[go: up one dir, main page]

JP6373034B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6373034B2
JP6373034B2 JP2014072075A JP2014072075A JP6373034B2 JP 6373034 B2 JP6373034 B2 JP 6373034B2 JP 2014072075 A JP2014072075 A JP 2014072075A JP 2014072075 A JP2014072075 A JP 2014072075A JP 6373034 B2 JP6373034 B2 JP 6373034B2
Authority
JP
Japan
Prior art keywords
temperature
motor
stage
refrigerant
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014072075A
Other languages
Japanese (ja)
Other versions
JP2015194294A5 (en
JP2015194294A (en
Inventor
雅浩 神田
雅浩 神田
和幸 塚本
和幸 塚本
雅章 上川
雅章 上川
伊藤 健
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014072075A priority Critical patent/JP6373034B2/en
Priority to TW103121138A priority patent/TWI568982B/en
Priority to CN201410302809.XA priority patent/CN104949366B/en
Publication of JP2015194294A publication Critical patent/JP2015194294A/en
Publication of JP2015194294A5 publication Critical patent/JP2015194294A5/ja
Application granted granted Critical
Publication of JP6373034B2 publication Critical patent/JP6373034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressor (AREA)

Description

本発明は、低段圧縮部と高段圧縮部とこれら各圧縮部を駆動するモータとを備えた二段圧縮機を有する冷凍機に関するものである。   The present invention relates to a refrigerator having a two-stage compressor including a low-stage compression section, a high-stage compression section, and a motor that drives each compression section.

圧縮機において、使用している部品にはそれぞれ温度制約がある。   In a compressor, each component used has temperature constraints.

従来より、冷媒を圧縮する圧縮機を有する冷凍機において、圧縮機モータのステータの劣化及び損傷が生じるのを防止するために、冷媒を膨張手段により減圧し、低温の冷媒をモータ室内へ供給してモータを冷却する冷凍機がある(例えば、特許文献1、特許文献2参照)。   Conventionally, in a refrigerator having a compressor for compressing refrigerant, in order to prevent deterioration and damage of the stator of the compressor motor, the refrigerant is decompressed by the expansion means, and the low-temperature refrigerant is supplied into the motor chamber. There are refrigerators that cool the motor (see, for example, Patent Document 1 and Patent Document 2).

特許文献1には、低段圧縮部及び高段圧縮部を備えた二段圧縮機を有する冷凍機における圧縮機のモータ冷却について記載されており、モータ冷却のために用いた冷媒を、中間段、すなわち、低段吐出部と高段吸込部の間へ合流させている。また、特許文献2には、モータの発熱量に応じて膨張手段を制御し、モータ室内へ供給する冷媒量を制御することが記載されている。   Patent Document 1 describes motor cooling of a compressor in a refrigerator having a two-stage compressor having a low-stage compressor and a high-stage compressor, and the refrigerant used for motor cooling is used as an intermediate stage. That is, it is made to merge between the low stage discharge part and the high stage suction part. Patent Document 2 describes that the expansion means is controlled in accordance with the amount of heat generated by the motor, and the amount of refrigerant supplied into the motor chamber is controlled.

特開2012−102967号公報(第7頁、図1)JP 2012-102967 A (page 7, FIG. 1) 特開平7−139820号公報(第3頁、図1)JP-A-7-139820 (page 3, FIG. 1)

上記特許文献1、2では、モータ冷却に用いる冷媒量を膨張手段により制御しているが、膨張手段には、例えばキャピラリーチューブや電子膨張弁などがあり、中でもより制御を実施しやすい膨張弁としてリニア式電子膨張弁がある。リニア式電子膨張弁はその構造上の理由により、運転途中において全閉にしてしまうと弁開度に誤差が生じてしまう可能性があるため、全閉に制御されない。したがって、モータ冷却に用いる膨張手段にリニア式電子膨張弁を使用した場合、モータ温度が目標冷却温度以下に下がってモータ室内への冷媒の供給が不要な運転状態においても、冷媒がモータ室内へ供給され続けることになり、必要以上に冷媒がモータ室内へ供給されるという問題が生じる。   In Patent Documents 1 and 2 described above, the amount of refrigerant used for motor cooling is controlled by the expansion means. Examples of the expansion means include a capillary tube and an electronic expansion valve. Among them, as an expansion valve that is easier to control. There is a linear electronic expansion valve. The linear electronic expansion valve is not controlled to be fully closed because of its structural reasons, if the valve is fully closed during operation, an error may occur in the valve opening. Therefore, when a linear electronic expansion valve is used as the expansion means used for cooling the motor, the refrigerant is supplied to the motor chamber even in an operating state where the motor temperature falls below the target cooling temperature and supply of the refrigerant to the motor chamber is unnecessary. Therefore, there is a problem that the refrigerant is supplied into the motor chamber more than necessary.

モータ冷却用の冷媒は上述したように中間段へ戻されるため、モータ冷却に用いる冷媒量が多いほど中間段へ戻す冷媒量が多くなり、中間圧は上昇する。そして、中間圧が上昇すると、低段圧縮部の圧縮比[(低段吐出圧力=中間圧)/低段吸込圧力]が大きくなる Since the refrigerant for cooling the motor is returned to the intermediate stage as described above, the amount of refrigerant returned to the intermediate stage increases as the amount of refrigerant used for motor cooling increases, and the intermediate pressure increases. When the intermediate pressure increases, the compression ratio [(low stage discharge pressure = intermediate pressure) / low stage suction pressure] of the low stage compression section increases .

そして、低段圧縮部の圧縮比の上昇に伴い低段圧縮部の体積効率が悪化し、冷凍能力は低下し、圧縮機動力が増大する。 Then, the volumetric efficiency of the low-stage compressing section due to the increase of the low-stage compressing section of the compression ratio deteriorates, the refrigerating capacity defeated low, compressor power is increased.

よって、必要以上に冷媒がモータ室内へ供給されると、結果として成績係数(冷却能力/圧縮機動力)が低下するという問題があった。   Therefore, when the refrigerant is supplied more than necessary into the motor chamber, there is a problem that the coefficient of performance (cooling capacity / compressor power) is lowered as a result.

本発明はこのような点を鑑みなされたもので、必要以上にモータ冷却用の冷媒がモータに供給されることを抑制して中間圧の上昇を抑えることができ、成績係数の良好な冷凍機を提供することを目的とする。   The present invention has been made in view of the above points, and can prevent the refrigerant for cooling the motor from being supplied to the motor more than necessary, thereby suppressing an increase in the intermediate pressure, and having a good coefficient of performance. The purpose is to provide.

本発明に係る冷凍機は、低段圧縮部、高段圧縮部及びこれら圧縮部を駆動するモータを有する二段圧縮機と、凝縮器と、減圧装置とを有し、冷媒が循環する冷媒回路と、凝縮器から減圧装置に向かう冷媒の一部を分岐し、二段圧縮機においてモータが設置されたモータ室に供給する冷媒流路を形成する配管と、配管に設けられたリニア式電子膨張弁と、配管に設けられた開閉弁と、モータの発熱量に応じた温度を検知する温度検知手段と、温度検知手段で検知された温度が予め設定された目標冷却温度となるようにリニア式電子膨張弁を制御する制御装置とを備え、制御装置は、リニア式電子膨張弁を制御上の最小開度に制御してもなお、温度検知手段で検知された温度が目標冷却温度よりも低い場合、開閉弁を全閉とするものである。 A refrigerator according to the present invention includes a low-stage compression unit, a high-stage compression unit, a two-stage compressor having a motor that drives the compression unit, a condenser, and a decompression device, and a refrigerant circuit in which a refrigerant circulates. And a pipe that forms a refrigerant flow path that branches a part of the refrigerant from the condenser to the decompression device and supplies the motor chamber in which the motor is installed in the two-stage compressor, and a linear electronic expansion provided in the pipe A valve, an on-off valve provided in the pipe, a temperature detecting means for detecting a temperature corresponding to the amount of heat generated by the motor, and a linear type so that the temperature detected by the temperature detecting means becomes a preset target cooling temperature. And a control device that controls the electronic expansion valve. Even if the control device controls the linear electronic expansion valve to the minimum control opening, the temperature detected by the temperature detection means is lower than the target cooling temperature. In this case, the on-off valve is fully closed .

本発明によれば、必要以上にモータ冷却用の冷媒がモータに供給されることを抑制して中間圧の上昇を抑えることができ、成績係数の良好な冷凍機を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, it can suppress that the refrigerant | coolant for motor cooling is supplied to a motor more than necessary, can suppress the raise of an intermediate pressure, and can obtain the refrigerator with a favorable coefficient of performance.

本発明の実施の形態1に係る二段スクリュー冷凍機の冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the two-stage screw refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る二段スクリュー冷凍機における二段圧縮機のモータ冷却制御方法のフローチャートである。It is a flowchart of the motor cooling control method of the two-stage compressor in the two-stage screw refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る二段スクリュー冷凍機の冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the two-stage screw refrigerator which concerns on Embodiment 2 of this invention.

以下、本発明の実施の形態に係る二段スクリュー冷凍機について図面等を参照しながら説明する。ここで、全図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。   Hereinafter, a two-stage screw refrigerator according to an embodiment of the present invention will be described with reference to the drawings. Here, in all drawings, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions.

以下、低段圧縮部と高段圧縮部とこれら各圧縮部を駆動するモータとを備えた二段圧縮機を有する冷凍機の一例である二段スクリュー冷凍機の構成を説明する。   Hereinafter, a configuration of a two-stage screw refrigerator that is an example of a refrigerator having a two-stage compressor that includes a low-stage compressor, a high-stage compressor, and a motor that drives each compressor will be described.

実施の形態1.
図1は、本発明の実施の形態1に係る二段スクリュー冷凍機の冷媒回路の概略図である。なお、図1において実線矢印は冷媒系統を示し、破線矢印は油系統を示している。
二段スクリュー冷凍機は、二段圧縮機1と、油分離器2と、凝縮器3と、減圧装置である主膨張弁4と、蒸発器5とを備え、これらが順次冷媒配管によって接続され、冷媒回路を構成している。
Embodiment 1 FIG.
1 is a schematic diagram of a refrigerant circuit of a two-stage screw refrigerator according to Embodiment 1 of the present invention. In FIG. 1, a solid line arrow indicates a refrigerant system, and a broken line arrow indicates an oil system.
The two-stage screw refrigerator includes a two-stage compressor 1, an oil separator 2, a condenser 3, a main expansion valve 4 that is a decompression device, and an evaporator 5, which are sequentially connected by a refrigerant pipe. The refrigerant circuit is configured.

二段圧縮機1は、二段シングルスクリュー圧縮機であり、図1に概略の構成を示すように、筒状のケーシング1aと、このケーシング1a内に収容された低段圧縮部10と、高段圧縮部20と、低段圧縮部10と高段圧縮部20とを回転駆動させるモータ30とを備えている。   The two-stage compressor 1 is a two-stage single screw compressor. As shown in FIG. 1, the two-stage compressor 1 has a cylindrical casing 1a, a low-stage compressor 10 accommodated in the casing 1a, and a high-stage compressor. A stage compression unit 20 and a motor 30 that rotationally drives the low stage compression unit 10 and the high stage compression unit 20 are provided.

低段圧縮部10及び高段圧縮部20は何れもスクリュー式の圧縮部で構成されており、低段圧縮部10は、低段スクリューロータ11とゲートロータ12とを備え、高段圧縮部20は、高段スクリューロータ21とゲートロータ22とを備えている。   Each of the low-stage compression section 10 and the high-stage compression section 20 is constituted by a screw-type compression section. The low-stage compression section 10 includes a low-stage screw rotor 11 and a gate rotor 12, and the high-stage compression section 20. Includes a high-stage screw rotor 21 and a gate rotor 22.

低段スクリューロータ11の外周部には複数の螺旋状のスクリュー溝11aが形成され、高段スクリューロータ21も同様に、外周部に複数の螺旋状のスクリュー溝21aが形成されている。   A plurality of helical screw grooves 11 a are formed on the outer peripheral portion of the low-stage screw rotor 11, and a plurality of helical screw grooves 21 a are similarly formed on the outer peripheral portion of the high-stage screw rotor 21.

低段圧縮部10のゲートロータ12は、低段スクリューロータ11の径方向に低段スクリューロータ11を挟むように2つ配置され、高段圧縮部20のゲートロータ22は高段スクリューロータ21の径方向に1つ配置されている。また、ゲートロータ12、22の外周部には複数の歯部12a、22aが形成されており、これらの歯部12a、22aが低段スクリューロータ11のスクリュー溝11a及び高段スクリューロータ21のスクリュー溝21aとそれぞれ噛み合い係合し、それぞれ低段圧縮室及び高段圧縮室を形成する。なお、ここではゲートロータを3つ設けた形態としたが、ゲートロータを4つ設け、低段スクリューロータ11の径方向に低段スクリューロータ11を挟むように2つ配置し、高段スクリューロータ21の径方向に高段スクリューロータ21を挟むように2つ配置した形態としてもよい。   Two gate rotors 12 of the low-stage compression unit 10 are arranged so as to sandwich the low-stage screw rotor 11 in the radial direction of the low-stage screw rotor 11, and the gate rotor 22 of the high-stage compression unit 20 is the same as the high-stage screw rotor 21. One is arranged in the radial direction. In addition, a plurality of tooth portions 12 a and 22 a are formed on the outer peripheral portions of the gate rotors 12 and 22, and these tooth portions 12 a and 22 a are screw grooves 11 a of the low-stage screw rotor 11 and screws of the high-stage screw rotor 21. The grooves 21a are engaged with each other to form a low-stage compression chamber and a high-stage compression chamber, respectively. Here, although three gate rotors are provided, four gate rotors are provided, and two gate rotors are arranged so as to sandwich the low-stage screw rotor 11 in the radial direction of the low-stage screw rotor 11. It is good also as a form arrange | positioned so that the high stage screw rotor 21 may be pinched | interposed into the radial direction of 21. FIG.

モータ30は、ケーシング1aに内接して固定されたステータ31と、ステータ31の内側に配置されたモータロータ32とを備えており、モータ室33に配置されている。モータ30は、その駆動回路がインバータ方式の場合は回転数が制御されるようになっている。   The motor 30 includes a stator 31 that is inscribed and fixed to the casing 1 a and a motor rotor 32 that is disposed inside the stator 31, and is disposed in the motor chamber 33. The motor 30 is configured such that its rotational speed is controlled when the drive circuit is an inverter system.

モータ室33は、低段スクリューロータ11と高段スクリューロータ21との間の中間室40に連通しているが、低段スクリューロータ11の吸込み側(低圧側)とは軸シール34によって区画されている。低段スクリューロータ11と高段スクリューロータ21とモータロータ32とは互いに同一軸線上に配置されており、何れもスクリュー軸50に固定されている。そして、モータ室33には、例えばサーミスタ等で構成され、モータ室33の壁温度を検出するモータ室壁温度センサ60が配置されている。なお、このモータ室壁温度センサ60は、モータ30の発熱量に応じた温度を検知する、本発明の温度検知手段を構成している。   The motor chamber 33 communicates with an intermediate chamber 40 between the low-stage screw rotor 11 and the high-stage screw rotor 21, but is separated from the suction side (low-pressure side) of the low-stage screw rotor 11 by a shaft seal 34. ing. The low-stage screw rotor 11, the high-stage screw rotor 21, and the motor rotor 32 are arranged on the same axis line, and are all fixed to the screw shaft 50. In the motor chamber 33, a motor chamber wall temperature sensor 60 configured by, for example, a thermistor and detecting the wall temperature of the motor chamber 33 is disposed. The motor chamber wall temperature sensor 60 constitutes temperature detection means of the present invention that detects the temperature according to the amount of heat generated by the motor 30.

二段スクリュー冷凍機はさらに、凝縮器3から主膨張弁4に向かう冷媒(液冷媒)の一部を分岐し、モータ室33に供給する冷媒流路を形成する液配管6を備えている。このように凝縮器3から主膨張弁4に向かう液冷媒の一部をモータ室33に供給することで、モータ30を冷却する。液配管6には、モータ室33への冷媒供給量を制御可能なリニア式電子膨張弁7が配置されている。液配管6にはさらに、液配管6の冷媒流路を開閉可能な例えば電磁弁で構成された開閉弁8が配置されている。なお、ここでは、液配管6においてリニア式電子膨張弁7の上流に開閉弁8を配置しているが、開閉弁8の配置位置は液配管6上であればよく、リニア式電子膨張弁7の上流下流は問わない。   The two-stage screw refrigerator further includes a liquid pipe 6 that branches a part of the refrigerant (liquid refrigerant) from the condenser 3 toward the main expansion valve 4 and forms a refrigerant flow path that is supplied to the motor chamber 33. Thus, by supplying a part of the liquid refrigerant from the condenser 3 toward the main expansion valve 4 to the motor chamber 33, the motor 30 is cooled. A linear electronic expansion valve 7 capable of controlling the amount of refrigerant supplied to the motor chamber 33 is disposed in the liquid pipe 6. The liquid pipe 6 is further provided with an on-off valve 8 composed of, for example, an electromagnetic valve that can open and close the refrigerant flow path of the liquid pipe 6. Here, the on-off valve 8 is arranged upstream of the linear electronic expansion valve 7 in the liquid pipe 6. However, the arrangement position of the on-off valve 8 may be on the liquid pipe 6. It doesn't matter if it is upstream or downstream.

また、二段スクリュー冷凍機は、マイクロコンピュータ等で構成された制御装置70を備えている。制御装置70は、CPUと、各種データを記憶するRAMと、運転制御を行うためのプログラム等を記憶するROM(何れも図示せず)とを備えており、ROM内のプログラムにしたがって二段スクリュー冷凍機全体を制御する。   The two-stage screw refrigerator includes a control device 70 configured with a microcomputer or the like. The control device 70 includes a CPU, a RAM for storing various data, and a ROM (none of which is shown) for storing a program for performing operation control, etc., and a two-stage screw according to the program in the ROM. Control the entire refrigerator.

また、制御装置70は、モータ室壁温度センサ60で検知されたモータ室壁温度が予め設定された目標冷却温度となるように、リニア式電子膨張弁7の弁開度を調整してモータ室33への冷媒供給量を制御すると共に、開閉弁8を制御する。   Further, the control device 70 adjusts the valve opening degree of the linear electronic expansion valve 7 so that the motor chamber wall temperature detected by the motor chamber wall temperature sensor 60 becomes a preset target cooling temperature. The refrigerant supply amount to 33 is controlled, and the on-off valve 8 is controlled.

ところで、モータ冷却用の冷媒量を制御するリニア式電子膨張弁7は、上述したようにその構造上の理由により、運転途中において全閉にしてしまうと弁開度に誤差が生じてしまう可能性があるため、全閉に制御されない。よって、リニア式電子膨張弁7では液配管6の冷媒流路を遮断することができない。このため、例えばモータ30に対する負荷が小さく、モータ30の発熱量が少ない場合、リニア式電子膨張弁7の弁開度を制御上の最小に設定しても、液配管6を介してモータ室33に液冷媒が供給され続ける。この場合、モータ30が必要以上に冷やされ、モータ室壁温度センサ60により検知されたモータ室壁温度が目標冷却温度よりも低くなることがある。そこで、本発明では、液配管6に開閉弁8を設け、液配管6における冷媒の流れを遮断できるようにしている。   Incidentally, as described above, the linear electronic expansion valve 7 that controls the amount of refrigerant for cooling the motor may cause an error in the valve opening degree if it is fully closed during operation due to the structural reason. Therefore, it is not controlled fully closed. Therefore, the linear electronic expansion valve 7 cannot block the refrigerant flow path of the liquid pipe 6. For this reason, for example, when the load on the motor 30 is small and the amount of heat generated by the motor 30 is small, the motor chamber 33 is connected via the liquid pipe 6 even if the valve opening degree of the linear electronic expansion valve 7 is set to the minimum in control. The liquid refrigerant continues to be supplied. In this case, the motor 30 may be cooled more than necessary, and the motor chamber wall temperature detected by the motor chamber wall temperature sensor 60 may be lower than the target cooling temperature. Therefore, in the present invention, the on-off valve 8 is provided in the liquid pipe 6 so that the refrigerant flow in the liquid pipe 6 can be blocked.

次に、本実施の形態1に係る二段シングルスクリュー圧縮機1の動作及び冷媒回路における冷媒の流れについて説明する。
電力供給源(図示せず)からステータ31へ電力供給されることにより、モータロータ32、スクリュー軸50、低段スクリューロータ11及び高段スクリューロータ21が回転する。また、低段スクリューロータ11及び高段スクリューロータ21のそれぞれに係合されたゲートロータ12、22も回転する。これにより、低温低圧のガス冷媒が低段スクリューロータ11のスクリュー溝11aとゲートロータ12の歯部12aとによって形成される低段圧縮室に吸込まれ、第1段の圧縮が行われる。低段圧縮室で圧縮されたガス冷媒は、中間室40へ吐出される。
Next, the operation of the two-stage single screw compressor 1 according to Embodiment 1 and the refrigerant flow in the refrigerant circuit will be described.
By supplying power to the stator 31 from a power supply source (not shown), the motor rotor 32, the screw shaft 50, the low-stage screw rotor 11, and the high-stage screw rotor 21 rotate. Further, the gate rotors 12 and 22 engaged with the low-stage screw rotor 11 and the high-stage screw rotor 21 also rotate. Thus, the low-temperature and low-pressure gas refrigerant is sucked into the low-stage compression chamber formed by the screw groove 11a of the low-stage screw rotor 11 and the tooth portion 12a of the gate rotor 12, and the first-stage compression is performed. The gas refrigerant compressed in the low-stage compression chamber is discharged to the intermediate chamber 40.

中間室40へ吐出されたガス冷媒は、高段スクリューロータ21のスクリュー溝21aとゲートロータ22の歯部22aとによって形成される高段圧縮室へ吸込まれ、第2段の圧縮が行われる。高段圧縮室で圧縮されて高温高圧となったガス冷媒は、油分離器2へ吐出される。   The gas refrigerant discharged to the intermediate chamber 40 is sucked into the high-stage compression chamber formed by the screw groove 21a of the high-stage screw rotor 21 and the tooth portion 22a of the gate rotor 22, and the second-stage compression is performed. The gas refrigerant that has been compressed in the high-stage compression chamber to a high temperature and pressure is discharged to the oil separator 2.

油分離器2へ吐出されたガス冷媒は油を含有しており、油分離器2において、ガス冷媒と油とに分離され、ガス冷媒は凝縮器3へ至る。凝縮器3において、ガス冷媒は外部熱源と熱交換されて凝縮し、高圧の液冷媒となる。   The gas refrigerant discharged to the oil separator 2 contains oil. In the oil separator 2, the gas refrigerant is separated into gas refrigerant and oil, and the gas refrigerant reaches the condenser 3. In the condenser 3, the gas refrigerant is condensed by exchanging heat with an external heat source, and becomes a high-pressure liquid refrigerant.

高圧の液冷媒は、主膨張弁4によって膨張して低温低圧の液冷媒となり、蒸発器5へ至る。蒸発器5において、液冷媒は外部熱源と熱交換されて蒸発し、低温低圧のガス冷媒となり、上記低段圧縮室へ吸込まれる。これが、二段スクリュー冷凍機における主な冷媒の流れである。   The high-pressure liquid refrigerant is expanded by the main expansion valve 4 to become a low-temperature and low-pressure liquid refrigerant and reaches the evaporator 5. In the evaporator 5, the liquid refrigerant evaporates by exchanging heat with an external heat source, becomes a low-temperature and low-pressure gas refrigerant, and is sucked into the low-stage compression chamber. This is the main refrigerant flow in the two-stage screw refrigerator.

また、凝縮器3において凝縮された液冷媒の一部は、液配管6を経て、リニア式電子膨張弁7によって低温低圧へ膨張された状態でモータ室33へ供給され、モータ30を冷却する。モータ30を冷却後の冷媒は中間室40に流入し、低段圧縮室から吐出された冷媒と共に高段圧縮室へ吸込まれる。これ以降の冷媒の流れは上述の通りである。   A part of the liquid refrigerant condensed in the condenser 3 is supplied to the motor chamber 33 through the liquid pipe 6 and expanded to a low temperature and a low pressure by the linear electronic expansion valve 7, thereby cooling the motor 30. The refrigerant after cooling the motor 30 flows into the intermediate chamber 40 and is sucked into the high stage compression chamber together with the refrigerant discharged from the low stage compression chamber. The flow of the refrigerant after this is as described above.

また、油分離器2において分離された油は、油配管9を経て、上記低段圧縮部10及び高段圧縮部20へインジェクションされる。   Further, the oil separated in the oil separator 2 is injected into the low-stage compression unit 10 and the high-stage compression unit 20 through the oil pipe 9.

図2は、本発明の実施の形態1に係る二段スクリュー冷凍機における二段圧縮機のモータ冷却制御方法のフローチャートである。図2のフローチャートは制御間隔毎に実施される。なお、ここでは開閉弁8は全開に制御されているものとする。
制御装置70は、モータ室壁温度センサ60により検知されたモータ室壁温度と予め設定された目標冷却温度とを比較し(S1)、モータ室壁温度が目標冷却温度よりも高ければ、リニア式電子膨張弁7を予め設定された所定開度だけ開方向に動作させる(S2)。一方、モータ室壁温度が目標冷却温度以下であれば、モータ室壁温度が目標冷却温度に一致するか否かをチェックし(S3)、一致しなければ、すなわちモータ室壁温度が目標冷却温よりも低ければ、続いてリニア式電子膨張弁7の弁開度が制御上の最小でないかどうかをチェックする(S4)。制御装置70は、リニア式電子膨張弁7の弁開度が制御上の最小でなければ、リニア式電子膨張弁7を予め設定された所定開度だけ閉方向に動作させる(S5)。
FIG. 2 is a flowchart of the motor cooling control method for the two-stage compressor in the two-stage screw refrigerator according to the first embodiment of the present invention. The flowchart of FIG. 2 is implemented at every control interval. Here, it is assumed that the on-off valve 8 is controlled to be fully opened.
The control device 70 compares the motor chamber wall temperature detected by the motor chamber wall temperature sensor 60 with a preset target cooling temperature (S1), and if the motor chamber wall temperature is higher than the target cooling temperature, a linear type is obtained. The electronic expansion valve 7 is operated in the opening direction by a preset opening degree (S2). On the other hand, if the motor chamber wall temperature is equal to or lower than the target cooling temperature, it is checked whether or not the motor chamber wall temperature matches the target cooling temperature (S3). If it is lower than that, then it is checked whether the valve opening degree of the linear electronic expansion valve 7 is not the minimum in control (S4). If the opening degree of the linear electronic expansion valve 7 is not the minimum in control, the control device 70 operates the linear electronic expansion valve 7 in the closing direction by a predetermined opening degree set in advance (S5).

一方、制御装置70は、ステップS4においてリニア式電子膨張弁7の弁開度が制御上の最小であれば、開閉弁8を全閉にする(S6)。また、制御装置70は、ステップS3においてモータ室壁温度が目標冷却温度に等しければ、リニア式電子膨張弁7を現状の開度に維持する。   On the other hand, if the opening degree of the linear electronic expansion valve 7 is the minimum in control in step S4, the control device 70 fully closes the on-off valve 8 (S6). If the motor chamber wall temperature is equal to the target cooling temperature in step S3, the control device 70 maintains the linear electronic expansion valve 7 at the current opening.

以上のフローチャートの制御を制御間隔毎に繰り返すことにより、モータ室壁温度が目標冷却温度よりも高い間は、リニア式電子膨張弁7の開度が所定開度ずつ広げられ、液配管6を介してモータ室33に供給される液冷媒の流量が増え、モータ室33が冷却される。一方、モータ室壁温度が目標冷却温度よりも低い間は、リニア式電子膨張弁7の開度が狭められ、液配管6を介してモータ室33に供給される液冷媒の流量が減らされ、モータ室33の冷えすぎを改善する。そして、リニア式電子膨張弁7を制御上の最小開度にしてもなおモータ室壁温度が目標冷却温度よりも低ければ、開閉弁8が全閉され、モータ室33への液冷媒の供給が遮断される。以上の制御により、必要以上に液冷媒がモータ室33内へ供給されることを阻止できる。   By repeating the control of the above flowchart at every control interval, while the motor chamber wall temperature is higher than the target cooling temperature, the opening degree of the linear electronic expansion valve 7 is widened by a predetermined opening degree, and the liquid pipe 6 is passed through. Thus, the flow rate of the liquid refrigerant supplied to the motor chamber 33 is increased, and the motor chamber 33 is cooled. On the other hand, while the motor chamber wall temperature is lower than the target cooling temperature, the opening degree of the linear electronic expansion valve 7 is narrowed, and the flow rate of the liquid refrigerant supplied to the motor chamber 33 through the liquid pipe 6 is reduced. Improving overcooling of the motor chamber 33 is improved. If the motor chamber wall temperature is lower than the target cooling temperature even when the linear electronic expansion valve 7 is at the minimum control opening, the on-off valve 8 is fully closed and the liquid refrigerant is supplied to the motor chamber 33. Blocked. With the above control, it is possible to prevent the liquid refrigerant from being supplied into the motor chamber 33 more than necessary.

なお、ここでは、モータ室壁温度センサ60により検知されたモータ室壁温度が目標冷却温度となるようにリニア式電子膨張弁7を制御するとしたが、目標冷却温度を含む所定範囲内を維持するようにリニア式電子膨張弁7を制御するようにしてももちろん良い。   Here, the linear electronic expansion valve 7 is controlled so that the motor chamber wall temperature detected by the motor chamber wall temperature sensor 60 becomes the target cooling temperature. However, the linear electronic expansion valve 7 is maintained within a predetermined range including the target cooling temperature. Of course, the linear electronic expansion valve 7 may be controlled.

また、ここでは、リニア式電子膨張弁7の開度を制御間隔毎に所定開度だけ開方向又は閉方向に動作させるとしたが、他に例えば、モータ室壁温度と目標冷却温度との温度差に応じた開度となるように動作させるようにしてもよい。   Here, the opening degree of the linear electronic expansion valve 7 is operated in the opening direction or the closing direction by a predetermined opening degree at every control interval. However, for example, the temperature between the motor chamber wall temperature and the target cooling temperature is used. You may make it operate | move so that it may become the opening degree according to a difference.

以上説明したように、本実施の形態1では、モータ室33を冷却する液冷媒が通過する液配管6に、リニア式電子膨張弁7に加えてさらに開閉弁8を設け、液配管6における冷媒の流れを遮断可能とした。これにより、リニア式電子膨張弁7の弁開度を制御上の最小としてもなおモータ室壁温度が目標冷却温度よりも低く、必要以上に液冷媒がモータ室33に供給されている運転状態の時、開閉弁8を全閉とすることで不必要な液冷媒のモータ室33への供給を阻止できる。その結果、中間室40に戻るモータ冷却後のガス冷媒量が抑えられ、中間室40の圧力を低く抑えることができ、成績係数(運転効率)の高い冷凍機を得ることができる。   As described above, in the first embodiment, the liquid pipe 6 through which the liquid refrigerant for cooling the motor chamber 33 passes is provided with the on-off valve 8 in addition to the linear electronic expansion valve 7, and the refrigerant in the liquid pipe 6 is provided. It was possible to cut off the flow. As a result, even when the valve opening degree of the linear electronic expansion valve 7 is minimized, the motor chamber wall temperature is still lower than the target cooling temperature, and the liquid refrigerant is supplied to the motor chamber 33 more than necessary. At this time, it is possible to prevent unnecessary liquid refrigerant from being supplied to the motor chamber 33 by fully closing the on-off valve 8. As a result, the amount of gas refrigerant after the motor cooling back to the intermediate chamber 40 is suppressed, the pressure in the intermediate chamber 40 can be suppressed low, and a refrigerator having a high coefficient of performance (operation efficiency) can be obtained.

さらに、図に示していないエコノマイザを冷媒回路に有し、エコノマイザサイクルを構成している冷凍機においては、中間圧が低下することによりエコノマイザにおける交換熱量が増し、冷凍効果が増大する。すなわち、冷凍能力の増大を図ることができる。   Further, in a refrigerator having an economizer (not shown) in the refrigerant circuit and constituting an economizer cycle, the amount of heat exchanged in the economizer increases due to a decrease in the intermediate pressure, thereby increasing the refrigeration effect. That is, the refrigerating capacity can be increased.

実施の形態2.
実施の形態2は、実施の形態1のモータ室壁温度センサ60に代えて、モータ30のステータ31の巻き線温度を検知する巻き線温度センサ61を設けたものである。この巻き線温度センサ61はモータ30の発熱量に応じた温度を検知する、本発明の温度検知手段を構成している。それ以外の冷媒回路の構成、動作、図2に示したモータ冷却制御の流れ等は実施の形態1と同様である。また、実施の形態1の構成部分において適用された変形例は、実施の形態2の同様の構成部分においても同様に適用される。
Embodiment 2. FIG.
In the second embodiment, a winding temperature sensor 61 that detects the winding temperature of the stator 31 of the motor 30 is provided in place of the motor chamber wall temperature sensor 60 of the first embodiment. The winding temperature sensor 61 constitutes a temperature detecting means of the present invention that detects a temperature corresponding to the amount of heat generated by the motor 30. Other configurations and operations of the refrigerant circuit, the flow of the motor cooling control shown in FIG. 2, and the like are the same as those in the first embodiment. Further, the modification applied in the configuration part of the first embodiment is similarly applied to the same configuration part of the second embodiment.

図3は、本発明の実施の形態2に係る二段スクリュー冷凍機の冷媒回路の概略図である。なお、図3において実線矢印は冷媒系統を示し、破線矢印は油系統を示している。
実施の形態2の二段スクリュー冷凍機の二段圧縮機1において、巻き線温度センサ61は、ステータ31内部に埋め込まれた状態で配置され、巻き線の温度を検知し、検知温度を制御装置70に出力する。制御装置70は、巻き線温度が予め設定された目標冷却温度となるように、実施の形態1と同様にリニア式電子膨張弁7及び開閉弁8の制御を行う。
FIG. 3 is a schematic diagram of the refrigerant circuit of the two-stage screw refrigerator according to Embodiment 2 of the present invention. In FIG. 3, a solid line arrow indicates a refrigerant system, and a broken line arrow indicates an oil system.
In the two-stage compressor 1 of the two-stage screw refrigerator of the second embodiment, the winding temperature sensor 61 is arranged in a state embedded in the stator 31, detects the temperature of the winding, and controls the detected temperature. Output to 70. The control device 70 controls the linear electronic expansion valve 7 and the on-off valve 8 as in the first embodiment so that the winding temperature becomes a preset target cooling temperature.

本実施の形態2によれば、実施の形態1と同様の効果が得られると共に以下の効果が得られる。すなわち、巻き線温度センサ61はステータ31の内部に埋め込まれて配置されているため、実施の形態1のモータ室壁で温度検知するよりも温度応答性に優れ、実施の形態1よりも精度の高いモータ冷却制御を実現できる。   According to the second embodiment, the same effects as those of the first embodiment can be obtained and the following effects can be obtained. That is, since the winding temperature sensor 61 is embedded and arranged inside the stator 31, the temperature responsiveness is superior to that of the first embodiment in which the temperature is detected by the motor chamber wall and the accuracy is higher than that of the first embodiment. High motor cooling control can be realized.

なお、上記実施の形態1、2では、低段圧縮部10及び高段圧縮部20が共にシングルスクリュー圧縮部であるが、ツインスクリューやスクロール、ロータリ、レシプロなど他方式の圧縮部で構成することもできる。   In the first and second embodiments, the low-stage compression unit 10 and the high-stage compression unit 20 are both single screw compression units. You can also.

また、上記実施の形態1、2では、蒸発器5が冷凍機に備えている形態を示したが、蒸発器5は設備側に設けた形態であってもよい。   Moreover, in the said Embodiment 1, 2, although the form with which the evaporator 5 was equipped with the refrigerator was shown, the form provided in the equipment side may be sufficient as the evaporator 5.

1 二段圧縮機、1a ケーシング、2 油分離器、3 凝縮器、4 主膨張弁、5 蒸発器、6 液配管(配管)、7 リニア式電子膨張弁、8 開閉弁、9 油配管、10 低段圧縮部、11 低段スクリューロータ、11a スクリュー溝、12 ゲートロータ、12a 歯部、20 高段圧縮部、21 高段スクリューロータ、21a スクリュー溝、22 ゲートロータ、22a 歯部、30 モータ、31 ステータ、32 モータロータ、33 モータ室、34 軸シール、40 中間室、50 スクリュー軸、60 モータ室壁温度センサ、61 巻き線温度センサ、70 制御装置。   1 2-stage compressor, 1a casing, 2 oil separator, 3 condenser, 4 main expansion valve, 5 evaporator, 6 liquid piping (piping), 7 linear electronic expansion valve, 8 on-off valve, 9 oil piping, 10 Low stage compression part, 11 Low stage screw rotor, 11a Screw groove, 12 Gate rotor, 12a tooth part, 20 High stage compression part, 21 High stage screw rotor, 21a Screw groove, 22 Gate rotor, 22a Tooth part, 30 Motor, 31 stator, 32 motor rotor, 33 motor chamber, 34 shaft seal, 40 intermediate chamber, 50 screw shaft, 60 motor chamber wall temperature sensor, 61 winding temperature sensor, 70 control device.

Claims (4)

低段圧縮部、高段圧縮部及びこれら圧縮部を駆動するモータを有する二段圧縮機と、凝縮器と、減圧装置とを有し、冷媒が循環する冷媒回路と、
前記凝縮器から前記減圧装置に向かう冷媒の一部を分岐し、前記二段圧縮機において前記モータが設置されたモータ室に供給する冷媒流路を形成する配管と、
前記配管に設けられたリニア式電子膨張弁と、
前記配管に設けられた開閉弁と
前記モータの発熱量に応じた温度を検知する温度検知手段と、
前記温度検知手段で検知された温度が予め設定された目標冷却温度となるように前記リニア式電子膨張弁を制御する制御装置とを備え
前記制御装置は、前記リニア式電子膨張弁を制御上の最小開度に制御してもなお、前記温度検知手段で検知された温度が前記目標冷却温度よりも低い場合、前記開閉弁を全閉とする
ことを特徴とする冷凍機。
A low-stage compression unit, a high-stage compression unit, a two-stage compressor having a motor that drives these compression units, a condenser, and a refrigerant circuit in which a refrigerant circulates, and a decompressor.
A pipe that branches a part of the refrigerant from the condenser toward the pressure reducing device and forms a refrigerant flow path that supplies the motor chamber in which the motor is installed in the two-stage compressor;
A linear electronic expansion valve provided in the pipe;
An on-off valve provided in the pipe ;
Temperature detecting means for detecting a temperature corresponding to the amount of heat generated by the motor;
A controller for controlling the linear electronic expansion valve so that the temperature detected by the temperature detection means becomes a preset target cooling temperature ,
When the temperature detected by the temperature detecting means is lower than the target cooling temperature even when the linear electronic expansion valve is controlled to the minimum control opening degree, the control device fully closes the on-off valve. refrigerator according to claim <br/> be.
前記温度検知手段は、前記モータ室の壁面の温度を検知する
ことを特徴とする請求項記載の冷凍機。
It said temperature sensing means, the refrigerator according to claim 1, wherein the detecting the temperature of the wall of the motor chamber.
前記温度検知手段は、前記モータの巻き線温度を検知する
ことを特徴とする請求項記載の冷凍機。
It said temperature sensing means, the refrigerator according to claim 1, wherein the detecting the winding temperature of the motor.
前記低段圧縮部及び前記高段圧縮部は共にスクリュー式の圧縮部で構成されている
ことを特徴とする請求項1〜請求項の何れか一項に記載の冷凍機。
The refrigerator according to any one of claims 1 to 3 , wherein the low-stage compression section and the high-stage compression section are both screw-type compression sections.
JP2014072075A 2014-03-31 2014-03-31 refrigerator Expired - Fee Related JP6373034B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014072075A JP6373034B2 (en) 2014-03-31 2014-03-31 refrigerator
TW103121138A TWI568982B (en) 2014-03-31 2014-06-19 Freezer
CN201410302809.XA CN104949366B (en) 2014-03-31 2014-06-30 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072075A JP6373034B2 (en) 2014-03-31 2014-03-31 refrigerator

Publications (3)

Publication Number Publication Date
JP2015194294A JP2015194294A (en) 2015-11-05
JP2015194294A5 JP2015194294A5 (en) 2016-09-01
JP6373034B2 true JP6373034B2 (en) 2018-08-15

Family

ID=54164229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072075A Expired - Fee Related JP6373034B2 (en) 2014-03-31 2014-03-31 refrigerator

Country Status (3)

Country Link
JP (1) JP6373034B2 (en)
CN (1) CN104949366B (en)
TW (1) TWI568982B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10782057B2 (en) * 2017-12-29 2020-09-22 Johnson Controls Technology Company Motor temperature control technique with temperature override
WO2021171489A1 (en) * 2020-02-27 2021-09-02 三菱電機株式会社 Screw compressor and freezer
WO2021200858A1 (en) * 2020-03-31 2021-10-07 ダイキン工業株式会社 Screw compressor, and refrigeration device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634209A (en) * 1992-07-15 1994-02-08 Sanyo Electric Co Ltd Refrigerating equipment
JPH07139820A (en) * 1993-11-16 1995-06-02 Daikin Ind Ltd Refrigeration equipment
JPH09236338A (en) * 1996-02-29 1997-09-09 Kobe Steel Ltd Heat pump
JPH1163775A (en) * 1997-08-18 1999-03-05 Toshiba Corp Multi-refrigerator
JP2000146331A (en) * 1998-11-06 2000-05-26 Mitsubishi Electric Corp Cooling device for motor for refrigerant compressor
JP3630632B2 (en) * 2000-12-12 2005-03-16 株式会社東芝 refrigerator
JP2006329557A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Screw refrigerating device
JP4749178B2 (en) * 2006-02-22 2011-08-17 三菱電機株式会社 Refrigeration equipment
JP2011190977A (en) * 2010-03-15 2011-09-29 Orion Machinery Co Ltd Controller for temperature-controlled bath
JP5538061B2 (en) * 2010-05-11 2014-07-02 三菱電機株式会社 Refrigeration equipment
JP5556499B2 (en) * 2010-08-18 2014-07-23 株式会社デンソー Two-stage boost refrigeration cycle
JP5634228B2 (en) * 2010-11-12 2014-12-03 三菱電機株式会社 Screw refrigerator
JP5837997B2 (en) * 2012-02-07 2015-12-24 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Airtight motor cooling and control

Also Published As

Publication number Publication date
TWI568982B (en) 2017-02-01
JP2015194294A (en) 2015-11-05
CN104949366B (en) 2018-10-02
TW201537124A (en) 2015-10-01
CN104949366A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
US9389005B2 (en) Two-stage compression refrigeration cycle device
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
JP6222019B2 (en) Two-stage boost refrigeration cycle equipment
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
JP5669642B2 (en) Refrigeration equipment
JP6083173B2 (en) AIR CONDITIONER AND COMPRESSOR USED FOR THE SAME
JP2012072920A (en) Refrigeration apparatus
EP3604970A1 (en) Air-conditioning device, railway vehicle air-conditioning device, and method for controlling air-conditioning device
JP4767133B2 (en) Refrigeration cycle equipment
JP6373034B2 (en) refrigerator
JP2013155972A (en) Refrigeration device
JP2013164250A (en) Refrigerating apparatus
JP5735441B2 (en) Refrigeration equipment
JP2005180815A (en) Cooling device
JP5053527B2 (en) Showcase cooling system
JP2014159950A (en) Freezer
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP5927553B2 (en) Refrigeration equipment
JP2011080731A (en) Refrigerator
JP5554161B2 (en) Refrigeration equipment
CN108027176B (en) Multistage compression refrigeration cycle device
WO2018146805A1 (en) Refrigerating device
KR102532023B1 (en) Supercritical refrigeration system and control method of same
JP5972213B2 (en) Refrigeration equipment
JP2010276238A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees