JP6357799B2 - Conductive layer laminated porous film and battery separator - Google Patents
Conductive layer laminated porous film and battery separator Download PDFInfo
- Publication number
- JP6357799B2 JP6357799B2 JP2014036450A JP2014036450A JP6357799B2 JP 6357799 B2 JP6357799 B2 JP 6357799B2 JP 2014036450 A JP2014036450 A JP 2014036450A JP 2014036450 A JP2014036450 A JP 2014036450A JP 6357799 B2 JP6357799 B2 JP 6357799B2
- Authority
- JP
- Japan
- Prior art keywords
- porous film
- conductive layer
- layer laminated
- battery
- laminated porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004760 aramid Substances 0.000 claims description 32
- 229920003235 aromatic polyamide Polymers 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 239000004020 conductor Substances 0.000 claims description 17
- -1 poly p-phenylene Polymers 0.000 claims description 14
- 238000001556 precipitation Methods 0.000 claims description 14
- 239000003575 carbonaceous material Substances 0.000 claims description 10
- 238000004090 dissolution Methods 0.000 claims description 10
- 230000035699 permeability Effects 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 229920001940 conductive polymer Polymers 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- 239000002861 polymer material Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229920000128 polypyrrole Polymers 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 2
- 229920000292 Polyquinoline Polymers 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 2
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000006231 channel black Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910003472 fullerene Inorganic materials 0.000 claims description 2
- 239000006232 furnace black Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 229910021385 hard carbon Inorganic materials 0.000 claims description 2
- 239000003273 ketjen black Substances 0.000 claims description 2
- 239000002931 mesocarbon microbead Substances 0.000 claims description 2
- 229910021382 natural graphite Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 claims description 2
- 229920001197 polyacetylene Polymers 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229920000015 polydiacetylene Polymers 0.000 claims description 2
- 229920000414 polyfuran Polymers 0.000 claims description 2
- 229920000123 polythiophene Polymers 0.000 claims description 2
- 229910021384 soft carbon Inorganic materials 0.000 claims description 2
- 239000006234 thermal black Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229920000265 Polyparaphenylene Polymers 0.000 claims 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 97
- 238000000034 method Methods 0.000 description 55
- 238000007600 charging Methods 0.000 description 37
- 238000011156 evaluation Methods 0.000 description 34
- 239000000463 material Substances 0.000 description 34
- 229920000642 polymer Polymers 0.000 description 31
- 239000000243 solution Substances 0.000 description 20
- 239000011550 stock solution Substances 0.000 description 19
- 238000005259 measurement Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000007599 discharging Methods 0.000 description 16
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 10
- 238000001771 vacuum deposition Methods 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 229920001477 hydrophilic polymer Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002798 polar solvent Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 229920006254 polymer film Polymers 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910052774 Proactinium Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010277 constant-current charging Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000011437 continuous method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Chemical group 0.000 description 2
- 239000000460 chlorine Chemical group 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- MGLZGLAFFOMWPB-UHFFFAOYSA-N 2-chloro-1,4-phenylenediamine Chemical compound NC1=CC=C(N)C(Cl)=C1 MGLZGLAFFOMWPB-UHFFFAOYSA-N 0.000 description 1
- MSWAXXJAPIGEGZ-UHFFFAOYSA-N 2-chlorobenzene-1,4-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C(Cl)=C1 MSWAXXJAPIGEGZ-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- LPVJWXJBZPCDLM-HUWNQDJBSA-N 7-boat Chemical compound O([C@H]1\C(C)=C/[C@]23O[C@@]2(C([C@H](C)[C@@H](OC(C)=O)[C@H]2[C@H](C2(C)C)[C@@H]1OC(C)=O)=O)C[C@H]([C@H]3OC(C)=O)C)C(=O)C1=CC=CC=C1 LPVJWXJBZPCDLM-HUWNQDJBSA-N 0.000 description 1
- ODPYDILFQYARBK-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-1,3,5-triene Chemical compound C1=CC=C2SC2=C1 ODPYDILFQYARBK-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Laminated Bodies (AREA)
- Cell Separators (AREA)
Description
本発明は導電層積層多孔性フィルムに関する。特に電池などの蓄電デバイス用のセパレータとして好適に使用できる導電層積層多孔性フィルムに関する。 The present invention relates to a conductive layer laminated porous film. In particular, the present invention relates to a conductive layer laminated porous film that can be suitably used as a separator for an electricity storage device such as a battery.
従来、蓄電池用セパレータとしてはポリエチレンやポリプロピレンといったオレフィン系高分子多孔性フィルムが主に用いられてきた。 Conventionally, olefin polymer porous films such as polyethylene and polypropylene have been mainly used as separators for storage batteries.
セパレータ用の多孔性フィルムにおいては、生産性に優れ低コストであることに加え、電池抵抗が低く出力特性が高いこと、フィルムの剛性が高く、耐熱保護層などの機能層の塗工性および電池組立工程適性に優れていること、さらには、多孔性フィルムの耐熱性が高く、異常時に電池の温度が上昇しても安全性が確保されることなどの特性が求められる。 In the porous film for separator, in addition to excellent productivity and low cost, battery resistance is low and output characteristics are high, film rigidity is high, functional layer coating properties such as heat-resistant protective layer and battery There are demands for characteristics such as excellent assembly process suitability, high heat resistance of the porous film, and ensuring safety even when the temperature of the battery rises in the event of an abnormality.
これらのうち、耐熱性や安全性確保のために、より高温でも寸法変化の少ない、耐熱性の高いセパレータの必要性が高まっており検討が進められている。 Among these, in order to ensure heat resistance and safety, there is an increasing need for a separator having high heat resistance that has little dimensional change even at higher temperatures, and is being studied.
耐熱性の高いセパレータとしては、例えば、特許文献1〜3に、耐熱性および化学的安定性に優れる、芳香族ポリアミド(アラミド)からなる多孔性フィルムが開示されている。特許文献1は、アラミド不織布やアラミドペーパーのセパレータとしての用途を開示した例である。また、特許文献2および3は、溶液製膜により得られるアラミド多孔性フィルムを開示した例である。 As a separator having high heat resistance, for example, Patent Documents 1 to 3 disclose porous films made of an aromatic polyamide (aramid) that are excellent in heat resistance and chemical stability. Patent document 1 is an example which disclosed the use as a separator of an aramid nonwoven fabric or an aramid paper. Patent Documents 2 and 3 are examples in which an aramid porous film obtained by solution casting is disclosed.
また、電池抵抗の低下と出力特性向上のためには孔構造を制御することが検討されており、大孔径化、高空孔率化などが検討されている(例えば、特許文献4、5)。 In addition, in order to reduce battery resistance and improve output characteristics, it has been studied to control the pore structure, and studies have been made on increasing the diameter of the pores and increasing the porosity (for example, Patent Documents 4 and 5).
しかし、孔径を大きくしたり、高空孔率化すると、出力特性は向上するが、フィルムの剛性が低くなり、電池組立時にフィルム切れが起こったり、正負極間の電気絶縁性に難があり、短絡頻度が増加して、電池組立工程適性に難が生じるなど、孔構造の制御だけでは電池特性と、機械特性、電池組立工程適性を同時に満たすことは困難であった。 However, if the hole diameter is increased or the porosity is increased, the output characteristics are improved, but the film rigidity is lowered, the film breaks during battery assembly, and there is a difficulty in electrical insulation between the positive and negative electrodes. It has been difficult to satisfy the battery characteristics, the mechanical characteristics, and the battery assembly process suitability at the same time only by controlling the hole structure. For example, the frequency increases and the battery assembly process suitability becomes difficult.
本発明の課題は、上記した問題点を解決することにある。すなわち、蓄電池用セパレータとして使用したとき、電池抵抗が低下し、優れた出力特性と寿命特性を得ることができる導電層積層多孔性フィルムを提供することにある。 An object of the present invention is to solve the above-described problems. That is, the object is to provide a conductive layer laminated porous film that, when used as a storage battery separator, has reduced battery resistance and can provide excellent output characteristics and life characteristics.
本発明により、導電層を積層した多孔性フィルムを提供することが可能である。これをセパレータとして用いると、電池抵抗の低下及び出力特性と寿命特性が良好となる。 According to the present invention, it is possible to provide a porous film having a conductive layer laminated thereon. When this is used as a separator, the battery resistance is reduced and the output characteristics and life characteristics are improved.
本発明の導電層積層多孔性フィルムは、ガーレ透気度が1〜10,000秒/100mlであることが好ましい。より好ましくは1〜200秒/100mlであり、さらに好ましくは1〜150秒/100mlである。ガーレ透気度が1秒/100mlより小さいとフィルムの強度が低下し、10,000秒/100mlより大きいと抵抗が大きく、セパレータとして使用した際に内部抵抗が上昇し、十分な特性が得られないことがある。なお、ガーレ透気度は、JIS−P8117(1998)に規定された方法に従って、空気100mlが通過する時間を測定した値であり、ガーレ透気度の値が小さい方が、より多孔性フィルムの透気性が高いことを示している。 The conductive layer laminated porous film of the present invention preferably has a Gurley air permeability of 1 to 10,000 seconds / 100 ml. More preferably, it is 1-200 seconds / 100 ml, More preferably, it is 1-150 seconds / 100 ml. If the Gurley permeability is less than 1 second / 100 ml, the strength of the film will decrease, and if it exceeds 10,000 seconds / 100 ml, the resistance will increase, and the internal resistance will increase when used as a separator, resulting in sufficient characteristics. There may not be. The Gurley permeability is a value obtained by measuring the time required for 100 ml of air to pass in accordance with the method defined in JIS-P8117 (1998), and the smaller the Gurley permeability is, the more the porous film is. It shows high air permeability.
本発明の導電層積層多孔性フィルムは、200℃における熱収縮率が1%以下であることが好ましく、−0.5%以上1.0%以下であることがより好ましい。より好ましくは−0.5%以上0.6%以下、さらに好ましくは−0.5%以上0.4%以下である。熱収縮率が1%を超える場合、電池の異常発熱時にセパレータの収縮により、電池端部において短絡が起こることがある。 The conductive layer laminated porous film of the present invention preferably has a heat shrinkage rate of 1% or less at 200 ° C., more preferably −0.5% or more and 1.0% or less. More preferably, it is -0.5% or more and 0.6% or less, More preferably, it is -0.5% or more and 0.4% or less. When the thermal shrinkage rate exceeds 1%, a short circuit may occur at the end of the battery due to the shrinkage of the separator during abnormal heat generation of the battery.
また、熱収縮率が小さいため、導電層を設ける際にフィルムに熱がかかっても孔構造を維持することが可能となる。さらには高温プロセスが適用可能であり、生産速度の向上も可能である。 In addition, since the heat shrinkage rate is small, it is possible to maintain the hole structure even when the film is heated when the conductive layer is provided. Furthermore, a high temperature process can be applied, and the production speed can be improved.
次に多孔性フィルムの作製方法について、芳香族ポリアミドを例として以下に説明するが、これに限定されるものではない。まず、芳香族ポリアミドを、例えば、酸ジクロライドとジアミンを原料として重合する場合には、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性有機極性溶媒中で溶液重合により合成する方法や、水系媒体を使用する界面重合で合成する方法等をとることができる。ポリマーの分子量を制御しやすいことから、非プロトン性有機極性溶媒中での溶液重合が好ましい。 Next, a method for producing a porous film will be described below using an aromatic polyamide as an example, but is not limited thereto. First, in the case of polymerizing aromatic polyamide using, for example, acid dichloride and diamine as raw materials, aprotic organic polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, etc. Among them, a method of synthesis by solution polymerization, a method of synthesis by interfacial polymerization using an aqueous medium, and the like can be employed. Solution polymerization in an aprotic organic polar solvent is preferable because the molecular weight of the polymer can be easily controlled.
溶液重合の場合、分子量の高いポリマーを得るために、重合に使用する溶媒の水分率を500ppm以下(質量基準、以下同様)とすることが好ましく、200ppm以下とすることがより好ましい。使用する酸ジクロライドおよびジアミンの両者を等量用いると超高分子量のポリマーが生成することがあるため、モル比を、一方が他方の95.0〜99.5モル%になるように調整することが好ましい。また、芳香族ポリアミドの重合反応は発熱を伴うが、重合系の温度が上がると、副反応が起きて重合度が十分に上がらないことがあるため、重合中の溶液の温度を40℃以下に冷却することが好ましい。重合中の溶液の温度は30℃以下にすることがより好ましい。さらに、酸ジクロライドとジアミンを原料とする場合、重合反応に伴って塩化水素が副生するが、これを中和する場合には炭酸リチウム、炭酸カルシウム、水酸化カルシウムなどの無機の中和剤、あるいは、エチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミン等の有機の中和剤を使用するとよい。 In the case of solution polymerization, in order to obtain a polymer having a high molecular weight, the water content of the solvent used for the polymerization is preferably 500 ppm or less (mass basis, the same applies hereinafter), more preferably 200 ppm or less. If both the acid dichloride and diamine used are used in equal amounts, an ultra-high molecular weight polymer may be formed. Therefore, the molar ratio should be adjusted so that one is 95.0-99.5 mol% of the other. Is preferred. In addition, the polymerization reaction of the aromatic polyamide is exothermic, but if the temperature of the polymerization system rises, side reaction may occur and the degree of polymerization may not be sufficiently increased. It is preferable to cool. The temperature of the solution during polymerization is more preferably 30 ° C. or lower. Furthermore, when acid dichloride and diamine are used as raw materials, hydrogen chloride is produced as a by-product in the polymerization reaction, but when neutralizing this, an inorganic neutralizing agent such as lithium carbonate, calcium carbonate, calcium hydroxide, Alternatively, an organic neutralizer such as ethylene oxide, propylene oxide, ammonia, triethylamine, triethanolamine, diethanolamine may be used.
本発明の芳香族ポリアミドの多孔性フィルムを得るために、芳香族ポリアミドポリマーの対数粘度(ηinh)は、1.8〜3.5dl/gであることが好ましく、2.2〜3.0dl/gであることがより好ましい。対数粘度が1.8dl/g未満であると、ポリマー分子鎖の絡み合いによる鎖間の結合力が減少するため、靭性や強度などの機械特性の低下や、熱収縮率が大きくなることがある。対数粘度が3.5dl/gを超えると、溶媒への溶解性の低下や、芳香族ポリアミド分子が凝集し、多孔性フィルムを製膜することが困難になることがある。 In order to obtain a porous film of the aromatic polyamide of the present invention, the logarithmic viscosity (η inh ) of the aromatic polyamide polymer is preferably 1.8 to 3.5 dl / g, preferably 2.2 to 3.0 dl. / G is more preferable. When the logarithmic viscosity is less than 1.8 dl / g, the bonding force between the chains due to the entanglement of the polymer molecular chains is decreased, so that the mechanical properties such as toughness and strength are deteriorated and the heat shrinkage rate may be increased. When the logarithmic viscosity exceeds 3.5 dl / g, it may be difficult to form a porous film due to a decrease in solubility in a solvent or aggregation of aromatic polyamide molecules.
次に、本発明の導電層積層多孔性フィルムに用いる多孔性フィルムの製造に好適な製膜原液(以下、単に製膜原液ということがある。)について、芳香族ポリアミドを例として説明する。 Next, a film-forming stock solution suitable for the production of a porous film used for the conductive layer laminated porous film of the present invention (hereinafter sometimes simply referred to as a film-forming stock solution) will be described using aromatic polyamide as an example.
製膜原液には重合後のポリマー溶液をそのまま使用してもよく、あるいはポリマーを一度単離してから上述の非プロトン性有機極性溶媒や硫酸などの無機溶剤に再溶解して使用してもよい。芳香族ポリアミドを単離する方法としては、特に限定しないが、重合後の芳香族ポリアミド溶液を多量の水中に投入することで溶媒および中和塩を水中に抽出し、析出した芳香族ポリアミドのみを分離した後、乾燥させる方法などが挙げられる。また、再溶解時に溶解助剤として金属塩などを添加してもよい。金属塩としては、非プロトン性有機極性溶媒に溶解するアルカリ金属またはアルカリ土類金属のハロゲン化物が好ましく、例えば、塩化リチウム、臭化リチウム、塩化ナトリウム、臭化ナトリウム、塩化カリウム、臭化カリウムなどが挙げられる。 The polymer solution after polymerization may be used as it is for the film-forming stock solution, or it may be used after being isolated and then redissolved in an inorganic solvent such as the above-mentioned aprotic organic polar solvent or sulfuric acid. . The method for isolating the aromatic polyamide is not particularly limited, but the solvent and neutralized salt are extracted into water by introducing the polymerized aromatic polyamide solution into a large amount of water, and only the precipitated aromatic polyamide is removed. The method of drying after isolate | separating is mentioned. Further, a metal salt or the like may be added as a dissolution aid during re-dissolution. The metal salt is preferably an alkali metal or alkaline earth metal halide dissolved in an aprotic organic polar solvent, such as lithium chloride, lithium bromide, sodium chloride, sodium bromide, potassium chloride, potassium bromide, etc. Is mentioned.
製膜原液100質量%中の芳香族ポリアミドの含有量は、2〜25質量%が好ましく、より好ましくは5〜20質量%である。製膜原液における芳香族ポリアミドの含有量が2質量%未満であると、靭性や強度などの機械特性の低下や、熱収縮率が大きくなることがある。製膜原液における芳香族ポリアミドの含有量が25質量%を超えると、多孔性フィルムの製造の際に芳香族ポリアミドポリマー同士の凝集が起こりやすくなり、空孔率やガーレ透気度が本発明の範囲内とならないことがある。 The content of the aromatic polyamide in 100% by mass of the film-forming stock solution is preferably 2 to 25% by mass, more preferably 5 to 20% by mass. When the content of the aromatic polyamide in the film-forming stock solution is less than 2% by mass, the mechanical properties such as toughness and strength may be deteriorated and the heat shrinkage rate may be increased. When the content of the aromatic polyamide in the film-forming stock solution exceeds 25% by mass, the aromatic polyamide polymers tend to agglomerate during the production of the porous film, and the porosity and the Gurley air permeability are in accordance with the present invention. May not be within range.
製膜原液には孔形成能を向上させる目的で、親水性ポリマーを混合することが好ましい。混合する親水性ポリマーは製膜原液100質量%に対して1〜10質量%であることが好ましく、1〜6質量%であることがより好ましい。製膜原液における親水性ポリマーの含有量が1質量%未満の場合、多孔性フィルムを形成する過程において、芳香族ポリアミド分子が凝集し、多孔性フィルムを製膜することが困難になることがある。含有量が10質量%を超える場合、得られる多孔性フィルムにおいて、孔構造の粗大化や強度の低下が起きることがある。また、最終的に多孔性フィルム中の親水性ポリマーの残存量が多くなり、耐熱性や剛性の低下、親水性ポリマーの電解液中への溶出などが起きることがある。 It is preferable to mix a hydrophilic polymer with the film-forming stock solution for the purpose of improving pore forming ability. The hydrophilic polymer to be mixed is preferably 1 to 10% by mass, more preferably 1 to 6% by mass with respect to 100% by mass of the film-forming stock solution. When the content of the hydrophilic polymer in the film-forming stock solution is less than 1% by mass, aromatic polyamide molecules may aggregate in the process of forming the porous film, making it difficult to form the porous film. . When the content exceeds 10% by mass, the resulting porous film may have a coarse pore structure or a decrease in strength. Moreover, the residual amount of the hydrophilic polymer in the porous film eventually increases, and heat resistance and rigidity may be reduced, and the elution of the hydrophilic polymer into the electrolytic solution may occur.
親水性ポリマーとしては、非プロトン性有機極性溶媒に溶解するポリマーのうち、極性の置換基、特に、水酸基、アシル基およびアミノ基からなる群から選ばれる少なくとも1種の置換基を含有するポリマーであることが好ましい。このようなポリマーとして、例えば、ポリビニルピロリドン(以下、PVPと記すことがある。)、ポリエチレングリコール、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリエチレンイミン等が挙げられる。芳香族ポリアミドとの相溶性が良いPVPを用いることが最も好ましい。PVPの重量平均分子量は、50万〜300万であることが好ましい。重量平均分子量が50万未満であると、低分子量のPVPが多孔性フィルムに残った場合、多孔性フィルムの耐熱性が低下したり、電池用セパレータとして使用した際にPVPが電解液中に溶出したりする恐れがある。重量平均分子量が300万を超えると、製膜原液の溶液粘度が高くなり過ぎることで多孔性フィルムを製膜することが困難になることがある。親水性ポリマーは重合後の芳香族ポリアミド溶液あるいは再溶解した芳香族ポリアミド溶液中に投入しても、単離した芳香族ポリアミドとともに非プロトン性有機極性溶媒中に投入して混練してもよい。 The hydrophilic polymer is a polymer containing at least one substituent selected from the group consisting of a polar substituent, particularly a hydroxyl group, an acyl group, and an amino group, among polymers that are soluble in an aprotic organic polar solvent. Preferably there is. Examples of such a polymer include polyvinyl pyrrolidone (hereinafter sometimes referred to as PVP), polyethylene glycol, polyvinyl alcohol, polyacrylamide, polyacrylic acid, polyethyleneimine, and the like. It is most preferable to use PVP having good compatibility with the aromatic polyamide. The weight average molecular weight of PVP is preferably 500,000 to 3,000,000. When the weight average molecular weight is less than 500,000, when low molecular weight PVP remains in the porous film, the heat resistance of the porous film is reduced or the PVP is dissolved in the electrolyte when used as a battery separator. There is a risk of doing. When the weight average molecular weight exceeds 3 million, it may be difficult to form a porous film because the solution viscosity of the film forming stock solution becomes too high. The hydrophilic polymer may be put into the aromatic polyamide solution after polymerization or the re-dissolved aromatic polyamide solution, or may be put into an aprotic organic polar solvent together with the isolated aromatic polyamide and kneaded.
製膜原液には、得られる多孔性フィルムの表面に突起を形成して静摩擦係数を低減し加工性を向上させる目的で、無機粒子または有機粒子を添加してもよい。 In order to improve the processability by forming protrusions on the surface of the obtained porous film to improve the workability, inorganic or organic particles may be added to the film forming stock solution.
製膜原液の溶液粘度は、B型粘度計を用いて30℃、10rpmにおいて測定される値が、100〜800Pa・sであることが好ましい。より好ましくは200〜600Pa・sである。溶液粘度が100Pa・s未満であると、靭性や強度などの機械特性がの低下や、熱収縮率が大きくなることがある。溶液粘度が800Pa・sを超えると、多孔性フィルムを製膜することが困難になることがある。 As for the solution viscosity of the film-forming stock solution, the value measured at 30 ° C. and 10 rpm using a B-type viscometer is preferably 100 to 800 Pa · s. More preferably, it is 200-600 Pa.s. When the solution viscosity is less than 100 Pa · s, mechanical properties such as toughness and strength may be lowered, and the thermal shrinkage rate may be increased. When the solution viscosity exceeds 800 Pa · s, it may be difficult to form a porous film.
上記のようにして調製された製膜原液を用いて、いわゆる溶液製膜法により、多孔性フィルムの製造が行われる。溶液製膜による多孔性フィルムの製造の方法として、代表的には湿式法、析出法などが挙げられるが、凝固浴を用いる湿式法では、形成される孔の粗大化や厚み方向の孔形状の不均一化が起きやすかったり、孔間に隔壁が生じやすい場合がある。そのため、本発明に用いる多孔性フィルムを得るには、孔構造を微細かつ均一に制御しやすい析出法で製膜することが好ましい。 A porous film is produced by a so-called solution film-forming method using the film-forming stock solution prepared as described above. Typical examples of the method for producing a porous film by solution casting include a wet method and a precipitation method. However, in a wet method using a coagulation bath, the pores formed in a coarse shape or in the thickness direction are formed. There are cases where non-uniformity is likely to occur and partition walls are likely to occur between the holes. Therefore, in order to obtain a porous film used in the present invention, it is preferable to form a film by a deposition method in which the pore structure is easily controlled finely and uniformly.
析出法による多孔性フィルムの製造を行う場合、まず、製膜原液を口金やダイコーターを用いて、支持体上にキャスト(流延)し、製膜原液のキャスト膜を得た後、ポリマーを析出させて多孔性フィルムを得る。支持体の素材は、特に限定しないが、ステンレス、ガラス、ポリエチレンテレフタレート(PET)などの樹脂などが挙げられる。キャスト膜からポリマーを析出させる方法として、調温調湿雰囲気下でキャスト膜を吸湿させてポリマーを析出させる方法、キャスト膜を冷却することによりポリマーの溶解性を低下させて相分離または析出させる方法、キャスト膜に霧状の水を吹き付けてポリマーを析出させる方法などが挙げられる。冷却する方法ではポリマーの析出までに時間を要し、孔形状の不均一化が起きやすかったり、生産性が低下することがある。一方、霧状の水を吹き付ける方法では、表面に緻密な層が形成されることがある。これらのことから、調温調湿雰囲気下でキャスト膜に吸湿させる方法が、水の供給速度および量を任意に制御可能で、均質な多孔質構造を短時間で形成させることができることから好ましい。 When producing a porous film by the precipitation method, first, a film-forming stock solution is cast (cast) on a support using a die or a die coater to obtain a cast film of the film-forming stock solution. Precipitate to obtain a porous film. The material for the support is not particularly limited, and examples thereof include resins such as stainless steel, glass, and polyethylene terephthalate (PET). As a method for precipitating the polymer from the cast membrane, a method for precipitating the polymer by absorbing the cast membrane in a temperature-controlled humidity atmosphere, a method for reducing the solubility of the polymer by cooling the cast membrane and causing phase separation or precipitation. And a method of depositing a polymer by spraying mist water on a cast film. In the cooling method, it takes time to deposit the polymer, and the pore shape is likely to be nonuniform, and the productivity may be lowered. On the other hand, in the method of spraying mist-like water, a dense layer may be formed on the surface. For these reasons, the method of absorbing moisture into the cast film under a temperature-controlled humidity atmosphere is preferable because the supply rate and amount of water can be arbitrarily controlled and a homogeneous porous structure can be formed in a short time.
本発明に用いる多孔性フィルムの製造工程において、調温調湿雰囲気の容積絶対湿度は10〜180g/m3とすることが好ましい。より好ましくは30〜100g/m3、さらに好ましくは40〜90g/m3である。また、この絶対湿度を満たす範囲内で、雰囲気の温度は20〜70℃、相対湿度は60〜95%RHとすることが好ましい。より好ましくは、雰囲気の温度は30〜60℃、相対湿度は70〜90%RHである。調温調湿雰囲気下での処理時間は0.5〜5分とすることが好ましく、0.5〜3分とすることがより好ましい。 In the production process of the porous film used in the present invention, the absolute volume humidity of the temperature-controlled humidity atmosphere is preferably 10 to 180 g / m 3 . More preferably, it is 30-100 g / m < 3 >, More preferably, it is 40-90 g / m < 3 >. Moreover, within the range which satisfy | fills this absolute humidity, it is preferable that the temperature of atmosphere is 20-70 degreeC and a relative humidity shall be 60-95% RH. More preferably, the temperature of the atmosphere is 30 to 60 ° C., and the relative humidity is 70 to 90% RH. The treatment time in the temperature-controlled humidity atmosphere is preferably 0.5 to 5 minutes, and more preferably 0.5 to 3 minutes.
次に、析出させた芳香族ポリアミドのシートを、支持体ごとあるいは支持体から剥離して湿式浴に導入し、溶媒、取り込まれなかった親水性ポリマー、および無機塩等の添加剤の除去を行う。浴組成は特に限定されないが、水、あるいは有機溶媒/水の混合系を用いることが、経済性および取扱いの容易さから好ましい。また、湿式浴中には無機塩が含まれていてもよい。湿式浴温度は、溶媒等を効率的に除去できることから、20℃以上であることが好ましい。浴温度の上限は特に定めることはないが、水の蒸発や沸騰による気泡の発生の影響を考えると、90℃までに抑えることが効率的である。導入時間は、1〜20分にすることが好ましい。さらに、湿式浴中でシートの長手方向(MD)および幅方向(TD)に延伸を施してもよい。 Next, the deposited aromatic polyamide sheet is peeled off from the support or from the support and introduced into a wet bath to remove additives such as the solvent, the hydrophilic polymer not taken in, and the inorganic salt. . The bath composition is not particularly limited, but it is preferable to use water or an organic solvent / water mixed system from the viewpoint of economy and ease of handling. Further, the wet bath may contain an inorganic salt. The wet bath temperature is preferably 20 ° C. or higher because the solvent and the like can be efficiently removed. Although the upper limit of the bath temperature is not particularly defined, it is efficient to suppress the temperature to 90 ° C. in consideration of the generation of bubbles due to water evaporation or boiling. The introduction time is preferably 1 to 20 minutes. Furthermore, you may extend | stretch in the longitudinal direction (MD) and width direction (TD) of a sheet | seat in a wet bath.
次に、脱溶媒を終えたシートに、テンターなどを用いて熱処理を施す。この時、含水状態のシートから水分を乾燥させる前に、シートの長手方向(MD)および幅方向(TD)への延伸を完了させた後、芳香族ポリアミドのガラス転移温度を上回る温度で熱処理を施すことが好ましい。 Next, the sheet after the solvent removal is subjected to heat treatment using a tenter or the like. At this time, before drying the moisture from the water-containing sheet, after the stretching in the longitudinal direction (MD) and the width direction (TD) of the sheet is completed, heat treatment is performed at a temperature exceeding the glass transition temperature of the aromatic polyamide. It is preferable to apply.
延伸を施すことで、多孔性フィルムの孔形状が面方向に偏平形になり、厚み方向の圧縮に対しての変形弾性率が向上する。さらに、多孔性フィルムの孔経路が面内方向に広がり、液吸い上げ性が向上するため、電池用セパレータとして用いた際に液枯れなどによる電池出力やサイクル特性の低下を抑制できる。 By extending | stretching, the hole shape of a porous film becomes a flat shape in a surface direction, and the deformation elastic modulus with respect to compression of the thickness direction improves. Furthermore, since the pore path of the porous film spreads in the in-plane direction and the liquid sucking property is improved, it is possible to suppress a decrease in battery output and cycle characteristics due to liquid drainage when used as a battery separator.
多孔性フィルムに導電層を積層する方法としてはコーティング法や物理蒸着法、化学蒸着法などを用いることができるが、これらに限定されるわけではない。 As a method for laminating the conductive layer on the porous film, a coating method, a physical vapor deposition method, a chemical vapor deposition method, or the like can be used, but it is not limited thereto.
コーティング法による塗工方法としては、ダイレクトグラビア方式、リバースグラビア方式、マイクログラビア方式、ロッドコート方式、バーコート方式、ダイコート方式または、スプレーコート方式等、特に規制はされないが、平滑な塗膜の形成と経済性から考えてバーコート方式が好ましい。 As a coating method by the coating method, a direct gravure method, a reverse gravure method, a micro gravure method, a rod coating method, a bar coating method, a die coating method, or a spray coating method is not particularly restricted, but a smooth coating film is formed. From the viewpoint of economy, the bar coat method is preferable.
コーティング法による導電層の形成方法を説明するが、これに限定されるわけではない。 Although the formation method of the conductive layer by the coating method is demonstrated, it is not necessarily limited to this.
固体炭素材料または導電性高分子材料を分散した塗剤を多孔性フィルム上に滴下し、バーコーターを用いて多孔性フィルム上に均一に塗布し、100℃に調整されたオーブン中に30分静置し、乾燥を行い導電層積層多孔性フィルムとする。 A coating material in which a solid carbon material or a conductive polymer material is dispersed is dropped onto the porous film, and uniformly coated on the porous film using a bar coater, and then left still in an oven adjusted to 100 ° C. for 30 minutes. And drying to obtain a conductive layer laminated porous film.
固体炭素材料または導電性高分子材料を分散した塗剤には、導電性を損なわない範囲で界面活性剤、結着剤、架橋剤、増粘剤等を添加してもよい。また、導電性高分子材料には導電性を向上させる、所謂ドーピングのための添加剤を加えてもよい。 To the coating material in which the solid carbon material or the conductive polymer material is dispersed, a surfactant, a binder, a crosslinking agent, a thickener and the like may be added as long as the conductivity is not impaired. In addition, an additive for so-called doping that improves conductivity may be added to the conductive polymer material.
本発明における多孔性フィルムへの化学蒸着法にはプラズマCVD法、光CVD法などがあるが、化学蒸着法は一般に製膜速度が遅く生産性が低い場合がある。物理蒸着法には真空蒸着法、スパッタリング法があるが、真空蒸着法は製膜速度が速く、生産性に優れるため好ましい。 The chemical vapor deposition method on the porous film in the present invention includes a plasma CVD method, a photo CVD method, and the like. In general, the chemical vapor deposition method has a slow film formation speed and low productivity. The physical vapor deposition method includes a vacuum vapor deposition method and a sputtering method. The vacuum vapor deposition method is preferable because the film forming speed is high and the productivity is excellent.
真空蒸着法について説明すると、真空蒸着法にはバッチ式と連続式があるが、生産性の観点から連続式が好ましい。連続式は、ロール状のフィルムを巻きだし、ドラムに密着させながら蒸着を行い、ロール状に巻き取る工程を減圧状態に保たれた機器の中で行う方法である。 The vacuum deposition method will be described. The vacuum deposition method includes a batch method and a continuous method, but a continuous method is preferable from the viewpoint of productivity. The continuous method is a method in which a roll-shaped film is unwound, vapor deposition is performed while being in close contact with the drum, and the process of winding the film into a roll is performed in an apparatus kept under reduced pressure.
この蒸発源としては抵抗加熱方式のボート形式や、輻射あるいは高周波加熱によるルツボ形式や、電子ビーム加熱による方式などが挙げられる。 Examples of the evaporation source include a resistance heating type boat type, a crucible type by radiation or high frequency heating, and a type by electron beam heating.
蒸着法により導電層を設ける場合、導電層の構成材料の純度が99%以上、望ましくは99.5%以上の粒状、ロッド状、タブレット状、ワイヤー状あるいはルツボの形状に加工したものが好ましい。 When the conductive layer is provided by the vapor deposition method, it is preferable that the conductive layer is processed into a granular, rod-shaped, tablet-shaped, wire-shaped, or crucible-shaped material having a purity of 99% or more, desirably 99.5% or more.
蒸着法による導電層の形成方法を説明するが、これに限定されるわけではない。 Although the formation method of the conductive layer by a vapor deposition method is demonstrated, it is not necessarily limited to this.
図1に示す装置構造の巻き取り式の真空蒸着装置を使用し、多孔性フィルムを高分子フィルム基材とし、その片面に、所望の金属を蒸着材料に用いて抵抗加熱方式により所望の金属を蒸気化して導電層を設ける。図1は本発明の導電層積層多孔性フィルムの製造に当たり導電層を形成する工程に用いるための巻き取り式真空蒸着装置の概略図である。まず、巻き取り式真空蒸着装置4の巻き取り室5の中で、巻き出しロール6にセットされた高分子フィルム基材1を搬送速度10m/minで巻き出し、ガイドロール8,9,10を介して、冷却ドラム11に通す。ボート7上には所望の金属のワイヤーが導入されていて、ボート7から金属を蒸発させ、冷却ドラム11上の位置において高分子フィルム基材1の表面に所望の導電層を形成する。その後、導電層を形成した高分子フィルム基材をガイドロール12、13、14を介して、巻き取りロール15に巻き取る。
A roll-up type vacuum deposition apparatus having the structure shown in FIG. 1 is used, and a porous film is used as a polymer film substrate, and a desired metal is deposited on one side by a resistance heating method using a desired metal as a deposition material. Evaporate to provide a conductive layer. FIG. 1 is a schematic view of a take-up vacuum deposition apparatus for use in the step of forming a conductive layer in the production of the conductive layer laminated porous film of the present invention. First, in the take-up
導電層の厚みは多孔性フィルムよりも小さいことが好ましい。かかる要件を満たすことでセパレータとしての厚みを薄くすることが可能となり、電池に用いた際にはセパレータ体積が大きくならず、正極・負極体積の増加が可能となり、電池容量を大きくすることができるようになる。 The thickness of the conductive layer is preferably smaller than that of the porous film. By satisfying these requirements, it is possible to reduce the thickness of the separator, and when used in a battery, the separator volume does not increase, and the positive electrode / negative electrode volume can be increased, and the battery capacity can be increased. It becomes like this.
多孔性フィルムの片面に導電層を設けた導電層積層多孔性フィルムを電池に組み込む場合は、導電性が低い材料からなる正極と対向するようにして組み込むことが好ましい。かかる要件を満たすことで正極側の電極反応不均一性を解消し、反応面積の増加及び電池抵抗の低下、さらに出力特性の向上、寿命特性の向上を発現することができる。 When a conductive layer laminated porous film having a conductive layer provided on one side of a porous film is incorporated into a battery, it is preferably incorporated so as to face a positive electrode made of a material having low conductivity. Satisfying these requirements can eliminate the non-uniformity of the electrode reaction on the positive electrode side, increase the reaction area, decrease the battery resistance, improve the output characteristics, and improve the life characteristics.
多孔性フィルムの両面に導電層を設けた導電層積層多孔性フィルムを電池に組み込む場合は、導電性が高い面を正極と対向するようにして組み込むことが好ましい。かかる組み込み方により、正極側の電極反応不均一性解消に効果的となり、電池抵抗の低下、出力特性の向上、寿命特性の向上にはより効果を発現することができる。 When incorporating a conductive layer laminated porous film having a conductive layer on both sides of a porous film into a battery, it is preferable to incorporate a highly conductive surface so as to face the positive electrode. This incorporation method is effective in eliminating non-uniformity of the electrode reaction on the positive electrode side, and can be more effective in reducing battery resistance, improving output characteristics, and improving life characteristics.
導電層を構成する導電性材料は次の(1)〜(3)の少なくとも1つの要件を満たす材料であることが好ましい。これらの材料は単一の材料であってもよいし、複数種の材料の混合物であっても構わない。 The conductive material constituting the conductive layer is preferably a material that satisfies at least one of the following requirements (1) to (3). These materials may be a single material or a mixture of plural kinds of materials.
(1)Li対比の電位が4.0V以上5.0V以下の溶解析出電位を有する導電性材料
(2)Li対比の電位が5.0V以下で酸化皮膜を形成する導電性材料
(3)固体炭素材料または導電性高分子材料
なお、ここでいう導電性材料とは導電率が1×100〜1×107Scm−1の範囲にある材料のことをいう。
(1) Conductive material having dissolution and precipitation potential of 4.0 V or more and 5.0 V or less compared to Li (2) Conductive material that forms an oxide film when the potential of Li or less is 5.0 V or less (3) Solid Carbon material or conductive polymer material The conductive material here refers to a material having a conductivity in the range of 1 × 10 0 to 1 × 10 7 Scm −1 .
導電層を構成する材料が上記(1)の要件を満たす場合、電池に用いた際の充電反応における正極の強烈な酸化雰囲気でも導電性材料が溶解することなく所望の機能を発現することができるようになる。溶解析出電位がLi対比の電位で4.0V未満の場合、充電時に正極側で導電性材料が溶解し、それが電解液を通じて負極側へ移動すると析出が起こり、内部短絡が起こることがある。Li対比5.0Vを超える溶解析出電位を有する導電性材料を用いても、現在の技術では電池を作動するために必須の電解液が酸化分解により電解液の枯渇が起こり、電池として作動することができないため、5.0Vを超える溶解析出電位を有する導電材料は過剰性能となる。 When the material constituting the conductive layer satisfies the above requirement (1), a desired function can be exhibited without dissolving the conductive material even in an intense oxidizing atmosphere of the positive electrode in the charging reaction when used in a battery. It becomes like this. When the dissolution precipitation potential is less than 4.0 V as compared to Li, the conductive material dissolves on the positive electrode side during charging, and when it moves to the negative electrode side through the electrolytic solution, precipitation may occur and an internal short circuit may occur. Even when a conductive material having a dissolution precipitation potential exceeding 5.0 V compared to Li is used, the current technology requires the electrolyte to be depleted due to oxidative decomposition and to operate as a battery in order to operate the battery. Therefore, a conductive material having a dissolution precipitation potential exceeding 5.0 V has excessive performance.
(1)の要件を満たす材料として、金、白金、イリジウムがあり、これら一群から選ばれる少なくとも1種の材料を用いることが好ましい。 There are gold, platinum, and iridium as materials that satisfy the requirement (1), and it is preferable to use at least one material selected from these groups.
導電層を構成する材料が(2)の要件を満たす場合、充電反応時に導電性材料に酸化皮膜が形成され、いわゆる不動態を形成し、充電時の強烈な酸化雰囲気でも導電性材料が溶解することなく、所望の機能を発現することができるようになる。5.0Vを超える電位で酸化皮膜を形成できる材料を組み込んでも、現在の技術では電池を作動するために必須の電解液が酸化分解により電解液の枯渇が起こり、5.0Vを超える溶解析出電位を有する導電材料は過剰性能となる。 When the material constituting the conductive layer satisfies the requirement (2), an oxide film is formed on the conductive material during the charging reaction, forming a so-called passive state, and the conductive material dissolves even in a strong oxidizing atmosphere during charging. The desired function can be expressed without any problems. Even if a material capable of forming an oxide film at a potential exceeding 5.0 V is incorporated, the electrolyte required for operating the battery in the current technology is depleted due to oxidative decomposition, resulting in a dissolution deposition potential exceeding 5.0 V. Conductive material having an excess performance.
(2)の要件を満たす材料として、アルミニウム、ニッケル、チタン、クロム、コバルトがあり、これら一群から選ばれる少なくとも1種の材料を用いることが好ましい。 Examples of the material that satisfies the requirement (2) include aluminum, nickel, titanium, chromium, and cobalt. It is preferable to use at least one material selected from these one group.
導電層を構成する材料が(3)の要件を満たす場合、充電時においても導電性材料の溶解・析出が起こらず、所望の機能を発現することができる。 When the material constituting the conductive layer satisfies the requirement (3), the conductive material does not dissolve or precipitate even during charging, and a desired function can be exhibited.
固体炭素材料としては、例えば、活性炭、天然黒鉛、人造黒鉛、グラファイト、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャネルブラック、サーマルブラック、ソフトカーボン、ハードカーボン、メソカーボンマイクロビーズ、メソポーラスカーボン、カーボンナノチューブ、フラーレン、グラフェン、炭素繊維などを用いることができる。これら一群から選ばれる少なくとも1種の材料を用いることが好ましい。 Examples of solid carbon materials include activated carbon, natural graphite, artificial graphite, graphite, acetylene black, ketjen black, furnace black, channel black, thermal black, soft carbon, hard carbon, mesocarbon microbeads, mesoporous carbon, and carbon nanotubes. , Fullerene, graphene, carbon fiber, and the like can be used. It is preferable to use at least one material selected from these groups.
また導電性高分子材料としては、例えば、ポリアセチレン、ポリアニリン、ポリチオフェン、ポリピロール、ポリp−フェニレン、ポリp−フェニレンビニレン、ポリジアセチレン、ポリヘプタノジイン、ポリ−2,5−ポリビンジイル、ポリキノリン、ポリパラフェニレンスルフィド、ポリ−1,1’−フェロセニレン、ポリペリナフチレン、ポリピロール、ポリフラン、ポリエチレンジオキシチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3,4−エチレンジオキシチオフェンがある。これら一群から選ばれる少なくとも1種の材料を用いることが好ましい。 Examples of conductive polymer materials include polyacetylene, polyaniline, polythiophene, polypyrrole, poly p-phenylene, poly p-phenylene vinylene, polydiacetylene, polyheptanodiyne, poly-2,5-polyvindiyl, polyquinoline, polyparanoline. There are phenylene sulfide, poly-1,1′-ferrocenylene, polyperinaphthylene, polypyrrole, polyfuran, polyethylenedioxythiophene, poly-3-hexylthiophene, and poly-3,4-ethylenedioxythiophene. It is preferable to use at least one material selected from these groups.
本発明の導電層積層多孔性フィルムは、過充電検出機能(過充電検出性を有すること)を備えることが好ましい。一組の正・負極、セパレータ及び電解液からなる単電池では、過充電は電池の顕著な劣化の原因となり、好ましくない現象である。また単電池を組み合わせて用いる組電池では、過充電による単電池の顕著な劣化に加え、過充電が起こった単電池と過充電が起こっていない単電池の混在により、単電池間の性能バランスが崩れ、組電池として大きな劣化を引き起こすことがあり、単電池で使用する場合よりも過充電は大きな問題となる。しかしながら、組電池では過充電が起こったか否かを判断することが困難であったが、本発明による過充電検出機能を備える導電層積層多孔性フィルムを単電池に用いることで、過充電が起こった単電池は短絡し、電圧が大きく低下するため、組電池においても電圧の変動が確認され、過充電の検出が容易にできるようになる。 The conductive layer laminated porous film of the present invention preferably has an overcharge detection function (having overcharge detection). In a single cell composed of a set of positive / negative electrodes, a separator, and an electrolyte, overcharging causes remarkable deterioration of the battery and is an undesirable phenomenon. In addition, in a battery pack using a combination of cells, in addition to the remarkable deterioration of the cells due to overcharging, there is a balance between the performance of the cells due to the mixture of overcharged cells and non-overcharged cells. The battery pack may collapse and cause a large deterioration as an assembled battery, and overcharging becomes a larger problem than when using a single battery. However, it was difficult to determine whether or not overcharge occurred in the assembled battery, but overcharge occurred by using the conductive layer laminated porous film having the overcharge detection function according to the present invention for the unit cell. In addition, since the single cell is short-circuited and the voltage is greatly reduced, the voltage fluctuation is confirmed even in the assembled battery, and the overcharge can be easily detected.
ここでいう過充電とは、電池を所定の電圧を超えて充電することをいう。リチウムイオン電池はで通常4.2〜4.3V程度が上限電圧とされる。本発明においては4.3Vを超えた充電のことを過充電という。 The term “overcharge” as used herein refers to charging a battery exceeding a predetermined voltage. Lithium ion batteries usually have an upper limit voltage of about 4.2 to 4.3V. In the present invention, charging exceeding 4.3 V is referred to as overcharging.
導電層積層多孔性フィルムに過充電検出機能を付与させる方法としては、過充電電圧で溶解・イオン化する材料を正極に含有せしめる方法がある。過充電電圧で溶解・イオン化する材料を正極に含有せしめることで、過充電時に正極側で溶解・イオン化した材料が負極に到達・析出し、正・負極間を繋ぐために短絡が生じ、電圧を大きく低下させることができるようになり過充電検出機能が発現する。過充電検出機能を発現する材料としては、金、イリジウム、白金等があり、これら一群から選ばれる少なくとも1種の材料を用いることが好ましい。 As a method for imparting an overcharge detection function to the conductive layer laminated porous film, there is a method in which a material that dissolves and ionizes at an overcharge voltage is contained in the positive electrode. By including a material that dissolves and ionizes at the overcharge voltage in the positive electrode, the material dissolved and ionized on the positive electrode side during overcharge reaches and deposits on the negative electrode, causing a short circuit to connect between the positive and negative electrodes, thereby reducing the voltage. It becomes possible to greatly reduce the overcharge detection function. Examples of the material that exhibits the overcharge detection function include gold, iridium, platinum, and the like, and it is preferable to use at least one material selected from these groups.
これら材料は多孔性フィルムの表面に用いることが好ましく、リチウムイオン電池に用いる場合は正極と対向する面に用いることで過充電検出機能を発現することができる。導電層積層多孔性フィルムにおいては導電層にこれら材料を混在させてもよいし、導電層と多孔性フィルムの間にこれら材料からなる層を設けてもよい。 These materials are preferably used on the surface of the porous film, and when used in a lithium ion battery, an overcharge detection function can be exhibited by using it on the surface facing the positive electrode. In the conductive layer laminated porous film, these materials may be mixed in the conductive layer, or a layer made of these materials may be provided between the conductive layer and the porous film.
導電層を構成する材料を同定するためには、例えばエネルギー分散型X線分光法や、ICP発光分光分析法、ラマン分光法、NMR法などがあるが、これらに限定されるわけではない。 In order to identify the material constituting the conductive layer, there are, for example, energy dispersive X-ray spectroscopy, ICP emission spectroscopy, Raman spectroscopy, NMR, and the like, but is not limited thereto.
導電層は、上記した導電性材料(成分)を、合計量で50質量%以上含むことが好ましい。より好ましくは65質量%以上、さらに好ましくは80質量%以上含むことである。かかる要件をみたすことでより好ましい導電性を発現することができるようになる。 The conductive layer preferably contains the above-described conductive material (component) in a total amount of 50% by mass or more. More preferably, it is 65 mass% or more, More preferably, it is 80 mass% or more. By satisfying such requirements, more preferable conductivity can be expressed.
本発明の導電層積層多孔性フィルムの厚みは、3〜50μmであることが好ましく、より好ましくは10〜25μmである。3μm未満であると強度が低く、加工時や電池を作製する際にフィルムの破断が起きたり、耐電圧性が低く、セパレータとして使用した際に電極間が短絡する可能性がある。50μmを超えるとセパレータとして使用した際に内部抵抗の上昇により出力が低下したり、電池内に組み込める活物質層の厚みが薄くなり体積あたりの容量が小さくなることがある。導電層積層多孔性フィルムの厚みは、ポリマー構造、重合度、製膜原液濃度、製膜原液粘度、製膜原液中の添加物、流延厚み、多孔化条件、湿式浴温度、熱処理時の温度および延伸条件や、導電層の成型条件など種々の条件により制御することができる。 The thickness of the conductive layer laminated porous film of the present invention is preferably 3 to 50 μm, more preferably 10 to 25 μm. When the thickness is less than 3 μm, the strength is low, the film may be broken during processing or when a battery is produced, or the voltage resistance is low, and the electrodes may be short-circuited when used as a separator. When it exceeds 50 μm, when used as a separator, the output may decrease due to an increase in internal resistance, or the thickness of the active material layer that can be incorporated in the battery may become thin, and the capacity per volume may decrease. The thickness of the conductive layer laminated porous film is the polymer structure, the degree of polymerization, the concentration of the stock solution, the viscosity of the stock solution, the additive in the stock solution, the casting thickness, the porosity, the wet bath temperature, the temperature during heat treatment. Further, it can be controlled by various conditions such as stretching conditions and molding conditions of the conductive layer.
本発明の導電層積層多孔性フィルムは厚み方向の電気抵抗が1×106Ω以上であることが好ましく、1×106Ω以上1×1014Ω以下であることがより好ましい。かかる要件を満たすことでフィルム表裏の電気絶縁性を充分に保持することができ、本発明の導電層積層多孔性フィルムを電池に組み込んだ際に電極間の短絡を減じることができる。電気抵抗が1×106Ω未満であると電気絶縁性が不十分となり、電極間の短絡頻度が増加する傾向にある。 The conductive layer laminated porous film of the present invention preferably has an electric resistance in the thickness direction of 1 × 10 6 Ω or more, more preferably 1 × 10 6 Ω or more and 1 × 10 14 Ω or less. By satisfying such requirements, the electrical insulation properties of the front and back of the film can be sufficiently maintained, and short-circuiting between electrodes can be reduced when the conductive layer laminated porous film of the present invention is incorporated into a battery. If the electric resistance is less than 1 × 10 6 Ω, the electric insulation is insufficient and the frequency of short-circuiting between the electrodes tends to increase.
本発明の導電層積層多孔性フィルムは、空孔率が20〜85%であることが好ましい。より好ましくは25〜70%である。空孔率が20%未満であると、電池用セパレータとして用いたときに、電解液の保液量が少なく、急速充放電を行った際に、リチウムイオンが溶媒和するのに十分な溶媒分子を補うことができず、分極を起こすことがある。また、空孔量が小さいためにイオン伝導経路が充分でなく、十分な出力が得られないことがある。さらに、充放電を繰り返した際に液枯れによる性能低下が起きることがある。空孔率が85%を超えると、電池セパレータとして使用した際に電極間の短絡が起こりやすくなることがある。さらにはフィルム強度が大きく低下し、ハンドリング性が低下して生産性に劣るようになる。空孔率を上記範囲内とするため、製膜原液の処方、多孔性フィルムの製造条件を上述の範囲内とすることが好ましい。 The conductive layer laminated porous film of the present invention preferably has a porosity of 20 to 85%. More preferably, it is 25 to 70%. When the porosity is less than 20%, when used as a battery separator, the amount of electrolyte solution is small, and sufficient solvent molecules to solvate lithium ions when rapidly charged and discharged. Cannot be compensated for and may cause polarization. Further, since the amount of holes is small, the ion conduction path is not sufficient, and a sufficient output may not be obtained. Furthermore, when charging / discharging is repeated, performance degradation may occur due to liquid drainage. When the porosity exceeds 85%, a short circuit between the electrodes may easily occur when used as a battery separator. Furthermore, the film strength is greatly reduced, the handling property is lowered and the productivity is inferior. In order to make the porosity within the above range, it is preferable that the formulation of the film forming stock solution and the production conditions of the porous film are within the above range.
また、本発明の導電層積層多孔性フィルムは、表面比抵抗が1×10−2〜1×104Ω/□であることが好ましい。より好ましくは1×10−2〜1×102Ω/□、さらに好ましくは1×10−2〜1×100Ω/□である。ここでいう表面比抵抗とは、導電層を片面側にのみ設けた場合は導電層側に測定端子を押し当て測定した値のことをいう。導電層を両面に設けた場合は、両面を測定したもののうち、より低い表面比抵抗の数値のことをいう。かかる要件を満たすことで導電層による面内の反応不均一性を解消する効果が顕著に発現することが可能となり、電池抵抗の低下、及び出力特性の向上が見込める。表面比抵抗をかかる範囲とするためには、導電層の構成材料の処方、及び導電層の厚みにより制御が可能となる。 The conductive layer laminated porous film of the present invention preferably has a surface specific resistance of 1 × 10 −2 to 1 × 10 4 Ω / □. More preferably, it is 1 × 10 −2 to 1 × 10 2 Ω / □, and further preferably 1 × 10 −2 to 1 × 10 0 Ω / □. The surface specific resistance here means a value obtained by pressing a measurement terminal against the conductive layer side when the conductive layer is provided only on one side. When a conductive layer is provided on both sides, it refers to a lower surface resistivity value among those measured on both sides. By satisfying such requirements, the effect of eliminating in-plane reaction non-uniformity due to the conductive layer can be remarkably exhibited, and a decrease in battery resistance and an improvement in output characteristics can be expected. In order to make the surface specific resistance within such a range, control is possible by the formulation of the constituent material of the conductive layer and the thickness of the conductive layer.
また、本発明の導電層積層多孔性フィルムは芳香族ポリアミドを構成成分とすることが好ましい。芳香族ポリアミドとしては、例えば次の化学式(1)及び/または(2)で表される繰り返し単位を有するものを用いることができる。 The conductive layer laminated porous film of the present invention preferably contains aromatic polyamide as a constituent component. As aromatic polyamide, what has a repeating unit represented, for example by following Chemical formula (1) and / or (2) can be used.
ここでAr1、Ar2、Ar3としては、例えば式(3)〜(7)が挙げられ、X、Yとしては、−O−、−CH2−、−CO−、−CO2−、−S−、−SO2−、−C(CH3)−、等から選ばれる。 Here, examples of Ar 1 , Ar 2 , Ar 3 include formulas (3) to (7), and X and Y include —O—, —CH 2 —, —CO—, —CO 2 —, It is selected from —S—, —SO 2 —, —C (CH 3 ) —, and the like.
さらに、これらの芳香環上の水素原子の一部が、フッ素や臭素、塩素等のハロゲン基(特に塩素)、ニトロ基、メチルやエチル、プロピル等のアルキル基(特にメチル基)、メトキシやエトキシ、プロポキシ等のアルコキシ基等の置換基で置換されているものが、吸湿率を低下させ湿度変化による寸法変化が小さくなるため好ましい。また、重合体を構成するアミド結合中の水素が他の置換基によって置換されていてもよい。本発明に用いられる芳香族ポリアミドは、上記の芳香環がパラ配向性を有しているものが、全芳香環の80モル%以上、より好ましくは90モル%以上を占めていることが好ましい。ここでいうパラ配向性とは、例えば芳香環上主鎖を構成する2価の結合手が互いに同軸または平行にあるい状態をいう。このパラ配向性が80モル%未満の場合、フィルムの剛性および耐熱性が不十分となる場合がある。さらに芳香族ポリアミドが式(8)で表される繰り返し単位を60モル%以上含有する場合、延伸性及び多孔質特性が特に優れることから好ましい。 Furthermore, some of the hydrogen atoms on these aromatic rings may be halogen groups such as fluorine, bromine and chlorine (especially chlorine), nitro groups, alkyl groups such as methyl, ethyl and propyl (especially methyl groups), methoxy and ethoxy. Those substituted with a substituent such as an alkoxy group such as propoxy are preferred because the moisture absorption is lowered and the dimensional change due to humidity change is reduced. In addition, hydrogen in the amide bond constituting the polymer may be substituted with another substituent. In the aromatic polyamide used in the present invention, the above aromatic ring having para-orientation preferably accounts for 80 mol% or more, more preferably 90 mol% or more of the total aromatic ring. Para-orientation as used herein refers to a state where the divalent bonds constituting the main chain on the aromatic ring are desired to be coaxial or parallel to each other. When this para orientation is less than 80 mol%, the rigidity and heat resistance of the film may be insufficient. Further, when the aromatic polyamide contains 60 mol% or more of the repeating unit represented by the formula (8), it is preferable because the stretchability and the porous properties are particularly excellent.
本発明の導電層積層多孔性フィルムは、優れた耐熱性を有し、透気性に優れており、リチウムイオン二次電池、ナトリウムイオン二次電池などの電池用セパレータとして好適に使用できる。本発明の導電層積層多孔性フィルムをリチウムイオン電池用セパレータとして用いた二次電池は、導電層が正極側の反応不均一性を解消する役割を担い、反応面積を増加させるために、電池抵抗の低下及び出力特性が改善し、さらには寿命特性を改善することができる。従って、本発明の導電層積層多孔性フィルムをセパレータとして用いた二次電池は、小型の電子機器を始め、電気自動車(EV)やハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)などの交通手段、産業用クレーンなどの大型の産業機器の動力源として好適に用いることができる。また、太陽電池、風力発電装置などにおける電力の平準化やスマートグリッドのための蓄電装置としても好適に用いることができる。 The conductive layer laminated porous film of the present invention has excellent heat resistance and excellent air permeability, and can be suitably used as a battery separator such as a lithium ion secondary battery and a sodium ion secondary battery. The secondary battery using the conductive layer laminated porous film of the present invention as a lithium ion battery separator plays a role of eliminating the reaction non-uniformity on the positive electrode side and increasing the reaction area. And the output characteristics can be improved, and the life characteristics can be improved. Therefore, the secondary battery using the conductive layer laminated porous film of the present invention as a separator is used for traffic such as small electronic devices, electric vehicles (EV), hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV) and the like. It can be suitably used as a power source for large-scale industrial equipment such as means and industrial cranes. Further, it can be suitably used as a power storage device for leveling power or a smart grid in a solar cell, a wind power generator, or the like.
[物性の測定方法ならびに効果の評価方法]
(1)ガーレ透気度
B型ガーレーデンソメーター(安田精機製作所製)を使用し、JIS−P8117(1998)に規定された方法に従って測定を行った。フィルム試料を直径28.6mm、面積642mm2の円孔に締め付け、内筒により(内筒質量567g)、筒内の空気を試験円孔部から筒外へ通過させ、空気100mlが通過する時間を測定することでガーレ透気度とした。幅方向に、100mm間隔で3箇所測定し、平均値を求めた。
[Methods for measuring physical properties and methods for evaluating effects]
(1) Gurley air permeability A B-type Gurley densometer (manufactured by Yasuda Seiki Seisakusho) was used, and measurement was performed according to the method defined in JIS-P8117 (1998). The film sample is clamped in a circular hole having a diameter of 28.6 mm and an area of 642 mm 2. By the inner cylinder (inner cylinder mass 567 g), the air in the cylinder is passed from the test circle hole to the outside of the cylinder, and the time required for 100 ml of air to pass is measured. The Gurley air permeability was determined by measuring. Three points were measured at intervals of 100 mm in the width direction, and the average value was obtained.
(2)熱収縮率
セイコーインスツルメンツ社製の熱・応用・歪み測定装置TMA/SS6000を用いて以下の条件で測定し、200℃での寸法変化率を求めた。
(2) Thermal contraction rate Measured under the following conditions using a thermal / application / strain measuring device TMA / SS6000 manufactured by Seiko Instruments Inc., and the dimensional change rate at 200 ° C. was determined.
試料サイズ:幅4mm、長さ15mm
昇温範囲:25〜400℃
昇温速度:10℃/分
測定荷重:1.11N/mm2
測定環境:温度23℃、相対湿度65%、大気中
200℃での寸法変化率は、温度25℃、相対湿度65%における初期のフィルム長さをL1(=15mm)、温度200℃におけるフィルム長さをL2とし、以下の式で求めた。
Sample size: width 4mm, length 15mm
Temperature rise range: 25-400 ° C
Temperature increase rate: 10 ° C./min Measurement load: 1.11 N / mm 2
Measurement environment: temperature 23 ° C., relative humidity 65%, in the atmosphere 200 ° C. The dimensional change rate is L1 (= 15 mm) at the initial film length at temperature 25 ° C. and relative humidity 65%, and the film length at temperature 200 ° C. The thickness was determined as L2 and the following formula was used.
200℃での熱収縮率(%)=((L1−L2)/L1)×100
(3)厚み方向の電気抵抗
(株)カスタム社製のデジタルテスターCDM−17Dを用い、100mm角の正方形に切り取った導電層積層多孔性フィルムの表裏面に測定端子を接触させて測定を行った。かかる測定を5回行い、その平均値を本発明における厚み方向の電気抵抗とした。
Thermal shrinkage at 200 ° C. (%) = ((L1−L2) / L1) × 100
(3) Electrical resistance in the thickness direction Using a digital tester CDM-17D manufactured by Custom Co., Ltd., measurement was performed by bringing the measurement terminals into contact with the front and back surfaces of the conductive layer laminated porous film cut into a 100 mm square. . This measurement was performed 5 times, and the average value was taken as the electric resistance in the thickness direction in the present invention.
(4)空孔率
100mm角の試料の厚みと質量を測定し、フィルム試料の見かけの密度(かさ密度)d1を求めた。これとポリマーの真密度d0より、下式を用いて空孔率を算出した。
(4) the thickness and mass of the sample of porosity 100mm square was measured to determine the apparent density of the film sample (bulk density) d 1. From this and the true density d 0 of the polymer, the porosity was calculated using the following equation.
空孔率(%)=(1−d1/d0)×100
(5)多孔性フィルム厚み(t1)及び導電層厚み測定
フィルムの断面を切り出し、白金−パラジウムを蒸着した後、日立製作所(株)製走査型電子顕微鏡S−2100Aを用いて断面観察を行い、多孔性フィルム厚みt1と導電層厚みt2を10箇所測定し、その平均値t2を求めた。また、(t1-t2)/t2を求めた。
Porosity (%) = (1−d 1 / d 0 ) × 100
(5) Measurement of porous film thickness (t 1 ) and conductive layer thickness After cutting out the cross section of the film and depositing platinum-palladium, the cross section was observed using a scanning electron microscope S-2100A manufactured by Hitachi, Ltd. The porous film thickness t 1 and the conductive layer thickness t 2 were measured at 10 locations, and the average value t 2 was determined. In addition, (t 1 -t 2 ) / t 2 was determined.
(6)表面比抵抗
表面比抵抗の範囲によって、測定可能な装置が異なるため、まずi)の方法でフィルムの測定を行い、表面抵抗率が低すぎて測定不可能なサンプルをii)の方法で測定する。5回の測定結果の平均値を本発明における表面比抵抗とする。
(6) Surface specific resistance Since the measurable apparatus varies depending on the range of surface specific resistance, first, the film is measured by the method i), and the sample having a surface resistivity that is too low to be measured is the method ii). Measure with The average value of the five measurement results is defined as the surface specific resistance in the present invention.
i)高抵抗率測定 JIS−C2151(1990年)に準拠し、下記測定装置を用いて測定する。 i) High resistivity measurement Based on JIS-C2151 (1990), it measures using the following measuring apparatus.
・測定装置:デジタル超高抵抗/微小電流計R8340 アドバンテスト(株)製
・印加電圧:100V
・印加時間:10秒間
・測定単位:Ω
・測定環境:温度23℃湿度65%RH
・測定回数:3回測定する。
・ Measurement device: Digital ultra-high resistance / microammeter R8340 manufactured by Advantest Corporation ・ Applied voltage: 100V
・ Application time: 10 seconds ・ Measurement unit: Ω
・ Measurement environment: Temperature 23 ℃ Humidity 65% RH
-Number of measurements: Measure three times.
ii)低抵抗率測定
JIS−K7194(1994年)に準拠し、下記測定装置を用いて測定する。
ii) Low resistivity measurement Measured using the following measuring device in accordance with JIS-K7194 (1994).
・測定装置:ロレスターEP MCP−T360 三菱化学製
・測定環境:温度23℃湿度65%RH
・測定回数:3回測定する。
・ Measuring device: Lorester EP MCP-T360, manufactured by Mitsubishi Chemical ・ Measurement environment: temperature 23 ° C., humidity 65% RH
-Number of measurements: Measure three times.
(7)電池の作製
宝泉(株)製の厚みが40μmのリチウムコバルト酸化物(LiCoO2)を活物質として用いた正極を直径14.85mmの円形に打ち抜いた。また、宝泉(株)製の厚みが50μmの黒鉛を活物質として用いた負極を直径15.80mmの円形に打ち抜いた。次に、導電層積層多孔性フィルムまたは多孔性フィルムを直径16.5mmの円形に打ち抜いた。正極活物質と負極活物質面が対向するように、下から負極、導電層積層多孔性フィルムまたは多孔性フィルム、正極の順に重ね、エチレンカーボネート:ジエチルカーボネート=3:7(体積比)の混合溶媒に、溶質としてLiPF6を濃度1モル/リットルとなるように溶解させた電解液を注入して密閉し、2032型コインセルを作製した。導電層が片面にのみ形成されている場合は導電層と正極が対向するように重ねた。導電層が両面に形成されている場合は、導電性の高い(表面比抵抗の低い)面を正極と対向するように重ねた。
(7) Production of Battery A positive electrode using lithium cobalt oxide (LiCoO 2 ) having a thickness of 40 μm manufactured by Hosen Co., Ltd. as an active material was punched into a circle having a diameter of 14.85 mm. Further, a negative electrode made of Hosen Co., Ltd. using graphite having a thickness of 50 μm as an active material was punched into a circle having a diameter of 15.80 mm. Next, the conductive layer laminated porous film or porous film was punched into a circle having a diameter of 16.5 mm. A mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 (volume ratio) is stacked in order of the negative electrode, the conductive layer laminated porous film or porous film, and the positive electrode so that the positive electrode active material and the negative electrode active material face each other. Then, an electrolytic solution in which LiPF 6 was dissolved as a solute so as to have a concentration of 1 mol / liter was injected and sealed to produce a 2032 type coin cell. When the conductive layer was formed only on one side, the conductive layer and the positive electrode were stacked so as to face each other. When the conductive layer was formed on both surfaces, the surface having high conductivity (low surface specific resistance) was stacked so as to face the positive electrode.
(8)電池抵抗及び出力特性
作製した二次電池について、25℃の雰囲気下で試験を行った。
(8) Battery resistance and output characteristics The manufactured secondary battery was tested in an atmosphere at 25 ° C.
(仕上充放電)
1.3mAの電流値で4.2Vとなるまで定電流充電を行い、4.2Vの電圧で電流値が50μAになるまで定電圧充電を行った。続いて、2.6mAの電流値で2.7Vの電圧まで定電流放電を行った。充電及び放電が交互となるように、上記充電・放電を合計4回行った。充電時間が24時間を越えるセルはその時点で試験を終了し、仕上充放電の評価を×とした。かかる操作が可能なセルは仕上充放電の評価を○とした。4回目の放電容量が2.6mA±0.26mAのセルを用いて以降の試験を行った。
(Finish charge / discharge)
Constant current charging was performed until the current value reached 1.3 V at a current value of 1.3 mA, and constant voltage charging was performed until the current value reached 50 μA at a voltage of 4.2 V. Subsequently, constant current discharge was performed to a voltage of 2.7 V at a current value of 2.6 mA. The above charging / discharging was performed a total of four times so that charging and discharging were alternated. For cells with a charge time exceeding 24 hours, the test was terminated at that point, and the evaluation of finish charge / discharge was marked with x. The cell in which such an operation was possible was evaluated as “Good” in the evaluation of finish charge / discharge. Subsequent tests were performed using a cell having a discharge capacity of 2.6 mA ± 0.26 mA for the fourth time.
(電池抵抗及び出力特性)
仕上充放電後のセルを用いて電池抵抗及び出力特性試験を行った。充放電試験の手順を次に示す。
(Battery resistance and output characteristics)
Battery resistance and output characteristic tests were performed using the cells after finishing charge / discharge. The charge / discharge test procedure is as follows.
充電(1):1.3mAの電流値で4.2Vとなるまで定電流充電を行い、4.2Vの電圧で電流値が50μAになるまで定電圧充電を行った。 Charging (1): Constant current charging was performed until the voltage reached 4.2 V at a current value of 1.3 mA, and constant voltage charging was performed until the current value reached 50 μA at a voltage of 4.2 V.
放電(1):2.6mAの電流値で2.7Vとなるまで定電流放電を行い、放電容量(1)を得た。 Discharge (1): Constant current discharge was performed until the current value of 2.6 mA became 2.7 V to obtain a discharge capacity (1).
充電(2):充電(1)と同条件にて行った。 Charging (2): Performed under the same conditions as charging (1).
放電(2):5.2mAの電流値で2.7Vとなるまで定電流放電を行い、放電容量(2)を得た。 Discharge (2): A constant current discharge was performed until the voltage reached 2.7 V at a current value of 5.2 mA to obtain a discharge capacity (2).
放電(2’):放電(1)と同条件にて行った。 Discharge (2 '): Performed under the same conditions as discharge (1).
充電(3):充電(1)と同条件にて行った。 Charging (3): Performed under the same conditions as charging (1).
放電(3):7.8mAの電流値で2.7Vとなるまで定電流放電を行い、放電容量(3)を得た。 Discharge (3): A constant current discharge was performed until the voltage reached 2.7 V at a current value of 7.8 mA to obtain a discharge capacity (3).
放電(3’):放電(1)と同条件にて行った。 Discharge (3 '): Performed under the same conditions as discharge (1).
充電(4):充電(1)と同条件にて行った。 Charging (4): Performed under the same conditions as charging (1).
放電(4):13.0mAの電流値で2.7Vとなるまで定電流放電を行い、放電容量(4)を得た。 Discharge (4): A constant current discharge was performed at a current value of 13.0 mA until 2.7 V was obtained, to obtain a discharge capacity (4).
放電(4’):放電(1)と同条件にて行った。 Discharge (4 '): Performed under the same conditions as discharge (1).
充電(5):充電(1)と同条件にて行った。 Charging (5): Performed under the same conditions as charging (1).
放電(5):26.0mAの電流値で2.7Vとなるまで定電流放電を行い、放電容量(5)を得た。 Discharge (5): A constant current discharge was performed until the voltage reached 2.7 V at a current value of 26.0 mA to obtain a discharge capacity (5).
放電(5’):放電(1)と同条件にて行った
電池抵抗は放電(1)(2)(3)(4)(5)の際のt=10sec.の電圧をY軸に、放電電流をX軸としてプロットし、その傾きより電池抵抗を求めた。電池抵抗が21Ω以上の範囲を×、19Ω以上21Ω未満の範囲を△、17Ω以上19Ω未満の範囲を○、17Ω未満を◎とした。また、仕上充放電が×のセルは××と評価した。
Discharge (5 ′): The battery resistance was the same as in discharge (1). The battery resistance was t = 10 sec. During discharge (1) (2) (3) (4) (5). Was plotted on the Y axis and the discharge current was plotted on the X axis, and the battery resistance was determined from the slope. The range where the battery resistance was 21Ω or more was rated as x, the range between 19Ω and less than 21Ω as Δ, the range between 17Ω and less than 19Ω as ◯, and the range below 17Ω as ◎. Moreover, the cell whose finish charging / discharging was x evaluated as xx.
出力特性は
(放電容量(5)/放電容量(1))×100
の値にて定義した。出力特性が68%未満を×、68%以上71%未満の範囲を△、71%以上74%未満の範囲を○、74%以上の範囲を◎とした。また、仕上充放電が×のセルは××と評価した。
The output characteristics are (discharge capacity (5) / discharge capacity (1)) × 100
It was defined by the value of. The output characteristics of less than 68% were evaluated as x, the range of 68% or more and less than 71% as Δ, the range of 71% or more and less than 74% as ◯, and the range of 74% or more as ◎. Moreover, the cell whose finish charging / discharging was x evaluated as xx.
(9)寿命特性
仕上充放電の評価が○となるセルを用いて寿命特性試験を行った。充電、放電を1サイクルとし、下記条件を100回繰返し行った。
(9) Life characteristic A life characteristic test was performed using a cell having a charge / discharge evaluation of “good”. Charging and discharging were performed as one cycle, and the following conditions were repeated 100 times.
充電:25℃、2.6mAの定電流充電で4.2Vまで充電し、充電容量を得た。 Charging: Charging capacity was obtained by charging up to 4.2 V by constant current charging at 25 ° C. and 2.6 mA.
放電:25℃、2.6mAの定電流放電で2.7Vまで放電し、放電容量を得た。 Discharge: Discharged to 2.7 V at a constant current discharge of 25 ° C. and 2.6 mA to obtain a discharge capacity.
〈寿命容量維持率の算出〉
(100サイクル目の放電容量)/(1サイクル目の放電容量)×100で放電容量維持率とした。放電容量維持率が60%未満を×、60%以上70%未満を△、70%以上80%未満の場合を○、80%以上の場合を◎とした。
<Calculation of life capacity maintenance ratio>
(Discharge capacity at the 100th cycle) / (Discharge capacity at the first cycle) × 100 was defined as the discharge capacity retention rate. When the discharge capacity retention rate is less than 60%, x, 60% or more and less than 70% are indicated by Δ, 70% or more and less than 80% are indicated by ◯, and 80% or more are indicated by ◎.
(10)短絡性
仕上充放電後のセルを24時間、室温にて放置し、その後の電圧を測定し、2.5V以上あるセルは短絡無し、2.5V未満であるセルを短絡有りと判断した。電圧測定は(株)カスタム社製のデジタルテスターCDM−17Dを用い、正負極間の電池電圧を測定した。作製したセルのうち短絡有りのセルが50%以上の場合は短絡性に難があり、×と評価した。すべてのセルで短絡があった場合は××と評価した。短絡ありのセルが20%を超えて、50%未満である場合は△、20%以下の場合は短絡性は良好であり、○と評価した。
(10) Short circuit The cells after finishing charge / discharge are allowed to stand at room temperature for 24 hours, and then the voltage is measured. A cell having a voltage of 2.5V or more is judged not to be short-circuited, and a cell having a voltage of less than 2.5V is judged to be short-circuited. did. For voltage measurement, a digital tester CDM-17D manufactured by Custom Corp. was used, and the battery voltage between the positive and negative electrodes was measured. When 50% or more of the cells with short circuit were 50% or more, the short circuit property was difficult, and it was evaluated as x. When all the cells were short-circuited, it was evaluated as xx. When the number of short-circuited cells exceeds 20% and is less than 50%, Δ, and when it is 20% or less, the short-circuiting property is good, and it is evaluated as ◯.
(11)過充電検出性
短絡性の評価が△または○となるセルを用い、下記2条件にて過充電検出性を確認した。
(11) Overcharge detectability Overcharge detectability was confirmed under the following two conditions using a cell having a short-circuit evaluation of Δ or ○.
本願発明において「過充電検出性を有する」とは、以下の2条件の少なくとも一つの条件において「過充電検出性あり」と判定されることをいう。 In the present invention, “having overcharge detectability” means that “overcharge detectability” is determined under at least one of the following two conditions.
<1>25℃、1.3mAの定電流充電で4時間充電した。定電流充電終了後、2時間放置した後、電圧を測定し、絶対値が0.1V未満であった場合は過充電検出性ありとし、○とした。電圧の絶対値が0.1V以上であった場合は過充電検出性なしで×とした。 <1> The battery was charged at 25 ° C. and a constant current of 1.3 mA for 4 hours. After the constant current charge was completed, the battery was allowed to stand for 2 hours, and then the voltage was measured. If the absolute value was less than 0.1 V, it was determined that there was overcharge detection and the result was ◯. When the absolute value of the voltage was 0.1 V or more, it was set as x without overcharge detectability.
<2>上記<1>と同様の方法で、定電流充電の時間を8時間としたこと以外は同様とし、電圧の絶対値が0.1V未満であった場合は過充電検出性ありとし、◎とした。電圧の絶対値が0.1V以上であった場合は過充電検出性なしで×とした。 <2> The same method as in <1> above, except that the constant current charging time is set to 8 hours. When the absolute value of the voltage is less than 0.1 V, overcharge detection is possible. ◎. When the absolute value of the voltage was 0.1 V or more, it was set as x without overcharge detectability.
(参考例1)
脱水したN−メチル−2−ピロリドンに80モル%に相当する2−クロルパラフェニレンジアミンと20モル%に相当する4,4’−ジアミノジフェニルエーテルとを溶解させ、これに98.5モル%に相当する2−クロルテレフタル酸クロリドを添加し、2時間攪拌により重合後、炭酸リチウムで中和を行い、ポリマー濃度が11質量%の芳香族ポリアミド溶液を得た。この溶液を水で再沈してポリマーを取り出した。
( Reference Example 1)
2-chloroparaphenylenediamine corresponding to 80 mol% and 4,4′-diaminodiphenyl ether corresponding to 20 mol% are dissolved in dehydrated N-methyl-2-pyrrolidone, which corresponds to 98.5 mol%. 2-chloro terephthalic acid chloride was added, polymerized by stirring for 2 hours, and then neutralized with lithium carbonate to obtain an aromatic polyamide solution having a polymer concentration of 11% by mass. This solution was reprecipitated with water to remove the polymer.
このポリマーを2質量%、N−メチル−2−ピロリドン70質量%、ポリエチレングリコール(平均分子量200)28質量%となるように量り取り、ポリマーをN−メチル−2−ピロリドンに溶解させた後ポリエチレングリコールを加え、均一に完全相溶したポリマー溶液を得た。 The polymer was weighed to 2% by mass, 70% by mass of N-methyl-2-pyrrolidone, and 28% by mass of polyethylene glycol (average molecular weight 200), and the polymer was dissolved in N-methyl-2-pyrrolidone and then polyethylene. Glycol was added to obtain a homogeneous and completely compatible polymer solution.
このポリマー溶液を、バーコーターを用いてガラス板上に約100μmの膜状に形成し、20℃、相対湿度80%に調整されたオーブン中に1時間静置し、析出を行い多孔質フィルムとした。この多孔質フィルムをガラス板上から剥離し、50℃の水浴にて1時間、溶媒と不純物の抽出を行った。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行い、多孔性フィルムを得た。 This polymer solution is formed into a film of about 100 μm on a glass plate using a bar coater, and left in an oven adjusted to 20 ° C. and a relative humidity of 80% for 1 hour to perform precipitation and to form a porous film did. The porous film was peeled from the glass plate, and the solvent and impurities were extracted in a 50 ° C. water bath for 1 hour. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat treated at 320 ° C. for 1 minute to obtain a porous film.
得られた多孔性フィルムの片面に、固体炭素材料としてカーボンナノチューブを用い、下記の組成の分散液をマイクロバーにて導電層厚みが4μmとなるように均一に塗布し、100℃に調整したオーブン中に1時間静置し、導電層積層多孔性フィルムを得た。 An oven in which carbon nanotubes are used as a solid carbon material on one side of the obtained porous film, and a dispersion having the following composition is uniformly applied with a microbar so that the thickness of the conductive layer is 4 μm and adjusted to 100 ° C. It was left still for 1 hour to obtain a conductive layer laminated porous film.
<分散液組成>
・固体炭素材料:カーボンナノチューブ 98質量部
・結着剤:ポリテトラフルオロエチレン 1質量部
・増粘剤:カルボキシメチルセルロース 1質量部
・溶剤:蒸留水 1,900質量部
得られた導電層積層多孔性フィルムの特性を、表1に示す。また、電池として使用した際には、仕上充放電は可能であり、電池抵抗は18.6Ωで評価は○、出力特性は75.2%で評価は○、寿命特性は74%で評価は○であり、電池抵抗が低く、出力特性及び寿命特性に優れる電池となった。
<Dispersion composition>
-Solid carbon material: 98 parts by mass of carbon nanotubes-Binder: 1 part by mass of polytetrafluoroethylene-Thickener: 1 part by mass of carboxymethylcellulose-Solvent: 1,900 parts by mass of distilled water Obtained conductive layer laminated porosity The characteristics of the film are shown in Table 1. Moreover, when used as a battery, finishing charge / discharge is possible, battery resistance is 18.6Ω, evaluation is ○, output characteristics are 75.2%, evaluation is ○, life characteristics are 74%, evaluation is ○ Thus, the battery has low battery resistance and excellent output characteristics and life characteristics.
仕上充放電後に短絡しているセルは10セル中4セルあり、短絡性は△であった。 There were 4 cells out of 10 cells short-circuited after finishing charge / discharge, and the short-circuiting property was Δ.
過充電検出性<1>は電圧の絶対値が4.5Vで×、過充電検出性<2>は4.9Vで×であり過充電検出性はなかった。 The overcharge detectability <1> was x when the absolute value of the voltage was 4.5 V, and the overcharge detectability <2> was x when it was 4.9 V, and there was no overcharge detectability.
(実施例2)
参考例1と同様にして得た多孔性フィルムを用い、真空蒸着装置の減圧度を1.5×10−3Paとし、純度99.5質量%のAuを加熱蒸発させ、冷却ロールの温度を25℃として、厚さ100nmの導電層を形成した導電層積層多孔性フィルムを得た。得られたフィルムの物性値を表1に示す。
(Example 2)
Using the porous film obtained in the same manner as in Reference Example 1, the vacuum degree of the vacuum deposition apparatus was 1.5 × 10 −3 Pa, Au with a purity of 99.5% by mass was heated and evaporated, and the temperature of the cooling roll was changed to A conductive layer laminated porous film in which a conductive layer having a thickness of 100 nm was formed at 25 ° C. was obtained. The physical properties of the obtained film are shown in Table 1.
また、電池として使用した際の評価結果を表2に示す。仕上充放電は可能であり、電池抵抗は15.5Ωで評価は◎、出力特性は78.1%で評価は◎、寿命特性は84%で評価は◎であり、電池抵抗が低く、出力特性及び寿命特性に優れる電池となった。 Table 2 shows the evaluation results when used as a battery. Finish charging / discharging is possible, battery resistance is 15.5Ω, evaluation is ◎, output characteristics are 78.1%, evaluation is ◎, life characteristics are 84%, evaluation is ◎, battery resistance is low, output characteristics In addition, the battery has excellent life characteristics.
仕上充放電後に短絡しているセルは10セル中5セルあり、短絡性は△であった。 There were 5 cells out of 10 cells short-circuited after finishing charge / discharge, and the short-circuit property was Δ.
過充電検出性<1>は電圧の絶対値が4.5Vで×、過充電検出性<2>は0.01Vで◎であり過充電検出性も有した。 The overcharge detectability <1> had an absolute voltage value of 4.5V, and the overcharge detectability <2> was 0.01V, and had an overcharge detectability.
(参考例3)
参考例1と同様にして得た多孔性フィルムを用い、真空蒸着装置の減圧度を1.5×10−3Paとし、純度99.5質量%のAlを加熱蒸発させ、冷却ロールの温度を25℃として、厚さ100nmの導電層を形成した導電層積層多孔性フィルムを得た。
( Reference Example 3)
Using the porous film obtained in the same manner as in Reference Example 1, the degree of vacuum of the vacuum deposition apparatus was 1.5 × 10 −3 Pa, Al with a purity of 99.5% by mass was heated and evaporated, and the temperature of the cooling roll was changed to A conductive layer laminated porous film in which a conductive layer having a thickness of 100 nm was formed at 25 ° C. was obtained.
得られた導電層積層多孔性フィルムの特性を表1に示す。 Table 1 shows the characteristics of the obtained conductive layer laminated porous film.
また、電池として使用した際の評価結果を表2に示す。仕上充放電は可能であり、電池抵抗は16.4Ωで評価は◎、出力特性は79.0%で評価は◎、寿命特性は81%で評価は◎であり、電池抵抗が低く、出力特性及び寿命特性に優れる電池となった。 Table 2 shows the evaluation results when used as a battery. Finish charge / discharge is possible, battery resistance is 16.4Ω, evaluation is ◎, output characteristics are 79.0%, evaluation is ◎, life characteristics are 81%, evaluation is ◎, battery resistance is low, output characteristics In addition, the battery has excellent life characteristics.
また、仕上充放電後に短絡しているセルは10セル中4セルあり、短絡性は△であった。 Moreover, the cell which is short-circuited after finishing charging / discharging was 4 cells out of 10 cells, and the short circuit property was (triangle | delta).
過充電検出性<1>は電圧の絶対値が4.5Vで×、過充電検出性<2>は4.9Vで×であり、過充電検出性はなかった。 The overcharge detectability <1> was × when the absolute value of the voltage was 4.5V, and the overcharge detectability <2> was × when it was 4.9V, and there was no overcharge detectability.
(参考例4)
参考例1と同様にして得られたポリマーを用いて、ポリマーを2質量%、N−メチル−2−ピロリドン70質量%、ポリエチレングリコール(平均分子量200)28質量%となるように量り取り、ポリマーをN−メチル−2−ピロリドンに溶解させた後ポリエチレングリコールを加え、均一に完全相溶したポリマー溶液を得た。
( Reference Example 4)
Using the polymer obtained in the same manner as in Reference Example 1, the polymer was weighed out to 2% by mass, N-methyl-2-pyrrolidone 70% by mass, and polyethylene glycol (average molecular weight 200) 28% by mass. Was dissolved in N-methyl-2-pyrrolidone, and then polyethylene glycol was added to obtain a completely and completely compatible polymer solution.
このポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、−10℃、相対湿度100%に調整されたオーブン中に10分間静置し、析出を行い多孔質フィルムとした。この多孔質フィルムをガラス板上から剥離し、50℃の水浴にて1時間、溶媒と不純物の抽出を行った。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行い、多孔性フィルムを得た。 This polymer solution is formed into a film of about 50 μm on a glass plate using a bar coater, and is left to stand in an oven adjusted to −10 ° C. and relative humidity 100% for 10 minutes for precipitation to form a porous film. It was. The porous film was peeled from the glass plate, and the solvent and impurities were extracted in a 50 ° C. water bath for 1 hour. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat treated at 320 ° C. for 1 minute to obtain a porous film.
得られた多孔性フィルム上に、参考例3と同様の方法にて厚さ100nmのAlを導電層として形成した、導電層積層多孔性フィルムを得た。 On the obtained porous film, a conductive layer laminated porous film was obtained, in which Al having a thickness of 100 nm was formed as a conductive layer by the same method as in Reference Example 3.
得られた導電層積層多孔性フィルムの特性を表1に示す。また、電池として使用した際の評価結果を表2に示す。仕上充放電は可能であり、電池抵抗は16.8Ωで評価は◎、出力特性は77.2%で評価は◎、寿命特性は80%で評価は◎であり、電池抵抗が低く、出力特性及び寿命特性に優れる電池となった。 Table 1 shows the characteristics of the obtained conductive layer laminated porous film. Table 2 shows the evaluation results when used as a battery. Finish charge / discharge is possible, battery resistance is 16.8Ω, evaluation is ◎, output characteristics are 77.2%, evaluation is ◎, life characteristics are 80%, evaluation is ◎, battery resistance is low, output characteristics In addition, the battery has excellent life characteristics.
また、仕上充放電後に短絡しているセルは10セル中3セルあり、短絡性は○で、短絡性にも優れるセルであった。 Moreover, the cell which is short-circuited after finishing charging / discharging is 3 cells in 10 cells, the short circuit property is (circle) and it was a cell excellent also in short circuit property.
過充電検出性<1>は電圧の絶対値が4.5Vで×、過充電検出性<2>は4.9Vで×であり、過充電検出性はなかった。 The overcharge detectability <1> was × when the absolute value of the voltage was 4.5V, and the overcharge detectability <2> was × when it was 4.9V, and there was no overcharge detectability.
(参考例5)
参考例1と同様にして得られたポリマーを用いて、ポリマーを10質量%、N−メチル−2−ピロリドン70質量%、ポリエチレングリコール(平均分子量200)20質量%となるように量り取り、ポリマーをN−メチル−2−ピロリドンに溶解させた後ポリエチレングリコールを加え、均一に完全相溶したポリマー溶液を得た。
( Reference Example 5)
Using the polymer obtained in the same manner as in Reference Example 1, the polymer was weighed so as to be 10% by mass, N-methyl-2-pyrrolidone 70% by mass, and polyethylene glycol (average molecular weight 200) 20% by mass. Was dissolved in N-methyl-2-pyrrolidone, and then polyethylene glycol was added to obtain a completely and completely compatible polymer solution.
このポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、20℃、相対湿度80%に調整されたオーブン中に1時間静置し、析出を行い多孔質フィルムとした。この多孔質フィルムをガラス板上から剥離し、50℃の水浴にて1時間、溶媒と不純物の抽出を行った。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行い、多孔性フィルムを得た。 This polymer solution was formed into a film of about 50 μm on a glass plate using a bar coater, and left in an oven adjusted to 20 ° C. and a relative humidity of 80% for 1 hour to perform precipitation and to form a porous film did. The porous film was peeled from the glass plate, and the solvent and impurities were extracted in a 50 ° C. water bath for 1 hour. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat treated at 320 ° C. for 1 minute to obtain a porous film.
得られた多孔性フィルム上に、参考例3と同様の方法にて厚さ100nmのAlを導電層として形成した、導電層積層多孔性フィルムを得た。 On the obtained porous film, a conductive layer laminated porous film was obtained, in which Al having a thickness of 100 nm was formed as a conductive layer by the same method as in Reference Example 3.
得られた導電層積層多孔性フィルムの特性を表1に示す。また、電池として使用した際の評価結果を表2に示す。仕上充放電は可能であり、電池抵抗は17.2Ωで評価は○、出力特性は76.5%で評価は○、寿命特性は78%で評価は○であり、電池抵抗が低く、出力特性及び寿命特性に優れる電池となった。 Table 1 shows the characteristics of the obtained conductive layer laminated porous film. Table 2 shows the evaluation results when used as a battery. Finish charging / discharging is possible, battery resistance is 17.2Ω, evaluation is ○, output characteristics are 76.5%, evaluation is ○, life characteristics are 78%, evaluation is ○, battery resistance is low, output characteristics In addition, the battery has excellent life characteristics.
また、仕上充放電後に短絡しているセルは10セル中2セルあり、短絡性は○で、短絡性にも優れるセルであった。 Moreover, the cell which is short-circuited after finishing charging / discharging was 2 cells out of 10 cells, the short circuit property was (circle) and it was a cell excellent also in short circuit property.
過充電検出性<1>は電圧の絶対値が4.5Vで×、過充電検出性<2>は4.9Vで×であり、寿命特性には優れるが過充電検出性はなかった。 The overcharge detectability <1> was x when the absolute value of the voltage was 4.5 V, and the overcharge detectability <2> was x when the voltage was 4.9 V. The life characteristics were excellent, but there was no overcharge detectability.
(実施例6)
実施例2において、Au代わりにPtを用いたこと以外は同様にして導電層積層多孔性フィルムを得た。得られたフィルムの物性値を表1に示す。
(Example 6)
In Example 2, a conductive layer laminated porous film was obtained in the same manner except that Pt was used instead of Au. The physical properties of the obtained film are shown in Table 1.
また、電池として使用した際の評価結果を表2に示す。仕上充放電は可能であり、電池抵抗は15.5Ωで評価は◎、出力特性は78.1%で評価は◎、寿命特性は82%で評価は◎であり、電池抵抗が低く、出力特性及び寿命特性に優れる電池となった。 Table 2 shows the evaluation results when used as a battery. Finish charging / discharging is possible, battery resistance is 15.5Ω, evaluation is ◎, output characteristics are 78.1%, evaluation is ◎, life characteristics are 82%, evaluation is ◎, battery resistance is low, output characteristics In addition, the battery has excellent life characteristics.
仕上充放電後に短絡しているセルは10セル中5セルあり、短絡性は△であった。 There were 5 cells out of 10 cells short-circuited after finishing charge / discharge, and the short-circuit property was Δ.
過充電検出性<1>は電圧の絶対値が0.002Vで○、過充電検出性<2>は0.001Vで◎であり、過充電検出性を有した。 The overcharge detectability <1> was ◯ when the absolute value of the voltage was 0.002V, and the overcharge detectability <2> was 0.001V and ◎, and had overcharge detectability.
(比較例1)
参考例1と同様にして得られた多孔性フィルムを用いた。電池として使用した際の評価結果を表2に示す。電池抵抗が19.7Ωと高く、出力特性は71%、寿命特性は62%で評価は△と劣り、電池特性の悪い電池となった。
(Comparative Example 1)
A porous film obtained in the same manner as in Reference Example 1 was used. Table 2 shows the evaluation results when used as a battery. The battery resistance was as high as 19.7Ω, the output characteristics were 71%, the life characteristics were 62%, the evaluation was inferior to Δ, and the battery characteristics were poor.
(比較例2)
ポリプロピレン樹脂からなる多孔性フィルムを用いた。
(Comparative Example 2)
A porous film made of polypropylene resin was used.
ポリプロピレン樹脂は下記のものを用いた。 The following polypropylene resin was used.
ポリプロピレン:住友化学(株)製ポリプロピレンWF836DG3・・・99.70質量%
添加剤:新日本理化(株)製N,N’−ジシクロヘキシル−2,6−ナフタレンジカフボサミドNU−110・・・0.05質量%
酸化防止剤:チバ・スペシャルティ・ケミカルズ(株)製、IRGANOX1010・・・0.15質量%
熱安定剤:チバ・スペシャルティ・ケミカルズ(株)製、IRGAFOS168を0.10質量%
これを二軸押出機にて供給して300℃で溶融・混練した後、ガット状に押出し、20℃の水槽にて冷却して、チップカッターで3mm長にカットした後、100℃で2時間乾燥した。
Polypropylene: polypropylene WF836DG3 manufactured by Sumitomo Chemical Co., Ltd. 99.70% by mass
Additive: N, N'-dicyclohexyl-2,6-naphthalene dicafubosamide NU-110 manufactured by Shin Nippon Rika Co., Ltd. 0.05% by mass
Antioxidant: Ciba Specialty Chemicals Co., Ltd., IRGANOX1010 ... 0.15 mass%
Heat stabilizer: 0.10% by mass of IRGAFOS168 manufactured by Ciba Specialty Chemicals Co., Ltd.
This is supplied with a twin screw extruder and melted and kneaded at 300 ° C., then extruded into a gut shape, cooled in a 20 ° C. water bath, cut into 3 mm lengths with a chip cutter, and then at 100 ° C. for 2 hours. Dried.
得られたポリプロピレン樹脂を一軸押出機にて220℃で溶融・押出しし、200℃に加熱された口金から押し出し、120℃に加熱されたキャストドラムにキャストし、フィルムの非ドラム面からエアーナイフを用いて120℃に加熱された熱風を吹き付けて密着させながらシート状に成型し、未延伸シートを得た。 The obtained polypropylene resin was melted and extruded at 220 ° C. with a single screw extruder, extruded from a die heated to 200 ° C., cast on a cast drum heated to 120 ° C., and an air knife was applied from the non-drum surface of the film. A hot air heated to 120 ° C. was blown to form a sheet while being in close contact with each other to obtain an unstretched sheet.
得られた未延伸シートを120℃に加熱されたロール群に通して加熱し、ロールの周速差により縦方向に4倍延伸し、95℃に冷却した。引き続きこの1軸延伸フィルムの両端をクリップで把持しながらテンターに導入して135℃に加熱しながら横方向に6倍に延伸した。ついで、テンター内で横方向に5%の弛緩を与えながら150℃で熱固定をし、均一に徐冷した後、室温まで冷却して厚さ20μmの多孔性フィルムを得た。 The obtained unstretched sheet was heated through a group of rolls heated to 120 ° C., stretched 4 times in the longitudinal direction by the peripheral speed difference of the rolls, and cooled to 95 ° C. Subsequently, the both ends of this uniaxially stretched film were introduced into a tenter while being held with clips, and stretched 6 times in the transverse direction while being heated to 135 ° C. Subsequently, the film was heat-set at 150 ° C. while giving 5% relaxation in the transverse direction in the tenter, uniformly cooled, and then cooled to room temperature to obtain a porous film having a thickness of 20 μm.
得られた多孔性フィルムを用い、実施例2と同様の方法にて導電層を積層し、導電層積層多孔性フィルムを得た。 Using the obtained porous film, a conductive layer was laminated in the same manner as in Example 2 to obtain a conductive layer laminated porous film.
得られた導電層積層多孔性フィルムは表1に示すような特性であった。200℃において溶解し、熱収縮率は本発明の範囲外であった。 The obtained conductive layer laminated porous film had characteristics as shown in Table 1. It melted at 200 ° C. and the heat shrinkage was outside the scope of the present invention.
また、電池として使用した際の評価結果を表2に示す。電池抵抗は52Ωと非常に高く、出力は0.2%と非常に低く、寿命特性も48%と低く、電池特性の悪い電池となった。また、短絡性も非常に悪い電池であった。 Table 2 shows the evaluation results when used as a battery. The battery resistance was as high as 52Ω, the output was as low as 0.2%, the life characteristics were as low as 48%, and the battery had poor battery characteristics. Moreover, it was a battery with a very short circuit property.
(比較例3)
参考例1と同様にして得た多孔性フィルムを用い、その片面に、固体炭素材料として天然球状黒鉛を用い、下記の組成の分散液をマイクロバーにて導電層の厚みが50μmとなるように均一に塗布し、100℃に調整したオーブン中に1時間静置し、導電層積層多孔性フィルムを得た。
(Comparative Example 3)
Using a porous film obtained in the same manner as in Reference Example 1, using natural spherical graphite as a solid carbon material on one side, and using a dispersion liquid having the following composition with a microbar, the thickness of the conductive layer is 50 μm. It apply | coated uniformly and left still in the oven adjusted to 100 degreeC for 1 hour, and the electroconductive layer laminated porous film was obtained.
<分散液組成>
・固体炭素材料:天然黒鉛 98質量部
・増粘剤:カルボキシメチルセルロース 1質量部
・結着剤:ポリテトラフルオロエチレン 1質量部
・溶剤:蒸留水 100質量部
得られた導電層積層多孔性フィルムは表1に示すような特性であった。導電層の厚みが厚く、本発明の範囲外であった。また、電池として使用した際の評価結果を表2に示す。電池抵抗が32Ωと高く、出力特性は44%と劣り、寿命特性は64%で評価は△となり、電池特性の悪い電池となった。
<Dispersion composition>
-Solid carbon material: 98 parts by weight of natural graphite-Thickener: 1 part by weight of carboxymethylcellulose-Binder: 1 part by weight of polytetrafluoroethylene-Solvent: 100 parts by weight of distilled water The obtained conductive layer laminated porous film is The characteristics were as shown in Table 1. The thickness of the conductive layer was thick and outside the scope of the present invention. Table 2 shows the evaluation results when used as a battery. The battery resistance was as high as 32Ω, the output characteristics were inferior at 44%, the life characteristics were 64%, the evaluation was Δ, and the battery had poor battery characteristics.
(比較例4)
参考例1と同様にして得た多孔性フィルムを用い、真空蒸着装置の減圧度を1.5×10−3Paとし、純度99.5質量%のAgを加熱蒸発させ、冷却ロールの温度を25℃として、厚さ100nmの導電層を形成した導電層積層多孔性フィルムを得た。
(Comparative Example 4)
Using the porous film obtained in the same manner as in Reference Example 1, the vacuum degree of the vacuum deposition apparatus was 1.5 × 10 −3 Pa, Ag with a purity of 99.5% by mass was evaporated by heating, and the temperature of the cooling roll was changed to A conductive layer laminated porous film in which a conductive layer having a thickness of 100 nm was formed at 25 ° C. was obtained.
得られた導電層積層多孔性フィルムは表1に示すような特性であった。導電層を構成する材料がAgであり、Li対比の溶解析出電位が3.8Vであり、本発明の範囲外であった。また、AgはLi対比で5.0V以下で不動態被膜(酸化皮膜)を形成せず、本発明の範囲外であった。また、電池として使用した際の評価結果を表2に示す。かかる導電層積層多孔性フィルムを電池として使用した際には、仕上充放電の際に充電時間が24時間を超え、仕上充放電が不可能であり、もはや電池としての性能を評価するに至らなかった。 The obtained conductive layer laminated porous film had characteristics as shown in Table 1. The material constituting the conductive layer was Ag, and the dissolution precipitation potential relative to Li was 3.8 V, which was outside the scope of the present invention. Further, Ag was 5.0 V or less as compared with Li and did not form a passive film (oxide film), which was outside the scope of the present invention. Table 2 shows the evaluation results when used as a battery. When such a conductive layer laminated porous film is used as a battery, the charging time exceeds 24 hours at the time of finishing charging / discharging, and finishing charging / discharging is impossible, and the performance as a battery can no longer be evaluated. It was.
(比較例5)
参考例1と同様にして得た多孔性フィルムを用い、真空蒸着装置の減圧度を1.5×10−3Paとし、純度99.5質量%のCuを加熱蒸発させ、冷却ロールの温度を25℃として、厚さ100nmの導電層を形成した導電層積層多孔性フィルムを得た。
(Comparative Example 5)
Using the porous film obtained in the same manner as in Reference Example 1, the degree of vacuum of the vacuum deposition apparatus was 1.5 × 10 −3 Pa, Cu with a purity of 99.5 mass% was heated and evaporated, and the temperature of the cooling roll was changed to A conductive layer laminated porous film in which a conductive layer having a thickness of 100 nm was formed at 25 ° C. was obtained.
得られた導電層積層多孔性フィルムは表1に示すような特性であった。導電層を構成する材料がCuであり、Li対比の溶解析出電位が3.4Vであり、本発明の範囲外であった。また、CuはLi対比で5.0V以下で不動態被膜(酸化皮膜)を形成せず、本発明の範囲外であった。 The obtained conductive layer laminated porous film had characteristics as shown in Table 1. The material constituting the conductive layer was Cu, and the dissolution precipitation potential relative to Li was 3.4 V, which was outside the scope of the present invention. Further, Cu was 5.0 V or less in comparison with Li, so that a passive film (oxide film) was not formed, and was outside the scope of the present invention.
また、電池として使用した際の評価結果を表2に示す。かかる導電層積層多孔性フィルムを電池として使用した際には、仕上充放電の際に充電時間が24時間を超え、仕上充放電が不可能であり、もはや電池としての性能を評価するに至らなかった。 Table 2 shows the evaluation results when used as a battery. When such a conductive layer laminated porous film is used as a battery, the charging time exceeds 24 hours at the time of finishing charging / discharging, and finishing charging / discharging is impossible, and the performance as a battery can no longer be evaluated. It was.
1 高分子フィルム基材
4 巻き取り式真空蒸着装置
5 巻き取り室
6 巻き出しロール
7 ボート
8 ガイドロール
9 ガイドロール
10 ガイドロール
11 冷却ドラム
12 ガイドロール
13 ガイドロール
14 ガイドロール
15 巻き取りロール
DESCRIPTION OF SYMBOLS 1 Polymer film base material 4 Winding-type
Claims (9)
(1)Li対比の電位が4.0V以上5.0V以下の溶解析出電位を有する導電性材料
(2)Li対比の電位が5.0V以下で酸化皮膜を形成する導電性材料
(3)固体炭素材料または導電性高分子材料 The porous film has a conductive layer on at least one surface, has a Gurley air permeability of 1 to 10,000 seconds / ml, has a heat shrinkage rate of 1% or less at 200 ° C., and the conductive layer has the following (1) ~ (3) comprises one or more 50 wt% in a total amount of relevant components, the thickness of the conductive layer is rather smaller than the thickness of the porous film, and a conductive layer laminated and having overcharge detectability Porous film.
(1) Conductive material having dissolution and precipitation potential of 4.0 V or more and 5.0 V or less compared to Li (2) Conductive material that forms an oxide film when the potential of Li or less is 5.0 V or less (3) Solid Carbon material or conductive polymer material
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014036450A JP6357799B2 (en) | 2013-03-28 | 2014-02-27 | Conductive layer laminated porous film and battery separator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013068384 | 2013-03-28 | ||
JP2013068384 | 2013-03-28 | ||
JP2014036450A JP6357799B2 (en) | 2013-03-28 | 2014-02-27 | Conductive layer laminated porous film and battery separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014208448A JP2014208448A (en) | 2014-11-06 |
JP6357799B2 true JP6357799B2 (en) | 2018-07-18 |
Family
ID=51903030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014036450A Active JP6357799B2 (en) | 2013-03-28 | 2014-02-27 | Conductive layer laminated porous film and battery separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6357799B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6458439B2 (en) | 2014-10-09 | 2019-01-30 | 株式会社デンソー | On-vehicle camera calibration device, image generation device, on-vehicle camera calibration method, and image generation method |
JP2017212040A (en) * | 2016-05-23 | 2017-11-30 | オートモーティブエナジーサプライ株式会社 | Lithium ion secondary battery |
KR20180052309A (en) * | 2016-11-10 | 2018-05-18 | 울산과학기술원 | Separator for electrochemical device, method for manufacturing the same, electrochemical device including the same |
CN111029515B (en) * | 2019-12-25 | 2021-04-13 | 中国地质大学(武汉) | Sulfonated graphene oxide-based single-ion polymer electrolyte membrane and preparation method and application thereof |
KR102819965B1 (en) * | 2020-09-04 | 2025-06-13 | 주식회사 엘지에너지솔루션 | Separator and secondary battery comprising the same |
CN112701418B (en) * | 2020-12-28 | 2022-06-17 | 江苏厚生新能源科技有限公司 | Lithium battery diaphragm with overcharge protection function and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004022295A (en) * | 2002-06-14 | 2004-01-22 | Toyota Motor Corp | Separator, method of manufacturing the same, and power storage element |
JP2005196999A (en) * | 2003-12-26 | 2005-07-21 | Kakogawa Plastic Kk | Separator for battery, and manufacturing method of the same |
JP5168989B2 (en) * | 2006-04-12 | 2013-03-27 | 東レ株式会社 | Lithium ion secondary battery |
KR20120062713A (en) * | 2009-08-19 | 2012-06-14 | 미쓰비시 쥬시 가부시끼가이샤 | Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2012043629A (en) * | 2010-08-18 | 2012-03-01 | Mitsubishi Chemicals Corp | Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
-
2014
- 2014-02-27 JP JP2014036450A patent/JP6357799B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014208448A (en) | 2014-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6357799B2 (en) | Conductive layer laminated porous film and battery separator | |
CN101657497B (en) | Porous film | |
KR101255494B1 (en) | Process for producing aromatic polyamide porous film | |
KR101911282B1 (en) | Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte secondary battery | |
JP5356878B2 (en) | Non-aqueous secondary battery separator | |
JP6398298B2 (en) | Aromatic polyamide / aromatic polyimide composite porous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
CN107001668B (en) | Polymer ion-permeable membrane, composite ion-permeable membrane, electrolyte membrane for battery, and electrode assembly | |
CN101641808A (en) | Separator | |
CN106030857A (en) | Laminated porous film and nonaqueous electrolyte secondary battery | |
JPWO2011118660A1 (en) | Polyolefin microporous membrane, separator for nonaqueous secondary battery, nonaqueous secondary battery, and method for producing polyolefin microporous membrane | |
KR101924408B1 (en) | Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
JP2008311221A (en) | Laminated porous film | |
JP6299168B2 (en) | Aromatic polyamide porous membrane and battery separator | |
JP5939159B2 (en) | Aromatic polyamide porous membrane, battery separator and battery | |
JPWO2016098660A1 (en) | Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite | |
JP5664022B2 (en) | Aromatic polyamide porous membrane, porous film and battery separator | |
JP2017014493A (en) | Ionic conductive film, ionic conductive composite film, and electrode complex | |
JP2015088478A (en) | Solid electrolyte layer lamination porous film, separator for battery, and secondary battery | |
JP2012099324A (en) | Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP2011124177A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JPWO2019151220A1 (en) | Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film | |
JP2012099370A (en) | Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP5929469B2 (en) | Aromatic polyamide porous membrane, battery separator and method for producing the same | |
JP6273731B2 (en) | Lithium ion battery | |
JP2015069745A (en) | Aromatic polyamide bag-shaped separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180604 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6357799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |