[go: up one dir, main page]

JP6374330B2 - Method for producing electrolyte for non-aqueous storage device - Google Patents

Method for producing electrolyte for non-aqueous storage device Download PDF

Info

Publication number
JP6374330B2
JP6374330B2 JP2015025274A JP2015025274A JP6374330B2 JP 6374330 B2 JP6374330 B2 JP 6374330B2 JP 2015025274 A JP2015025274 A JP 2015025274A JP 2015025274 A JP2015025274 A JP 2015025274A JP 6374330 B2 JP6374330 B2 JP 6374330B2
Authority
JP
Japan
Prior art keywords
aluminum
aqueous
hydrophobic anion
salt
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015025274A
Other languages
Japanese (ja)
Other versions
JP2016149246A (en
Inventor
健吾 後藤
健吾 後藤
細江 晃久
晃久 細江
西村 淳一
淳一 西村
奥野 一樹
一樹 奥野
弘太郎 木村
弘太郎 木村
英彰 境田
英彰 境田
隼一 本村
隼一 本村
章夫 森山
章夫 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Koei Chemical Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd, Sumitomo Electric Industries Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2015025274A priority Critical patent/JP6374330B2/en
Publication of JP2016149246A publication Critical patent/JP2016149246A/en
Application granted granted Critical
Publication of JP6374330B2 publication Critical patent/JP6374330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水蓄電デバイス用の電解液の製造方法に関し、より詳しくは、有機ハロゲン化物を含む水溶液から前記電解液を製造する方法に関する。   The present invention relates to a method for producing an electrolytic solution for a non-aqueous electricity storage device, and more particularly to a method for producing the electrolytic solution from an aqueous solution containing an organic halide.

アルミニウムは導電性、耐腐食性、軽量、無毒性等多くの優れた特徴を有しており、金属製品等へのめっきに広く利用されている。しかしながらアルミニウムは酸素に対する親和力が大きく、酸化還元電位が水素より低いため、水溶液系のめっき浴では電気めっきを行なうことが困難である。   Aluminum has many excellent features such as conductivity, corrosion resistance, light weight, and nontoxicity, and is widely used for plating on metal products and the like. However, since aluminum has a high affinity for oxygen and its oxidation-reduction potential is lower than that of hydrogen, it is difficult to perform electroplating in an aqueous plating bath.

このため、アルミニウムを電気めっきする方法としては溶融塩浴を用いる方法が行なわれている。しかし、従来の溶融塩によるめっき浴は150℃以上の高温にする必要があるため、樹脂製品に対してアルミニウムを電気めっきしようとすると樹脂が溶けてしまい、電気めっきをすることができないという問題があった。   For this reason, as a method of electroplating aluminum, a method using a molten salt bath is performed. However, since a conventional bath with molten salt needs to be heated to 150 ° C. or higher, there is a problem in that when the aluminum is electroplated on the resin product, the resin is melted and the electroplating cannot be performed. there were.

この問題に対して特開2012−144763号公報(特許文献1)では、1−エチル−3−メチルイミダゾリウムクロリド(EMIC)や、1−ブチルピリジニウムクロリド(BPC)等の有機ハロゲン化物と塩化アルミニウム(AlCl)とを混合して室温で液体のアルミニウムめっき液を形成し、このめっき液を用いて樹脂成形体の表面にアルミニウムを電気めっきすればよいことが記載されている。特に、特許文献1に記載のEMIC−AlCl系のめっき液は液の特性が良好であり、アルミニウムめっき液として非常に有用である。 In order to solve this problem, JP 2012-144663 A (Patent Document 1) discloses an organic halide such as 1-ethyl-3-methylimidazolium chloride (EMIC) or 1-butylpyridinium chloride (BPC) and aluminum chloride. It is described that (AlCl 3 ) is mixed to form a liquid aluminum plating solution at room temperature, and aluminum is electroplated on the surface of the resin molded body using this plating solution. In particular, the EMIC-AlCl 3 -based plating solution described in Patent Document 1 has excellent liquid characteristics and is very useful as an aluminum plating solution.

前記特許文献1に記載されている方法によってアルミニウムめっきを行なう場合には、めっき後に基材をめっき浴から取り出し、水洗によって基材表面のアルミニウムめっき液を洗い流すことが行なわれている。この水洗工程により、アルミニウムめっき液を含む水溶液の廃液が多量に生じる。
前記アルミニウムめっき液中に含まれる有機ハロゲン化物、特にアルキルイミダゾリウムハロゲン化物やアルキルピリジニウムハロゲン化物は生分解性が低く、下水処理に用いられる活性汚泥による分解が進行しないため、安全性データシート(Safety Data Sheet)には燃焼処理等を行なうように記載されている。
When aluminum plating is performed by the method described in Patent Document 1, the substrate is removed from the plating bath after plating, and the aluminum plating solution on the surface of the substrate is washed away by washing with water. A large amount of waste liquid of the aqueous solution containing the aluminum plating solution is generated by this washing step.
Organic halides contained in the aluminum plating solution, particularly alkylimidazolium halides and alkylpyridinium halides, have low biodegradability and do not proceed with activated sludge used for sewage treatment, so safety data sheets (Safety) (Data Sheet) describes that a combustion process or the like is performed.

このため有機ハロゲン化物を含む前記廃液は、下水に流すことができず、産業廃棄物として廃棄したり、あるいは、例えば特許3325288号公報(特許文献2)に記載されているような前処理を行った後に下水処理したりすることが行なわれている。   For this reason, the waste liquid containing the organic halide cannot be discharged into sewage, and is discarded as industrial waste or subjected to pretreatment as described in, for example, Japanese Patent No. 3325288 (Patent Document 2). After that, sewage treatment is performed.

特開2012−144763号公報JP 2012-144663 A 特許第3325288号公報Japanese Patent No. 3325288

しかしながら、前記アルミニウムめっき液中に含まれる有機ハロゲン化物は非常に高価な成分であるため、前記水洗工程により排出される水溶液を廃棄することは高価な成分を廃棄することにもなっていた。
そこで本発明は、有機ハロゲン化物を含むアルミニウムめっき液を用いたアルミニウムめっき製品の製造過程において排出される水溶液から高価な成分である有機ハロゲン化物を有効成分として回収して活用する、非水蓄電デバイス用の電解液の製造方法を提供することを目的とする。
However, since the organic halide contained in the aluminum plating solution is a very expensive component, discarding the aqueous solution discharged by the water washing step also results in discarding the expensive component.
Accordingly, the present invention provides a non-aqueous storage device that recovers and utilizes an organic halide, which is an expensive component, as an active ingredient from an aqueous solution discharged in the production process of an aluminum plating product using an aluminum plating solution containing an organic halide. It is an object of the present invention to provide a method for producing an electrolytic solution for use.

本発明の一態様に係る非水蓄電デバイス用の電解液を製造する方法は、
(A)アルミニウムハロゲン化物と、
(B)アルキルイミダゾリウムハロゲン化物及びアルキルピリジニウムハロゲン化物からなる群より選ばれる少なくとも一種の有機ハロゲン化物と、
を成分として含む電解液を用いてアルミニウムめっき製品を製造する過程において排出される前記(A)成分及び前記(B)成分を含む水溶液から非水蓄電デバイス用の電解液を製造する方法であって、
前記水溶液に、疎水性アニオンとアルカリ金属カチオンとの塩、もしくは疎水性アニオンとプロトンとの化合物を添加して二層の液相に分離する分離工程と、
前記二層に分離した液相のうち、前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を含む液相を回収する回収工程と、
前記回収工程で回収した液相から前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を精製する精製工程と、
を含む非水蓄電デバイス用の電解液の製造方法、である。
A method for producing an electrolyte solution for a non-aqueous electricity storage device according to an aspect of the present invention includes:
(A) an aluminum halide;
(B) at least one organic halide selected from the group consisting of alkylimidazolium halides and alkylpyridinium halides;
A method for producing an electrolyte solution for a non-aqueous storage device from an aqueous solution containing the component (A) and the component (B) discharged in the process of producing an aluminum plating product using an electrolyte solution containing ,
A separation step in which a salt of a hydrophobic anion and an alkali metal cation or a compound of a hydrophobic anion and a proton is added to the aqueous solution to separate it into a two-layer liquid phase;
A recovery step of recovering a liquid phase containing a salt of the cation of the organic halide and the hydrophobic anion among the liquid phases separated into the two layers;
A purification step of purifying the salt of the organic halide cation and the hydrophobic anion from the liquid phase recovered in the recovery step;
The manufacturing method of the electrolyte solution for nonaqueous electrical storage devices containing this.

上記発明によれば、有機ハロゲン化物を含むアルミニウムめっき液を用いたアルミニウムめっき製品の製造過程において排出される水溶液から高価な成分である有機ハロゲン化物を有効成分として回収することにより、非水蓄電デバイス用の電解液を安価に製造する方法を提供することができる。   According to the above invention, a non-aqueous storage device is obtained by recovering an organic halide, which is an expensive component, from an aqueous solution discharged in an aluminum plating product manufacturing process using an aluminum plating solution containing an organic halide as an active ingredient. Therefore, it is possible to provide a method for manufacturing an electrolytic solution for use at low cost.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る非水蓄電デバイス用の電解液の製造方法は、(A)アルミニウムハロゲン化物と、(B)アルキルイミダゾリウムハロゲン化物及びアルキルピリジニウムハロゲン化物からなる群より選ばれる少なくとも一種の有機ハロゲン化物と、を成分として含む電解液を用いてアルミニウムめっき製品を製造する過程において排出される前記(A)成分及び前記(B)成分を含む水溶液から非水蓄電デバイス用の電解液を製造する方法であって、前記水溶液に、疎水性アニオンとアルカリ金属カチオンとの塩、もしくは疎水性アニオンとプロトンとの化合物を添加して二層の液相に分離する分離工程と、前記二層に分離した液相のうち、前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を含む液相を回収する回収工程と、前記回収工程で回収した液相から前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を精製する精製工程と、を含む非水蓄電デバイス用の電解液の製造方法、である。
上記(1)に記載の発明の態様によれば、有機ハロゲン化物を含む溶融塩アルミニウムめっき液を用いたアルミニウムめっき製品の製造過程において排出される水溶液から高価な成分である有機ハロゲン化物を有効成分として回収し、非水蓄電デバイス用の電解液を安価に製造することができる。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) The method for producing an electrolyte solution for a non-aqueous electricity storage device according to one embodiment of the present invention is selected from the group consisting of (A) an aluminum halide, and (B) an alkylimidazolium halide and an alkylpyridinium halide. Electrolysis for a non-aqueous storage device from an aqueous solution containing the component (A) and the component (B) discharged in the process of producing an aluminum plating product using an electrolytic solution containing at least one organic halide as a component. A method for producing a liquid, comprising adding a salt of a hydrophobic anion and an alkali metal cation or a compound of a hydrophobic anion and a proton to the aqueous solution to separate into a two-layer liquid phase, and Of the liquid phases separated into two layers, the liquid phase containing a salt of the cation of the organic halide and the hydrophobic anion is recovered. Process and a method for producing the electrolyte for nonaqueous electricity storage device comprising a purification step, the purification of the salt of the cation and the hydrophobic anion of the organic halide from the liquid phase recovered in the recovery step is.
According to the aspect of the invention described in the above (1), an organic halide which is an expensive component from an aqueous solution discharged in the production process of an aluminum plating product using a molten salt aluminum plating solution containing an organic halide is an active ingredient. And an electrolyte for a non-aqueous electricity storage device can be manufactured at a low cost.

(2)上記(1)に記載の非水蓄電デバイス用の電解液の製造方法において、前記疎水性アニオンは、ビス(トリフルオロメチルスルホニル)アミド(TFSA)、ビス(フルオロスルホニル)アミド(FSA)、テトラフルオロホウ酸(BF )又はヘキサフルオロリン酸(PF )であることが好ましい。
上記(2)に記載の発明の態様によれば、例えば、前記有機ハロゲン化物として1−エチル−3−メチルイミダゾリウムクロリド(EMIC)や1−ブチルピリジニウムクロリド(BPC)を用いることで、非水蓄電デバイス用の電解液として有用な、1−エチル−3−メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド(EMI−TFSA)、1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)アミド(EMI−FSA)、1−エチル−3−メチルイミダゾリウムテトラフルオロホウ酸(EMI−BF)、1−エチル−3−メチルイミダゾリウムヘキサフルオロリン酸(EMI−PF)、1−ブチルピリジニウムビス(トリフルオロメチルスルホニル)アミド(BP−TFSA)、1−ブチルピリジニウムビス(フルオロスルホニル)アミド(BP−FSA)、1−ブチルピリジニウムテトラフルオロホウ酸(BP−BF)、1−ブチルピリジニウムヘキサフルオロリン酸(BP−PF)等を容易に製造することができる。
(2) In the method for producing an electrolyte solution for a non-aqueous electricity storage device according to (1) above, the hydrophobic anion is bis (trifluoromethylsulfonyl) amide (TFSA ), bis (fluorosulfonyl) amide (FSA). -), tetrafluoroborate (BF 4 -) or hexafluorophosphate (PF 6 - is preferably).
According to the aspect of the invention described in (2) above, for example, by using 1-ethyl-3-methylimidazolium chloride (EMIC) or 1-butylpyridinium chloride (BPC) as the organic halide, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide (EMI-TFSA), 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide (EMI) useful as an electrolytic solution for an electricity storage device -fSA), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), 1- ethyl-3-methylimidazolium hexafluorophosphate (EMI-PF 6), 1- butylpyridinium bis ( Trifluoromethylsulfonyl) amide (BP-TFSA), 1-butylpyri Dinium bis (fluorosulfonyl) amide (BP-FSA), 1-butylpyridinium tetrafluoroboric acid (BP-BF 4 ), 1-butylpyridinium hexafluorophosphoric acid (BP-PF 6 ) and the like can be easily produced. .

[本発明の実施形態の詳細]
本発明の実施形態に係る非水蓄電デバイス用の電解液の製造方法の具体例を、以下に、より詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
The specific example of the manufacturing method of the electrolyte solution for nonaqueous electrical storage devices which concerns on embodiment of this invention is demonstrated in detail below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

本発明の実施形態に係る非水蓄電デバイス用の電解液の製造方法は、前述のように、アルミニウムめっき製品を製造する過程において排出される水溶液を出発原料とし、前記水溶液に、疎水性アニオンとアルカリ金属カチオンとの塩、もしくは疎水性アニオンとプロトンとの化合物を添加して二層の液相に分離する工程と、前記二層に分離した液相のうち、前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を含む液相を回収する工程と、前記回収した液相から前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を精製する精製工程と、を含むものである。
以下に、出発原料と各工程とを詳述する。
As described above, the method for producing an electrolytic solution for a non-aqueous storage device according to an embodiment of the present invention uses an aqueous solution discharged in the process of producing an aluminum plating product as a starting material, and the aqueous solution contains a hydrophobic anion and A step of adding a salt with an alkali metal cation or a compound of a hydrophobic anion and a proton to separate into a two-layer liquid phase, and among the liquid phases separated into the two layers, the cation of the organic halide and the above-mentioned A step of recovering a liquid phase containing a salt with a hydrophobic anion, and a purification step of purifying a salt of the cation of the organic halide and the hydrophobic anion from the recovered liquid phase.
Below, the starting material and each process are explained in full detail.

<出発原料(アルミニウムめっき液の成分を含む水溶液)>
出発原料として用いる水溶液は、アルミニウムめっき製品を製造する過程において排出されるものである。より具体的には、アルミニウムめっき製品の製造過程には、表面にアルミニウムをめっきした基材をめっき浴から取り出し、アルミニウム膜の表面に付着しているアルミニウムめっき液を水洗するという工程があり、当該水洗工程において排出される水溶液が前記出発原料となる。
<Starting material (aqueous solution containing components of aluminum plating solution)>
The aqueous solution used as the starting material is discharged in the process of producing the aluminum plating product. More specifically, in the process of manufacturing an aluminum plating product, there is a step of taking out a base material plated with aluminum from the plating bath and washing the aluminum plating solution adhering to the surface of the aluminum film with water. The aqueous solution discharged in the water washing step is the starting material.

前記アルミニウムめっき液は電解液であり、以下の(A)成分と(B)成分とを混合して得られるものである。
(A)成分:アルミニウムハロゲン化物
(B)成分:アルキルイミダゾリウムハロゲン化物及びアルキルピリジニウムハロゲン化物からなる群より選ばれる少なくとも一種の有機ハロゲン化物
なお、前記電解液は、上記(A)成分と(B)成分の他にも、アルミニウム膜の平滑性の向上等の目的により添加剤として他の成分を含んでいても構わないし、不可避的不純物として他の成分を含んでいても構わない。前記添加剤としては、例えば、1,10−フェナントロリンや、トリメチルアンモニウムクロリド、キシレン等を挙げることができる。
また、前記電解液は、前記(A)成分と前記(B)成分との混合比が、モル比で1:1〜3:1の範囲にあるようにすることで、前記基材表面にアルミニウム膜を電着させるのに適した電解液(アルミニウムめっき液)が得られる。
The aluminum plating solution is an electrolytic solution, and is obtained by mixing the following components (A) and (B).
Component (A): Aluminum halide (B) Component: At least one organic halide selected from the group consisting of alkyl imidazolium halides and alkylpyridinium halides. The electrolyte comprises the components (A) and (B In addition to the component), other components may be included as additives for the purpose of improving the smoothness of the aluminum film, and other components may be included as unavoidable impurities. Examples of the additive include 1,10-phenanthroline, trimethylammonium chloride, and xylene.
In addition, the electrolytic solution is made of aluminum on the surface of the base material by making the mixing ratio of the component (A) and the component (B) in a molar ratio of 1: 1 to 3: 1. An electrolytic solution (aluminum plating solution) suitable for electrodeposition of the film is obtained.

前記(A)成分であるアルミニウムハロゲン化物は、前記(B)成分と混合した場合に110℃程度以下で溶融塩を形成するものであれば良好に用いることができる。
例えば、塩化アルミニウム(AlCl)、臭化アルミニウム(AlBr)、ヨウ化アルミニウム(AlI)等が挙げられるが、これらの中でも塩化アルミニウムが最も好ましい。
The aluminum halide as the component (A) can be favorably used as long as it forms a molten salt at about 110 ° C. or less when mixed with the component (B).
For example, aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 ), aluminum iodide (AlI 3 ) and the like can be mentioned. Among these, aluminum chloride is most preferable.

有機ハロゲン化物である前記(B)成分のうちのアルキルイミダゾリウムハロゲン化物も、前記(A)成分と混合した場合に110℃程度以下で溶融塩を形成するものを良好に用いることができる。
例えば、1,3位にアルキル基(炭素原子数1〜5)を持つイミダゾリウムクロリド、1,2,3位にアルキル基(炭素原子数1〜5)を持つイミダゾリウムクロリド、1,3位にアルキル基(炭素原子数1〜5)を持つイミダゾリウムヨーシド等が挙げられる。
より具体的には、1−エチル−3−メチルイミダゾリウムクロリド(EMIC)、1−ブチル−3−メチルイミダゾリウムクロリド(BMIC)、1−メチル−3−プロピルイミダゾリウムクロリド(MPIC)等が挙げられるが、これらの中でも1−エチル−3−メチルイミダゾリウムクロリド(EMIC)を最も好ましく用いることができる。
Of the alkyl imidazolium halides of the component (B) that is an organic halide, those that form a molten salt at about 110 ° C. or less when mixed with the component (A) can be used favorably.
For example, imidazolium chloride having an alkyl group (1 to 5 carbon atoms) at positions 1, 3; imidazolium chloride having an alkyl group (1 to 5 carbon atoms) at positions 1, 2, 3; And imidazolium ioside having an alkyl group (having 1 to 5 carbon atoms).
More specifically, 1-ethyl-3-methylimidazolium chloride (EMIC), 1-butyl-3-methylimidazolium chloride (BMIC), 1-methyl-3-propylimidazolium chloride (MPIC) and the like can be mentioned. Among these, 1-ethyl-3-methylimidazolium chloride (EMIC) can be most preferably used.

また、前記有機ハロゲン化物である前記(B)成分のうちのアルキルピリジニウムハロゲン化物も、前記(A)成分と混合した場合に110℃程度以下で溶融塩を形成するものを良好に用いることができる。
例えば、1−ブチルピリジニウムクロリド(BPC)、1−エチルピリジニウムクロリド(EPC)、1−ブチル−3−メチルピリジニウムクロリド(BMPC)等が挙げられるが、これらの中でも1−ブチルピリジニウムクロリドが最も好ましい。
Moreover, as the alkylpyridinium halide of the component (B) that is the organic halide, a material that forms a molten salt at about 110 ° C. or less when mixed with the component (A) can be used favorably. .
Examples thereof include 1-butylpyridinium chloride (BPC), 1-ethylpyridinium chloride (EPC), 1-butyl-3-methylpyridinium chloride (BMPC), etc. Among them, 1-butylpyridinium chloride is most preferable.

アルミニウムめっき製品の製造過程においては、前記電解液をアルミニウムめっき液として用いて基材の表面にアルミニウムを電着させてアルミニウム膜を形成する。そして、アルミニウム膜が充分に形成されたところで基材を前記電解液から取り出し、アルミニウム膜の表面に残留している前記電解液を水によって洗い流す。これによって、水洗に用いた水に前記電解液が溶解し、前記(A)成分と前記(B)成分とを含む水溶液が水洗廃液として生じる。
本発明の実施形態に係る非水蓄電デバイス用の電解液の製造方法においては、この水洗廃液、すなわち前記(A)成分と前記(B)成分とを含む水溶液を出発原料として用いる。
In the manufacturing process of the aluminum plating product, an aluminum film is formed by electrodepositing aluminum on the surface of the substrate using the electrolytic solution as an aluminum plating solution. Then, when the aluminum film is sufficiently formed, the substrate is taken out from the electrolytic solution, and the electrolytic solution remaining on the surface of the aluminum film is washed away with water. Thereby, the said electrolyte solution melt | dissolves in the water used for water washing, and the aqueous solution containing the said (A) component and the said (B) component arises as a washing waste liquid.
In the method for producing an electrolytic solution for a non-aqueous electricity storage device according to an embodiment of the present invention, this washing waste liquid, that is, an aqueous solution containing the component (A) and the component (B) is used as a starting material.

<分離工程>
前記(A)成分と前記(B)成分とを含む水溶液に、疎水性アニオンとアルカリ金属カチオンとの塩、もしくは疎水性アニオンとプロトンとの化合物、を添加すると、前記水溶液中の有機ハロゲン化物との間でイオン交換が生じ、有機ハロゲン化物のカチオンと疎水性アニオンとの塩を含む液相と、その他の成分を含む液相との二層に液−液分離する。疎水性アニオンとアルカリ金属カチオンとの塩は通常は粉末であるが、前記水溶液に添加して攪拌することで容易にイオン交換が生じて二層の液相に分離する。また、疎水性アニオンとプロトンとの化合物は通常は液体であり、前記水溶液に添加して攪拌することでイオン交換が生じる。
これらのイオン交換は非常に反応効率がよいため前記水溶液中の(B)成分の濃度が低くても二層の液相に分離させることが可能であるが、後の回収工程を容易にするためには、ある程度の高い濃度であることが好ましい。例えば、前記電解液の希釈率は4倍以上、20倍以下程度であることが好ましい。
本発明の実施形態において電解液の希釈率とは、電解液と水との体積比をいうものとし、希釈率が4倍以上、20倍以下の電解液とは、電解液の体積に対して4倍以上、20倍以下の体積の水が添加された水溶液をいうものとする。なお、前記(A)成分と前記(B)成分を含む電解液(アルミニウムめっき液)における前記(B)成分の濃度は、一般には、0.40kg/L以上、0.60kg/L以下程度となっている。
<Separation process>
When a salt of a hydrophobic anion and an alkali metal cation or a compound of a hydrophobic anion and a proton is added to an aqueous solution containing the component (A) and the component (B), the organic halide in the aqueous solution Ion exchange occurs between the two and liquid-liquid separation into two layers of a liquid phase containing a salt of an organic halide cation and a hydrophobic anion and a liquid phase containing other components. The salt of a hydrophobic anion and an alkali metal cation is usually a powder, but when added to the aqueous solution and stirred, ion exchange easily occurs and separates into two liquid phases. Moreover, the compound of a hydrophobic anion and a proton is usually a liquid, and ion exchange occurs when added to the aqueous solution and stirred.
Since these ion exchanges have very high reaction efficiency, they can be separated into a two-phase liquid phase even if the concentration of the component (B) in the aqueous solution is low, but in order to facilitate the subsequent recovery step For this, a certain high concentration is preferable. For example, it is preferable that the dilution rate of the electrolytic solution is about 4 times or more and 20 times or less.
In the embodiment of the present invention, the dilution ratio of the electrolytic solution refers to the volume ratio of the electrolytic solution to water, and the electrolytic solution having a dilution ratio of 4 times or more and 20 times or less is the volume of the electrolytic solution. An aqueous solution to which water having a volume of 4 times or more and 20 times or less is added. The concentration of the component (B) in the electrolytic solution (aluminum plating solution) containing the component (A) and the component (B) is generally about 0.40 kg / L or more and 0.60 kg / L or less. It has become.

前記疎水性アニオンは、ビス(トリフルオロメチルスルホニル)アミド(TFSA)、ビス(フルオロスルホニル)アミド(FSA)、テトラフルオロホウ酸(BF )又はヘキサフルオロリン酸(PF )であることが好ましい。
また、前記疎水性アニオンと塩を形成しているアルカリ金属カチオンは特に限定されるものではなく、リチウムイオン(Li)、ナトリウムイオン(Na)、カリウムイオン(K)、ルビジウムイオン(Rb)、セシウムイオン(Cs)及びフランシウムイオン(Fr)のいずれでもよい。
また、前記疎水性アニオンは、プロトン(H)をカチオンとした化合物の状態で前記水溶液に供給してもよい。
The hydrophobic anion is bis (trifluoromethylsulfonyl) amide (TFSA ), bis (fluorosulfonyl) amide (FSA ), tetrafluoroboric acid (BF 4 ), or hexafluorophosphoric acid (PF 6 ). Preferably there is.
The alkali metal cation forming a salt with the hydrophobic anion is not particularly limited, and lithium ion (Li + ), sodium ion (Na + ), potassium ion (K + ), rubidium ion (Rb + ), Cesium ions (Cs + ), and francium ions (Fr + ).
The hydrophobic anion may be supplied to the aqueous solution in the state of a compound having proton (H + ) as a cation.

<回収工程>
続いて、前記二層に分離した液相のうち、有機ハロゲン化物のカチオンと疎水性アニオンとの塩を含む液相を回収する。通常は、疎水性アニオンの塩を含む液相の方が比重が大きいため、下層を回収すればよい。
なお、目的となる塩以外の成分を含む上層の液相にはアルミニウムイオンが含まれているため、水酸化ナトリウムや水酸化カリウム等を用いて中和して水酸化アルミニウムを沈殿させてから液相を下水処理すればよい。また、沈殿した水酸化アルミニウムは有価物として回収することも可能である。
<Recovery process>
Subsequently, among the liquid phases separated into the two layers, a liquid phase containing a salt of an organic halide cation and a hydrophobic anion is recovered. Usually, a liquid phase containing a salt of a hydrophobic anion has a higher specific gravity, so the lower layer may be recovered.
Since the upper liquid phase containing components other than the target salt contains aluminum ions, it is neutralized with sodium hydroxide or potassium hydroxide to precipitate aluminum hydroxide. The phase may be sewage treated. The precipitated aluminum hydroxide can be recovered as a valuable material.

<精製工程>
上記で回収した液相にはわずかながら水分が混入しているため、前記有機ハロゲン化物のカチオンと疎水性アニオンとの塩を非水蓄電デバイス用の電解液として用いるために真空乾燥等により脱水処理をして精製を行なう。
精製手段は特に限定されるものではなく、真空乾燥の他にも、再結晶、疎水性の溶媒への抽出等の方法が挙げられる。なお、有機ハロゲン化物のカチオンと疎水性アニオンとの塩からなる液相は疎水性であるため容易に乾燥させることができる。
<Purification process>
Since the liquid phase recovered above contains a slight amount of moisture, the salt of the organic halide cation and the hydrophobic anion is used as an electrolyte for a non-aqueous storage device. To purify.
The purification means is not particularly limited, and examples thereof include methods such as recrystallization and extraction into a hydrophobic solvent in addition to vacuum drying. In addition, since the liquid phase consisting of a salt of an organic halide cation and a hydrophobic anion is hydrophobic, it can be easily dried.

以上のようにして、アルミニウムめっき製品を製造する過程において排出される水溶液を出発原料として用い、水分含有量が100ppm以下と非常に乾燥した状態の純度が高い有機ハロゲン化物のカチオンと疎水性アニオンとの塩、すなわち非水蓄電デバイス用の電解液を容易に得ることができる。また、前記水溶液からは有機ハロゲン化物のカチオンが全て回収されるため、イオン交換後の水溶液は中和をすることで下水処理をすることができる。
前記非水蓄電デバイスとしては、リチウム電池(リチウムイオン二次電池等を含む)、ナトリウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ、ナトリウムイオンキャパシタ等が挙げられる。
なお、非水蓄電デバイスがキャパシタの場合には精製後の前記有機ハロゲン化物のカチオンと疎水性アニオンとの塩をそのまま電解液として用いることがでる。また、電池の場合には精製後の前記有機ハロゲン化物のカチオンと疎水性アニオンとの塩を電解液用の有機塩として用い、目的に応じてリチウムビス(トリフルオロメチルスルホニル)アミド(Li−TFSA)やリチウムビス(フルオロスルホニル)アミド(Li−FSA)等の他の成分を添加して用いればよい。
As described above, an aqueous solution discharged in the process of producing an aluminum plating product is used as a starting material, and a water content of 100 ppm or less and a highly dry organic halide cation and a hydrophobic anion Thus, an electrolyte for a non-aqueous storage device can be easily obtained. Moreover, since all the cations of the organic halide are recovered from the aqueous solution, the aqueous solution after ion exchange can be subjected to sewage treatment by neutralization.
Examples of the non-aqueous storage device include lithium batteries (including lithium ion secondary batteries), sodium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, sodium ion capacitors, and the like.
In the case where the non-aqueous electricity storage device is a capacitor, the purified salt of the organic halide cation and the hydrophobic anion can be used as the electrolytic solution as it is. In the case of a battery, a salt of the purified organic halide cation and hydrophobic anion is used as an organic salt for the electrolytic solution, and lithium bis (trifluoromethylsulfonyl) amide (Li-TFSA) is used depending on the purpose. And other components such as lithium bis (fluorosulfonyl) amide (Li-FSA) may be added.

以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の非水蓄電デバイス用の電解液の製造方法はこれらに限定されるものではない。本発明の範囲は特許請求の範囲の範囲によって示され、特許請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, these Examples are illustrations, Comprising: The manufacturing method of the electrolyte solution for nonaqueous electrical storage devices of this invention is not limited to these. . The scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.

[実施例1]
(電解液)
(A)成分として塩化アルミニウム(AlCl)を、(B)成分として1−エチル−3−メチルイミダゾリウムクロリド(EMIC)を用い、(A)成分と(B)成分との混合比がモル比で2:1となるように混合して電解液1を準備した。
前記電解液1に10倍量の体積の純水を添加して、前記電解液1の希釈率が10倍となるようにした水溶液1を作製した。水溶液1における1−エチル−3−メチルイミダゾリウムカチオン(EMI)の濃度は0.3mol/Lであった。
[Example 1]
(Electrolyte)
(A) Aluminum chloride (AlCl 3 ) is used as the component, 1-ethyl-3-methylimidazolium chloride (EMIC) is used as the (B) component, and the mixing ratio of the (A) component and the (B) component is molar ratio. The electrolyte solution 1 was prepared by mixing at 2: 1.
A 10-fold volume of pure water was added to the electrolytic solution 1 to prepare an aqueous solution 1 in which the dilution ratio of the electrolytic solution 1 was 10 times. The concentration of 1-ethyl-3-methylimidazolium cation (EMI + ) in the aqueous solution 1 was 0.3 mol / L.

(分離工程)
上記水溶液1に、ナトリウムビス(フルオロスルホニル)アミド(Na−FSA)を0.3mol/L分添加し、三時間攪拌した。これにより液−液分離が生じ、下層に透明な液相が発生した。
(回収工程)
上記で発生した下層の透明な液相を回収した。
(精製工程)
上記で回収した液体を、80℃、1Torr、24時間の条件で真空乾燥することにより精製した。
その結果、水分量が80ppmのEMI−FSAが得られた。
なお、水分含有量はカールフィッシャー法により測定した。また、分離工程において上層に分離した水溶液におけるEMIの濃度をイオンクロマトグラフィーにより測定したところ、検出下限以下であり、ほぼ全てのEMIを回収できたことが確認された。
(Separation process)
To the aqueous solution 1, 0.3 mol / L of sodium bis (fluorosulfonyl) amide (Na-FSA) was added and stirred for 3 hours. As a result, liquid-liquid separation occurred, and a transparent liquid phase was generated in the lower layer.
(Recovery process)
The lower transparent liquid phase generated above was recovered.
(Purification process)
The liquid collected above was purified by vacuum drying at 80 ° C. and 1 Torr for 24 hours.
As a result, EMI-FSA having a water content of 80 ppm was obtained.
The water content was measured by the Karl Fischer method. Further, when the concentration of EMI + in the aqueous solution separated into the upper layer in the separation step was measured by ion chromatography, it was below the lower limit of detection, and it was confirmed that almost all EMI + was recovered.

[実施例2]
実施例1において、1−エチル−3−メチルイミダゾリウムクロリド(EMIC)の代わりに、1−ブチルピリジニウムクロリド(BPC)を用いた以外は実施例1と同様にしてBP−FSAを作製した。
これにより、水分量が90ppmのBP−FSAが得られた。
また、分離工程において上層に分離した水溶液における1−ブチルピリジニウムカチオン(BP)の濃度をイオンクロマトグラフィーにより測定したところ、検出下限以下であり、ほぼ全てのBPを回収できたことが確認された。
[Example 2]
In Example 1, BP-FSA was produced in the same manner as in Example 1 except that 1-butylpyridinium chloride (BPC) was used instead of 1-ethyl-3-methylimidazolium chloride (EMIC).
Thereby, BP-FSA having a water content of 90 ppm was obtained.
Further, when the concentration of 1-butylpyridinium cation (BP + ) in the aqueous solution separated into the upper layer in the separation step was measured by ion chromatography, it was confirmed that it was below the lower limit of detection and almost all BP + was recovered. It was.

Claims (2)

(A)アルミニウムハロゲン化物と、
(B)アルキルイミダゾリウムハロゲン化物及びアルキルピリジニウムハロゲン化物からなる群より選ばれる少なくとも一種の有機ハロゲン化物と、
を成分として含む電解液を用いてアルミニウムめっき製品を製造する過程において排出される前記(A)成分及び前記(B)成分を含む水溶液から非水蓄電デバイス用の電解液を製造する方法であって、
前記水溶液に、疎水性アニオンとアルカリ金属カチオンとの塩、もしくは疎水性アニオンとプロトンとの化合物を添加して二層の液相に分離する分離工程と、
前記二層に分離した液相のうち、前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を含む液相を回収する回収工程と、
前記回収工程で回収した液相から前記有機ハロゲン化物のカチオンと前記疎水性アニオンとの塩を精製する精製工程と、
を含む非水蓄電デバイス用の電解液の製造方法。
(A) an aluminum halide;
(B) at least one organic halide selected from the group consisting of alkylimidazolium halides and alkylpyridinium halides;
A method for producing an electrolyte solution for a non-aqueous storage device from an aqueous solution containing the component (A) and the component (B) discharged in the process of producing an aluminum plating product using an electrolyte solution containing ,
A separation step in which a salt of a hydrophobic anion and an alkali metal cation or a compound of a hydrophobic anion and a proton is added to the aqueous solution to separate it into a two-layer liquid phase;
A recovery step of recovering a liquid phase containing a salt of the cation of the organic halide and the hydrophobic anion among the liquid phases separated into the two layers;
A purification step of purifying the salt of the organic halide cation and the hydrophobic anion from the liquid phase recovered in the recovery step;
The manufacturing method of the electrolyte solution for non-aqueous electrical storage devices containing this.
前記疎水性アニオンが、ビス(トリフルオロメチルスルホニル)アミド(TFSA)、ビス(フルオロスルホニル)アミド(FSA)、テトラフルオロホウ酸(BF )又はヘキサフルオロリン酸(PF )である請求項1に記載の非水蓄電デバイス用の電解液の製造方法。 The hydrophobic anion is bis (trifluoromethylsulfonyl) amide (TFSA ), bis (fluorosulfonyl) amide (FSA ), tetrafluoroboric acid (BF 4 ), or hexafluorophosphoric acid (PF 6 ). The manufacturing method of the electrolyte solution for nonaqueous electrical storage devices of a certain one.
JP2015025274A 2015-02-12 2015-02-12 Method for producing electrolyte for non-aqueous storage device Expired - Fee Related JP6374330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025274A JP6374330B2 (en) 2015-02-12 2015-02-12 Method for producing electrolyte for non-aqueous storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025274A JP6374330B2 (en) 2015-02-12 2015-02-12 Method for producing electrolyte for non-aqueous storage device

Publications (2)

Publication Number Publication Date
JP2016149246A JP2016149246A (en) 2016-08-18
JP6374330B2 true JP6374330B2 (en) 2018-08-15

Family

ID=56691884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025274A Expired - Fee Related JP6374330B2 (en) 2015-02-12 2015-02-12 Method for producing electrolyte for non-aqueous storage device

Country Status (1)

Country Link
JP (1) JP6374330B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
KR20200124307A (en) * 2018-03-20 2020-11-02 프린티드 에너지 피티와이 리미티드 Diatomaceous earth energy storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219199A (en) * 1988-02-26 1989-09-01 Nisshin Steel Co Ltd Method for recovering electrolyte from molten-salt al electroplating solution
EP0718288B8 (en) * 1994-12-21 2005-10-26 Hydro Quebec Liquid hydrophobic salts, their preparation and their use in electrochemistry
EP0971854B1 (en) * 1998-02-03 2006-11-29 Acep Inc. Novel materials useful as electrolytic solutes
JP6222658B2 (en) * 2013-10-18 2017-11-01 国立大学法人茨城大学 Metal ion separation and recovery method
JP6228862B2 (en) * 2014-02-18 2017-11-08 日東電工株式会社 Process for producing ionic compounds

Also Published As

Publication number Publication date
JP2016149246A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
Leung et al. Progress in electrolytes for rechargeable aluminium batteries
US8871974B2 (en) Ionic liquid containing phosphonium cation having P—N bond and method for producing same
US8518298B2 (en) Eutectic mixtures based upon multivalent metal ions
KR101614235B1 (en) Method for producing difluorophosphate
KR101374754B1 (en) Method for preparing metal lithium using electrolysis in non-aqueous electrolyte
CN101778835B (en) Method for production of purified ammonium salt of fluorinated bis-sulfonylimide
US11557788B2 (en) Preparation of ionic liquids based on boron clusters
EP3399583A1 (en) Mononuclear magnesium cationized salt, preparation method and use thereof
JP5793284B2 (en) Method for producing difluorophosphate
JP5888403B2 (en) Method for preparing plating solution for electroaluminum plating having low melting point, electroplating solution for electroaluminum plating, method for producing aluminum foil, and method for reducing melting point of electroplating solution for electroaluminum plating
JP6374330B2 (en) Method for producing electrolyte for non-aqueous storage device
CN101629312A (en) Method for electrodepositing lead by ionic liquid system
KR102285191B1 (en) Silicon-containing sulfuric acid ester salt
CN116315157A (en) Preparation method, application and recovery of wide-temperature-range water-based zinc battery electrolyte
CN110407724A (en) A kind of dual ion pair ionic liquid and preparation method thereof
JP6051757B2 (en) Ionic liquid
JP2016044147A (en) Manufacturing method of organic halide
CN105523970A (en) Method for preparing bis(fluorosulfonyl)lithium imine
CA3030680A1 (en) Method for producing fluorine-containing sulfonylamide compound
US10686234B1 (en) Fluorinated ionic liquids for battery electrolytes
Zhu et al. Effects of cations on electrochemical behavior of Ni (II)/Ni in a hydrophobic ionic liquid
Ahmed Electrochemical Separation of Aluminum from Metal Scrap Using Ionic Liquids
JP2016044339A (en) Manufacturing method of organic halide
JP2016027029A (en) Method for producing purified ionic complex, and ionic complex
JP2014031341A (en) Method for producing metal perfluoroalkyl sulfonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6374330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees