JP6355351B2 - Synthetic fiber - Google Patents
Synthetic fiber Download PDFInfo
- Publication number
- JP6355351B2 JP6355351B2 JP2014021797A JP2014021797A JP6355351B2 JP 6355351 B2 JP6355351 B2 JP 6355351B2 JP 2014021797 A JP2014021797 A JP 2014021797A JP 2014021797 A JP2014021797 A JP 2014021797A JP 6355351 B2 JP6355351 B2 JP 6355351B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fiber
- flame retardant
- synthetic fiber
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002994 synthetic fiber Polymers 0.000 title claims description 33
- 239000012209 synthetic fiber Substances 0.000 title claims description 33
- 229920005989 resin Polymers 0.000 claims description 74
- 239000011347 resin Substances 0.000 claims description 74
- 239000000835 fiber Substances 0.000 claims description 56
- 239000003063 flame retardant Substances 0.000 claims description 54
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 53
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 37
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 35
- 230000000052 comparative effect Effects 0.000 claims description 32
- 239000004744 fabric Substances 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 20
- 229910052698 phosphorus Inorganic materials 0.000 claims description 20
- 239000011574 phosphorus Substances 0.000 claims description 20
- 239000000523 sample Substances 0.000 claims description 18
- 239000013074 reference sample Substances 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 14
- 230000011514 reflex Effects 0.000 claims description 10
- 238000009941 weaving Methods 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 5
- 238000009940 knitting Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000009987 spinning Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- -1 polyethylene terephthalate Polymers 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000006224 matting agent Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Landscapes
- Curtains And Furnishings For Windows Or Doors (AREA)
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Description
本発明は、難燃性と遮熱性を有する合成繊維に関する。 The present invention relates to a synthetic fiber having flame retardancy and heat shielding properties.
従来より清涼感を有する布帛、難燃性を有する布帛はそれぞれ数多く提案されている。例えば、清涼感を有する布帛としては繊維の形状、加工方法、織組織、練り込み剤などの工夫により、断熱効果を向上させる方法や繊維表面に銀メッキ加工を施した布帛で覆うことによる赤外線反射させて遮熱する方法などもある。また、難燃性布帛としては、布帛に難燃剤を塗布する方法などにより布帛に難燃性を付加しているものがある。
例えば、特許文献1には、リン系の難燃性ポリエステル繊維からなる紡績糸とマルチフィラメントをそれぞれ経糸、緯糸として用いた布帛に精錬、漂白、染色、乾燥、熱セットを施し、その乾燥布帛表面に物理蒸着法によってステンレス鋼やチタンからなる光反射性金属膜形成後、つや消し加工を施して遮熱及び難燃特性を有した布帛を得られることが記載されている。
特許文献2には、バインダー樹脂としてウレタン樹脂と導電性酸化亜鉛を含有する遮熱剤とを含む所定の濃度の溶液にカーテン生地を浸漬、熱処理、固着させることにより遮熱性カーテン生地を得られることが記載されている。
特許文献3には、くびれのある異型断面の扁平糸で、平均粒径0.5〜1.5μmの酸化チタンを全分散した単独繊維とすることより、遮熱性の優れたポリエステル原糸を得ることが記載されている。
Conventionally, many fabrics having a refreshing feeling and flame retardant have been proposed. For example, as a fabric having a refreshing sensation, it is possible to improve the heat insulation effect by devising the shape, processing method, woven structure, kneading agent, etc. of the fiber, and infrared reflection by covering the surface of the fiber with a silver-plated fabric There is also a method of blocking heat. Moreover, as a flame retardant fabric, there is one in which flame retardancy is added to the fabric by a method of applying a flame retardant to the fabric.
For example, Patent Document 1 discloses that a fabric using spun yarn and multifilament made of phosphorus-based flame-retardant polyester fiber as warp and weft is subjected to refining, bleaching, dyeing, drying, and heat setting, and the surface of the dried fabric Describes that after forming a light-reflective metal film made of stainless steel or titanium by physical vapor deposition, it is possible to obtain a fabric having heat-shielding and flame-retarding properties by matting.
Patent Document 2 discloses that a curtain fabric can be obtained by immersing, heat-treating and fixing the curtain fabric in a solution having a predetermined concentration containing a urethane resin as a binder resin and a heat shield containing conductive zinc oxide. Is described.
In Patent Document 3, a polyester yarn having an excellent heat-shielding property is obtained by forming a single fiber in which titanium oxide having an average particle size of 0.5 to 1.5 μm is completely dispersed with a flat yarn having a constricted irregular cross section. It is described.
しかしながら、特許文献1では、リン系難燃性ポリエステル加工布帛にスパッタリング法などの物理蒸着法が必要となり、コスト高となる。また、物理蒸着が故に、金属と樹脂間との剥離などの欠点を及ぼすこともある。
特許文献2の導電性酸化亜鉛粒子含有ウレタン樹脂をバインダーとし、そのバインダー液にカーテン生地を浸漬したのものでは、ウレタンとカーテン生地の剥離の欠点がある。また、ウレタン樹脂液に浸漬したものでは、耐候劣化による黄変が生じることが危惧される。
特許文献3のくびれを含む扁平繊維に平均粒径0.5〜1.5μmの酸化チタンを全分散した繊維は、紡糸や整経、織編、仮撚りなどの糸加工での治具、ローラー磨耗など問題となる。
なお、難燃性能を付与するために、布帛に難燃剤による難燃加工を施すことは、従来よく実施されているが、洗濯回数を繰り返すことにより性能が減退してしまう欠点がある。
However, in Patent Document 1, a physical vapor deposition method such as a sputtering method is required for a phosphorus-based flame-retardant polyester processed fabric, which increases costs. In addition, due to physical vapor deposition, there may be disadvantages such as peeling between metal and resin.
In the case where the conductive zinc oxide particle-containing urethane resin of Patent Document 2 is used as a binder and the curtain fabric is dipped in the binder liquid, there is a defect of peeling of the urethane and the curtain fabric. Moreover, in what was immersed in the urethane-resin liquid, it is feared that yellowing by weather resistance deterioration will arise.
A fiber in which titanium oxide having an average particle size of 0.5 to 1.5 μm is completely dispersed in a flat fiber including a constriction disclosed in Patent Document 3, is a jig or roller for yarn processing such as spinning, warping, weaving, false twisting, etc. It becomes a problem such as wear.
In addition, in order to provide a flame retardance performance, performing the flame retarding process by a flame retardant to a fabric is performed well conventionally, but there exists a fault that performance will reduce by repeating the frequency | count of washing.
したがって、本発明は上記のような剥離、コスト高、工程通過性などの問題を解決し、後加工によらずとも、遮熱性と難燃性を併せ持った合成繊維を得ることを目的とする。 Accordingly, an object of the present invention is to solve the problems such as peeling, high cost, process passability, etc. as described above, and to obtain a synthetic fiber having both heat shielding properties and flame retardancy without using post-processing.
上記目的を達成するため、本発明は、 芯部が繊維表面に露出しない複合形態である芯鞘複合繊維であり、鞘部が難燃樹脂、芯部が赤外線反射樹脂で構成される繊維であって、難燃樹脂はリン濃度が2500〜20000ppmであるリン系難燃成分を共重合させたポリエステルであり、赤外線反射樹脂は平均粒子径が0.8〜1.8μmの酸化チタンを含むポリエステルであり、難燃樹脂と赤外線反射樹脂の樹脂比率が80:20〜20:80、LOI値が30以上、以下に示す遮熱性(基準サンプルからの低下温度)が1.5℃以上であることを特徴とする合成繊維をその要旨とする。なお遮熱性は以下により求めることができる。
〔遮熱性〕
合成繊維を2本双糸として、ウェール数が30本/2.54cm、コース数が60本/2.54cmの筒編地を作成し、比較サンプルとする。基準サンプルとして、難燃成分及び赤外線反射成分を含まない以外は比較サンプルと同じものを準備する。温度22℃、湿度60%の室内にて、平坦面に黒画用紙を配置し、黒画用紙の上方0.5cmに、基準サンプルを配置し、基準サンプルの上方50cmにレフランプを配置し、黒画用紙より下方に接触した状態で温度計を設置する。レフランプから500Wの光を照射し、30分経過したときの基準サンプルの温度を測定しA1とする。同様に、比較サンプルのレフランプ30分照射後の温度を測定し、S1とする。
以下の式にて遮熱性を算出する。
遮熱性(℃)=(S1)−(A1)
また、本発明の合成繊維において、難燃樹脂と赤外線反射樹脂との樹脂比率は60:40〜30:70であることがより好ましい。
また本発明は、上記合成繊維を製編織したカーテン素材でもある。
To achieve the above object, the present invention is a core-sheath composite fibers is a composite form in which the core portion is not exposed to the fiber surface, the sheath portion is flame retardant resin, the core portion is a fiber composed of infrared reflective resin The flame retardant resin is a polyester obtained by copolymerizing a phosphorus flame retardant component having a phosphorus concentration of 2500 to 20000 ppm, and the infrared reflective resin is a polyester containing titanium oxide having an average particle diameter of 0.8 to 1.8 μm. There, the resin ratio of the flame retardant resin and an infrared reflecting resin is 80: 20~ 20: 80, LO I value is 30 or more, thermal barrier below (temperature drop from the reference sample) is 1. The gist is a synthetic fiber characterized by being 5 ° C. or higher. The heat shielding property can be obtained as follows.
[Heat insulation]
A synthetic knitted fabric of two twin yarns is used to prepare a tubular knitted fabric having a number of wales of 30 / 2.54 cm and a number of courses of 60 / 2.54 cm, which is used as a comparative sample. As the reference sample, the same sample as the comparative sample is prepared except that the flame retardant component and the infrared reflection component are not included. In a room with a temperature of 22 ° C and a humidity of 60%, black paper is placed on a flat surface, a reference sample is placed 0.5 cm above the black paper, and a reflex lamp is placed 50 cm above the reference sample. Install a thermometer in contact with the bottom. Irradiate 500 W light from the reflex lamp, measure the temperature of the reference sample when 30 minutes have elapsed, and set it as A1. Similarly, the temperature of the comparative sample after 30 minutes of irradiation with the reflex lamp is measured and is set as S1.
The heat shielding property is calculated by the following formula.
Thermal barrier (° C.) = (S1) − (A1)
Moreover, in the synthetic fiber of this invention, it is more preferable that the resin ratio of a flame retardant resin and an infrared reflective resin is 60: 40-30: 70.
The present invention is also a curtain material obtained by knitting or weaving the synthetic fiber .
本発明の合成繊維によれば、難燃性と遮熱性の両方の特徴を持った合成繊維を提供できる。さらに、ウレタン樹脂のバインダー液へ浸漬することや、嵩高加工や銀メッキを施すことなく遮熱性が得られ、安価に清涼感を得ることができ、布帛への難燃後加工を施さずとも難燃効果も合わせ持った合成繊維を提供することができる。 According to the synthetic fiber of the present invention, it is possible to provide a synthetic fiber having both flame retardancy and heat shielding characteristics. Furthermore, it is possible to obtain heat insulation without being immersed in a binder resin of urethane resin, bulky processing or silver plating, to obtain a refreshing feeling at low cost, and difficult to carry out post-flame retardant processing on the fabric. It is possible to provide a synthetic fiber having a flammability effect.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本発明の合成繊維は、難燃樹脂と赤外線反射樹脂から構成されている。
難燃樹脂は、ポリエステル樹脂のみに限定されず、繊維形成可能な熱可塑性樹脂を選択できる。例えば、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアルキレンテレフタレートを主体とした芳香族ポリエステルや、ポリ乳酸のなどの脂肪族ポリエステルポリ乳酸などが挙げられる。
さらに、ポリアミド、ポリウレタン、ポリオレフィンなどの熱可塑性樹脂も使用できる。
First, the synthetic fiber of the present invention is composed of a flame retardant resin and an infrared reflecting resin.
The flame retardant resin is not limited to a polyester resin, and a thermoplastic resin capable of forming fibers can be selected. For example, examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), aromatic polyester mainly composed of polyalkylene terephthalate, and aliphatic polyester polylactic acid such as polylactic acid.
Furthermore, thermoplastic resins such as polyamide, polyurethane and polyolefin can also be used.
本発明の合成繊維は、本発明の効果を損なわない範囲であれば一般的に使用される添加剤、滑剤、艶消し剤、酸化防止剤、蛍光増白剤、制電剤、耐光剤などが含まれていても構わない。 The synthetic fiber of the present invention includes generally used additives, lubricants, matting agents, antioxidants, fluorescent whitening agents, antistatic agents, light-proofing agents and the like as long as the effects of the present invention are not impaired. It may be included.
本発明において、難燃樹脂は、難燃成分を含めばよく、例えば、リン系難燃成分を共重合させた樹脂、リン系難燃剤と樹脂とのブレンドまたは混練によるコンパウンドが好適に挙げられるが、特定されるものではない。 In the present invention, the flame retardant resin may contain a flame retardant component, and examples thereof include a resin obtained by copolymerizing a phosphorus flame retardant component, and a compound obtained by blending or kneading a phosphorus flame retardant and a resin. , Not specified.
本発明の合成繊維は、難燃成分としてリンを含む場合、良好な難燃性を維持させる点から、樹脂内に含まれるリン濃度は、2500〜20000ppmが好ましく、さらに好ましくは6000〜15000ppmである。2500ppm未満では、難燃性が維持しづらくなる傾向がある上、紡糸操業性が低下する傾向がある。20000ppmを超えると紡糸性が低下する傾向がある。
さらに繊維全体に換算したときのリン濃度は2000〜8000ppmが好ましく、さらに好ましくは4000〜7000ppmである。2000ppm未満では難燃性が維持しづらくなる傾向がある上、紡糸操業性が低下する傾向がある。8000ppmを超える濃度では紡糸操業性が極端に低下する恐れがある。
When the synthetic fiber of the present invention contains phosphorus as a flame retardant component, the concentration of phosphorus contained in the resin is preferably 2500 to 20000 ppm, more preferably 6000 to 15000 ppm from the viewpoint of maintaining good flame retardancy. . If it is less than 2500 ppm, the flame retardancy tends to be difficult to maintain, and the spinning operability tends to decrease. If it exceeds 20000 ppm, the spinnability tends to decrease.
Furthermore, the phosphorus concentration when converted to the whole fiber is preferably 2000 to 8000 ppm, and more preferably 4000 to 7000 ppm. If it is less than 2000 ppm, the flame retardancy tends to be difficult to maintain, and the spinning operability tends to decrease. If the concentration exceeds 8000 ppm, the spinning operability may be extremely lowered.
本発明において、赤外線反射樹脂は、ポリエステル樹脂のみに限定されず、繊維形成可能な熱可塑性樹脂が選択できる。例えば、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアルキレンテレフタレートを主体とした芳香族ポリエステルや、ポリ乳酸のなどの脂肪族ポリエステルポリ乳酸などが挙げられる。
さらに、ポリアミド、ポリウレタン、ポリオレフィンなどの熱可塑性樹脂も使用できる。
In the present invention, the infrared reflecting resin is not limited to a polyester resin, and a thermoplastic resin capable of forming fibers can be selected. For example, examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), aromatic polyester mainly composed of polyalkylene terephthalate, and aliphatic polyester polylactic acid such as polylactic acid.
Furthermore, thermoplastic resins such as polyamide, polyurethane and polyolefin can also be used.
赤外線反射樹脂は、赤外線反射成分を含んでいれば良く、赤外線を反射する成分を共重合した樹脂でも良いし、赤外線反射剤をブレンド等により含ませた樹脂でも良い。
赤外線反射剤としては、例えば、酸化チタン、酸化鉄、アルミニウム、錫鉛、金、銀、錫をドープした酸化インジウム、アゾメチン基を有するアゾ色素、フタロシアニン系化合物、アントラキノン系化合物、ポリメチン系化合物、ジインモニウム系化合物、ジシアニン系化合物、金属錯体系化合物などが挙げられる。
特に好適な赤外線反射剤としては、酸化チタンが挙げられる。
The infrared reflection resin only needs to contain an infrared reflection component, may be a resin obtained by copolymerizing a component that reflects infrared rays, or may be a resin containing an infrared reflection agent by blending or the like.
Examples of infrared reflectors include titanium oxide, iron oxide, aluminum, tin lead, gold, silver, tin-doped indium oxide, azo dyes having an azomethine group, phthalocyanine compounds, anthraquinone compounds, polymethine compounds, and diimmonium. Compounds, dicyanine compounds, metal complex compounds, and the like.
A particularly suitable infrared reflector is titanium oxide.
赤外線反射剤としての酸化チタンの平均粒子径は、0.8〜1.8μmが好ましく、0.8〜1.5μmのものがより好ましく、0.9〜1.2μmがさらに好ましい。
このような酸化チタンの含有量は、3質量%以上が好ましく、より好ましくは、6質量%以上である。上限は、紡糸操業性および繊維品質を考慮すると、20質量%程度が好ましい。
The average particle diameter of titanium oxide as an infrared reflecting agent is preferably 0.8 to 1.8 μm, more preferably 0.8 to 1.5 μm, and still more preferably 0.9 to 1.2 μm.
The content of such titanium oxide is preferably 3% by mass or more, and more preferably 6% by mass or more. The upper limit is preferably about 20% by mass in consideration of spinning operability and fiber quality.
また繊維全体に対する上記の平均粒子径の酸化チタンの濃度は18000ppm以上であることが好ましく、20000〜80000ppmがより好ましく、さらに好ましくは35000〜75000ppmである。紡糸操業性、延伸操業性を考慮すると、80000ppm以下にすることが好ましく、良好な遮熱性を得る点からは、18000ppm以上、さらには20000ppm以上とすることが好ましい。 Moreover, it is preferable that the density | concentration of the said average particle diameter titanium oxide with respect to the whole fiber is 18000 ppm or more, 20000-80000 ppm is more preferable, More preferably, it is 35000-75000 ppm. Considering spinning operability and stretching operability, it is preferably 80000 ppm or less, and from the viewpoint of obtaining good heat shielding properties, it is preferably 18000 ppm or more, and more preferably 20000 ppm or more.
なお、通常、合成繊維において、つや消し剤として用いる酸化チタンは、平均粒子径が0.3μm程度であるが、0.8μm〜1.8μmと酸化チタンの平均粒子径を大きくすることによって、熱エネルギーに変換されやすい赤外線の波長(0.8〜3μm)の光を反射するため、遮熱効果を発揮できる。特に好ましくは、0.8〜1.5μmである。 In general, titanium oxide used as a matting agent in synthetic fibers has an average particle size of about 0.3 μm. However, by increasing the average particle size of titanium oxide to 0.8 μm to 1.8 μm, thermal energy is increased. Since it reflects light having an infrared wavelength (0.8 to 3 μm) that is easily converted into heat, a heat shielding effect can be exhibited. Most preferably, it is 0.8-1.5 micrometers.
また、上記酸化チタンは、一次粒子径が0.5〜2.0μmのものであることが好ましい。 The titanium oxide preferably has a primary particle size of 0.5 to 2.0 μm.
上記酸化チタンの結晶構造は、ルチル型が好ましい。なお通常繊維に用いる艶消し剤として用いる酸化チタンは一般的にアナターゼ型が多い。 The crystal structure of the titanium oxide is preferably a rutile type. In general, titanium oxide used as a matting agent for fibers is generally anatase type.
本発明の合成繊維は、上記の難燃樹脂と赤外線反射樹脂を組み合わせることにより得ることができる。 The synthetic fiber of the present invention can be obtained by combining the flame retardant resin and the infrared reflecting resin.
難燃樹脂と赤外線反射樹脂とを組合せる方法としては、例えば、難燃樹脂と赤外線反射樹脂をブレンドして単独糸とする、難燃樹脂と赤外線反射樹脂とを別々の口金から押し出して複合紡糸することにより複合繊維とすることが挙げられる。
前者の場合、粒径の大きい酸化チタンを赤外線反射樹脂に含有させた際、繊維表面に露出してしまうおそれがあり、繊維表層部において難燃樹脂の難燃成分の濃度が下がるため、難燃性能が低下する傾向にある。よって、粒径の大きい酸化チタンを用いる場合は、繊維表層部に酸化チタンが露出しないような形態が取り易い後者のものが好ましい。
後者の場合、繊維の複合形態としては、サイドバイサイド型、芯鞘型等、種々の形態を挙げることができる。赤外線反射樹脂に粒径の大きい酸化チタンを含有させた場合、この酸化チタンが繊維表面に露出し、難燃性能を低下することを防ぐ点からは、粒径の大きい酸化チタンが繊維表面にできるだけ露出しない複合形態とすることが好ましい。
特に好ましい複合形態としては、鞘部が難燃樹脂、芯部が赤外線反射樹脂で構成され、芯部が繊維表面に露出しない形態が挙げられる。このような形態であれば、赤外線反射樹脂に粒径の大きい酸化チタン含有させた場合でも、この酸化チタンが繊維表面に露出しないため、難燃性能が特に発揮し易くなり、また紡糸操業性、工程通過性も良好となる。
As a method of combining the flame retardant resin and the infrared reflective resin, for example, the flame retardant resin and the infrared reflective resin are blended to form a single yarn. By doing so, it may be mentioned to make a composite fiber.
In the former case, when titanium oxide having a large particle size is contained in the infrared reflective resin, it may be exposed on the fiber surface, and the concentration of the flame retardant component of the flame retardant resin is lowered in the fiber surface layer portion. The performance tends to decrease. Therefore, when titanium oxide having a large particle size is used, the latter is preferable because it can easily take a form in which the titanium oxide is not exposed to the fiber surface layer portion.
In the latter case, examples of the composite form of the fibers include various forms such as a side-by-side type and a core-sheath type. When titanium oxide having a large particle size is contained in the infrared reflective resin, titanium oxide having a large particle size can be applied to the fiber surface as much as possible in order to prevent the titanium oxide from being exposed to the fiber surface and reducing the flame retardancy. It is preferable to use a composite form that is not exposed.
As a particularly preferable composite form, there may be mentioned a form in which the sheath part is composed of a flame-retardant resin, the core part is made of an infrared reflecting resin, and the core part is not exposed on the fiber surface. In such a form, even when titanium oxide having a large particle size is contained in the infrared reflecting resin, the titanium oxide is not exposed on the fiber surface, so that flame retardancy is particularly easily exhibited, and spinning operability, Process passability is also improved.
本発明の合成繊維は、難燃樹脂と赤外線反射樹脂において、それぞれの樹脂比率(面積比)が80:20〜20:80が好ましく、より好ましくは、60:40〜30:70である。この範囲であると、赤外線反射樹脂が一定以上の面積をもつため、遮熱効果を奏し易く、一定以上の濃度の難燃成分を含ませることで難燃性も得られ易い。 Synthetic fibers of the present invention, the flame retardant resin and an infrared reflecting resin, each resin ratio (area ratio) is 80: 20 to eighty past eight p.m., more preferably, 60: 40-30: 70. Within this range, since the infrared reflective resin has a certain area or more, it is easy to achieve a heat shielding effect, and it is easy to obtain flame retardancy by containing a flame retardant component having a certain concentration or more.
鞘部に難燃樹脂、芯部に平均粒子径の大きい酸化チタンを含む赤外線反射樹脂を配置した複合繊維とする場合、繊維横断面において、鞘部と芯部の接合比率は、面積比で、80:20〜20:80が好ましく、より好ましくは60:40〜30:70である。
すなわち、芯部の比率が大きすぎると、平均粒子径の大きい酸化チタンを多く含むことになり、糸質の低下につながる恐れがあり、また難燃成分の割合が低下することにより難燃性を十分に得ることができない恐れがある。
また、鞘部の比率が大きすぎると、平均粒子径の大きい酸化チタンを含有している部分が少なくなり、熱エネルギーとなりやすい3μm以下の波長の赤外線を反射しない部分が多くなるため、遮熱効果を十分に得る点からは、上記の範囲とすることが好ましい。
また繊維横断面において、難燃性、工程通過性、紡糸操業性を良好なものとする点から、芯部は繊維表面に露出していないことが好ましい。
In the case of a composite fiber having a flame retardant resin in the sheath and an infrared reflective resin containing titanium oxide having a large average particle diameter in the core, in the fiber cross section, the joining ratio of the sheath and the core is an area ratio, 80:20 eighty past eight p.m., more preferably 60: 40-30: 70.
That is, if the ratio of the core portion is too large, it will contain a large amount of titanium oxide having a large average particle size, which may lead to a decrease in yarn quality, and the flame retardant component will have a reduced flame retardancy. There is a risk that you cannot get enough.
Moreover, if the ratio of the sheath portion is too large, the portion containing titanium oxide having a large average particle diameter decreases, and the portion that does not reflect infrared rays having a wavelength of 3 μm or less, which tends to become thermal energy, increases. From the point of sufficiently obtaining the above, it is preferable to set the above range.
Moreover, in the fiber cross section, it is preferable that the core part is not exposed on the fiber surface from the viewpoint of good flame retardancy, process passability and spinning operability.
本発明の合成繊維は難燃指標であるLOI値が30以上である。
LOI値は、例えば、上述したようなリン濃度にすることや、上述したような芯鞘比率を持つ芯鞘型複合繊維とすることにより、上記のLOI値とすることができる。
尚、LOI値は通常26以上あれば、難燃性を有するとされている。但し、持続的な難燃効果や難燃性能に耐久性を持たせるには、LOI値を30以上がよい。さらに好ましくは31以上である。
The synthetic fiber of the present invention has a LOI value of 30 or more, which is a flame retardant index.
The LOI value can be set to the LOI value described above, for example, by setting the phosphorus concentration as described above or by using the core-sheath type composite fiber having the core-sheath ratio as described above.
In addition, if LOI value is usually 26 or more, it is said that it has a flame retardance. However, the LOI value is preferably 30 or more in order to give durability to the continuous flame retardant effect and flame retardant performance. More preferably, it is 31 or more.
本発明の合成繊維は、遮熱性が1.5℃以上である。
遮熱性は、難燃成分及び赤外線遮熱成分が入っていない繊維からなる布帛(基準サンプル)と測定対象の繊維からなる布帛(比較サンプル)を用いて、レフランプによる照射により、基準サンプルに対して、比較サンプルの温度が何℃低下するかを、後述のように測定して算出し、「基準サンプル−比較サンプル」を遮熱性の値(℃)とする。
本発明の合成繊維の遮熱性(基準サンプルからの低下温度)は1.5℃以上であり、さらに好ましくは3.0℃以上であり、低下温度が高ければ高いほど、遮熱効果に優れている。遮熱性が1.5℃未満の場合、繊維を構成する赤外線反射樹脂による熱線反射効果は得られず、遮熱効果は得られない。
The synthetic fiber of the present invention has a heat shielding property of 1.5 ° C. or higher.
The heat shielding property is obtained by irradiating with a reflex lamp with respect to a reference sample using a cloth (reference sample) made of a fiber not containing a flame retardant component and an infrared heat shielding component and a cloth made of a fiber to be measured (comparative sample). Then, how much the temperature of the comparative sample decreases is measured and calculated as described later, and “reference sample−comparative sample” is defined as the heat shielding value (° C.).
The heat shielding property (decreased temperature from the reference sample) of the synthetic fiber of the present invention is 1.5 ° C or higher, more preferably 3.0 ° C or higher. The higher the lowering temperature, the better the heat shielding effect. Yes. When the heat shielding property is less than 1.5 ° C., the heat ray reflecting effect by the infrared reflecting resin constituting the fiber cannot be obtained, and the heat shielding effect cannot be obtained.
次に、本発明の合成繊維の好適な製造方法について具体的に説明する。
以下は、芯部に赤外線反射樹脂として、上記平均粒子径の酸化チタンを含有したポリエステル、鞘部に難燃樹脂として、リン系の難燃成分を共重合した共重合ポリエステルを用いた合成繊維の例である。
Next, the suitable manufacturing method of the synthetic fiber of this invention is demonstrated concretely.
The following is a synthetic fiber using a polyester containing a titanium oxide having the above average particle diameter as an infrared reflecting resin in the core, and a polyester copolymerized with a phosphorus-based flame retardant component as a flame retardant resin in the sheath. It is an example.
まず、赤外線反射樹脂として、上記平均粒子径をもつ酸化チタンを3〜20質量%含有したポリエステル樹脂、難燃樹脂として、上述したリン濃度を有するリン系の難燃成分を共重合した共重合ポリエステルを準備する。
これらの樹脂をそれぞれ溶融して、紡糸口金から吐出する。引き続き糸条を冷却して、油剤を付与した後、未延伸糸を巻糸体に一旦巻き取る。その後、巻糸体に巻き取った未延伸糸を引き出し、延伸した後、熱処理をして巻糸体に捲き取り、本発明の合成繊維を得ることができる。
First, a polyester resin containing 3 to 20% by mass of titanium oxide having the above average particle diameter as an infrared reflecting resin, and a copolymer polyester obtained by copolymerizing the above-described phosphorus-based flame retardant component having a phosphorus concentration as a flame retardant resin Prepare.
Each of these resins is melted and discharged from a spinneret. Subsequently, after cooling the yarn and applying the oil agent, the undrawn yarn is once wound around the wound body. Thereafter, the undrawn yarn wound around the wound body is drawn out, drawn, and then heat treated to wind up the wound body to obtain the synthetic fiber of the present invention.
紡糸温度(紡糸口金から吐出する温度)としては、例えば、270〜295℃が好ましく、より好ましくは280〜295℃である。 The spinning temperature (temperature discharged from the spinneret) is, for example, preferably 270 to 295 ° C, more preferably 280 to 295 ° C.
紡糸速度(上記では未延伸糸を巻き取る速度)としては、例えば、800〜1800m/minが好ましく、より好ましくは800〜1500m/minである。 The spinning speed (the speed at which the undrawn yarn is wound up) is, for example, preferably 800 to 1800 m / min, and more preferably 800 to 1500 m / min.
延伸速度としては、例えば、500〜1200m/minが好ましく、より好ましくは600〜1000m/minである。 The stretching speed is preferably, for example, 500 to 1200 m / min, and more preferably 600 to 1000 m / min.
延伸工程での熱処理温度としては、例えば、100〜180℃が好ましく、より好ましくは120〜160℃である。 As heat processing temperature in an extending process, 100-180 degreeC is preferable, for example, More preferably, it is 120-160 degreeC.
上記は、未延伸糸を一旦巻き取った後に、延伸する方法(コンベンショナル法)を例示したが、未延伸糸を一旦巻き取ることなく、延伸し、熱処理した後に巻き取る方法(直接延伸方法)にて、本発明の合成繊維を製造してもよい。
この場合、巻き取り速度は、3000〜4500m/minが好ましく、より好ましくは、3000〜4000m/minである。
The above method exemplifies a method (conventional method) in which an unstretched yarn is wound once and then stretched. However, the unstretched yarn is stretched without being wound once, and is wound up after being heat-treated (direct stretching method). Thus, the synthetic fiber of the present invention may be manufactured.
In this case, the winding speed is preferably 3000 to 4500 m / min, and more preferably 3000 to 4000 m / min.
本発明の合成繊維は、未延伸糸、半延伸糸(高配向き未延伸糸)、延伸糸等のいずれの形態のものでもよい。 The synthetic fiber of the present invention may be in any form such as undrawn yarn, semi-drawn yarn (highly oriented undrawn yarn), drawn yarn and the like.
上述した製造方法においては、延伸糸を得る方法を例示したが、高配向の未延伸糸を得る場合は、上述したコンベンショナル法と同様に、樹脂を溶融した吐出した後、冷却し、油剤を付与した後、第1ゴデッドロールに導き、その後、第1ゴデッドロールと等速の第2ゴデッドローラーを経由して巻糸体に高配向の半延伸糸巻き取ることにより得ることができる。それぞれのゴデッドロールを等速の3000〜4500m/min程度が好ましく、より好ましくは、3000〜4000m/minである。 In the manufacturing method described above, a method for obtaining a drawn yarn was exemplified. However, in the case of obtaining a highly oriented undrawn yarn, the resin is melted and discharged, cooled, and an oil agent is applied in the same manner as the conventional method described above. After that, it is guided to the first goded roll, and then it can be obtained by winding a highly oriented semi-drawn yarn around the wound yarn through the second goded roller having the same speed as the first goded roll. Each goded roll is preferably about 3000 to 4500 m / min at a constant speed, and more preferably 3000 to 4000 m / min.
本発明において、上記より得られた合成繊維をそのまま布帛に用いても良いが、仮撚り加工、押し込み加工、ニットデニット加工など繊維が嵩高となるような加工を施してもよい。またこのような加工を施すことにより、より保温性が優れたものが得られ、また製編織した場合、編み目や織り目を、密とすることができるため、より一層遮熱性が向上する。 In the present invention, the synthetic fiber obtained as described above may be used as it is in the fabric, but may be subjected to processing such as false twisting, indentation processing, knit deniting, or the like that makes the fiber bulky. Further, by performing such processing, a product with better heat retention is obtained, and when knitting and weaving, the stitches and the stitches can be made dense, so that the heat shielding property is further improved.
以下に実施例を挙げて本発明を詳細に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。なお、実施例及び比較例中の測定方法は以下の通りである。 Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the Example described below. In addition, the measuring method in an Example and a comparative example is as follows.
A.破断強度、破断伸度
JIS−L−1013に準じ、島津製作所製のAGS−1KNGオートグラフ引張試験機を用い、試料糸長20cm、定速引張速度20cm/minの条件で測定する。荷重−伸び曲線での荷重の最高値を繊度で除した値を破断強度(cN/dtex)とし、そのときの伸び率を破断伸度(%)とする。
B.平均粒子径
透過電子顕微鏡(日本電子社製 透過電子顕微鏡 JEM−1230)を用いて写真撮影し、自動画像処理装置(LUZEX AP(ニレコ(株)製)にて体積基準の水平方向等分径を測定し、比重を計算して、重量平均の平均粒子径を求めた。
C.紡糸操業性・延伸操業性
紡糸操業性および延伸操業性は、各工程の通過性良好であれば○、工程通過性が若干悪いものを△、製糸不可であれば×とした。
D.LOI値
JIS L 1091法に準じて実施した。ポリエステル重合体を常法により紡糸延伸して得た合成繊維の脱脂を行い、その繊維1gを長さ10cmのかせ巻きを作製し、検撚器により長さ10cmの測定用サンプルを得た。その試験サンプルの限界酸素指数を試験した。
E.遮熱性
〈測定条件〉
温度:22℃、湿度:60%(室内)
〈測定法〉
合成繊維を2本双糸として、ウェール数が30本/2.54cm、コース数が60本/2.54cmの筒編地を作成し、比較サンプルとする。基準サンプルとして、難燃成分及び赤外線反射成分を含まない以外は比較サンプルと同じものを準備する。温度22℃、湿度60%の室内にて、平坦面に黒画用紙を配置し、黒画用紙の上方0.5cmに、基準サンプルを配置し、基準サンプルの上方50cmにレフランプを配置し、黒画用紙より下方に接触した状態で温度計を設置する。レフランプから500Wの光を照射し、30分経過したときの基準サンプルの温度を測定しA1とする。同様に、比較サンプルのレフランプ30分照射後の温度を測定し、S1とする。
遮熱性は以下の式にて算出する。
遮熱性(℃)=(A1)−(S1)
A. Breaking strength and breaking elongation Measured according to JIS-L-1013 using an AGS-1KNG autograph tensile tester manufactured by Shimadzu Corporation under the conditions of a sample yarn length of 20 cm and a constant speed tensile speed of 20 cm / min. The value obtained by dividing the maximum value of the load on the load-elongation curve by the fineness is defined as the breaking strength (cN / dtex), and the elongation at that time is defined as the breaking elongation (%).
B. Average particle diameter Photographed using a transmission electron microscope (transmission electron microscope JEM-1230 manufactured by JEOL Ltd.), and an automatic image processing device (LUZEX AP (manufactured by Nireco)) Measurements were made and the specific gravity was calculated to determine the weight average particle size.
C. Spinning operability / drawing operability: Spinning operability and drawing operability were evaluated as “◯” when the passability of each step was good, “Δ” when the passability was slightly poor, and “x” when the yarn could not be made.
D. LOI value It carried out according to JIS L 1091 method. A synthetic fiber obtained by spinning and stretching a polyester polymer by a conventional method was degreased, 1 g of the fiber was made into a 10 cm long skein, and a measurement sample having a length of 10 cm was obtained with a tester. The critical oxygen index of the test sample was tested.
E. Thermal barrier <Measurement conditions>
Temperature: 22 ° C, Humidity: 60% (indoor)
<Measurement method>
A synthetic knitted fabric of two twin yarns is used to prepare a tubular knitted fabric having a number of wales of 30 / 2.54 cm and a number of courses of 60 / 2.54 cm, which is used as a comparative sample. As the reference sample, the same sample as the comparative sample is prepared except that the flame retardant component and the infrared reflection component are not included. In a room with a temperature of 22 ° C and a humidity of 60%, black paper is placed on a flat surface, a reference sample is placed 0.5 cm above the black paper, and a reflex lamp is placed 50 cm above the reference sample. Install a thermometer in contact with the bottom. Irradiate 500 W light from the reflex lamp, measure the temperature of the reference sample when 30 minutes have elapsed, and set it as A1. Similarly, the temperature of the comparative sample after 30 minutes of irradiation with the reflex lamp is measured and is set as S1.
The heat shielding property is calculated by the following formula.
Thermal barrier (° C.) = (A1) − (S1)
〔実施例1〕
芯部に平均粒子径1.0μmの酸化チタンが含有した酸化チタン濃度40質量%マスターバッチとポリエチレンテレフタレート(極限粘度IV=0.670dl/g)を酸化チタン粉末濃度として9質量%となるようにチップブレンドした。また鞘部の難燃樹脂はリン濃度10500ppmの樹脂を使用し、繊維全体のリン濃度が2100ppmに調整した。これらの樹脂を用いて、紡糸温度295℃にて丸型の吐出孔を有する紡糸口金から芯鞘比率80:20(面積比)にて吐出した。引き続き糸条を冷却、給油し、1400m/minにて未延伸糸を巻き取った。その後、未延伸糸を延伸倍率3.15倍にて延伸し、135℃で熱処理を施した後、800m/minにて捲き取り、繊度84dtex/24fの芯鞘複合繊維を得た。
[Example 1]
Titanium oxide concentration 40 mass% masterbatch containing titanium oxide with an average particle diameter of 1.0 μm in the core and polyethylene terephthalate (intrinsic viscosity IV = 0.670 dl / g) as titanium oxide powder concentration to 9 mass% Chip blended. The flame retardant resin for the sheath was a resin having a phosphorus concentration of 10500 ppm, and the phosphorus concentration of the entire fiber was adjusted to 2100 ppm. Using these resins, the resin was discharged from a spinneret having a round discharge hole at a spinning temperature of 295 ° C. at a core-sheath ratio of 80:20 (area ratio). Subsequently, the yarn was cooled and lubricated, and the undrawn yarn was wound up at 1400 m / min. Thereafter, the undrawn yarn was drawn at a draw ratio of 3.15 times, heat treated at 135 ° C., and then wound at 800 m / min to obtain a core-sheath composite fiber having a fineness of 84 dtex / 24f.
〔実施例2〕
繊度を22dtex/1fにしたことと、延伸倍率3.59倍とした以外は実施例1と同様に芯鞘複合繊維を得た。
[Example 2]
A core-sheath composite fiber was obtained in the same manner as in Example 1 except that the fineness was 22 dtex / 1f and the draw ratio was 3.59 times.
〔実施例3、5、7、9、10、比較例4、5〕
芯鞘比率を表1のように変更した以外は実施例1と同様に芯鞘複合繊維を得た。
[Examples 3, 5, 7, 9, 10, Comparative Examples 4 and 5]
A core-sheath composite fiber was obtained in the same manner as in Example 1 except that the core-sheath ratio was changed as shown in Table 1.
〔実施例4、6、8〕
芯鞘比率を表1のように変更した以外は実施例2と同様に芯鞘複合繊維を得た。
[Examples 4, 6, and 8]
A core-sheath composite fiber was obtained in the same manner as in Example 2 except that the core-sheath ratio was changed as shown in Table 1.
〔比較例1〕
酸化チタンなどの無機粒子を添加していないポリエチレンテレフタレート(極限粘度IV=0.670dl/g)を、紡糸温度295℃にて丸型の吐出孔を有す紡糸口金から吐出した。引き続き糸条を冷却、油剤を付与し、1400m/minにて未延伸糸を得た。その後、未延伸糸を延伸倍率3.63倍にて延伸し、135℃で熱処理を施してから、800m/minにて捲き取り、繊度84T/24fの単独繊維を巻き取った。
[Comparative Example 1]
Polyethylene terephthalate (intrinsic viscosity IV = 0.670 dl / g) to which inorganic particles such as titanium oxide were not added was discharged from a spinneret having a round discharge hole at a spinning temperature of 295 ° C. Subsequently, the yarn was cooled, an oil agent was applied, and an undrawn yarn was obtained at 1400 m / min. Thereafter, the undrawn yarn was drawn at a draw ratio of 3.63, heat-treated at 135 ° C., and then wound at 800 m / min to wind up a single fiber having a fineness of 84T / 24f.
〔比較例2〕
繊度を22dtex/1fにしたことと、延伸倍率3.80倍とした以外は比較例1と同様に単独繊維を得た。
[Comparative Example 2]
Single fibers were obtained in the same manner as in Comparative Example 1 except that the fineness was 22 dtex / 1f and the draw ratio was 3.80 times.
〔比較例3〕
平均粒子径1.0μmの酸化チタンが含有した40重量%マスターバッチとポリエチレンテレフタレート(極限粘度IV=0.670dl/g)を酸化チタン粉末濃度として9.0質量%となるようにチップブレンドした。このブレンド樹脂を紡糸温度295℃にて丸型の吐出孔を有す紡糸口金から吐出した。引き続き糸条を冷却、油剤を付与し、1400m/minにて未延伸糸を採取した。そして、ボビンを延伸倍率3.0倍にて延伸を実施し135℃で熱処理を施してから800m/minにて捲き取り、繊度84dtex/24fの単独繊維を巻き取った。
[Comparative Example 3]
A 40 wt% masterbatch containing titanium oxide having an average particle size of 1.0 μm and polyethylene terephthalate (intrinsic viscosity IV = 0.670 dl / g) were chip-blended so that the titanium oxide powder concentration was 9.0% by mass. This blend resin was discharged from a spinneret having a round discharge hole at a spinning temperature of 295 ° C. Subsequently, the yarn was cooled, an oil agent was applied, and undrawn yarn was collected at 1400 m / min. Then, the bobbin was stretched at a stretch ratio of 3.0 times, subjected to heat treatment at 135 ° C., and then wound up at 800 m / min to wind up a single fiber having a fineness of 84 dtex / 24f.
〔比較例6〕
難燃樹脂のリン濃度6000ppmの樹脂を使用し、繊維全体のリン濃度が6000ppmに調整した。この樹脂を用いて、紡糸温度290℃にて丸型の吐出孔を有す紡糸口金から吐出した。引き続き糸条を冷却、給油し、1400m/minにて未延伸糸を採取する。そして、ボビンを延伸倍率3.63倍にて延伸し135℃で熱処理を施してから800m/minにて捲き取り、繊度84dtex/24fの難燃単独繊維を巻き取った。
[Comparative Example 6]
A flame retardant resin having a phosphorus concentration of 6000 ppm was used, and the phosphorus concentration of the entire fiber was adjusted to 6000 ppm. Using this resin, it was discharged from a spinneret having a round discharge hole at a spinning temperature of 290 ° C. Subsequently, the yarn is cooled and lubricated, and undrawn yarn is collected at 1400 m / min. Then, the bobbin was stretched at a stretch ratio of 3.63 and subjected to heat treatment at 135 ° C. and then wound up at 800 m / min to wind up a flame-retardant single fiber having a fineness of 84 dtex / 24f.
得られた結果を表1に示す。
実施例1〜10から得られた、繊維全体のリン濃度2000〜9000ppmで繊維全体の平均粒径が1μmの酸化チタンの濃度が18000〜80000ppmの合成繊維は、LOI値30以上、遮熱性が2.0〜5.3℃であり、難燃性及び遮熱性に優れたものであった。これらの合成繊維は、いずれも、強度3.7cN/dtex以上、伸度30.0%前後であり、製編織に好適に適用できる。
なお、実施例3〜8のように、赤外線反射樹脂と難燃樹脂との樹脂比率が40:60〜70:30の範囲のものが、LOI値、遮熱性、紡糸操業性、物性など特に優れていた。
比較例1及び2から得られたポリエチレンテレフタレート単独の合成繊維は、難燃性が得られないものであった。
比較例3からなる平均粒径が1μmの酸化チタンを含む赤外線反射樹脂のみからなる合成繊維は、遮熱性能はあるものの難燃性、紡糸・延伸操業性が極端に低く、製編織の工程通過性も不良だった。
比較例4は鞘部の難燃樹脂の比率が小さく、難燃性能が十分でなかった。
比較例5は芯部の赤外線反射樹脂の比率が小さく、熱線や可視光線を反射する面積が極端に小さくなるため、ほとんど遮熱効果が得られなかった。さらに紡糸操業性も悪くなる傾向となった。
比較例6は赤外線反射樹脂を含まないため、遮熱効果が得られなかった。
このように、リン濃度の高い難燃樹脂を鞘部に配置すると難燃成分が少量であっても、高い難燃性能を付与することができ、また鞘部の比率を小さくすることができるため、芯部の比率を大きくし、熱線や可視光線などの波長の光を効率的に反射させることが可能となり、難燃性、遮熱性ともに高い繊維を提供できる。
Synthetic fibers obtained from Examples 1 to 10 and having a phosphorous concentration of 2000 to 9000 ppm and an average particle diameter of 1 μm of the whole fiber and a concentration of 18000 to 80000 ppm of titanium oxide have a LOI value of 30 or more and a heat shielding property of 2 It was 0.0-5.3 degreeC, and was excellent in a flame retardance and heat-shielding property. All of these synthetic fibers have a strength of 3.7 cN / dtex or more and an elongation of about 30.0%, and can be suitably applied to knitting and weaving.
In addition, as in Examples 3 to 8, the resin ratio of the infrared reflecting resin and the flame retardant resin is in the range of 40:60 to 70:30, particularly excellent in LOI value, heat shielding property, spinning operation property, physical properties and the like. It was.
The synthetic fiber of polyethylene terephthalate alone obtained from Comparative Examples 1 and 2 was not able to obtain flame retardancy.
Synthetic fiber consisting only of infrared reflective resin containing titanium oxide with an average particle diameter of 1 μm made in Comparative Example 3 has heat shielding performance but extremely low flame retardancy and spinning / drawing operability, and passes through the process of weaving and weaving. Sex was also poor.
In Comparative Example 4, the ratio of the flame retardant resin in the sheath portion was small, and the flame retardant performance was not sufficient.
In Comparative Example 5, since the ratio of the infrared reflecting resin in the core portion was small and the area for reflecting heat rays and visible light was extremely small, almost no heat shielding effect was obtained. Furthermore, the spinning operability tended to deteriorate.
Since Comparative Example 6 did not contain an infrared reflecting resin, a heat shielding effect could not be obtained.
As described above, when a flame retardant resin having a high phosphorus concentration is disposed in the sheath, even if the amount of the flame retardant component is small, high flame retardancy can be imparted and the ratio of the sheath can be reduced. It is possible to increase the ratio of the core portion and efficiently reflect light having a wavelength such as heat rays or visible light, and to provide a fiber having high flame retardancy and heat shielding properties.
実施例1から得られた繊維を50%の混率で布帛を製造し、ボイルカーテンとした。同様に、実施例5から得られた繊維を用いてボイルカーテンを製造した。また同様に、比較例1の繊維を、100%用いて布帛を製造し、ボイルカーテンとした。これらのボイルカーテンに火を翳したところ、実施例1、5から得られたボイルカーテンは少し焦げたのみであったのみ対し、比較例1から得られたボイルカーテンは燃えた。晴天下、実施例1、5、比較例1から得られたボイルカーテンを、同様の条件で、室内の窓にかけて、2時間経過した後に、室内の温度を測定した。実施例1、5から得られた繊維を用いたボイルカーテンは、比較例1から得られたものと比べて、それぞれ、実施例1で5℃以上、実施例6で3℃室内温度が低下し、いずれも遮熱性に優れたものであった。 A fabric was produced from the fiber obtained from Example 1 at a mixing ratio of 50% to obtain a boil curtain. Similarly, a boil curtain was produced using the fiber obtained from Example 5. Similarly, a fabric was manufactured using 100% of the fiber of Comparative Example 1 to obtain a boil curtain. When these boiled curtains were lit, the boiled curtains obtained from Examples 1 and 5 were only slightly burned, whereas the boiled curtains obtained from Comparative Example 1 were burned. Under sunny conditions, the boil curtains obtained from Examples 1 and 5 and Comparative Example 1 were applied to indoor windows under the same conditions, and after 2 hours had passed, the indoor temperature was measured. The boiling curtains using the fibers obtained from Examples 1 and 5 have a room temperature of 5 ° C. or higher in Example 1 and 3 ° C. in Example 6 lower than those obtained from Comparative Example 1, respectively. These were all excellent in heat shielding properties.
実施例2、4、6、8から得られた繊維をそれぞれ、50%の混率で布帛を製造し、それぞれをレースカーテンとした。同様に比較例2から得られた繊維を用いてレースカーテンを製造した。これらのレースカーテンに火を翳したところ、実施例2、4、6、8から得られたレースカーテンは少し焦げたのみであったのみ対し、比較例2から得られたレースカーテンは燃えてしまった。晴天下、実施例2、4、6、8、比較例2から得られたボイルカーテンを、同様の条件で、室内の窓にかけて、2時間経過した後に、室内の温度を測定した。実施例2から得られた繊維を用いたレースカーテンは、比較例1から得られたものと比べて、5℃、室内温度が低下し、遮熱性に優れていた。また実施例4、6、8から得られたレースカーテンは、それぞれ、比較例2のものと比べて、2〜4℃室内温度が低下し遮熱性は良好であった。 Fabrics were produced from the fibers obtained from Examples 2, 4, 6, and 8, respectively, at a mixing ratio of 50%, and each was used as a lace curtain. Similarly, a lace curtain was manufactured using the fiber obtained from Comparative Example 2. When these lace curtains were set on fire, the lace curtains obtained from Examples 2, 4, 6 and 8 were only slightly burned, whereas the lace curtain obtained from Comparative Example 2 was burned. It was. Under sunny conditions, the boil curtains obtained from Examples 2, 4, 6, 8 and Comparative Example 2 were applied to the indoor window under the same conditions, and after 2 hours had passed, the indoor temperature was measured. The lace curtain using the fiber obtained from Example 2 was superior to the one obtained from Comparative Example 1 in that the room temperature was reduced by 5 ° C. and the heat shielding property was excellent. In addition, the lace curtains obtained from Examples 4, 6, and 8 each had a lower room temperature of 2 to 4 ° C. and better heat shielding properties than those of Comparative Example 2.
難燃と遮熱性を有し、長期間持続して使用できる点から、ブラインドカーテン、ボイルカーテン、遮熱・難燃カーテン、レースカーテンなどのカーテン素材や網戸などに利用が期待される。 It is expected to be used for curtain materials and screen doors such as blind curtains, boiled curtains, heat / flame retardant curtains, and lace curtains because it has flame retardancy and heat insulation and can be used for a long time.
Claims (3)
〔遮熱性〕
合成繊維を2本双糸として、ウェール数が30本/2.54cm、コース数が60本/2.54cmの筒編地を作成し、比較サンプルとした。基準サンプルとして、難燃成分及び赤外線反射成分を含まない以外は比較サンプルと同じものを準備した。温度22℃、湿度60%の室内にて、平坦面に黒画用紙を配置し、黒画用紙の上方0.5cmに、基準サンプルを配置し、基準サンプルの上方50cmにレフランプを配置し、黒画用紙より下方に接触した状態で温度計を設置する。レフランプから500Wの光を照射し、30分経過したときの基準サンプルの温度を測定しA1とする。同様に、比較サンプルのレフランプ30分照射後の温度を測定し、S1とする。以下の式にて遮熱性を算出する。
遮熱性(℃)=(A1)−(S1) It is a core-sheath composite fiber that is a composite form in which the core part is not exposed on the fiber surface, the sheath part is a fiber composed of a flame-retardant resin and the core part is an infrared reflective resin , and the flame-retardant resin has a phosphorus concentration of 2500 to 2500 A polyester obtained by copolymerizing a phosphorus-based flame retardant component of 20000 ppm, and the infrared reflective resin is a polyester containing titanium oxide having an average particle diameter of 0.8 to 1.8 μm. The resin of the flame retardant resin and the infrared reflective resin ratio of 80: 20~ 20: 80, LO I value is 30 or more, thermal barrier below (temperature drop from the reference sample) is 1. A synthetic fiber characterized by being 5 ° C or higher.
[Heat insulation]
A cylindrical knitted fabric with a synthetic fiber of two twin yarns and a wale number of 30 / 2.54 cm and a course number of 60 / 2.54 cm was prepared as a comparative sample. As the reference sample, the same sample as the comparative sample was prepared except that the flame retardant component and the infrared reflection component were not included. In a room with a temperature of 22 ° C and a humidity of 60%, black paper is placed on a flat surface, a reference sample is placed 0.5 cm above the black paper, and a reflex lamp is placed 50 cm above the reference sample. Install a thermometer in contact with the bottom. Irradiate 500 W light from the reflex lamp, measure the temperature of the reference sample when 30 minutes have elapsed, and set it as A1. Similarly, the temperature of the comparative sample after 30 minutes of irradiation with the reflex lamp is measured and is set as S1. The heat shielding property is calculated by the following formula.
Thermal barrier (° C.) = (A1) − (S1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014021797A JP6355351B2 (en) | 2013-09-30 | 2014-02-07 | Synthetic fiber |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013206006 | 2013-09-30 | ||
JP2013206006 | 2013-09-30 | ||
JP2014021797A JP6355351B2 (en) | 2013-09-30 | 2014-02-07 | Synthetic fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015092031A JP2015092031A (en) | 2015-05-14 |
JP6355351B2 true JP6355351B2 (en) | 2018-07-11 |
Family
ID=53195311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014021797A Active JP6355351B2 (en) | 2013-09-30 | 2014-02-07 | Synthetic fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6355351B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6586439B2 (en) * | 2017-07-10 | 2019-10-02 | 株式会社シマノ | Textile structure and clothing |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0299614A (en) * | 1988-10-04 | 1990-04-11 | Teijin Ltd | Heat-resistant, chemical resistant conjugated fiber of improved releasability |
JPH0482914A (en) * | 1990-07-19 | 1992-03-16 | Nippon Ester Co Ltd | Flame-retardant polyester conjugate fiber |
JPH06264354A (en) * | 1993-03-10 | 1994-09-20 | Unitika Ltd | Flame-retardant filament nonwoven fabric and its production |
JPH1077567A (en) * | 1996-07-11 | 1998-03-24 | Toray Ind Inc | Base material for flame-retardant filter and filter device using the base material |
EP1319739A4 (en) * | 2000-09-20 | 2005-04-20 | Mitsubishi Eng Plastics Corp | FLAME RETARDANT POLYAMIDE FILAMENTS AND THEIR USE |
JP2002173829A (en) * | 2000-09-20 | 2002-06-21 | Mitsubishi Engineering Plastics Corp | Flame retardant polyamide filament |
JP2005298990A (en) * | 2004-04-08 | 2005-10-27 | Kanebo Ltd | Flame retardant/light resistant polyester fiber |
JP5297331B2 (en) * | 2008-10-17 | 2013-09-25 | Kbセーレン株式会社 | Core-sheath type composite fiber |
JP5777391B2 (en) * | 2010-04-21 | 2015-09-09 | Kbセーレン株式会社 | Interior interior materials |
JP2011241529A (en) * | 2010-04-21 | 2011-12-01 | Kb Seiren Ltd | Sheath-core conjugate fiber |
JP5379076B2 (en) * | 2010-05-26 | 2013-12-25 | Kbセーレン株式会社 | Composite synthetic fiber |
-
2014
- 2014-02-07 JP JP2014021797A patent/JP6355351B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015092031A (en) | 2015-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103069060B (en) | Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber | |
JP6279845B2 (en) | Woven knitted fabric and textile products with excellent heat insulation and heat dissipation | |
EP2808428B1 (en) | Polyester composite fiber with excellent heat-shielding property and coloration | |
JP5297331B2 (en) | Core-sheath type composite fiber | |
WO2022033412A1 (en) | Multi-layer section composite fiber and fabric thereof | |
JP2013044055A (en) | Core-sheath type polyester fiber with flat cross-section and cloth with opacity using the same | |
JP6355351B2 (en) | Synthetic fiber | |
JP5777391B2 (en) | Interior interior materials | |
JP2011241529A (en) | Sheath-core conjugate fiber | |
JP6129608B2 (en) | Polyester core-sheath type composite fiber excellent in permeation resistance and method for producing the same | |
JP6355388B2 (en) | Composite fiber | |
JP2016113714A (en) | False-twisted hollow multifilament yarn, and woven or knitted fabric | |
JP6367070B2 (en) | Synthetic fiber multifilament | |
JP6538340B2 (en) | Hollow multifilament yarn, false twist hollow multifilament yarn, and woven and knitted fabric | |
JP2019178454A (en) | Polyester core-sheath composite short fiber, spun yarn containing the short fiber, and fabric containing the short fiber | |
JP2019007096A (en) | Polyester composite fiber and fiber assembly | |
JP6426073B2 (en) | Composite fiber and method of manufacturing fabric using the same | |
JP2016069771A (en) | Synthetic fiber | |
JP7117710B2 (en) | Core-sheath type polyester composite fiber, false twist yarn of core-sheath type polyester composite fiber, woven and knitted fabric, and method for producing core-sheath type polyester composite fiber | |
JP2019143258A (en) | Core-sheath-type polyester composite fiber, false-twist yarn of core-sheath-type polyester composite fiber, knitted fabric, and manufacturing method of core-sheath-type polyester composite fiber | |
JP6501839B2 (en) | Multifilament yarn and woven or knitted fabric thereof | |
TW201800631A (en) | Flat section crimping yarn, method of manufacturing the same, and braid containing the same | |
JP6501840B2 (en) | Multifilament yarn and woven or knitted fabric thereof | |
JP2020084358A (en) | False twist hollow multifilament yarn, manufacturing method thereof, and woven or knitted fabric | |
WO2022149331A1 (en) | Frame-retardant fabric containing infrared absorbent and textile product of same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6355351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |