Hereinafter, processes after cold forging will be described in detail.

冷間鍛造の加工率:30〜50%
冷間鍛造の加工率が低すぎると、10μm以上100μm以下の平均結晶粒径が得られなくなる。そのため、冷間鍛造の加工率の下限は、好ましくは30%以上、より好ましくは35%以上とする。一方、冷間鍛造の加工率が高過ぎると、割れ等の破壊が生じる。そのため、冷間鍛造の加工率の上限は、好ましくは50%以下、より好ましくは45%以下とする。
Cold forging rate: 30-50%
If the processing rate of cold forging is too low, an average crystal grain size of 10 μm or more and 100 μm or less cannot be obtained. Therefore, the lower limit of the cold forging rate is preferably 30% or more, more preferably 35% or more. On the other hand, when the cold forging rate is too high, breakage such as cracking occurs. Therefore, the upper limit of the cold forging rate is preferably 50% or less, more preferably 45% or less.

尚、冷間鍛造の加工率は、下記式で求められるものである。
加工率(%)=100×(冷間鍛造開始前厚−冷間鍛造完了厚)/冷間鍛造開始前厚
In addition, the processing rate of cold forging is calculated | required by a following formula.
Processing rate (%) = 100 × (thickness before start of cold forging−thickness after completion of cold forging) / thickness before start of cold forging

熱間圧延の加熱温度:350〜450℃
熱間圧延の加熱温度が350℃を下回ると、Al(200)面のX線回折ピーク強度が小さくなり、上記式(1)のX線回折パターンが得られなくなる。そのため、熱間圧延の加熱温度の下限は、350℃以上とする。熱間圧延の加熱温度の下限は、好ましくは370℃以上とする。一方、熱間圧延の加熱温度が450℃を上回ると、Al(111)面のX線回折ピーク強度が大きくなり、上記式(1)のX線回折パターンが得られなくなる。そのため、熱間圧延の加熱温度の上限は450℃以下とする。熱間圧延の加熱温度の上限は、好ましくは430℃以下とする。
Hot rolling heating temperature: 350-450 ° C
When the heating temperature of the hot rolling is lower than 350 ° C., the intensity of the X-ray diffraction peak on the Al (200) plane becomes small and the X-ray diffraction pattern of the above formula (1) cannot be obtained. Therefore, the lower limit of the heating temperature for hot rolling is 350 ° C. or higher. The lower limit of the heating temperature for hot rolling is preferably 370 ° C. or higher. On the other hand, when the heating temperature of the hot rolling exceeds 450 ° C., the X-ray diffraction peak intensity of the Al (111) surface increases, and the X-ray diffraction pattern of the above formula (1) cannot be obtained. Therefore, the upper limit of the heating temperature of hot rolling is set to 450 ° C. or less. The upper limit of the heating temperature for hot rolling is preferably 430 ° C. or lower.

熱間圧延の圧下率:75〜95%
熱間圧延の圧下率が75%を下回ると、Al(200)面のX線回折ピーク強度が小さくなり、上記式(1)のX線回折パターンが得られなくなる。そのため、熱間圧延の圧下率の下限は75%以上とする。熱間圧延の圧下率の下限は、好ましくは77%以上とする。一方、熱間圧延の圧下率が95%を上回ると、割れ等の破壊が生じる。そのため、熱間圧延の圧下率の上限は95%以下とする。熱間圧延の圧下率の上限は、好ましくは90%以下とする。
Hot rolling reduction: 75-95%
When the rolling reduction of the hot rolling is less than 75%, the X-ray diffraction peak intensity of the Al (200) plane becomes small and the X-ray diffraction pattern of the above formula (1) cannot be obtained. Therefore, the lower limit of the hot rolling reduction is 75% or more. The lower limit of the hot rolling reduction is preferably 77% or more. On the other hand, when the rolling reduction of hot rolling exceeds 95%, breakage such as cracking occurs. Therefore, the upper limit of the hot rolling reduction is 95% or less. The upper limit of the hot rolling reduction is preferably 90% or less.

尚、熱間圧延の圧下率は、下記式で求められるものである。
圧下率(%)=100×(圧延開始前厚−圧延完了厚)/圧延開始前厚
In addition, the rolling reduction of hot rolling is calculated | required by a following formula.
Reduction ratio (%) = 100 × (thickness before starting rolling−thickness after rolling) / thickness before starting rolling

焼鈍の加熱温度:350〜450℃
焼鈍の加熱温度が350℃を下回ると、平均結晶粒径が小さくなりすぎ、ビッカース硬さが高くなりすぎる。そのため、焼鈍の加熱温度の下限は350℃以上とする。焼鈍の加熱温度の下限は、好ましくは370℃以上である。一方、焼鈍の加熱温度が450℃を上回ると、平均結晶粒径が大きくなりすぎ、ビッカース硬さが低くなりすぎる。そのため、焼鈍の加熱温度の上限は、好ましくは450℃以下、より好ましくは430℃以下とする。
Heating temperature for annealing: 350-450 ° C
When the annealing heating temperature is lower than 350 ° C., the average crystal grain size becomes too small and the Vickers hardness becomes too high. Therefore, the lower limit of the annealing heating temperature is 350 ° C. or higher. The lower limit of the heating temperature for annealing is preferably 370 ° C. or higher. On the other hand, if the heating temperature for annealing exceeds 450 ° C., the average crystal grain size becomes too large and the Vickers hardness becomes too low. Therefore, the upper limit of the heating temperature for annealing is preferably 450 ° C. or lower, more preferably 430 ° C. or lower.

焼鈍の加熱時間:1.0時間以上3.0時間未満
焼鈍の加熱時間が短すぎると、Al−Nd合金スパッタリングターゲットの平均結晶粒径が小さくなりすぎ、ビッカース硬さが高くなりすぎる。そのため、焼鈍の加熱時間の下限は、好ましくは1.0時間以上、より好ましくは1.2時間以上とする。一方、焼鈍の加熱時間が長過ぎると、Al−Nd合金スパッタリングターゲットの平均結晶粒径が大きくなりすぎ、ビッカース硬さが低くなりすぎる。そのため、焼鈍の加熱時間の上限は、好ましくは3.0時間未満、より好ましくは2.8時間以下とする。
Heating time for annealing: 1.0 hour or more and less than 3.0 hours If the heating time for annealing is too short, the average crystal grain size of the Al—Nd alloy sputtering target becomes too small and the Vickers hardness becomes too high. Therefore, the lower limit of the heating time for annealing is preferably 1.0 hour or longer, more preferably 1.2 hours or longer. On the other hand, if the heating time for annealing is too long, the average crystal grain size of the Al—Nd alloy sputtering target becomes too large and the Vickers hardness becomes too low. Therefore, the upper limit of the heating time for annealing is preferably less than 3.0 hours, more preferably 2.8 hours or less.

以下の実施例によって本発明をさらに詳述するが、以下の実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。   The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and modifications and implementations without departing from the spirit of the present invention are all included in the technical scope of the present invention. Is done.

〔Al−Nd合金スパッタリングターゲットの製造〕
はじめに、Al−Nd合金スパッタリングターゲットの製造方法について説明する。
[Production of Al-Nd alloy sputtering target]
First, a method for producing an Al—Nd alloy sputtering target will be described.

原材料として以下のAlとNdの各材料を用意する。
(1)Al材料:純度99.99原子%のAl
(2)Nd材料:純度99.5原子%のNd
The following Al and Nd materials are prepared as raw materials.
(1) Al material: Al with a purity of 99.99 atomic%
(2) Nd material: Nd with a purity of 99.5 atomic%

上記材料を用い、大気溶解しDC鋳造法によって幅300mm×長さ350mm×厚み65mmの四角板形状の鋳塊を造塊した。その後、加工率38%の条件で冷間鍛造を行い、幅380mm×長さ450mm×厚み40mmの四角板形状の鍛造体を得た。次いで、表1に示す条件で熱間圧延を行い、幅400mmで、表1に示す厚さの熱間圧延板を得た。その後、焼鈍を行なった。なお、No.3については、熱間圧延の圧下率が高く圧延板が割れたため、その後の工程へ進めることができず、以後の試験を行わなかった。   Using the above materials, a square plate-shaped ingot having a width of 300 mm, a length of 350 mm, and a thickness of 65 mm was formed by DC melting. Thereafter, cold forging was performed under the condition of a processing rate of 38% to obtain a rectangular plate-shaped forged body having a width of 380 mm, a length of 450 mm, and a thickness of 40 mm. Next, hot rolling was performed under the conditions shown in Table 1, and a hot rolled sheet having a width of 400 mm and a thickness shown in Table 1 was obtained. Thereafter, annealing was performed. In addition, No. As for No. 3, since the rolling reduction of the hot rolling was high and the rolled sheet was cracked, it was not possible to proceed to the subsequent process, and the subsequent test was not performed.

次いで、圧延板切断、丸抜き加工および旋盤加工を行なった。詳細には、切断と丸抜き加工を行った圧延板の厚さ方向に向って片面の表層部から0.5mmまで研削し、両面で合計1.0mm研削し、その研削後の片面がスパッタリング面となるように旋盤加工を行った。こうして直径101.6mm×厚さ5.0mmのサイズの円板形状のAl−Nd合金スパッタリングターゲットを製造した。このようにして得られたスパッタリングターゲット中のNd量を、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法によって分析した。   Next, the rolled plate was cut, rounded, and turned. Specifically, grinding is performed from the surface layer part of one side to 0.5 mm in the thickness direction of the cut and rounded rolled plate, and a total of 1.0 mm is ground on both sides. Lathe processing was performed so that In this manner, a disk-shaped Al—Nd alloy sputtering target having a diameter of 101.6 mm × thickness of 5.0 mm was manufactured. The amount of Nd in the sputtering target thus obtained was analyzed by inductively coupled plasma (ICP) emission spectroscopy.

上記で得られた厚さ5.0mmのスパッタリングターゲットの物性は、下記の方法に従って求めた。   The physical properties of the sputtering target having a thickness of 5.0 mm obtained above were determined according to the following method.

[X線回折ピーク強度]
スパッタリングターゲットのターゲット表面の任意の4箇所を下記に示す条件でX線回折法によって分析し、Alの(111)面、(200)面、(220)面、および(311)面のX線回折ピーク強度、より具体的には積分強度を、単位はCPS(counts per second)で測定した。これらの値の大小関係を評価した。その一例として、本発明例である表1のNo.5の結果を図1に示す。尚、上記のとおり4箇所について分析したが、いずれのターゲットも上記4箇所の上記X線回折ピーク強度の大小関係は同じであった。
[X-ray diffraction peak intensity]
Any four locations on the target surface of the sputtering target were analyzed by X-ray diffraction under the conditions shown below, and X-ray diffraction of the (111), (200), (220), and (311) planes of Al The peak intensity, more specifically, the integrated intensity, was measured by CPS (counts per second). The magnitude relationship between these values was evaluated. As an example, No. in Table 1 which is an example of the present invention. The result of 5 is shown in FIG. In addition, although it analyzed about 4 places as above-mentioned, the magnitude relationship of the said X-ray-diffraction peak intensity of the said 4 places was the same also in any target.

X線回折条件
a)試験片の前処理
本実験例では試験片の表面が平滑であったため前処理は行わなかった。尚、試験片表面の切削ひずみの影響を除去したい場合は、試験片の前処理として、表面を湿式研磨後に、希硝酸にてエッチングすることが好ましい。
b)分析装置
理学電機(株)製「RINT1500」
c)分析条件
ターゲット:Cu
単色化:モノクロメータ使用によるCuKα線
ターゲット出力:40kV−200mA
スリット:発散1゜,散乱1°,受光0.15mm
走査速度:4゜/min
サンプリング幅:0.02゜
測定範囲(2θ):30〜90゜
X-ray diffraction conditions a) Pretreatment of test piece In this experimental example, since the surface of the test piece was smooth, no pretreatment was performed. In addition, when it is desired to remove the influence of the cutting strain on the surface of the test piece, it is preferable to etch the surface with dilute nitric acid after wet polishing as a pretreatment of the test piece.
b) “RINT 1500” manufactured by Rigaku Denki Co., Ltd.
c) Analysis condition target: Cu
Monochrome: CuKα target output using a monochromator: 40 kV-200 mA
Slit: Divergence 1 °, scattering 1 °, light receiving 0.15mm
Scanning speed: 4 ° / min
Sampling width: 0.02 ° Measurement range (2θ): 30-90 °

[ビッカース硬さ]
各スパッタリングターゲットのビッカース硬さHvを、ビッカース硬さ試験機(株式会社明石製作所製、AVK−G2)を用いて、荷重1kgfにて測定した。
[Vickers hardness]
The Vickers hardness Hv of each sputtering target was measured using a Vickers hardness tester (manufactured by Akashi Seisakusho Co., Ltd., AVK-G2) at a load of 1 kgf.

[平均結晶粒径]
スパッタリングターゲットのスパッタリング面の光学顕微鏡写真を撮影し、得られた写真に、井桁状の4本の直線を引いた。該直線上にある結晶粒界の数nを調べ、各直線ごとに下記式に基づいて、結晶粒径dを算出した。
[Average crystal grain size]
An optical microscope photograph of the sputtering surface of the sputtering target was taken, and four cross-shaped straight lines were drawn on the obtained photograph. The number n of crystal grain boundaries on the straight line was examined, and the crystal grain size d was calculated based on the following formula for each straight line.

d(単位:μm)=L/n/m
式中、Lは直線の長さLを示し、nは直線上の結晶粒界の数nを示し、mは光学顕微鏡写真の倍率を示す。4本の直線それぞれから求めた結晶粒径dの平均値を、平均結晶粒径(μm)とした。
d (unit: μm) = L / n / m
In the formula, L represents the length L of the straight line, n represents the number n of crystal grain boundaries on the straight line, and m represents the magnification of the optical micrograph. The average value of the crystal grain size d obtained from each of the four straight lines was defined as the average crystal grain size (μm).

[成膜速度]
上記のAl−Nd合金スパッタリングターゲットを用い、DCマグネトロンスパッタリング法によるAl−Nd合金薄膜の成膜速度を評価した。詳細には、直径50.0mm×厚さ0.70mmのサイズのガラス基板に対し、株式会社島津製作所製「スパッタリングシステムHSR−542S」のスパッタリング装置を用い、DCマグネトロンスパッタリングを成膜時間120秒間で行ってAl−Nd合金膜を得た。
[Deposition rate]
Using the above Al—Nd alloy sputtering target, the deposition rate of the Al—Nd alloy thin film by DC magnetron sputtering was evaluated. Specifically, using a sputtering apparatus of “Sputtering System HSR-542S” manufactured by Shimadzu Corporation on a glass substrate having a diameter of 50.0 mm × thickness of 0.70 mm, DC magnetron sputtering was performed for 120 seconds. And an Al—Nd alloy film was obtained.

スパッタリング条件は、以下の通りである。
背圧:3.0×10-6Torr以下
Arガス圧:2.25×10-3Torr
Arガス流量:30sccm
スパッタリングパワー:DC260W
極間距離:51.6mm
基板温度:室温
The sputtering conditions are as follows.
Back pressure: 3.0 × 10 −6 Torr or less Ar gas pressure: 2.25 × 10 −3 Torr
Ar gas flow rate: 30sccm
Sputtering power: DC260W
Distance between electrodes: 51.6mm
Substrate temperature: room temperature

成膜されたAl−Nd合金薄膜の膜厚を触針式膜厚計で測定し,成膜速度[nm/s]=膜厚[nm]/(成膜時間[s]=120秒)によって成膜速度を算出した。ここで下記の通り判断し、AおよびBを成膜速度が速いとして合格、特にAの場合を成膜速度がより速く好ましいと評価し、Cを成膜速度が遅いとして不合格と評価した。これらの結果を表1に示す。
A・・・成膜速度2.0nm/s以上
B・・・成膜速度1.8nm/s以上、2.0nm/s未満
C・・・成膜速度1.8nm/s未満
The film thickness of the formed Al—Nd alloy thin film was measured with a stylus type film thickness meter, and the film formation speed [nm / s] = film thickness [nm] / (film formation time [s] = 120 seconds) The deposition rate was calculated. Judgment was made as follows, and A and B were evaluated as having a high film formation rate, and the case of A was evaluated as being preferable because the film formation rate was higher, and C was evaluated as being rejected because the film formation rate was low. These results are shown in Table 1.
A: Deposition rate 2.0 nm / s or more B ... Deposition rate 1.8 nm / s or more, less than 2.0 nm / s C ... Deposition rate less than 1.8 nm / s

表1から次のことがわかる。表1のNo.5、8、11は本発明例でありX線回折ピーク強度の大小関係、およびビッカース硬さが適切に制御されているため、高成膜速度を達成でき、判定は合格である。このAl−Nd合金スパッタリングターゲットは高成膜速度を有するため、タッチパネル等の生産性を向上させることが可能である。   Table 1 shows the following. No. in Table 1 5, 8, and 11 are examples of the present invention, and the magnitude relationship of the X-ray diffraction peak intensity and the Vickers hardness are appropriately controlled, so that a high film formation rate can be achieved, and the determination is acceptable. Since this Al—Nd alloy sputtering target has a high deposition rate, productivity of a touch panel or the like can be improved.

特に、表1のNo.5、11は、ビッカース硬さが更に好ましい範囲内にあり、平均結晶粒径が更により好ましい範囲内にあるため、極めて優れた高成膜速度が得られ、タッチパネルの生産性を格段に向上させることが可能である。   In particular, no. Nos. 5 and 11 have a Vickers hardness in a more preferable range and an average crystal grain size in an even more preferable range, so that an extremely excellent high film forming speed can be obtained and the productivity of the touch panel is remarkably improved. It is possible.

これに対し、表1のNo.1、2、4、6、7、9、10は、本発明のいずれかの要件を満足しないため、高成膜速度が得られなかった。   In contrast, No. 1 in Table 1. Since 1, 2, 4, 6, 7, 9, and 10 do not satisfy any of the requirements of the present invention, a high film formation rate was not obtained.

表1のNo.1は、焼鈍の加熱温度が低いため、平均結晶粒径が小さくなり、ビッカース硬さが高い比較例であり、高成膜速度が得られず、判定は不合格である。   No. in Table 1 1 is a comparative example in which the average crystal grain size is small and the Vickers hardness is high because the heating temperature for annealing is low, and a high film formation rate cannot be obtained, and the determination is unacceptable.

No.2は、熱間圧延の圧下率が低いため、X線回折ピーク強度の大小関係が適切に制御されていない比較例であり、高成膜速度が得られず、判定は不合格である。   No. 2 is a comparative example in which the magnitude relation of the X-ray diffraction peak intensity is not appropriately controlled because the rolling reduction of hot rolling is low, and a high film formation rate cannot be obtained, and the determination is unacceptable.

No.4は、焼鈍の加熱温度が高いため、平均結晶粒径が大きくなり、ビッカース硬さが低い比較例であり、高成膜速度が得られず、判定は不合格である。   No. No. 4 is a comparative example in which the average crystal grain size is large and the Vickers hardness is low because the annealing heating temperature is high, and a high film formation rate cannot be obtained, and the determination is unacceptable.

No.6は、熱間圧延の加熱温度が低いため、X線回折ピーク強度の大小関係が適切に制御されていない比較例であり、高成膜速度が得られず、判定は不合格である。   No. No. 6 is a comparative example in which the magnitude relation of the X-ray diffraction peak intensity is not appropriately controlled because the heating temperature of hot rolling is low, and a high film formation rate cannot be obtained, and the determination is unacceptable.

No.7は、熱間圧延の加熱温度が高いため、X線回折ピーク強度の大小関係が適切に制御されていない比較例であり、高成膜速度が得られず、判定は不合格である。   No. No. 7 is a comparative example in which the magnitude relationship of the X-ray diffraction peak intensity is not appropriately controlled because the heating temperature of hot rolling is high, and a high film formation rate cannot be obtained, and the determination is unacceptable.

No.9は、焼鈍の加熱時間が短いため、平均結晶粒径が小さくなり、ビッカース硬さが高い比較例であり、高成膜速度が得られず、判定は不合格である。   No. No. 9 is a comparative example in which the average crystal grain size is small and the Vickers hardness is high because the heating time for annealing is short, and a high film formation rate cannot be obtained, and the determination is unacceptable.

No.10は、焼鈍の加熱時間が長いため、平均結晶粒径が大きくなり、ビッカース硬さが低い比較例であり、高成膜速度が得られず、判定は不合格である。   No. No. 10 is a comparative example in which the average crystal grain size is large and the Vickers hardness is low because the heating time for annealing is long, and a high film formation rate cannot be obtained, and the determination is unacceptable.

尚、No.3は、前述のとおり熱間圧延の圧下率が高いため、圧延板に割れが生じた。   No. No. 3 had a high rolling reduction ratio as described above, and therefore cracks occurred in the rolled sheet.

本発明のAl合金スパッタリングターゲットは上記のように高成膜速度を有するため、タッチパネルなどの表示装置の生産性を格段に向上させることができる。   Since the Al alloy sputtering target of the present invention has a high deposition rate as described above, the productivity of a display device such as a touch panel can be significantly improved.

Claims (3)

Ndを0.1原子%以上3原子%以下含有し、残部はAlおよび不可避不純物であるAl合金からなるAl合金スパッタリングターゲットであって、
X線回析パターンにおけるAl(200)面のX線回折ピーク強度、Al(311)面のX線回折ピーク強度、Al(220)面のX線回折ピーク強度、およびAl(111)面のX線回折ピーク強度が下記式(1)の関係を満たし、且つ、
ビッカース硬さHvが29以上、36以下であることを特徴とするAl合金スパッタリングターゲット。
Al(200)>IAl(311)>IAl(220)>IAl(111) …(1)
式中、IAl(200)はAl(200)面のX線回折ピーク強度を、IAl(311)はAl(311)面のX線回折ピーク強度を、IAl(220)はAl(220)面のX線回折ピーク強度を、IAl(111)はAl(111)面のX線回折ピーク強度を示す。
The Nd containing 3 atom% 0.1 atom% or more, the remaining portion is an Al alloy sputtering target made of an Al alloy is Al and inevitable impurities,
X-ray diffraction peak intensity of the Al (200) plane, X-ray diffraction peak intensity of the Al (311) plane, X-ray diffraction peak intensity of the Al (220) plane, and X of the Al (111) plane in the X-ray diffraction pattern The line diffraction peak intensity satisfies the relationship of the following formula (1), and
An Al alloy sputtering target having a Vickers hardness Hv of 29 or more and 36 or less.
I Al (200) > I Al (311) > I Al (220) > I Al (111) (1)
In the formula, I Al (200) represents the X-ray diffraction peak intensity of the Al (200) plane, I Al (311) represents the X-ray diffraction peak intensity of the Al (311) plane, and I Al (220) represents Al (220 ) Plane X-ray diffraction peak intensity, and I Al (111) represents the X-ray diffraction peak intensity of the Al (111) plane.
平均結晶粒径が10μm以上100μm以下である請求項1に記載のAl合金スパッタリングターゲット。   The Al alloy sputtering target according to claim 1, wherein the average crystal grain size is 10 μm or more and 100 μm or less. タッチパネルの引き出し配線膜およびタッチパネルセンサーの配線膜の形成に用いられる請求項1または2に記載のAl合金スパッタリングターゲット。   The Al alloy sputtering target according to claim 1, which is used for forming a lead wiring film of a touch panel and a wiring film of a touch panel sensor.
JP2015115184A 2015-06-05 2015-06-05 Al alloy sputtering target Active JP6377021B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015115184A JP6377021B2 (en) 2015-06-05 2015-06-05 Al alloy sputtering target
PCT/JP2016/062571 WO2016194508A1 (en) 2015-06-05 2016-04-20 Al ALLOY SPUTTERING TARGET
KR1020207007179A KR20200029634A (en) 2015-06-05 2016-04-20 Al ALLOY SPUTTERING TARGET
KR1020177034931A KR20180004214A (en) 2015-06-05 2016-04-20 Al alloy sputtering target
CN201680029641.7A CN107614745B (en) 2015-06-05 2016-04-20 Aluminum alloy sputtering target material
CN201910619403.7A CN110205591B (en) 2015-06-05 2016-04-20 Aluminum alloy sputtering target material
TW105115267A TWI585214B (en) 2015-06-05 2016-05-18 Aluminum alloy sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115184A JP6377021B2 (en) 2015-06-05 2015-06-05 Al alloy sputtering target

Publications (2)

Publication Number Publication Date
JP2017002343A JP2017002343A (en) 2017-01-05
JP6377021B2 true JP6377021B2 (en) 2018-08-22

Family

ID=57440018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115184A Active JP6377021B2 (en) 2015-06-05 2015-06-05 Al alloy sputtering target

Country Status (5)

Country Link
JP (1) JP6377021B2 (en)
KR (2) KR20180004214A (en)
CN (2) CN107614745B (en)
TW (1) TWI585214B (en)
WO (1) WO2016194508A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735930B2 (en) * 2018-06-28 2020-08-05 株式会社アルバック Aluminum alloy target and manufacturing method thereof
CN115287497B (en) * 2022-07-29 2023-05-26 先导薄膜材料(广东)有限公司 Tin-silver-copper target and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145771A (en) * 1986-12-10 1988-06-17 Kasei Naoetsu:Kk sputtering target
JPH06128737A (en) * 1992-10-20 1994-05-10 Mitsubishi Kasei Corp Sputtering target
JP2857015B2 (en) * 1993-04-08 1999-02-10 株式会社ジャパンエナジー Sputtering target made of high-purity aluminum or its alloy
EP0709483B1 (en) * 1994-10-28 2002-04-10 Sumitomo Electric Industries, Ltd. Multilayer material
JP3634208B2 (en) * 1999-09-21 2005-03-30 真空冶金株式会社 Electrode / wiring material for liquid crystal display and sputtering target
JP4405008B2 (en) * 1999-10-25 2010-01-27 アルバックマテリアル株式会社 Electrode / wiring material for liquid crystal display and manufacturing method thereof
US20010047838A1 (en) * 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
JP2003103821A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Thermal printer head and spattering target for forming electrode of the same
JP4237479B2 (en) * 2002-12-25 2009-03-11 株式会社東芝 Sputtering target, Al alloy film and electronic parts
US20060081465A1 (en) * 2004-10-19 2006-04-20 Kobelco Research Institute, Inc. Assembly for sputtering aluminum-neodymium alloys
JP5188182B2 (en) * 2005-09-27 2013-04-24 出光興産株式会社 Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP2010070857A (en) * 2009-12-15 2010-04-02 Kobelco Kaken:Kk SPUTTERING TARGET OF Al-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP5681368B2 (en) * 2010-02-26 2015-03-04 株式会社神戸製鋼所 Al-based alloy sputtering target
EP2626443A1 (en) * 2010-10-08 2013-08-14 Kabushiki Kaisha Kobe Seiko Sho Al-based alloy sputtering target and production method of same
JP2012132091A (en) * 2010-11-29 2012-07-12 Kobelco Kaken:Kk Al-BASED ALLOY SPUTTERING TARGET
JP5723171B2 (en) * 2011-02-04 2015-05-27 株式会社神戸製鋼所 Al-based alloy sputtering target
CN104630723A (en) * 2013-11-13 2015-05-20 宸鸿科技(厦门)有限公司 Sputtering target, transparent conducting film, manufacturing method of transparent conducting film and touch panel
CN103614698B (en) * 2013-12-18 2015-10-21 广西大学 A kind of High-temperature antioxidant niobium alloy compound coating and preparation method thereof

Also Published As

Publication number Publication date
CN107614745B (en) 2019-08-06
TWI585214B (en) 2017-06-01
KR20200029634A (en) 2020-03-18
KR20180004214A (en) 2018-01-10
CN107614745A (en) 2018-01-19
CN110205591B (en) 2021-04-30
TW201643263A (en) 2016-12-16
WO2016194508A1 (en) 2016-12-08
CN110205591A (en) 2019-09-06
JP2017002343A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
KR102079855B1 (en) Pure copper plate production method, and pure copper plate
TWI471439B (en) Al - based alloy sputtering target and Cu - based alloy sputtering target
CN104204282B (en) Tantalum sputtering target, method for manufacturing same, and barrier film for semiconductor wiring formed by using target
WO2011111373A1 (en) Sputtering target, method for producing same and method for producing semiconductor device
KR102134781B1 (en) Method for producing sputtering target, and sputtering target
WO2012046768A1 (en) Al-based alloy sputtering target and production method of same
CN109983149A (en) Sputtering target and its manufacturing method
JP2022008503A (en) Laminated film and Ag alloy sputtering target
CN107109634B (en) Tantalum sputtering target and method for producing same
JP6377021B2 (en) Al alloy sputtering target
CN103173729B (en) The sputtering manufacture method of copper target material
CN107532287B (en) Tantalum spattering target and its manufacturing method
WO2020070824A1 (en) Multilayer film, and ag alloy sputtering target
JP5406753B2 (en) Al-based alloy sputtering target and manufacturing method thereof
WO2022185858A1 (en) Hot-rolled copper alloy sheet and sputtering target
WO2022185859A1 (en) Hot-rolled copper alloy sheet and sputtering target
CN109154074B (en) Tantalum sputtering target

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6377021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150