JP6332737B2 - Testing method for antioxidant activity - Google Patents
Testing method for antioxidant activity Download PDFInfo
- Publication number
- JP6332737B2 JP6332737B2 JP2014038082A JP2014038082A JP6332737B2 JP 6332737 B2 JP6332737 B2 JP 6332737B2 JP 2014038082 A JP2014038082 A JP 2014038082A JP 2014038082 A JP2014038082 A JP 2014038082A JP 6332737 B2 JP6332737 B2 JP 6332737B2
- Authority
- JP
- Japan
- Prior art keywords
- antioxidant activity
- antioxidant
- active oxygen
- water
- measurement sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003078 antioxidant effect Effects 0.000 title claims description 253
- 238000012360 testing method Methods 0.000 title claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 135
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 122
- 239000001301 oxygen Substances 0.000 claims description 122
- 229910052760 oxygen Inorganic materials 0.000 claims description 122
- 238000005259 measurement Methods 0.000 claims description 109
- 239000003963 antioxidant agent Substances 0.000 claims description 96
- 235000006708 antioxidants Nutrition 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 89
- 239000000523 sample Substances 0.000 claims description 88
- 239000012488 sample solution Substances 0.000 claims description 79
- 238000004020 luminiscence type Methods 0.000 claims description 60
- 239000007788 liquid Substances 0.000 claims description 50
- 239000003814 drug Substances 0.000 claims description 29
- 239000013543 active substance Substances 0.000 claims description 28
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 claims description 27
- 229940079593 drug Drugs 0.000 claims description 26
- 239000011941 photocatalyst Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 20
- -1 CaCl 2 Chemical compound 0.000 claims description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 14
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 claims description 13
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 claims description 13
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 claims description 13
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 claims description 13
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 claims description 13
- 238000001727 in vivo Methods 0.000 claims description 13
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 12
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 12
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- ZWPWSXGBDMGKKS-ZDUSSCGKSA-N Cypridina luciferin Chemical class C1=CC=C2C(C=3NC(CCCNC(N)=N)=C4N=C(C(N4C=3)=O)[C@@H](C)CC)=CNC2=C1 ZWPWSXGBDMGKKS-ZDUSSCGKSA-N 0.000 claims description 9
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 238000010998 test method Methods 0.000 claims description 9
- 230000036962 time dependent Effects 0.000 claims description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 7
- 230000002292 Radical scavenging effect Effects 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229940104302 cytosine Drugs 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 239000002516 radical scavenger Substances 0.000 claims description 4
- 230000003252 repetitive effect Effects 0.000 claims description 4
- 239000008400 supply water Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 230000000857 drug effect Effects 0.000 claims description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims 2
- 229910001629 magnesium chloride Inorganic materials 0.000 claims 1
- 239000000243 solution Substances 0.000 description 58
- 238000011156 evaluation Methods 0.000 description 41
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 40
- 108020004414 DNA Proteins 0.000 description 25
- 239000000835 fiber Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- QELUYTUMUWHWMC-UHFFFAOYSA-N edaravone Chemical compound O=C1CC(C)=NN1C1=CC=CC=C1 QELUYTUMUWHWMC-UHFFFAOYSA-N 0.000 description 21
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 21
- 229950009041 edaravone Drugs 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 235000005979 Citrus limon Nutrition 0.000 description 15
- 244000131522 Citrus pyriformis Species 0.000 description 15
- 239000011668 ascorbic acid Substances 0.000 description 14
- 229960005070 ascorbic acid Drugs 0.000 description 14
- 102000019197 Superoxide Dismutase Human genes 0.000 description 13
- 108010012715 Superoxide dismutase Proteins 0.000 description 13
- 235000010323 ascorbic acid Nutrition 0.000 description 13
- 239000003642 reactive oxygen metabolite Substances 0.000 description 13
- 150000003254 radicals Chemical class 0.000 description 12
- 108010024636 Glutathione Proteins 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 229960003180 glutathione Drugs 0.000 description 11
- 239000013641 positive control Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000008279 sol Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000007689 inspection Methods 0.000 description 10
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 9
- 240000003768 Solanum lycopersicum Species 0.000 description 9
- 235000013361 beverage Nutrition 0.000 description 9
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 9
- 230000002000 scavenging effect Effects 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 235000013305 food Nutrition 0.000 description 8
- 238000005464 sample preparation method Methods 0.000 description 8
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229930003268 Vitamin C Natural products 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 150000008442 polyphenolic compounds Chemical class 0.000 description 7
- 235000013824 polyphenols Nutrition 0.000 description 7
- 235000014214 soft drink Nutrition 0.000 description 7
- 235000019154 vitamin C Nutrition 0.000 description 7
- 239000011718 vitamin C Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 239000012491 analyte Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 235000010208 anthocyanin Nutrition 0.000 description 4
- 229930002877 anthocyanin Natural products 0.000 description 4
- 239000004410 anthocyanin Substances 0.000 description 4
- 150000004636 anthocyanins Chemical class 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- GLEVLJDDWXEYCO-UHFFFAOYSA-N Trolox Chemical compound O1C(C)(C(O)=O)CCC2=C1C(C)=C(C)C(O)=C2C GLEVLJDDWXEYCO-UHFFFAOYSA-N 0.000 description 3
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 3
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 3
- 108010093894 Xanthine oxidase Proteins 0.000 description 3
- 102100033220 Xanthine oxidase Human genes 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- MGJZITXUQXWAKY-UHFFFAOYSA-N diphenyl-(2,4,6-trinitrophenyl)iminoazanium Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1N=[N+](C=1C=CC=CC=1)C1=CC=CC=C1 MGJZITXUQXWAKY-UHFFFAOYSA-N 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 235000013402 health food Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 3
- 239000008057 potassium phosphate buffer Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- JUJBNYBVVQSIOU-UHFFFAOYSA-M sodium;4-[2-(4-iodophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=N1 JUJBNYBVVQSIOU-UHFFFAOYSA-M 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229940116269 uric acid Drugs 0.000 description 3
- 235000015192 vegetable juice Nutrition 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 206010063837 Reperfusion injury Diseases 0.000 description 2
- 235000003953 Solanum lycopersicum var cerasiforme Nutrition 0.000 description 2
- 240000003040 Solanum lycopersicum var. cerasiforme Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000005515 coenzyme Substances 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000007721 medicinal effect Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 235000015193 tomato juice Nutrition 0.000 description 2
- CCTFAOUOYLVUFG-UHFFFAOYSA-N 2-(1-amino-1-imino-2-methylpropan-2-yl)azo-2-methylpropanimidamide Chemical compound NC(=N)C(C)(C)N=NC(C)(C)C(N)=N CCTFAOUOYLVUFG-UHFFFAOYSA-N 0.000 description 1
- LXEKPEMOWBOYRF-QDBORUFSSA-N AAPH Chemical compound Cl.Cl.NC(=N)C(C)(C)\N=N\C(C)(C)C(N)=N LXEKPEMOWBOYRF-QDBORUFSSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 241000283014 Dama Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 108010053070 Glutathione Disulfide Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- QIJRTFXNRTXDIP-JIZZDEOASA-N L-cysteine hydrochloride hydrate Chemical compound O.Cl.SC[C@H](N)C(O)=O QIJRTFXNRTXDIP-JIZZDEOASA-N 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- ISWQCIVKKSOKNN-UHFFFAOYSA-L Tiron Chemical compound [Na+].[Na+].OC1=CC(S([O-])(=O)=O)=CC(S([O-])(=O)=O)=C1O ISWQCIVKKSOKNN-UHFFFAOYSA-L 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 206010000891 acute myocardial infarction Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- JNSGIVNNHKGGRU-JYRVWZFOSA-N diethoxyphosphinothioyl (2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetate Chemical compound CCOP(=S)(OCC)OC(=O)C(=N/OC)\C1=CSC(N)=N1 JNSGIVNNHKGGRU-JYRVWZFOSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- HHEAADYXPMHMCT-UHFFFAOYSA-N dpph Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1[N]N(C=1C=CC=CC=1)C1=CC=CC=C1 HHEAADYXPMHMCT-UHFFFAOYSA-N 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000003168 generic drug Substances 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- YPZRWBKMTBYPTK-UHFFFAOYSA-N oxidized gamma-L-glutamyl-L-cysteinylglycine Natural products OC(=O)C(N)CCC(=O)NC(C(=O)NCC(O)=O)CSSCC(C(=O)NCC(O)=O)NC(=O)CCC(N)C(O)=O YPZRWBKMTBYPTK-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- KHUXNRRPPZOJPT-UHFFFAOYSA-N phenoxy radical Chemical compound O=C1C=C[CH]C=C1 KHUXNRRPPZOJPT-UHFFFAOYSA-N 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
本発明は、抗酸化活性の検査方法に関する。 The present invention relates to a method for testing antioxidant activity.
代謝や外的ストレス等によって発生する活性酸素は極めて高い反応性を有しており、ヒトの体内においてタンパク質や脂質、DNA等と反応し、生活習慣病の発症や老化の促進、虚血再灌流後の組織障害、DNA障害によるガン細胞の発現をもたらすと考えられている。 Active oxygen generated by metabolism, external stress, etc. has extremely high reactivity, reacts with proteins, lipids, DNA, etc. in the human body, promotes onset of lifestyle-related diseases and aging, ischemia reperfusion It is thought to bring about the expression of cancer cells due to subsequent tissue damage and DNA damage.
そこで従来、これらの酸化傷害を防ぐべく、活性酸素を消去する食品や化粧品、医薬品等(以下、総称して抗酸化組成物ともいう。)が種々提案されている。 In order to prevent these oxidative damages, various foods, cosmetics, pharmaceuticals and the like (hereinafter collectively referred to as antioxidant compositions) that eliminate active oxygen have been proposed.
そして、これらの抗酸化組成物によれば、体内や皮膚表面などで抗酸化能を生起させることができ、体内環境や皮膚の健全化を図ることができるとされている。 And, according to these antioxidant compositions, it is said that the antioxidant ability can be caused in the body, the skin surface, etc., and the environment of the body and the skin can be made healthy.
ところで、これらの抗酸化組成物における抗酸化能は、具体的に数値や比率として評価できることが望ましい。 By the way, it is desirable that the antioxidant ability of these antioxidant compositions can be specifically evaluated as numerical values and ratios.
そこで、抗酸化組成物の抗酸化能を評価する方法がこれまでにいくつか提案されている。 Thus, several methods for evaluating the antioxidant ability of the antioxidant composition have been proposed.
例えば、DPPHラジカル消去活性測定として知られる方法は、1,1-diphenyl-2-picrylhydrazylラジカルと抗酸化物質を一定時間反応させた後、520nmの吸光度を測定し、吸光値の減少を濃度既知のTroloxの吸光度に対する相対値として算出するというものである。 For example, a method known as DPPH radical scavenging activity measurement is a method in which 1,1-diphenyl-2-picrylhydrazyl radical is reacted with an antioxidant for a certain period of time, then the absorbance at 520 nm is measured, and the decrease in the absorbance value is known. It is calculated as a relative value with respect to the absorbance of Trolox.
また、活性酸素吸収能力(ORAC法)として知られる方法は、AAPH(2,2’-azo-bis(2-amidinopropane) dihydrochloride)を用いてペルオキシラジカル(ROO・)を発生させ、このラジカルにより分解されるFluoresceinの蛍光強度を経時的に測定し、その現象曲線下の面積(AUC:Area Under the Curve)を求める。そして、抗酸化物質の存在下で測定したAUCからBlankのAUCを引いた差(net AUC)を計算して、濃度既知のTroloxにおけるnet AUCに対する相対値を求め、Trolox当量に換算して表示するものである(例えば、非特許文献1参照。)。 In addition, a method known as the active oxygen absorption capacity (ORAC method) uses AAPH (2,2'-azo-bis (2-amidinopropane) dihydrochloride) to generate peroxy radicals (ROO), which are decomposed by these radicals. The fluorescence intensity of fluorescein is measured over time, and the area under the phenomenon curve (AUC) is obtained. Then, the difference (net AUC) obtained by subtracting the Blank AUC from the AUC measured in the presence of the antioxidant is calculated, and the relative value to the net AUC in Trolox with a known concentration is calculated and displayed in terms of Trolox equivalent. (For example, refer nonpatent literature 1.).
しかしながら、上述したDPPHラジカル消去活性測定では、アントシアニンを含有する場合などは吸光度が重なり測定できずHPLCでの分離後測定する必要があるという問題がある。 However, in the above-described DPPH radical scavenging activity measurement, there is a problem that when anthocyanins are contained, the absorbance cannot be measured and it is necessary to measure after separation by HPLC.
また、上述したORAC法では、親水性H-ORACと親油性L-ORACがあるが、いずれも有機溶媒への溶解を必要とし、カロチノイドなどの抗酸化剤などの測定はできないという問題がある。 In the ORAC method described above, there are hydrophilic H-ORAC and lipophilic L-ORAC, both of which require dissolution in an organic solvent, and there is a problem in that antioxidants such as carotenoids cannot be measured.
そして、いずれの方法にも共通する問題点として、ラジカルの分解測定を行うため、pHを14付近として測定を行わなければならないという点が挙げられる。 A problem common to both methods is that, in order to measure the decomposition of radicals, the measurement must be performed at a pH of around 14.
現在、ORAC法においてフルオロセインが標準プローブとして利用されているが、この方法では、血漿中の尿酸が主たる抗酸化物質として測定されてしまい。高尿素血症患者の血漿におけるORAC値が健常者よりも高く評価されるなどの問題が指摘されている(参照文献1:二木鋭雄「抗酸化物質の活性、効能に関する話題:USDAによるORACデータベースの撤回」ビタミン 86巻(9号), pp. 519-520. Etsuo Niki (2012) Topics on capacity and benefitial effects of antioxidants: Removal of ORAC data base by USDA. VITAMINS 86(9), 519-520.)。 Currently, fluorescein is used as a standard probe in the ORAC method, but in this method, uric acid in plasma is measured as the main antioxidant. Problems have been pointed out, such as the ORAC level in the plasma of hyperureaemia patients being evaluated higher than that of healthy subjects (Reference 1: Akio Futaki "Topics on Antioxidant Activity and Efficacy: ORAC Database by USDA Vitamin 86 (9), pp. 519-520. Etsuo Niki (2012) Topics on capacity and benefitial effects of antioxidants: Removal of ORAC data base by USDA. VITAMINS 86 (9), 519-520.) .
上記のように特定の抗酸化物のORAC値がヒトの健康と直接関連しないことから、米国農務省(USDA)の栄養データラボラトリー(NDL)は2012年5月16日にORACデータベースを撤回すると発表している(参照文献2:http://www.ars.usda.gov/Services/docs.htm?docid=15866)。 The USDA Nutrition Data Laboratory (NDL) announced on May 16, 2012 that the ORAC database will be withdrawn because the ORAC values of certain antioxidants are not directly related to human health as described above. (Reference 2: http://www.ars.usda.gov/Services/docs.htm?docid=15866).
またORAC法では、抗酸化物によるラジカルを捕捉する速度と量(濃度)を区別できない点も問題点として指摘されている(参照文献3:Niki E. (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology and Medicine 49(4):503-515.)。 In addition, it has been pointed out that the ORAC method cannot distinguish the rate and amount (concentration) of radical capture by antioxidants (Reference 3: Niki E. (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology and Medicine 49 (4): 503-515.).
さらに経口的に摂取する食品や医薬品および血管内へ投与される医薬品は、体内において抗酸化活性を生起するものであり、その抗酸化活性が発揮される環境のpHは中性〜酸性領域である。また、皮膚表面にて使用する化粧品類についても、その抗酸化活性が発揮される環境のpHは中性〜弱酸性領域である。 Furthermore, foods and pharmaceuticals taken orally and pharmaceuticals administered into blood vessels cause antioxidant activity in the body, and the pH of the environment in which the antioxidant activity is exerted is in the neutral to acidic range. . Moreover, also about cosmetics used on the skin surface, the pH of the environment where the antioxidant activity is exhibited is in a neutral to weakly acidic region.
すなわち、上述した抗酸化活性の評価方法はいずれも強アルカリ環境下における抗酸化活性を測定するものであり、これら抗酸化組成物が実際に体内や皮膚表面においてどの程度の抗酸化活性を発揮するのかについて評価する方法としては馴染まないものであった。 In other words, all of the above-described methods for evaluating antioxidant activity measure the antioxidant activity in a strongly alkaline environment, and how much antioxidant activity these antioxidant compositions actually exhibit in the body and skin surface. As a method of evaluating whether or not.
本発明は、斯かる事情に鑑みてなされたものであって、抗酸化組成物の抗酸化活性について、より人体に近い中性域にて評価をすることができ、しかもラジカル捕捉因子の反応速度と濃度を検出可能な抗酸化活性の検査方法を提供する。また本発明では、この検査方法によって得られたデータが記録された媒体や、生体内において実質的に有効な投与量が未知の抗酸化活性薬剤の指標投与量の決定方法についても提供する。 The present invention has been made in view of such circumstances, and the antioxidant activity of the antioxidant composition can be evaluated in a neutral region closer to the human body, and the reaction rate of the radical scavenging factor. And a method for testing antioxidant activity capable of detecting concentrations. The present invention also provides a medium on which data obtained by this test method is recorded, and a method for determining an index dose of an antioxidant active agent whose dosage is substantially unknown in vivo.
上記従来の課題を解決するために、本願請求項1に係る発明では、抗酸化活性の検査方法において、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて測定サンプル液を調製し、同測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ計測することにより、前記測定サンプル液からの化学発光の強度が前記発光基液からの化学発光の強度を下回った場合、前記検体は抗酸化活性を有すると判定する抗酸化活性の検査方法であって、シトシン及びグアニンの繰り返し配列を有するオリゴDNAと銅との複合体をスーパーオキシドアニオンラジカルの消去物質の指標物質として用いることを特徴とすることとした。 In order to solve the above-mentioned conventional problems, in the invention according to claim 1 of the present application, in the method for testing antioxidant activity, the active oxygen species is contained at a concentration of 1 μM or more in terms of at least potassium superoxide (KO 2 ). Prepare a sample solution to be measured in the presence of a sample to be evaluated for antioxidant activity in a luminescent base solution in which active oxygen-containing water and luciferins that emit light in the presence of the active oxygen species are mixed. By measuring the intensity of chemiluminescence derived from the luciferins emitted from the sample liquid and the luminescent base liquid not containing the analyte, respectively, the intensity of chemiluminescence from the measurement sample liquid is determined from the luminescent base liquid. when the lower intensity of the chemiluminescence, wherein the analyte is a method of inspecting a determining antioxidant activity has an antioxidant activity, and oligo DNA and copper having a repeating sequence of cytosine and guanine It was decided, which comprises using a complex as an indication substance scavenger of superoxide anion radicals.
また、本願請求項2に係る発明では、請求項1に記載の抗酸化活性の検査方法において、前記検体の異なる複数の測定サンプル液を調製し、各測定サンプル液からの化学発光の強度を比較して、前記複数の測定サンプル液のうち所定の測定サンプル液に添加した検体における抗酸化活性の、他の測定サンプル液に添加した検体における抗酸化活性に対する強弱を判定することとした。 Further, in the invention according to claim 2 of the present application, in the method for testing antioxidant activity according to claim 1, a plurality of measurement sample solutions having different analytes are prepared, and the chemiluminescence intensity from each measurement sample solution is compared. Thus, the strength of the antioxidant activity in the specimen added to the predetermined measurement sample liquid among the plurality of measurement sample liquids is determined with respect to the antioxidant activity in the specimen added to the other measurement sample liquid.
また、本願請求項3に係る発明では、請求項1又は請求項2に記載の抗酸化活性の検査方法において、前記活性酸素含有水は、励起させた光触媒体に水を接触させることにより、この水に前記光触媒体の表面にて生成した活性酸素種を分散させて調製したものであることを特徴とすることとした。 In the invention according to claim 3 of the present application, in the method for testing antioxidant activity according to claim 1 or claim 2, the active oxygen-containing water is obtained by bringing water into contact with the excited photocatalyst. It was prepared by dispersing active oxygen species generated on the surface of the photocatalyst in water.
また、本願請求項4に係る発明では、請求項3に記載の抗酸化活性の検査方法において、前記光触媒体に接触させる水は、同水に所定の物質を添加する供給水処理部を介して供給されたものであり、前記所定の物質は、酸素ガス、オゾンガス、塩素ガス、一酸化窒素ガス、アンモニアガス、金属塩から選ばれる少なくともいずれか1種であることを特徴とすることとした。 Further, in the invention according to claim 4 of the present application, in the method for testing antioxidant activity according to claim 3, the water to be brought into contact with the photocatalyst is supplied through a supply water treatment unit for adding a predetermined substance to the water. The predetermined substance is at least one selected from oxygen gas, ozone gas, chlorine gas, nitrogen monoxide gas, ammonia gas, and metal salt.
また、本願請求項5に係る発明では、請求項4に記載の抗酸化活性の検査方法において、前記金属塩はNaCl、CaCl2、KCl、MgCl2、CuSO4より選ばれる少なくともいずれか1種であって、前記水中における濃度は、NaCl及びCaCl2にあっては0.05mM〜50mMの濃度であり、KCl及びMgCl2にあっては0.05mM〜5mMの濃度であり、CuSO4にあっては50μM〜200μMであることを特徴とすることとした。 In the invention according to claim 5 of the present application, in the method for testing antioxidant activity according to claim 4, the metal salt is at least one selected from NaCl, CaCl 2 , KCl, MgCl 2 , and CuSO 4. The concentration in the water is 0.05 mM to 50 mM for NaCl and CaCl 2 , 0.05 mM to 5 mM for KCl and MgCl 2 , and 50 μM for CuSO 4. ˜200 μM.
また、本願請求項6に係る発明では、請求項1〜5いずれか1項に記載の抗酸化活性の検査方法において、前記ルシフェリン類は、ウミホタルルシフェリン類縁体(Cypridina Luciferin Analog)であることを特徴とすることとした。 In the invention according to claim 6 of the present application, in the method for testing antioxidant activity according to any one of claims 1 to 5, the luciferin is a Cypridina Luciferin Analog. It was decided that.
また、本願請求項7に係る発明では、生体内において実質的に有効な投与量が未知の第1の抗酸化活性薬剤の、生体内において実質的に有効な投与量が既知の第2の抗酸化活性薬剤と同等の薬効を生起させる指標となる投与量の決定方法であって、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に、前記第1の抗酸化活性薬剤を検体として存在させた第1の測定サンプル液と前記発光基液中に前記第2の抗酸化活性薬剤を検体として存在させた第2の測定サンプル液とを調製し、各測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ経時的に計測し、前記発光基液の発光強度の経時変化曲線下面積に対する前記第2の抗酸化活性薬剤の発光強度の経時変化曲線下面積の割合の±25%の誤差範囲内に含まれる前記第1の抗酸化活性薬剤の発光強度の経時変化曲線下面積となる濃度を前記第1の抗酸化活性薬剤の指標投与量とすることを特徴とする指標投与量の決定方法とした。 Further, in the invention according to claim 7 of the present application, the second anti-oxidant active agent whose dose is substantially effective in vivo and the second anti-oxidant whose dose is substantially effective in vivo are known. A method for determining a dose that serves as an index for producing a medicinal effect equivalent to that of an oxidatively active agent, comprising active oxygen-containing water containing active oxygen species at a concentration of 1 μM or more in terms of at least potassium superoxide (KO 2 ) In the luminescent base solution in which the first antioxidant active agent is present as a specimen in the luminescent base solution mixed with the luciferins that emit light in the presence of the active oxygen species, and in the luminescent base solution A second measurement sample solution containing the second anti-oxidant active agent as a sample, and the luciferin derived from each measurement sample solution and the luminescent base solution not containing the sample The intensity of chemiluminescence And is included within an error range of ± 25% of the ratio of the area under the time-dependent curve of the luminescence intensity of the second antioxidant active agent to the area under the time-dependent curve of the luminescence intensity of the luminescent base solution. The index dose determination method is characterized in that the concentration corresponding to the area under the time-dependent change curve of the luminescence intensity of the first antioxidant active drug is used as the index dose of the first antioxidant active drug.
また、本願請求項8に係る発明では、シトシン及びグアニンの繰り返し配列を有するオリゴDNAと銅との複合体であり、請求項1〜6いずれか1項に記載の抗酸化活性の検査方法によりスーパーオキシドアニオンラジカルの消去物質として評価可能な抗酸化物質とした。 The invention according to claim 8 of the present application is a complex of copper and oligo DNA having cytosine and guanine repetitive sequences, and is superposed by the antioxidant activity testing method according to any one of claims 1 to 6. The antioxidant was evaluated as an oxide anion radical scavenger.
本願請求項1に係る発明によれば、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて測定サンプル液を調製し、同測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ計測することにより、前記測定サンプル液からの化学発光の強度が前記発光基液からの化学発光の強度を下回った場合、前記検体は抗酸化活性を有すると判定することとしたため、抗酸化組成物の抗酸化活性について、より人体に近い中性域にて評価することのできる抗酸化活性の検査方法を提供することができる。また、シトシン及びグアニンの繰り返し配列を有するオリゴDNAと銅との複合体をスーパーオキシドアニオンラジカルの消去物質の指標物質として用いることとしたため、堅実な検査を行うことができる。 According to the invention of claim 1 of the present application, active oxygen-containing water containing active oxygen species at a concentration of 1 μM or more in terms of at least potassium superoxide (KO2) and luciferin that emits light in the presence of the active oxygen species. A sample solution to be evaluated is prepared in the presence of a sample to be evaluated for antioxidative activity in a luminescent base solution mixed with a liquid, and is emitted from the same sample solution and the luminescent base solution not containing the sample. By measuring the intensity of chemiluminescence derived from the luciferins, when the intensity of chemiluminescence from the measurement sample solution is lower than the intensity of chemiluminescence from the luminescent base solution, the sample has antioxidant activity. Then, since it decided to determine, the antioxidant activity test | inspection method which can be evaluated in the neutral range nearer to the human body about the antioxidant activity of an antioxidant composition can be provided. In addition, since a complex of oligo DNA having a repetitive sequence of cytosine and guanine and copper is used as an indicator substance for the superoxide anion radical scavenging substance, a solid test can be performed.
また、本願請求項2に係る発明によれば、前記検体の異なる複数の測定サンプル液を調製し、各測定サンプル液からの化学発光の強度を比較して、前記複数の測定サンプル液のうち所定の測定サンプル液に添加した検体における抗酸化活性の、他の測定サンプル液に添加した検体における抗酸化活性に対する強弱を判定することとしたため、複数の測定サンプル液のうち、所定の測定サンプル液中の検体について、他の測定サンプル液中の検体と抗酸化活性の比較を行うことができる。 According to the invention of claim 2 of the present application, a plurality of measurement sample liquids having different specimens are prepared, and the intensity of chemiluminescence from each measurement sample liquid is compared. Since it was decided to determine the strength of the antioxidant activity of the sample added to the measurement sample solution against the antioxidant activity of the sample added to the other measurement sample solution, among the plurality of measurement sample solutions, This sample can be compared with the antioxidant activity in other measurement sample liquids.
また、本願請求項3に係る発明によれば、前記活性酸素含有水は、励起させた光触媒体に水を接触させることにより、この水に前記光触媒体の表面にて生成した活性酸素種を分散させて調製したものであることとしたため、高濃度の活性酸素種を含有させて検査を行うことができる。 According to the invention of claim 3 of the present application, the active oxygen-containing water disperses the active oxygen species generated on the surface of the photocatalyst by bringing the water into contact with the excited photocatalyst. Therefore, the inspection can be performed by containing a high concentration of active oxygen species.
また、本願請求項4に係る発明によれば、前記光触媒体に接触させる水は、同水に所定の物質を添加する供給水処理部を介して供給されたものであり、前記所定の物質は、酸素ガス、オゾンガス、塩素ガス、一酸化窒素ガス、アンモニアガス、金属塩から選ばれる少なくともいずれか1種であることとしたため、さらに高濃度の活性酸素種を含有させて検査を行うことができる。 According to the invention according to claim 4 of the present application, the water to be brought into contact with the photocatalyst is supplied via a supply water treatment unit that adds a predetermined substance to the water, and the predetermined substance is Since it is at least one selected from oxygen gas, ozone gas, chlorine gas, nitric oxide gas, ammonia gas, and metal salt, it can be inspected by containing a higher concentration of active oxygen species. .
また、本願請求項5に係る発明によれば、前記金属塩はNaCl、CaCl2、KCl、MgCl2、CuSO4より選ばれる少なくともいずれか1種であって、前記水中における濃度は、NaCl及びCaCl2にあっては0.05mM〜50mMの濃度であり、KCl及びMgCl2にあっては0.05mM〜5mMの濃度であり、CuSO4にあっては50μM〜200μMであることとしたため、効率よく高濃度の活性酸素種を含有させて検査を行うことができる。 According to the invention of claim 5, the metal salt is at least one selected from NaCl, CaCl 2 , KCl, MgCl 2 and CuSO 4 , and the concentration in the water is NaCl and CaCl. in the 2 is the concentration of 0.05MM~50mM, in the KCl and MgCl 2 at a concentration of 0.05MM~5mM, since it was decided in the CuSO 4 is 50Myuemu~200myuM, efficient high concentration The active oxygen species can be included in the inspection.
また、本願請求項6に係る発明によれば、前記ルシフェリン類は、ウミホタルルシフェリン類縁体(Cypridina Luciferin Analog)であることとしたため、発光基液中における検体の存在/非存在や、複数の検体間の抗酸化活性の強弱について、感度良く検出を行うことができる。 Further, according to the invention of claim 6, since the luciferin is a Cypridina Luciferin Analog, the presence / absence of the specimen in the luminescent base solution, or between a plurality of specimens It is possible to detect with high sensitivity the strength of antioxidant activity.
また、本願請求項7に係る発明によれば、生体内において実質的に有効な投与量が未知の第1の抗酸化活性薬剤の、生体内において実質的に有効な投与量が既知の第2の抗酸化活性薬剤と同等の薬効を生起させる指標となる投与量の決定方法であって、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に、前記第1の抗酸化活性薬剤を検体として存在させた第1の測定サンプル液と前記発光基液中に前記第2の抗酸化活性薬剤を検体として存在させた第2の測定サンプル液とを調製し、各測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ経時的に計測し、前記発光基液の発光強度の経時変化曲線下面積に対する前記第2の抗酸化活性薬剤の発光強度の経時変化曲線下面積の割合の±25%の誤差範囲内に含まれる前記第1の抗酸化活性薬剤の発光強度の経時変化曲線下面積となる濃度を前記第1の抗酸化活性薬剤の指標投与量とすることとしたため、生体内において実質的に有効な投与量が未知の第1の抗酸化活性薬剤の指標投与量を容易に決定することができる。 In addition, according to the invention of claim 7 of the present application, the second anti-oxidant active agent whose dose that is substantially effective in vivo is known and the dose that is substantially effective in vivo is known. Is a method for determining a dose which is an index for producing an effect equivalent to that of an antioxidant active agent, and contains active oxygen species at a concentration of 1 μM or more converted to at least potassium superoxide (KO 2 ) A first measurement sample solution in which the first antioxidant active agent is present as a specimen in a luminescent base solution in which water and luciferins that emit light in the presence of the active oxygen species are mixed, and the luminescent group The second measurement sample liquid in which the second antioxidant active agent is present as a specimen in the liquid is prepared, and the luciferins emitted from each measurement sample liquid and the luminescent base solution not containing the specimen The intensity of chemiluminescence derived from each Measured over time and included within an error range of ± 25% of the ratio of the area under the time-dependent change curve of the luminescence intensity of the second antioxidant active agent to the area under the time-change curve of the light-emitting intensity of the luminescent base solution. Since the concentration corresponding to the area under the time-dependent change curve of the luminescence intensity of the first antioxidant active drug is used as the index dose of the first antioxidant active drug, there is a dose that is substantially effective in vivo. The index dose of the unknown first antioxidant active agent can be easily determined.
また、本願請求項8に係る発明によれば、シトシン及びグアニンの繰り返し配列を有するオリゴDNAと銅との複合体であり、請求項1〜6いずれか1項に記載の抗酸化活性の検査方法によりスーパーオキシドアニオンラジカルの消去物質として評価可能な抗酸化物質としたため、抗酸化活性の検査方法において正確な検査結果を得ることができる。 Moreover, according to the invention which concerns on this-application Claim 8 , it is a composite_body | complex of oligo DNA which has a repeating sequence of cytosine and guanine, and copper, The test method of antioxidant activity of any one of Claims 1-6 Thus, since the antioxidant can be evaluated as a superoxide anion radical scavenger, an accurate test result can be obtained in the method for testing antioxidant activity.
本発明は、活性酸素種を少なくとも1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて測定サンプル液を調製し、同測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ計測することにより、前記測定サンプル液からの化学発光の強度が前記発光基液からの化学発光の強度を下回った場合、前記検体は抗酸化活性を有すると判定する抗酸化活性の検査方法を提供するものである。 The present invention relates to an evaluation object of antioxidant activity in a luminescent base solution in which active oxygen-containing water containing active oxygen species at a concentration of at least 1 μM and luciferin that emits light in the presence of the active oxygen species are mixed. By preparing a measurement sample solution in the presence of the analyte, and measuring the intensity of chemiluminescence derived from the luciferins emitted from the measurement sample solution and the luminescent base solution not containing the sample, When the intensity of chemiluminescence from the measurement sample solution is lower than the intensity of chemiluminescence from the luminescent base solution, the method provides a test method for antioxidant activity that determines that the specimen has antioxidant activity.
前述のように、従来、薬品・化粧品・食物・飲料の有する抗酸化能の評価には、有機化合物の反応過程に発生するラジカル種に対する消去能を用いて評価を行ってきた。代表的な抗酸化能評価方法は、キサンチンオキシダーゼをピポキサンチンに反応させた時に生じるスーパーオキシドアニオンラジカルとテトラゾリウム塩WST-1との還元反応において生成する水溶性のホルマザンWST-1を吸光度により測定することで、スーパーオキシドアニオンラジカルを基質とする酵素活性(スーパーオキシドディスムターゼ活性)を評価する方法ならびにORAC法、DPPHラジカル消去活性(SET)法などの化学反応を用いたラジカル捕捉型の抗酸化物質の評価方法などがある。 As described above, conventionally, the antioxidant ability of medicines, cosmetics, foods and beverages has been evaluated using the ability to eliminate radical species generated in the reaction process of organic compounds. A typical method for evaluating antioxidant capacity is to measure water-soluble formazan WST-1 produced in the reduction reaction of superoxide anion radical and tetrazolium salt WST-1 generated when xanthine oxidase is reacted with pipexanthine by absorbance. Of radical scavenging antioxidants using chemical reactions such as the method of evaluating enzyme activity (superoxide dismutase activity) using superoxide anion radical as substrate and ORAC method, DPPH radical scavenging activity (SET) method, etc. There are evaluation methods.
しかしながら、DPPHラジカル消去活性(SET)法では、有機ラジカルを利用することにより、含水状態では試料全体評価は出来ず凍結乾燥等の条件にて評価する事となる。そのためポリフェノール活性やアントシアニン含有試料等は、その分析量を別途測定せねばならず、接種および投与する状態での評価が不可能である。(そのものでの評価は出来ない) However, in the DPPH radical scavenging activity (SET) method, by using organic radicals, the entire sample cannot be evaluated in a water-containing state, and evaluation is performed under conditions such as lyophilization. Therefore, polyphenol activity, anthocyanin-containing samples and the like must be separately measured for their analytical amounts, and cannot be evaluated in a state inoculated and administered. (Evaluation by itself is not possible)
ORAC法では、本来、健常者の生体内や食品中に含まれるべきでない高濃度尿酸などの活性が高く評価される問題があり、またキサンチンオキシダーゼとホルマザン生成反応を利用したスーパーオキシドディスムターゼ(SOD)活性およびSOD様活性の評価方法では、スーパーオキシドアニオンラジカル(O2 -)に対する消去能を有する抗酸化物質とO2 -生成酵素であるキサンチンオキシダーゼに対する阻害物質の効果を識別することが出来ない。 In the ORAC method, there is a problem that activities such as high-concentration uric acid that should not be contained in the living body or food of a healthy person are highly evaluated, and superoxide dismutase (SOD) using xanthine oxidase and formazan formation reaction. In the evaluation method of activity and SOD-like activity, it is not possible to distinguish the effect of an inhibitory substance on the superoxide anion radical (O 2 − ) and an inhibitory substance on the xanthine oxidase which is an O 2 − producing enzyme.
またスーパーオキシドアニオンラジカル(O2 -)の消去能に関して、何れの手法においてもアスコルビン酸のように直接的にO2 -をはじめとした活性酸素と非選択的に反応する低分子型抗酸化物質群とスーパーオキシドディスムターゼ(SOD)のように選択的なO2 -の分解反応を触媒する高分子型抗酸化物質群の活性を識別することは困難である。 In addition, with regard to the scavenging ability of superoxide anion radicals (O 2 − ), any method is a low molecular weight antioxidant that reacts non-selectively directly with active oxygen such as O 2 − as in ascorbic acid. it is difficult to identify the decomposition reaction polymer antioxidant group activity that catalyzes the - selective O 2 as the group and superoxide dismutase (SOD).
また、評価時のpHは強アルカリ性での評価となり、試料の変成を生じる可能性がある。さらに有機ラジカルを使用することにより、試料との直接反応を生じるため正確な評価が出来ないことがある。 Further, the pH at the time of evaluation is evaluated with strong alkalinity, and there is a possibility that the sample is denatured. In addition, the use of organic radicals may cause direct reaction with the sample, which may prevent accurate evaluation.
また、キットなどで販売されているが、安定性再現性に問題が生じる事がある。 Moreover, although it is sold as a kit, a problem may occur in stability reproducibility.
さらに、総合的な評価ではないため、抗酸化能を有すると言われている物質の総量表示で、食品の抗酸化活性が表現されており、対象試料の総合評価としての抗酸化活性の強度を示すことが出来ない。(例えばビタミンC1000mg、クエン酸3000mg、ポリフェノール10mg等) Furthermore, since it is not a comprehensive evaluation, the antioxidant activity of food is expressed by the total amount of substances that are said to have antioxidant ability, and the strength of the antioxidant activity as a comprehensive evaluation of the target sample is expressed. I can't show it. (For example, vitamin C 1000 mg, citric acid 3000 mg, polyphenol 10 mg, etc.)
そこで、本発明者らは鋭意研究を重ね、これまで光触媒反応水生成装置およびレドックス活性を有する水の生成装置等で、定常的に生成する事が可能となった長時間活性酸素を検出する事が可能な水を用い、試料の抗酸化能を評価するという着想を得た。 Therefore, the present inventors have conducted intensive research and have detected long-time active oxygen that has been able to be generated constantly with a photocatalytic water generator and a water generator having redox activity. The idea was to evaluate the antioxidant capacity of the samples using water that can be used.
評価方法は、ウミホタルルシフェリンアナログ(CLA)を用いた化学発光法にて行う。飽和CLA溶液 5μLに、試料5μLを加えた後、定常状態に達した活性酸素含有水490μLを添加し5分間蛍光発光を計測する。スパイク強度1μmol/L(KO2 concentration)以上の発光強度が、5分以上連続して検出できる状態を定常状態に達したと規定する。 The evaluation method is a chemiluminescence method using Cypridina luciferin analog (CLA). After adding 5 μL of the sample to 5 μL of the saturated CLA solution, 490 μL of active oxygen-containing water that has reached a steady state is added, and fluorescence emission is measured for 5 minutes. It is defined that the steady state is reached when the emission intensity with a spike intensity of 1 μmol / L (KO 2 concentration) or more can be detected continuously for 5 minutes or more.
試料を添加していないサンプルとの発光強度を比較して、対象となる試料の抗酸化能と評価する。 The luminescence intensity of the sample to which the sample is not added is compared with that of the sample, and the antioxidant ability of the target sample is evaluated.
本法で主として評価可能な活性酸素種は、一重項酸素またはかつスーパーオキシドアニオンラジカルである。相対する2種の活性酸素種を用いて評価できるため、カチオン系抗酸化物質およびアニオン系抗酸化物質の両者の評価を行う事が可能である。 The reactive oxygen species that can be primarily evaluated by this method are singlet oxygen or superoxide anion radicals. Since evaluation can be performed using two types of reactive oxygen species, it is possible to evaluate both cationic antioxidants and anionic antioxidants.
また、活性酸素種を除去する抗酸化物質には、スーパーオキシドアニオンラジカル(O2 -)の消去活性が知られるものと、過酸化水素(H2O2)、ヒドロキシラジカル(HO-)、一重項酸素(1O-)などそれ以外の活性酸素種に対してのみ作用することが知られるものとに大別することが出来る。O2 -に対する消去能を有することが知られる抗酸化物質としては、スーパーオキシドジスムターゼ(SOD)、アスコルビン酸、ビリルビンなどが知られる。 Antioxidants that remove reactive oxygen species include known superoxide anion radical (O 2 − ) scavenging activity, hydrogen peroxide (H 2 O 2 ), hydroxy radical (HO − ), singlet It can be broadly classified into those known to act only on other active oxygen species such as term oxygen ( 1 O − ). As antioxidants known to have an ability to eliminate O 2 − , superoxide dismutase (SOD), ascorbic acid, bilirubin and the like are known.
一方、ORAC法で高い抗酸化活性を有する物質として評価される尿酸はスーパーオキシドアニオンラジカル(O2 -)消去能をもたない。従って、ORAC法の問題点として指摘されている、高尿素血症患者の血漿におけるORAC値が健常者よりも高く評価されるなどの問題(前述の参照文献1)は、スーパーオキシドアニオンラジカル(O2 -)に対する消去能をより高く反映した評価を行うことによっても回避できる。 On the other hand, uric acid, which is evaluated as a substance having high antioxidant activity by the ORAC method, has no superoxide anion radical (O 2 − ) scavenging ability. Therefore, the problem that is pointed out as a problem of the ORAC method, such as the ORAC value in the plasma of hyperureaemia patients being evaluated higher than that of healthy subjects (the above-mentioned reference 1), is the superoxide anion radical (O 2 -) can be avoided by carrying out the evaluation reflecting higher scavenging ability against.
評価指標として対象となるコントロール曲線(area under curve)と試料添加群の呈する曲線との差による減少曲線下領域の面積比により数値化する事も可能であるが、曲線の図表による直接的視覚的評価が最も説得力が高い。 As an evaluation index, it can be quantified by the area ratio of the area under the decreasing curve due to the difference between the target control curve (area under curve) and the curve exhibited by the sample addition group. Evaluation is the most persuasive.
活性酸素種は、元来、ウイルスや細菌の感染時におけるマクロファージの病原体排除機構をはじめとする生体防御に関わるなど、健康維持に重要な役割を担っている。しかし反応性が非常に高いため、ひとたび過剰となると生体中の蛋白質や脂質、あるいはDNAなどの高分子と反応して蛋白質の変成や過酸化脂質の生成や遺伝子障害などを起こし、生活習慣病の発症や老化の促進、発癌作用などを招来するとされている。また脳梗塞や心筋梗塞など臓器の虚血再灌流障害時には、活性酸素種による組織障害が増強され、組織の浮腫や不可逆的変性を生じるとされる。 Reactive oxygen species originally played an important role in maintaining health, such as being involved in biological defense including the pathogen elimination mechanism of macrophages during infection with viruses and bacteria. However, because it is extremely reactive, once it is excessive, it reacts with proteins, lipids, or DNA macromolecules in the body, causing protein modification, lipid peroxide generation, genetic disorders, etc. It is said to cause onset and aging, and carcinogenic effects. In addition, at the time of ischemia / reperfusion injury of organs such as cerebral infarction and myocardial infarction, tissue damage due to reactive oxygen species is enhanced, resulting in tissue edema and irreversible degeneration.
そのため抗酸化能評価を適切に行い、試料の効能予測および動態予測を含め、濃度効果を簡便に評価する事が必要とされている。本法では親水性の物質であれば対象試料の事前処置を必要とせず、大量の検体を比較評価する事が可能である。例えば、品種ごとの抗酸化活性比較や飲料水の抗酸化活性などが、容易に再現性を持ち可能である。 For this reason, it is necessary to appropriately evaluate the antioxidant capacity and simply evaluate the concentration effect including the prediction of the efficacy and dynamics of the sample. In this method, a hydrophilic substance can be used for comparative evaluation of a large number of samples without requiring pretreatment of the target sample. For example, the antioxidant activity comparison for each variety and the antioxidant activity of drinking water can be easily reproducible.
本法の利用により適切に評価された飲料や薬剤、食品の開発が進む事で、超高齢化社会の健康増進への寄与を行う事が可能となると考えられる。 Advances in the development of beverages, drugs, and foods that have been appropriately evaluated through the use of this law will contribute to the promotion of health in a super-aging society.
ここで本明細書における活性酸素種としては、例えば、スーパーオキシドアニオンラジカル(O2 -)、ヒドロキシラジカル(・OH)、脂質過酸化物(LOOH, LOO・)、ハロゲン化酸素(ClO-)、一酸化窒素ラジカル(NO・)、含酸素有機ラジカル種(例としてフェノキシラジカル)などいわゆるフリーラジカルと呼ばれるものに、一重項酸素(1O2)および一重項酸素より生成された環状ペルオキシドやヒドロペルオキシドを加えたものとし、過酸化水素は含まないものとする。 Here, as the reactive oxygen species in the present specification, for example, superoxide anion radical (O 2 − ), hydroxy radical (· OH), lipid peroxide (LOOH, LOO ·), halogenated oxygen (ClO − ), Cyclic peroxides and hydroperoxides generated from singlet oxygen ( 1 O 2 ) and singlet oxygen include what are called free radicals such as nitrogen monoxide radical (NO ·) and oxygen-containing organic radical species (eg phenoxy radical). And hydrogen peroxide is not included.
また、本実施形態に係る検査方法にて使用する活性酸素含有水は、これらのような活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有するものである。超酸化カリウム(KO2)に換算して1μM未満の濃度であると例えば水道水に含有する微量のオゾン代謝物によって発現する発光と類似するため好ましくない。超酸化カリウム(KO2)に換算して1μM以上の濃度で活性酸素種を含有する事は、Tiron添加によりスーパーオキシドアニオンラジカルを主体とした活性酸素種である事が確認され、またDABCO添加により一重項酸素を含有する活性酸素種である事を確認することができる。 Further, the active oxygen-containing water used in the inspection method according to the present embodiment contains such active oxygen species at a concentration of 1 μM or more in terms of at least potassium superoxide (KO 2 ). A concentration of less than 1 μM in terms of potassium superoxide (KO 2 ) is not preferable because it is similar to luminescence expressed by a small amount of ozone metabolite contained in tap water, for example. Containing reactive oxygen species at a concentration of 1 μM or more in terms of potassium superoxide (KO 2 ) has been confirmed to be a reactive oxygen species mainly composed of superoxide anion radicals by adding Tiron, and by adding DABCO. It can be confirmed that the active oxygen species contains singlet oxygen.
また、活性酸素含有水は特に限定されるものではないが、励起させた光触媒体に水を接触させることにより、この水に前記光触媒体の表面にて生成した活性酸素種を分散させて調製したものであるのが望ましい。 The active oxygen-containing water is not particularly limited, but is prepared by bringing water into contact with the excited photocatalyst to disperse the active oxygen species generated on the surface of the photocatalyst in this water. It is desirable to be a thing.
活性酸素含有水を調製するに際しこのような方法とした場合には、超酸化カリウム(KO2)に換算して1μM以上の活性酸素種を比較的容易に水中に存在させることができるため、極めて効率的に検査を行うことができる。また、長時間持続的に検出が可能な活性酸素含有水とすることができる。 When such a method is used for preparing active oxygen-containing water, it is possible to make active oxygen species of 1 μM or more in water relatively easily converted to potassium superoxide (KO 2 ). Inspection can be performed efficiently. Moreover, it can be set as the active oxygen containing water which can be detected continuously for a long time.
また、本実施形態に係る検査方法にて使用するルシフェリン類は、活性酸素種の存在下で発光を示すものであり、例えば、前述のスーパーオキシドアニオンラジカル(O2 -)、ヒドロキシラジカル(・OH)、脂質過酸化物(LOOH, LOO・)、ハロゲン化酸素(ClO-)、一酸化窒素ラジカル(NO・)、含酸素有機ラジカル種(例としてフェノキシラジカル)などいわゆるフリーラジカルと呼ばれるもの、一重項酸素(1O2)、一重項酸素より生成された環状ペルオキシドやヒドロペルオキシドの少なくともいずれか1つによって発光を示すものであれば良い。 In addition, the luciferins used in the inspection method according to the present embodiment emit light in the presence of active oxygen species. For example, the superoxide anion radical (O 2 − ), the hydroxy radical (.OH ), Lipid peroxides (LOOH, LOO ·), halogenated oxygen (ClO − ), nitric oxide radicals (NO ·), oxygen-containing organic radical species (eg phenoxy radicals), so-called free radicals, single Any material may be used as long as it emits light by at least one of cyclic peroxide and hydroperoxide generated from singlet oxygen ( 1 O 2 ) and singlet oxygen.
このようなルシフェリン類の具体例としては、例えばウミホタルルシフェリン類縁体(Cypridina Luciferin Analog)を用いることができる。ルシフェリン類をウミホタルルシフェリン類類縁体とすることにより、発光基液中における検体の存在/非存在や、複数の検体間の抗酸化活性の強弱について、感度良く検出を行うことができる。尚、ウミホタルルシフェリン類縁体は、O2 -および1O2に特異的に反応し発光する化学発光プローブであり、O2 -および1O2に特化した活性酸素消去能の評価に有効である。 As a specific example of such luciferins, for example, Cypridina Luciferin Analog can be used. By using luciferin as a Cypridina luciferin analog, it is possible to detect with high sensitivity the presence / absence of the analyte in the luminescent base solution and the strength of the antioxidant activity between a plurality of analytes. Incidentally, Cypridina luciferin analogs, O 2 - and a chemiluminescent probe to react to the light emitting specifically to 1 O 2, O 2 - is and 1 O 2 effective to evaluate the specialized scavenging activity in .
そして本実施形態に係る検査方法では、このルシフェリン類と前述の活性酸素含有水とが混合された液を発光基液として使用する。発光基液は、検体の抗酸化活性を測定するための測定サンプル液のベースとなる液であると共に、測定サンプル液との比較を行うためのコントロール液ともなる液である。 And in the test | inspection method which concerns on this embodiment, the liquid with which this luciferin and the above-mentioned active oxygen containing water were mixed is used as a luminescent base solution. The luminescent base solution is a solution that serves as a base of a measurement sample solution for measuring the antioxidant activity of a specimen, and also serves as a control solution for comparison with the measurement sample solution.
すなわち、抗酸化活性の測定を行う検体を発光基液中に存在させることで測定サンプル液が調製される。なお、測定サンプル液の調製における活性酸素含有水とルシフェリン類と検体との混合順は特に限定されるものではなく、検体の性状に応じて適宜決定することができる。例えば、検体が液体状であれば、発光測定用キュベット等にまず検体を分注し、次いでルシフェリン類を添加して、最後に活性酸素含有水を添加するようにして測定サンプル液を調製しても良い。このような方法によれば、ルシフェリン類による発光開始を測定直前まで抑制することができ、また、測定サンプル液中における検体の攪拌を省略することもできる場合がある。特に検体量や測定サンプル液の総量が少ない場合は、このような手順が有効である。 That is, a measurement sample solution is prepared by allowing a sample to be measured for antioxidant activity to be present in the luminescent base solution. In addition, the mixing order of the active oxygen-containing water, luciferins, and the specimen in the preparation of the measurement sample solution is not particularly limited, and can be appropriately determined according to the properties of the specimen. For example, if the specimen is liquid, first prepare the measurement sample solution by dispensing the specimen into a luminescence measurement cuvette, etc., then adding luciferins, and finally adding water containing active oxygen. Also good. According to such a method, the start of luminescence by luciferins can be suppressed until just before the measurement, and the stirring of the specimen in the measurement sample solution can be omitted in some cases. Such a procedure is particularly effective when the amount of the specimen or the total amount of the measurement sample solution is small.
このようにして調製した測定サンプル液は、直ちに化学発光測定に供する。化学発光の測定に用いる機器は、活性酸素種によってルシフェリン類より発せられた光の波長の強度を検出可能な装置であれば特に限定されるものではなく、例えば、アトー株式会社製のルミノメータやルミネッセンサー等を用いることができる。 The measurement sample solution thus prepared is immediately subjected to chemiluminescence measurement. The instrument used for the measurement of chemiluminescence is not particularly limited as long as it is an apparatus that can detect the intensity of the wavelength of light emitted from luciferins by reactive oxygen species. For example, a luminometer or luminometer manufactured by Ato Corporation. A net sensor or the like can be used.
発光強度の測定は、発光開始後所定のタイミングにおける強度を測定しても良く、また、発光開始後所定時間までの強度の経時変化を計測するようにしても良い。 The light emission intensity may be measured by measuring the intensity at a predetermined timing after the start of light emission, or measuring the change in intensity over time until the predetermined time after the start of light emission.
そして、検体を含まない発光基液をコントロール(ポジティブコントロール)として、測定サンプル液の発光強度と比較し、測定サンプル液の発光強度がコントロールに比してどのような挙動を示すかにより検体が抗酸化活性を有するか否かを判断することができる。 Then, the luminescent base solution not containing the sample is used as a control (positive control), compared with the luminescence intensity of the measurement sample solution, and the sample is resistant to the behavior of the luminescence intensity of the measurement sample solution compared to the control. It can be determined whether or not it has oxidation activity.
具体的には、コントロールに比して、測定サンプル液の発光強度が低下していたならば、活性酸素水由来の活性酸素種の働きが検体により抑制されていることとなり、検体は抗酸化活性を有すると判定することができる。なお、必要に応じてネガティブコントロールを設けても良いのは勿論である。ネガティブコントロールは、例えば水道水、リン酸バッファー液、蒸留水、活性酸素含有水のみとしても良い。 Specifically, if the emission intensity of the measurement sample solution is lower than that of the control, the action of the active oxygen species derived from the active oxygen water is suppressed by the specimen, and the specimen has antioxidant activity. Can be determined. Of course, a negative control may be provided as necessary. The negative control may be, for example, tap water, phosphate buffer solution, distilled water, or active oxygen-containing water only.
ところで、上述の検査方法では、コントロールと測定サンプル液との比較について言及したが、測定サンプル液は、他の測定サンプル液との比較を行うこともできる。 By the way, in the above-described inspection method, the comparison between the control and the measurement sample solution is mentioned. However, the measurement sample solution can be compared with other measurement sample solutions.
すなわち、検体の異なる複数の測定サンプル液を調製し、各測定サンプル液からの化学発光の強度を比較して、複数の測定サンプル液のうち所定の測定サンプル液に添加した検体における抗酸化活性の、他の測定サンプル液に添加した検体における抗酸化活性に対する強弱を判定するようにしても良い。 That is, by preparing a plurality of measurement sample liquids with different specimens, comparing the intensity of chemiluminescence from each measurement sample liquid, the antioxidant activity in the specimen added to the predetermined measurement sample liquid among the plurality of measurement sample liquids The strength of the antioxidant activity in the specimen added to another measurement sample solution may be determined.
このような方法とすることにより、例えば市販の健康食品Xと健康食品Yとについて、いずれの健康食品の方が高い抗酸化活性を呈するかを比較検討することが可能となる。例えば、抗酸化活性の極めて高い野菜ジュースを提供としようとした場合、配合する成分比率の変化や組成品種の違いにより、最も味覚が優れ、食品栄養学的にも高く、しかも抗酸化活性を示す野菜ジュースを配合調整することが可能となる。 By setting it as such a method, it becomes possible to compare and examine which health food exhibits the higher antioxidant activity about the commercially available health food X and the health food Y, for example. For example, when trying to provide vegetable juice with extremely high antioxidant activity, it has the best taste, high food nutrition, and also exhibits antioxidant activity due to changes in the composition ratio and differences in composition varieties. It becomes possible to mix and adjust vegetable juice.
また、前述の発光測定により得られたデータは、所定の媒体に記録することで、検体における抗酸化活性の有無を判定するためのデータや、所定のサンプル液中の検体における抗酸化活性の前記他のサンプル液中の検体に対する強弱を判定するためのデータとして利用することもでき、アプリケーションとして情報提供することができる。 In addition, the data obtained by the above-mentioned luminescence measurement is recorded on a predetermined medium, so that data for determining the presence or absence of the antioxidant activity in the specimen or the antioxidant activity in the specimen in the predetermined sample solution It can also be used as data for determining the strength of a sample in another sample solution, and information can be provided as an application.
すなわち、活性酸素種を少なくとも1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて調製した測定サンプル液の、前記検体を含まない前記発光基液に対するルシフェリン類由来の化学発光の強度の比が分かる、前記検体における抗酸化活性の有無を判定するためのデータが記録された媒体としても良い。 That is, it becomes an evaluation target of antioxidant activity in a luminescent base solution in which active oxygen-containing water containing active oxygen species at a concentration of at least 1 μM and luciferins that emit light in the presence of the active oxygen species are mixed. Data for determining the presence or absence of antioxidant activity in the specimen, in which the ratio of the chemiluminescence intensity derived from luciferins to the luminescent base solution not containing the specimen of the measurement sample liquid prepared in the presence of the specimen is known. It may be a recorded medium.
また、活性酸素種を少なくとも1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて調製した前記検体がそれぞれ異なる複数の測定サンプル液のうち所定のサンプル液の、他のサンプル液に対するルシフェリン類由来の化学発光の強度の比が分かる、前記所定のサンプル液中の検体における抗酸化活性の前記他のサンプル液中の検体に対する強弱を判定するためのデータが記録された媒体としても良い。 In addition, it becomes an evaluation target of antioxidant activity in a luminescent base solution in which active oxygen-containing water containing active oxygen species at a concentration of at least 1 μM and luciferins that emit light in the presence of the active oxygen species are mixed. The ratio of the intensity of chemiluminescence derived from luciferins to other sample liquids of a predetermined sample liquid among a plurality of measurement sample liquids prepared in the presence of the specimen is different. A medium on which data for determining the strength of the antioxidant activity in the sample with respect to the sample in the other sample solution may be recorded.
ここで媒体としては、例えば、紙媒体であったり、電気的や磁気的、光学的に記録する媒体であっても良い。このようなデータが記録された媒体によれば、検体がどの程度の抗酸化活性を有するのかについて、容易に確認を行うことができる。 Here, the medium may be, for example, a paper medium or a medium that is electrically, magnetically, or optically recorded. According to the medium on which such data is recorded, it is possible to easily check how much antioxidant activity the specimen has.
また、本実施形態では、生体内において実質的に有効な投与量が未知の抗酸化活性薬剤(以下、第1の抗酸化活性薬剤ともいう。)の指標投与量の決定方法についても提供する。 In addition, the present embodiment also provides a method for determining an index dose of an antioxidant active drug whose dose is substantially in vivo (hereinafter also referred to as a first antioxidant active drug).
例えば、生体内において実質的に有効な投与量が既知の抗酸化活性薬剤(以下、第2の抗酸化活性薬剤ともいう。)があり、有効成分が同じか又は異なる後発医薬品として第1の抗酸化活性薬剤の投与試験を行うとき、第2の抗酸化活性薬剤と略同等の効果を生起するために必要な投与量を決定するために、第1の抗酸化性薬剤の濃度が異なる数多くの製剤を調製し、それをそれぞれ投与して効果効能を観察し適切な投与量を推定するという作業が行われる場合がある。 For example, there is an antioxidant active drug (hereinafter, also referred to as a second antioxidant active drug) whose dosage is substantially effective in vivo, and the first antioxidant is used as a generic drug having the same or different active ingredient. When conducting an administration test of an oxidatively active agent, a number of different concentrations of the first antioxidative agent are used to determine the dose required to produce an effect substantially equivalent to that of the second antioxidatively active agent. In some cases, preparations are prepared, and each of them is administered to observe the efficacy and to estimate an appropriate dose.
しかしながら、この作業は多くの被験者や労力を要するものであり、極めて煩雑なものである。 However, this operation requires many subjects and labor, and is extremely complicated.
そこで、本実施形態では、生体内において実質的に有効な投与量が未知の第1の抗酸化活性薬剤の、生体内において実質的に有効な投与量が既知の第2の抗酸化活性薬剤と同等の薬効を生起させる指標となる投与量の決定方法であって、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に前記第1の抗酸化活性薬剤を検体として存在させた第1の測定サンプル液と前記発光基液中に前記第2の抗酸化活性薬剤を検体として存在させた第2の測定サンプル液とを調製し、各測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ経時的に計測し、前記発光基液の発光強度の経時変化曲線下面積に対する前記第2の抗酸化活性薬剤の発光強度の経時変化曲線下面積の割合の±25%の誤差範囲内に含まれる前記第1の抗酸化活性薬剤の発光強度の経時変化曲線下面積となる濃度を前記第1の抗酸化活性薬剤の指標投与量とすることとしている。 Therefore, in the present embodiment, the first antioxidant active agent whose dosage that is substantially effective in vivo is unknown, and the second antioxidant active agent whose dosage that is substantially effective in vivo are known A method for determining a dose that serves as an index for causing an equivalent medicinal effect, comprising active oxygen-containing water containing active oxygen species at a concentration of 1 μM or more in terms of at least potassium superoxide (KO 2 ) and the active oxygen species The first measurement sample solution in which the first antioxidant active agent is present as a sample in the luminescent base solution mixed with the luciferin that emits luminescence in the presence of the second luminescent base solution in the second luminescent base solution A second measurement sample solution containing an antioxidant active agent as a specimen is prepared, and the intensity of chemiluminescence derived from the luciferins emitted from each measurement sample liquid and the luminescent base solution not containing the specimen is prepared. Each measured over time The first antioxidant within an error range of ± 25% of the ratio of the area under the time-dependent curve of the luminescence intensity of the second antioxidant active agent to the area under the time-dependent curve of the luminescence intensity of the luminescent base solution. The concentration corresponding to the area under the time-dependent change curve of the luminescence intensity of the active agent is used as the index dose of the first antioxidant active agent.
そして、本実施形態に係る指標投与量の決定方法によれば、第2の抗酸化活性薬剤と略同等の効果を生起するために必要な目安となる第1の抗酸化性薬剤の投与量を決定することができ、投与試験を極めて効率化することができ、上述の作業の省力化を図ることができる。 Then, according to the index dose determining method according to the present embodiment, the dose of the first antioxidant drug, which is a guideline necessary for producing an effect substantially equivalent to that of the second antioxidant active drug, is obtained. The administration test can be made extremely efficient, and the above-described work can be saved.
以下、本実施形態に係る抗酸化活性の検査方法や媒体について、図面を参照しながら更に具体的に説明する。 Hereinafter, the test method and medium for antioxidant activity according to the present embodiment will be described more specifically with reference to the drawings.
〔1.活性酸素含有水の調製〕
(1−1.活性酸素含有水の生成装置について)
本実施形態に係る抗酸化活性の検査方法にて用いる活性酸素含有水は、励起させた光触媒体に水を接触させ、この水に前記光触媒体の表面にて生成した活性酸素種を分散させて調製することができる。
[1. Preparation of water containing active oxygen)
(1-1. About apparatus for generating active oxygen-containing water)
The active oxygen-containing water used in the method for testing antioxidant activity according to this embodiment is obtained by bringing water into contact with an excited photocatalyst and dispersing the active oxygen species generated on the surface of the photocatalyst into the water. Can be prepared.
このような活性酸素含有水の最も単純な製造方法、すなわち最も単純な活性酸素含有水生成装置としては、所定の容器に貯留した水中に光触媒体を浸漬し、同光触媒体が励起するために必要な紫外線やマイクロ波等の電磁波を光触媒体に照射する構成を備えたものを挙げることができる。このような活性酸素含有水生成装置によれば、光触媒体表面から水中に活性酸素種を分散させて、活性酸素含有水を調製することができる。 The simplest method for producing such active oxygen-containing water, that is, the simplest active oxygen-containing water generating device, is necessary to excite the photocatalyst by immersing the photocatalyst in water stored in a predetermined container. And those having a configuration for irradiating the photocatalyst with electromagnetic waves such as ultraviolet rays and microwaves. According to such an active oxygen-containing water generating apparatus, active oxygen-containing water can be prepared by dispersing active oxygen species from the surface of the photocatalyst into water.
また、容器内には、100kHz〜500kHz、又は500kHz以上の超音波を光触媒体に対して照射できる超音波発生源を配設して、光触媒体表面から水中への活性酸素種の分散効率を向上させるようにしても良い。特に、光触媒体を後述の(1−2.触媒体の構成)にて言及する繊維状の光触媒体とした場合には、さらに効率よく水中に活性酸素種を高濃度で含ませることができる。 In addition, an ultrasonic source that can irradiate the photocatalyst with ultrasonic waves of 100 kHz to 500 kHz, or 500 kHz or more is installed in the container to improve the dispersion efficiency of active oxygen species from the photocatalyst surface to water. You may make it let it. In particular, when the photocatalyst is a fibrous photocatalyst described in (1-2. Configuration of catalyst) described later, active oxygen species can be more efficiently contained in water at a high concentration.
また、光触媒体に接触させる水は、溜水に限らず流水であっても良い。流水とした場合には、光触媒体が収容された容器内を供給した水が一度だけ通過するように構成したワンパス方式や、循環経路を形成して容器内を複数回通過するよう構成した循環方式とすることもできる。 Moreover, the water brought into contact with the photocatalyst body is not limited to the stored water, and may be running water. In the case of running water, a one-pass system configured so that the water supplied through the container containing the photocatalyst body passes only once, or a circulation system configured to pass through the container multiple times by forming a circulation path. It can also be.
具体的には、光触媒体を収容した容器に水を供給する給水口と容器内の水を吐出する出水口とを形成し、ワンパス方式の場合は、給水口から流水を供給し、出水口から吐出される水を活性酸素含有水として得る。 Specifically, a water supply port for supplying water to the container containing the photocatalyst body and a water discharge port for discharging water in the container are formed. In the case of the one-pass method, running water is supplied from the water supply port and from the water discharge port. The discharged water is obtained as active oxygen-containing water.
また、循環方式の場合は、給水口と出水口とを連結する連結流路を形成し、出水口から吐出された水を再度給水口より容器内へポンプ等を介して供給する。連結流路の中途には例えば三方弁のような流水分岐機構を設けておき、循環する水の一部を流水分岐機構より吐出させて活性酸素含有水として得ることもできる。 In the case of the circulation system, a connection flow path that connects the water supply port and the water outlet is formed, and water discharged from the water outlet is again supplied from the water supply port into the container through a pump or the like. A flowing water branching mechanism such as a three-way valve is provided in the middle of the connection channel, and a part of the circulating water can be discharged from the flowing water branching mechanism to obtain active oxygen-containing water.
なお、このような活性酸素含有水生成装置については、本発明者が先に出願した
国際公開WO2010/032765等に詳しく記載されており、本実施形態に係る抗酸化活性の検査方法にて使用する活性酸素含有水の製造装置として好適に用いることができる。
Such an active oxygen-containing water generating device is described in detail in the international publication WO2010 / 032765 previously filed by the present inventor and used in the method for testing antioxidant activity according to the present embodiment. It can be suitably used as a production apparatus for active oxygen-containing water.
付言するならば、国際公開WO2010/032765の図1及び図2に記載された活性酸素含有水生成装置Aや、図3に記載された活性酸素含有水生成装置Bを好適に用いることもできる。 If it adds, the active oxygen containing water production | generation apparatus A described in FIG.1 and FIG.2 of international publication WO2010 / 032765 and the active oxygen containing water production | generation apparatus B described in FIG. 3 can also be used suitably.
(1−2.触媒体の構成)
活性酸素含有水を生成するために用いられる触媒体は、同触媒体に接触させた水中に活性酸素種を含有させることのできるものであれば特に限定されるものではない。しかしながら、より好適には、繊維集合体状に形成した触媒体を用いることもできる。
(1-2. Configuration of catalyst body)
The catalyst body used for producing the active oxygen-containing water is not particularly limited as long as the active oxygen species can be contained in the water contacted with the catalyst body. However, more preferably, a catalyst body formed in a fiber aggregate shape can also be used.
例えば、直径50〜200μm程度(本実施形態では、100μm)とした金属繊維体の集合体であり、同繊維体は、アルミニウム繊維の表面にアルミナ被膜を焼結させて形成したアルミナ繊維に酸化チタンを被覆させた繊維体を用いることができる。 For example, it is an aggregate of metal fiber bodies having a diameter of about 50 to 200 μm (in this embodiment, 100 μm), and the fiber bodies are made of titanium oxide on alumina fibers formed by sintering an alumina coating on the surface of aluminum fibers. Can be used.
具体的には、アルミニウムで形成した5mm〜20cmの繊維長を有する複数のアルミニウム繊維を絡み合わせた状態で所定の型枠内に収納して押圧し、前記アルミニウム繊維が単位体積あたり0.5g/cm3〜3g/cm3の密度で集合する所望の形状に整えられたアルミニウム繊維集合体を形成し、同アルミニウム繊維集合体を、その融点温度の約2分の1の温度まで、毎分あたり約5℃以下の温度勾配を維持しながら加熱した後に、融点温度の約2分の1の温度を30分〜3時間維持することにより酸化膜の膜厚を5nm以上とし、その後アルミニウム繊維集合体の融点温度に近い温度まで加熱した後に、その温度近傍で30分〜12時間維持することにより酸化膜の膜厚を50nm以上としてアルミナ繊維集合体を生成し、チタニア化合物を含有するゾル液に前記アルミナ繊維集合体を浸漬して引き上げ、アルミナ繊維集合体を構成するアルミナ繊維の表面に付着したゾル液を乾燥させた後に焼成することにより、アルミナ繊維の表面にチタニア薄膜を形成してチタニア繊維集合体を製造することができる。 Specifically, a plurality of aluminum fibers formed of aluminum having a fiber length of 5 mm to 20 cm are entangled and stored in a predetermined mold, and the aluminum fibers are 0.5 g / cm per unit volume. Forming an aluminum fiber aggregate arranged in a desired shape that aggregates at a density of 3 to 3 g / cm 3 , and the aluminum fiber aggregate is reduced to about a half of its melting point temperature per minute. After heating while maintaining a temperature gradient of 5 ° C. or less, the film thickness of the oxide film is increased to 5 nm or more by maintaining the temperature of about one half of the melting point temperature for 30 minutes to 3 hours, and then the aluminum fiber aggregate After heating to a temperature close to the melting point temperature, maintaining the temperature in the vicinity of 30 minutes to 12 hours to produce an alumina fiber aggregate with an oxide film thickness of 50 nm or more, the alumina solution is contained in a sol solution containing a titania compound. Fiber collection The titania fiber aggregate is manufactured by forming a titania thin film on the surface of the alumina fiber by immersing the body and pulling it up, drying the sol solution adhering to the surface of the alumina fiber constituting the alumina fiber aggregate and then firing it. can do.
また、乾燥前に、ゾル液から引き上げられたアルミナ繊維集合体に対して気体を吹き付けて、アルミナ繊維集合体を構成するアルミナ繊維同士の接点に気体を通気させるようにしても良い。これにより、繊維表面にゾル液乾燥物の結晶(ダマ)ができるのを防止することができ、また、接点近傍においても均一な塗液状態とすることができる。また、ゾル液は、15〜25重量%のチタンジイソプロポキシビスアセチルアセトネートと、5〜10重量%のイソプロパノールと、55〜75重量%のエタノールと、5〜10重量%の水とを含有するようにしても良い。このような組成のゾル液にてチタニアコーティングを行うことにより、均一で剥離し難いチタニアコーティングを行うことができる。また、ゾル液において、チタンジイソプロポキシビスアセチルアセトネートと、エタノールと、水との混合割合を3.5:9:1としても良い。これにより更に強固なチタニア薄膜を形成することができる。また、アルミナ繊維集合体のゾル液への浸漬は、収容するゾル液の体積よりも大きな容積を有する密閉容器内で35℃〜60℃としたゾル液を用いて行うものであり、ゾル液に含有されるアルコールを揮発させながら密閉容器内の気相の圧力を高めつつ浸漬することとしても良い。このようにして行うことにより、ゾル液中でのチタニアの析出を防止しつつ、繊維表面でのきめ細やかな析出を行わせることができ、均一なチタニア薄膜の形成を行わせることができる。 In addition, before drying, a gas may be blown to the alumina fiber aggregate pulled up from the sol solution so that the gas is vented to the contact between the alumina fibers constituting the alumina fiber aggregate. Thereby, it is possible to prevent the dried sol solution from being crystallized (dama) on the fiber surface, and it is possible to obtain a uniform coating solution even in the vicinity of the contact. The sol solution also contains 15 to 25 wt% titanium diisopropoxybisacetylacetonate, 5 to 10 wt% isopropanol, 55 to 75 wt% ethanol, and 5 to 10 wt% water. You may make it do. By carrying out titania coating with the sol liquid having such a composition, it is possible to perform titania coating that is uniform and difficult to peel off. In the sol solution, the mixing ratio of titanium diisopropoxybisacetylacetonate, ethanol, and water may be 3.5: 9: 1. Thereby, a stronger titania thin film can be formed. In addition, the immersion of the alumina fiber aggregate in the sol liquid is performed using a sol liquid at 35 ° C. to 60 ° C. in a sealed container having a volume larger than the volume of the sol liquid to be accommodated. It is good also as immersing, raising the pressure of the gaseous phase in an airtight container, volatilizing the contained alcohol. By carrying out in this way, it is possible to cause fine precipitation on the fiber surface while preventing precipitation of titania in the sol solution, and to form a uniform titania thin film.
(1−3.活性酸素含有水生成装置に供給する水について)
触媒体に接触させる水は純水や水道水、井戸水、オゾン水などであっても良いが、水中の添加物、溶存酸素濃度、溶存オゾン濃度、温度、pH、粘度等を調整することにより、活性酸素種の活性を制御することが可能である。
(1-3. About water supplied to the active oxygen-containing water generator)
The water to be contacted with the catalyst body may be pure water, tap water, well water, ozone water, etc., but by adjusting the additive in water, dissolved oxygen concentration, dissolved ozone concentration, temperature, pH, viscosity, etc. It is possible to control the activity of the reactive oxygen species.
具体的には、給水口の上流側に、水に所定の物質等を添加する供給水処理部を設けて水に種々の成分を添加するように構成しても良い。 Specifically, a supply water treatment unit for adding a predetermined substance or the like to the water may be provided upstream of the water supply port so that various components are added to the water.
添加する成分としては、例えば、酸素ガス、オゾンガス、塩素ガス、一酸化窒素ガス、アンモニアガス、金属塩(NaCl、CaCl2、KCl、MgCl2、CuSO4などの銅およびその化合物,鉄およびその化合物、亜鉛およびその化合物、アルミニウムおよびその化合物等より選ばれる少なくともいずれか1つ)を挙げることができる。 Examples of the components to be added include oxygen gas, ozone gas, chlorine gas, nitric oxide gas, ammonia gas, metal salts (NaCl, CaCl 2 , KCl, MgCl 2, CuSO 4 and other compounds, iron and its compounds, etc. And at least one selected from zinc and its compounds, aluminum and its compounds, and the like.
図1に、水に金属塩類を添加した場合における活性酸素種の含有量について検討した結果の例を示す。縦軸は金属塩類を添加した前後のルシフェリン類由来の発光強度の差を示し、横軸は各金属塩を示している。なお、各金属塩の濃度は、活性酸素含有水生成装置に供給する水における終濃度を示している。 In FIG. 1, the example of the result of having examined about content of the active oxygen species at the time of adding metal salts to water is shown. The vertical axis represents the difference in luminescence intensity derived from luciferins before and after the addition of metal salts, and the horizontal axis represents each metal salt. In addition, the density | concentration of each metal salt has shown the final concentration in the water supplied to an active oxygen containing water production | generation apparatus.
図1からも分かるように、金属塩としてNaClを用いた場合には、NaClを添加しない場合に比して、0.05mMの添加で約4000程発光強度が増強し、0.5mMの添加で約9000程度の発光強度の増強がみられた。また、5mM添加時には、発光強度の増強度合いは減少に転じ約2000程度となり、50mM添加時には約800程度となった。これらのことから、金属塩としてNaClを用いる場合には、0.05mM〜50mM、より望ましくは0.05mM〜5mMの濃度で添加するのが良いことが示された。 As can be seen from FIG. 1, when NaCl is used as the metal salt, the emission intensity is enhanced by about 4000 when 0.05 mM is added, and about 9000 when 0.5 mM is added. There was a slight increase in emission intensity. In addition, when 5 mM was added, the degree of enhancement of the luminescence intensity started to decrease, and was about 2000, and when 50 mM was added, it was about 800. From these results, it was shown that when NaCl is used as the metal salt, it is better to add it at a concentration of 0.05 mM to 50 mM, more desirably 0.05 mM to 5 mM.
また、金属塩としてCaCl2を用いた場合には、CaCl2を添加しない場合に比して、0.05mMの添加で約5000程発光強度が増強し、0.5mMの添加で発光強度の増強度合いは一度減少に転じ約3000程度の発光強度の増強となった。また、5mM添加時には、再び増加傾向が見られ約6000程度となり、50mM添加時には約10000程度となった。これらのことから、金属塩としてCaCl2を用いる場合には、0.05mM〜50mM、より望ましくは5mM〜50mMの濃度で添加するのが良いことが示された。 In addition, when CaCl 2 is used as the metal salt, the emission intensity is enhanced by about 5000 when 0.05 mM is added, and the degree of enhancement of the emission intensity when 0.5 mM is added, compared to the case where CaCl 2 is not added. Once it turned down, the emission intensity increased by about 3000. In addition, when 5 mM was added, an increasing trend was observed again, reaching about 6000, and when adding 50 mM, it was about 10000. From these results, it was shown that when CaCl 2 is used as the metal salt, it should be added at a concentration of 0.05 mM to 50 mM, more preferably 5 mM to 50 mM.
また、金属塩としてKClを用いた場合には、KClを添加しない場合に比して、0.05mMの添加で約4000程発光強度が増強し、0.5mMの添加で約7000程度の発光強度の増強がみられた。また、5mM添加時には、発光強度の増強度合いは減少に転じ約3000程度となり、50mM添加時にはKClを添加しない場合に比して発光が抑制されることとなり約-3000程度となった。これらのことから、金属塩としてKClを用いる場合には、0.05mM〜5mMの濃度で添加するのが良いことが示された。 In addition, when KCl is used as the metal salt, the emission intensity is increased by about 4000 when 0.05 mM is added, and the emission intensity is increased by about 7000 when 0.5 mM is added. Was seen. In addition, when 5 mM was added, the degree of enhancement of the luminescence intensity decreased to about 3000, and when 50 mM was added, luminescence was suppressed as compared to the case where KCl was not added, and was about -3000. From these results, it was shown that when KCl is used as the metal salt, it should be added at a concentration of 0.05 mM to 5 mM.
また、金属塩としてMgCl2を用いた場合には、MgCl2を添加しない場合に比して、0.05mMの添加で約100程発光強度が増強し、0.5mMの添加で約300程度の発光強度の増強がみられた。また、5mM添加時には約1500程度となり、50mM添加時にはMgCl2を添加しない場合に比して発光が抑制されることとなり約-2000程度となった。これらのことから、金属塩としてKClを用いる場合には、0.05mM〜5mMの濃度で添加するのが良いことが示された。 In addition, when MgCl 2 is used as the metal salt, the emission intensity is enhanced by about 100 with the addition of 0.05 mM, and the emission intensity of about 300 with the addition of 0.5 mM, compared with the case where MgCl 2 is not added. The increase was seen. When 5 mM was added, it was about 1500, and when 50 mM was added, light emission was suppressed as compared to the case where MgCl 2 was not added, and about -2000. From these results, it was shown that when KCl is used as the metal salt, it should be added at a concentration of 0.05 mM to 5 mM.
(1−4.活性酸素含有水の調製)
活性酸素含有水生成装置に水を供給し、励起させた光触媒に水を接触させることで、この水に光触媒体の表面にて生成した活性酸素種を分散させて活性酸素含有水を調製した。このようにして調製した活性酸素含有水の活性酸素種の濃度は1〜5μMであった。
(1-4. Preparation of active oxygen-containing water)
Active oxygen-containing water was prepared by supplying water to the active oxygen-containing water generator and bringing water into contact with the excited photocatalyst to disperse active oxygen species generated on the surface of the photocatalyst in this water. The concentration of active oxygen species of the active oxygen-containing water prepared in this way was 1 to 5 μM.
(1−5.活性酸素含有水の抗酸化活性評価における有効性)
前述の(1−4.活性酸素含有水の調製)にて調製した活性酸素含有水が、抗酸化活性を評価可能であるかを、ウシ赤血球由来抗酸化物質スーパーオキシドディスムターゼ(Bovin RBC SOD)を用いて検討を行った。
(1-5. Effectiveness in evaluating antioxidant activity of water containing active oxygen)
Whether the active oxygen-containing water prepared in (1-4. Preparation of Active Oxygen-Containing Water) can evaluate the antioxidant activity is determined by using bovine erythrocyte-derived antioxidant superoxide dismutase (Bovin RBC SOD). It was examined using.
具体的には、1.5ml容量の遠沈管に、ウミホタルルシフェリン類縁体(Cypridina Luciferin Analog)で飽和させた25mMリン酸カリウム緩衝液(pH7.0)を5μl分注し、次いで検体液としてのウシ赤血球由来抗酸化物質水溶液5μlを分注した後に、活性酸素含有水490μlを加えて混合させて測定サンプル液を調製した。なお、以下本明細書において、検体が何であるかに関わらず、同様の方法にて測定サンプル液を調製する方法を単に「測定サンプル調製法」と称する。また、本試験においてウシ赤血球由来抗酸化物質スーパーオキシドディスムターゼ水溶液は、最終濃度が0.045U、0.45U、4.5U、45U、450U、830Uとなるように、検体の異なる合計6種類の測定サンプル液の調製を行った。 Specifically, 5 μl of 25 mM potassium phosphate buffer (pH 7.0) saturated with Cypridina Luciferin Analog was dispensed into a 1.5 ml centrifuge tube, and then bovine erythrocytes as a sample solution After dispensing 5 μl of the aqueous antioxidant substance solution, 490 μl of active oxygen-containing water was added and mixed to prepare a measurement sample solution. In the following description of the present specification, a method of preparing a measurement sample solution by the same method regardless of the specimen is simply referred to as “measurement sample preparation method”. In this test, the superoxide dismutase aqueous solution derived from bovine erythrocytes is a total of six measurement sample solutions with different specimens so that the final concentrations are 0.045U, 0.45U, 4.5U, 45U, 450U, and 830U. Prepared.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図2にその結果を示す。 The prepared measurement sample solution was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferins and changes with time were measured. The results are shown in FIG.
図2中縦軸はルシフェリン類由来の発光の強度であり、横軸は時間(秒)である。図2からも分かるように、抗酸化活性を有するウシ赤血球由来抗酸化物質スーパーオキシドディスムターゼの濃度に応じて発光強度が変化しており、具体的には、ウシ赤血球由来抗酸化物質スーパーオキシドディスムターゼの濃度が高く抗酸化活性が高いほど、発光強度が低くなる傾向が見られた。 In FIG. 2, the vertical axis represents the intensity of luminescence derived from luciferins, and the horizontal axis represents time (seconds). As can be seen from FIG. 2, the luminescence intensity changes depending on the concentration of the antioxidant superoxide dismutase derived from bovine erythrocytes having antioxidant activity. The higher the concentration and the higher the antioxidant activity, the lower the emission intensity.
この結果から、本実施形態に係る抗酸化活性の検査方法によれば、抗酸化組成物の抗酸化活性を評価できることが示された。 From this result, it was shown that the antioxidant activity of the antioxidant composition can be evaluated according to the method for testing antioxidant activity according to the present embodiment.
〔2.抗酸化活性の評価〕
(2−1.薬品の評価−グルタチオン)
前述の〔1.活性酸素含有水の調製〕にて調製した活性酸素含有水を用いて本実施形態に係る抗酸化活性の検査方法の系におけるグルタチオンの濃度を変化させた際の発光強度について検討を行った。グルタチオンは通常還元型グルタチオンとして細胞内に存在し、酸化ストレス時には電子供与体として作用することにより酸化型グルタチオンに変換されることにより、細胞障害を軽減させるとされているアミノ酸である。
[2. (Evaluation of antioxidant activity)
(2-1. Evaluation of drugs-glutathione)
[1. Using the active oxygen-containing water prepared in [Preparation of Active Oxygen-Containing Water], the emission intensity when the concentration of glutathione in the system of the method for testing antioxidant activity according to this embodiment was changed was examined. Glutathione is an amino acid that is usually present in cells as reduced glutathione and is converted to oxidized glutathione by acting as an electron donor during oxidative stress, thereby reducing cell damage.
まず、検体液としてグルタチオン水溶液を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。なお、本試験においてグルタチオン水溶液は、最終濃度が1mM、100μM、10μM、1μM、100nMとなるように添加し、検体の異なる合計5種類の測定サンプル液の調製を行った。 First, a glutathione aqueous solution was used as a sample liquid, and a measurement sample liquid was prepared according to the above-described measurement sample preparation method. In this test, the glutathione aqueous solution was added so as to have final concentrations of 1 mM, 100 μM, 10 μM, 1 μM, and 100 nM, and a total of five types of measurement sample solutions with different specimens were prepared.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図3にその結果を示す。 The prepared measurement sample solution was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferins and changes with time were measured. The result is shown in FIG.
図3からも分かるように、抗酸化活性を有するグルタチオンの濃度に応じて発光強度が変化しており、具体的には、グルタチオンの濃度が高く抗酸化活性が高いほど、発光強度が低くなる傾向が見られた。 As can be seen from FIG. 3, the luminescence intensity varies depending on the concentration of glutathione having antioxidant activity. Specifically, the higher the glutathione concentration and the higher the antioxidant activity, the lower the luminescence intensity. It was observed.
この結果から、本実施形態に係る抗酸化活性の検査方法によれば、抗酸化組成物の抗酸化活性を評価できることが示された。また、測定サンプル液はいずれも中性であり、より人体に近い中性域での抗酸化活性測定が可能であることが示された。 From this result, it was shown that the antioxidant activity of the antioxidant composition can be evaluated according to the method for testing antioxidant activity according to the present embodiment. Moreover, all the measurement sample liquids were neutral, and it was shown that the antioxidant activity measurement in a neutral region closer to the human body is possible.
(2−2.薬品の評価−アスコルビン酸)
次に、アスコルビン酸の濃度を変化させた際の発光強度について検討を行った。アスコルビン酸は栄養素ビタミンCとして広く抗酸化物質と知られ、食品添加物の酸化防止剤としても利用されている。しかしその活性時間は短い。
(2-2. Evaluation of drugs-ascorbic acid)
Next, the emission intensity when the concentration of ascorbic acid was changed was examined. Ascorbic acid is widely known as an antioxidant, vitamin N, and is also used as an antioxidant in food additives. However, its active time is short.
まず、検体液としてアスコルビン酸水溶液を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。なお、本試験においてアスコルビン酸水溶液は、最終濃度が1mM、100μM、10μM、3μM、1μMとなるように添加し、検体の異なる合計5種類の測定サンプル液の調製を行った。 First, an ascorbic acid aqueous solution was used as a sample solution, and a measurement sample solution was prepared according to the above-described measurement sample preparation method. In this test, the ascorbic acid aqueous solution was added so that the final concentrations were 1 mM, 100 μM, 10 μM, 3 μM, and 1 μM, and a total of five types of measurement sample solutions with different specimens were prepared.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図4にその結果を示す。 The prepared measurement sample solution was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferins and changes with time were measured. FIG. 4 shows the result.
図4からも分かるように、抗酸化活性を有するアスコルビン酸の濃度に応じて発光強度が変化しており、具体的には、アスコルビン酸の濃度が高く抗酸化活性が高いほど、発光強度が低くなる傾向が見られた。特に、グルタチオン同様に10μM以上の高濃度のアスコルビン酸も濃度依存性に発光強度が低くなる傾向が見られ、高い抗酸化活性を呈する。 As can be seen from FIG. 4, the luminescence intensity varies depending on the concentration of ascorbic acid having antioxidant activity. Specifically, the higher the concentration of ascorbic acid and the higher the antioxidant activity, the lower the luminescence intensity. The tendency to become was seen. In particular, as with glutathione, ascorbic acid at a high concentration of 10 μM or more tends to have a low emission intensity depending on the concentration, and exhibits high antioxidant activity.
また注目すべきは、1μMと3μMとを比較した場合、約50秒まではほぼ同等の発光強度を示したが、その後100秒までに間に1μMの方は急激に抗酸化活性が失われコントロール曲線に近似した高い発光強度を示す一方、3μMの方は抗酸化活性を維持しつつ100秒辺りで抗酸化活性が失われるという挙動を示している。このように、本実施形態に係る抗酸化活性の検査方法によれば、経時的な発光強度を観察することにより、抗酸化活性が時間的にどのような変化を示すかを知ることができる。 It should also be noted that when comparing 1 μM and 3 μM, the emission intensity was almost the same up to about 50 seconds, but 1 μM suddenly lost its antioxidant activity by 100 seconds, and the control was lost. While high luminescence intensity that approximates the curve is shown, 3 μM shows the behavior that the antioxidant activity is lost in around 100 seconds while maintaining the antioxidant activity. Thus, according to the method for testing antioxidant activity according to the present embodiment, it is possible to know how the antioxidant activity changes over time by observing the luminescence intensity over time.
併せて、この結果から、本実施形態に係る抗酸化活性の検査方法によれば、抗酸化組成物の抗酸化活性を評価できることが示された。また、試料の効能予測および動態予測を含め、濃度効果を簡便に予測する事が可能である事が示された。 In addition, this result indicates that the antioxidant activity of the antioxidant composition can be evaluated according to the method for testing antioxidant activity according to the present embodiment. It was also shown that concentration effects can be easily predicted, including sample efficacy prediction and kinetic prediction.
さらに、スーパーオキシドアニオンラジカル(O2 -)の消去能に関して、アスコルビン酸は直接的にO2 -をはじめとした活性酸素と非選択的に反応する低分子型抗酸化物質と判断できる。一方、グルタチオンやスーパーオキシドディスムターゼ(SOD)は、選択的なO2 -の分解反応を触媒する高分子型抗酸化物質であると識別できる。 Furthermore, ascorbic acid can be judged to be a low molecular weight antioxidant that directly reacts with active oxygen such as O 2 − in terms of scavenging ability of superoxide anion radical (O 2 − ). On the other hand, glutathione and superoxide dismutase (SOD) can be identified as polymer-type antioxidants that catalyze a selective O 2 − decomposition reaction.
(2−3.薬品の評価−Z型DNA・Cu2+複合体の抗酸化活性の評価)
新規の高分子型生体触媒として、2本鎖を形成しZ型構造をとる6塩基対からなる2本鎖オリゴDNAである5’-CGCGCG-3’を作製した。対照として、非Z型の2本鎖DNA構造を形成する5’-ATATAT-3’および1本鎖のオリゴDNAである5’-CCCCCC-3’および5’-GGGGGG-3’も作製した。
(2-3. Evaluation of chemicals-Evaluation of antioxidant activity of Z-type DNA / Cu2 + complex)
As a novel polymer-type biocatalyst, 5′-CGCGCG-3 ′, a 6-base pair double-stranded oligo DNA that forms a double strand and takes a Z-type structure, was prepared. As controls, 5′-ATATAT-3 ′ forming a non-Z-type double-stranded DNA structure and 5′-CCCCCC-3 ′ and 5′-GGGGGG-3 ′, which are single-stranded oligo DNAs, were also prepared.
まず、検体液としてZ型DNA・Cu2+複合体溶液を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。Z型DNA・Cu2+複合体溶液は、所定最終濃度の硫酸銅(CuSO4)水溶液に図5(a)にて示す塩基配列を有する6塩基対の二本鎖DNAを1:1濃度で添加して調製した。なお、本試験においてZ型DNA・Cu2+複合体溶液は、最終濃度が30μM、10μM、3μM、1μM、0.3μMとなるように添加し、検体の異なる合計5種類の測定サンプル液の調製を行った。 First, using a Z-type DNA / Cu 2+ complex solution as a sample solution, a measurement sample solution was prepared according to the above-described measurement sample preparation method. The Z-type DNA / Cu 2+ complex solution is a 1: 1 concentration of 6 base pair double-stranded DNA having the base sequence shown in FIG. 5 (a) in an aqueous copper sulfate (CuSO 4 ) solution having a predetermined final concentration. It was prepared by adding. In this test, the Z-type DNA / Cu 2+ complex solution was added to a final concentration of 30 μM, 10 μM, 3 μM, 1 μM, and 0.3 μM, and a total of 5 types of measurement sample solutions with different specimens were prepared. went.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン由来の発光の強度及び経時変化について測定を行った。図5(b)にその結果を示す。 The prepared measurement sample solution was set in a measuring apparatus (Lumin sensor manufactured by ATTO) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferin and changes with time were measured. The result is shown in FIG.
図5(b)からも分かるように、調製したいずれの測定サンプル液についても、ルシフェリン由来の発光強度はポジティブコントロールよりも顕著に低く、抗酸化活性を有することが示された。 As can be seen from FIG. 5B, the luminescence intensity derived from luciferin was significantly lower than that of the positive control in any of the prepared measurement sample solutions, indicating that it has antioxidant activity.
また、抗酸化活性を有するZ型DNA・Cu2+複合体の濃度に応じて発光強度が変化しており、具体的には、Z型DNA・Cu2+複合体の濃度が高く抗酸化活性が高いほど、発光強度が低くなる傾向が見られた。 In addition, the luminescence intensity changes according to the concentration of the Z-type DNA / Cu 2+ complex having antioxidant activity. Specifically, the concentration of the Z-type DNA / Cu 2+ complex is high and the antioxidant activity is high. The higher the value, the lower the emission intensity.
さらに、検体液としてZ型DNAおよび硫酸銅(CuSO4)溶液を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。それぞれの溶液は、最終濃度が100μM、30μM、10μM、3μM、1μM、0.3μM、0.1μMとなるように添加し、検体の異なる各合計7種類の測定サンプル液の調製を行った。 Further, using a Z-type DNA and a copper sulfate (CuSO 4 ) solution as a specimen solution, a measurement sample solution was prepared according to the above-described measurement sample preparation method. Each solution was added so as to have a final concentration of 100 μM, 30 μM, 10 μM, 3 μM, 1 μM, 0.3 μM, and 0.1 μM, and a total of seven types of measurement sample solutions with different specimens were prepared.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン由来の発光の強度及び経時変化について測定を行い、その測定結果において最も高い値を示した発光強度数値とコントロールとなる活性酸素含有水の発光強度の最高数値の割合を算出した。図6(a)にその結果を示す。 Immediately after addition of active oxygen-containing water, the prepared measurement sample solution is set in a measuring device (ATTO's luminescence sensor) and measured for the intensity of luminescence from luciferin and changes over time. The ratio between the indicated emission intensity value and the maximum value of the emission intensity of active oxygen-containing water as a control was calculated. FIG. 6A shows the result.
この結果から、硫酸銅水溶液およびZ型DNA単独での、抗酸化活性は強くなく、両者が酵素+補酵素的に結合することにより、強い抗酸化活性を呈する事が示された。一方、提示してはいないが、非Z型のオリゴDNAや1本鎖のオリゴDNAでは活性が認められなかった。 From these results, it was shown that the aqueous solution of copper sulfate and the Z-type DNA alone did not have strong antioxidant activity, and both of them exhibited strong antioxidant activity when bound in an enzyme-coenzyme manner. On the other hand, although not shown, no activity was observed with non-Z-type oligo DNA or single-stranded oligo DNA.
さらに、本試験方法が、他の抗酸化活性法と同様の結果が得られるかの評価を目的として、WST-1ホルマザン試薬との反応を、最も強い抗酸化活性を示した100μM濃度溶液の3サンプルについて、吸光度測定を用いた本実施形態に係る抗酸化活性の検査を行った。図6(b)にその結果(対象区と比較した差スペクトル)を示す。 Furthermore, for the purpose of evaluating whether this test method can obtain the same results as other antioxidant activity methods, the reaction with WST-1 formazan reagent was conducted in a 100 μM concentration solution that showed the strongest antioxidant activity. The sample was tested for antioxidant activity according to this embodiment using absorbance measurement. FIG. 6B shows the result (difference spectrum compared with the target section).
この結果にて、前述と同様に、硫酸銅水溶液およびZ型DNA単独では、抗酸化活性を示さず、両者が酵素+補酵素的に結合することにより、Z型DNA・Cu2+複合体として抗酸化能を示すことが明らかにされた。このように本方法によれば、抗酸化組成物の抗酸化活性を時間・濃度評価できることが示された。 As a result, as described above, the copper sulfate aqueous solution and the Z-type DNA alone did not exhibit the antioxidant activity, and both of them bound as an enzyme + coenzyme, thereby forming a Z-type DNA / Cu 2+ complex. It was revealed that it exhibits antioxidant ability. Thus, according to this method, it was shown that the antioxidant activity of the antioxidant composition can be evaluated for time and concentration.
(2−4.薬品の評価−Edaravone製剤の抗酸化活性の評価)
次に、Edaravone製剤における抗酸化活性の評価を行った。Edaravone (エダラボン)は脳梗塞などによって生じた虚血再灌流障害時に発生する活性酸素種(フリーラジカルと表現されることが多い)に対して、本剤を主として含有する点滴薬が、脳浮腫や組織障害を軽減するとして利用されている。しかし本剤はアニオン系活性酸素種に対する除去作用が強く、ヒドロキシラジカルを代表とするカチオン系活性酸素種による抗酸化活性検出による方法ではスピントラップ法を用いても検出不能であることがある。
(2-4. Evaluation of drugs-Evaluation of antioxidant activity of Edaravone preparation)
Next, the antioxidant activity of the Edaravone preparation was evaluated. Edaravone (edaravone) is an active oxygen species (often expressed as free radicals) that occurs during ischemia-reperfusion injury caused by cerebral infarction. It is used to reduce organizational problems. However, this agent has a strong removal action against anionic reactive oxygen species, and it may be impossible to detect even when the spin trap method is used in the method based on the detection of antioxidant activity by cationic active oxygen species typified by hydroxy radicals.
Edaravoneは人体へ投与される際には、経静脈的に血管内へ0.3mg/ml溶液として30分以上の時間をかけ、緩徐に30mg全身投与される。さらに本剤はしばしば、同様の抗酸化作用を有するL-システイン塩酸塩水和物が0.1mg/mlの濃度で混和されている事がある。 When Edaravone is administered to the human body, it is intravenously injected into the blood vessel as a 0.3 mg / ml solution over 30 minutes and slowly administered 30 mg systemically. Furthermore, this drug often contains L-cysteine hydrochloride hydrate having the same antioxidant action at a concentration of 0.1 mg / ml.
まず、1.5ml容量の遠沈管に、ウミホタルルシフェリン類縁体(Cypridina Luciferin Analog)で飽和させた25mMリン酸カリウム緩衝液(pH7.0)を5μl分注し、次いで検体液としての検体液として容器より開封し取り出したEdaravone点滴液5〜100μlを分注した後に、活性酸素含有水を加えて混合させつつ500μlにメスアップして測定サンプル液を調製した。なお、本試験においてEdaravone製剤は、最終濃度が60μg/ml、30μg/ml、9μg/ml、6μg/ml、3μg/ml、1.8μg/ml、0.6μg/mlとなるように添加し、検体の異なる合計7種類の測定サンプル液の調製を行った。 First, 5 μl of 25 mM potassium phosphate buffer (pH 7.0) saturated with Cypridina Luciferin Analog was dispensed into a 1.5 ml centrifuge tube, and then the sample solution as the sample solution was dispensed from the container. After dispensing 5 to 100 μl of Edaravone drip solution opened and taken out, the measurement sample solution was prepared by measuring up to 500 μl while adding and mixing active oxygen-containing water. In this study, Edaravone preparations were added so that the final concentrations were 60 μg / ml, 30 μg / ml, 9 μg / ml, 6 μg / ml, 3 μg / ml, 1.8 μg / ml, and 0.6 μg / ml. A total of seven different measurement sample solutions were prepared.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図7にその結果を示す。 The prepared measurement sample solution was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferins and changes with time were measured. FIG. 7 shows the result.
図7からも分かるように、Edaravoneの濃度に応じて発光強度が減弱し、コントロール曲線のArea under curveの50%減弱を示すものは、Edaravone最終濃度3μg/ml濃度が相当する事がわかる。具体的には、最終濃度3μg/ml以上の高濃度のEdaravoneは濃度依存性に発光強度が低くなり、高い抗酸化活性を呈する。しかしEdaravone最終濃度3μg/ml以下のEdaravoneは100秒経過した時点より、その抗酸化活性が急激に減弱し、コントロール曲線に近似していく。 As can be seen from FIG. 7, it can be seen that the Edaravone final concentration of 3 μg / ml corresponds to the one whose luminescence intensity decreases according to the concentration of Edaravone and the area under curve of the control curve shows 50% attenuation. Specifically, Edaravone with a high concentration of 3 μg / ml or more in the final concentration has a low emission intensity depending on the concentration and exhibits a high antioxidant activity. However, Edaravone with an Edaravone final concentration of 3 μg / ml or less has its antioxidant activity abruptly reduced after 100 seconds and approximates a control curve.
このことは、今後、抗酸化活性を目的とした薬剤の開発の上で、本法による評価にてArea under curveの50%減弱を示すものを基準として、投与効果の判定を行うのが妥当であることが示された。もちろんこの基準は全身投与にて薬剤を投与する際の基準であり、急性心筋梗塞の治療の際に、カテーテルを通じ局所へ投与する際は、更なる低濃度での投与が可能となり、腎排出性薬剤であることによる全身投与時の副作用発現を軽減することができる。 In the future, it is reasonable to evaluate the administration effect based on the evaluation of this method based on the 50% attenuation of the Area under curve in the development of drugs aimed at antioxidant activity in the future. It was shown that there is. Of course, this standard is a standard for systemic administration of drugs, and when treating acute myocardial infarction, when administered locally through a catheter, it can be administered at a lower concentration, resulting in renal excretion. It is possible to reduce the occurrence of side effects during systemic administration due to being a drug.
また付言すると、本試験にて使用したEdaravone製剤は、リン酸カリウム緩衝液(pH7.0)を5μl、Edaravone点滴液5μl、活性酸素含有水を加えて混合させつつ500μlにメスアップした際に、図7において3μg/mlとして示すカーブを描く濃度、すなわち、0.3mg/mlに調製されている。 In addition, the Edaravone formulation used in this study is 5 μl of potassium phosphate buffer (pH 7.0), 5 μl of Edaravone drip solution, and mixed with active oxygen-containing water. In FIG. 7, the concentration is set to draw a curve shown as 3 μg / ml, that is, 0.3 mg / ml.
このEdaravone製剤を第2の抗酸化性薬剤と見立てた場合、生体内において実質的に有効な(第2の抗酸化性薬剤と略同等の効果を生起する)投与量が未知の第1の抗酸化活性薬剤の指標投与量の決定するためには、ポジティブコントロールのエリアアンダーザカーブに対するEdaravoneの3μg/mlのエリアアンダーザカーブの割合である約50%と同程度のエリアアンダーザカーブとなる濃度とすれば良い。 When this Edaravone preparation is regarded as the second antioxidant drug, the first anti-dose whose dosage is unknown in the living body (substantially the same effect as the second antioxidant drug) is unknown. To determine the index dose of the oxidatively active drug, the concentration that produces an area under the curve of approximately 50%, which is the ratio of the 3 μg / ml area under the curve of Edaravone to the area under the curve of the positive control. What should I do?
すなわち、ポジティブコントロールのエリアアンダーザカーブに対するEdaravoneの3μg/mlのエリアアンダーザカーブの割合と略同等の割合を示すエリアアンダーザカーブを描く第1の抗酸化性薬剤の測定サンプル中の濃度が同じ実験条件にてXμg/mlであった場合、Edaravone製剤中のEdaravone濃度である0.3mg/mlと略同等の効果を生起させるための第1の抗酸化性薬剤の濃度は0.1×Xmg/mlであるものと指標投与量や指標製剤濃度、指標投与濃度等をin vitro系において容易に決定することができる。 That is, the concentration in the measurement sample of the first anti-oxidant drug that draws an area under the curve showing the ratio of Edaravone's 3 μg / ml area under the curve to the area under the curve of the positive control is the same. When the experimental condition was Xμg / ml, the concentration of the first anti-oxidant drug was 0.1 x Xmg / ml to bring about the same effect as the edaravone concentration of 0.3mg / ml in the edaravone preparation. Some, index dose, index formulation concentration, index dose concentration, etc. can be easily determined in an in vitro system.
なお、第2の抗酸化性薬剤と略同等の効果を生起する第1の抗酸化性薬剤の指標投与量を決定するにあたり、ポジティブコントロールのエリアアンダーザカーブに対する第1の抗酸化活性薬剤のエリアアンダーザカーブの割合(以下、第1の割合ともいう。)は、必ずしもポジティブコントロールのエリアアンダーザカーブに対する第2の抗酸化活性薬剤のエリアアンダーザカーブの割合(以下、第2の割合ともいう。)と全く同じである必要はない。本願発明者の経験上、第2の割合の±25%の範囲内に第1の割合が含まれていれば、大凡同様の抗酸化活性や薬効を示すことが分かっており、指標投与量として十分機能するものと考えている。 In determining the index dose of the first anti-oxidant drug that produces the same effect as the second anti-oxidant drug, the area of the first anti-oxidant drug against the positive control area under the curve The ratio of the under-the curve (hereinafter also referred to as the first ratio) is not necessarily the ratio of the area under the curve of the second antioxidant active agent to the area under the curve of the positive control (hereinafter also referred to as the second ratio). Need not be exactly the same as.). According to the experience of the present inventor, it is known that if the first ratio is included in the range of ± 25% of the second ratio, the antioxidant activity and the drug effect are almost the same. I think it works well.
また、本試験結果から、本実施形態に係る抗酸化活性の検査方法によれば、抗酸化組成物の抗酸化活性を評価できることが示された。また、測定サンプル液はいずれも中性であり、より人体に近い中性域での抗酸化活性測定が可能であることが示された。 Moreover, it was shown from this test result that the antioxidant activity of the antioxidant composition can be evaluated according to the method for testing antioxidant activity according to this embodiment. Moreover, all the measurement sample liquids were neutral, and it was shown that the antioxidant activity measurement in a neutral region closer to the human body is possible.
前述のグルタチオン、アスコルビン酸、エダラボンの結果とスーパーオキシドディスムターゼ、DNA・Cu2+複合体の結果(カーブのパターン)を比較して、試料の希釈系を適切に調整することで活性酸素消去のメカニズムが、活性酸素と非選択的に反応する低分子型抗酸化物質群であるか、選択的なO2 -の分解反応を触媒する高分子型抗酸化物質群であるかを、容易に識別することが可能である。 Comparison of the results of glutathione, ascorbic acid and edaravone with the results of superoxide dismutase and DNA / Cu 2+ complex (curve pattern), and the mechanism of reactive oxygen scavenging by adjusting the dilution system of the sample appropriately but if a low molecular type antioxidant group that reacts with active oxygen-selective, selective O 2 - or a polymer type antioxidant group that catalyze the decomposition reaction of readily identify It is possible.
(2−5.食品の評価−レモン等の抗酸化活性の評価)
次に、市販のレモン及び市販のレモン飲料における抗酸化活性の評価を行った。
(2-5. Evaluation of food-Evaluation of antioxidant activity such as lemon)
Next, the antioxidant activity in a commercially available lemon and a commercially available lemon drink was evaluated.
まず、検体液としてレモン汁又はレモン飲料を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。なお、本試験においてレモン飲料は、ビタミンCを2mg/mlの濃度で含有するものと、7.14mg/mlの濃度で含有するものの2種類を使用し、検体の異なる合計3種類の測定サンプル液の調製を行った。3μMのアスコルビン酸は大凡0.5mg/mlのビタミンCに相当するため、本サンプルは、途中減弱せず高い抗酸化活性を呈する事が予想できる。 First, lemon juice or lemon drink was used as a sample liquid, and a measurement sample liquid was prepared according to the above-described measurement sample preparation method. In this test, lemon drinks are used in two types, one containing vitamin C at a concentration of 2 mg / ml and one containing 7.14 mg / ml. Prepared. Since 3 μM ascorbic acid is roughly equivalent to 0.5 mg / ml vitamin C, this sample can be expected to exhibit high antioxidant activity without being attenuated.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図8にその結果を示す。 The prepared measurement sample solution was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferins and changes with time were measured. FIG. 8 shows the result.
図8からも分かるように、レモン汁、2種のレモン飲料のいずれについても、ルシフェリン類由来の発光強度はポジティブコントロールよりも顕著に低く、抗酸化活性を有することが示された。 As can be seen from FIG. 8, the luminescence intensity derived from luciferins was significantly lower than that of the positive control for both lemon juice and the two lemon beverages, indicating that it has antioxidant activity.
また、それぞれの測定サンプル液同士を比較すると、ビタミンCを7.14mg/mlの濃度で含有するレモンジュースは、レモン汁とほぼ同等の抗酸化活性を有することが示唆された。 Moreover, when each measurement sample liquid was compared, it was suggested that lemon juice containing vitamin C at a concentration of 7.14 mg / ml has almost the same antioxidant activity as lemon juice.
また、ビタミンCを2mg/mlの濃度で含有するレモンジュースは、ビタミンCを7.14mg/mlの濃度で含有するレモンジュースやレモン汁と比較して、抗酸化活性が低いということが示された。図示していないが、ビタミンC 2mg/ml、クエン酸2mg/ml、ポリフェノール20μg/mlを溶解した清涼飲料水は、抗酸化活性成分の相加効果により、レモン汁同等の高い、抗酸化活性を示した。 In addition, lemon juice containing vitamin C at a concentration of 2 mg / ml was shown to have lower antioxidant activity than lemon juice and lemon juice containing vitamin C at a concentration of 7.14 mg / ml. . Although not shown, soft drinks in which vitamin C 2 mg / ml, citric acid 2 mg / ml, and polyphenol 20 μg / ml are dissolved have a high antioxidant activity equivalent to lemon juice due to the additive effect of antioxidant active ingredients. Indicated.
本法と同様に、野菜における抗酸化活性の評価として、例えばカイワレ大根、ブロッコリースプラウト、レタスやハーブ類などの葉物野菜等で、野菜の汁を用い直接抗酸化能の評価が可能である。また根菜類などの水分含有量の少ない食品群においては、リン酸バッファー液に対して、試料重量を規定し、ストマッカーにより圧搾した溶液を用いて、比較評価する事が可能である。さらにこの手法によれば、調理方法の違い、例えば湯煎と電子レンジでの加熱等による抗酸化活性の違いなどの評価が容易に出来る。 Similarly to this method, as an evaluation of the antioxidant activity in vegetables, for example, leafy vegetables such as kaiware radish, broccoli sprout, lettuce and herbs can be directly evaluated for antioxidant capacity using vegetable juice. In addition, in a food group having a low water content such as root vegetables, it is possible to make a comparative evaluation using a solution that defines a sample weight and is compressed by a stomacher with respect to a phosphate buffer solution. Furthermore, according to this method, it is possible to easily evaluate differences in cooking methods, for example, differences in antioxidant activity due to heating in a hot water bath and a microwave oven.
加えて冷凍凍結法や凍結乾燥法を代表とする保存方法による抗酸化活性の低下は、ビタミンやポリフェノール類による抗酸化活性ではなく、酵素の凍結障害による失活であることは、本法の評価サンプルに対して、測定直前に凍結操作を加えることで容易に検出する事が出来る。 In addition, the decrease in antioxidant activity by storage methods such as freeze-freeze method and freeze-dry method is not antioxidant activity by vitamins and polyphenols, but is inactivated by enzyme freezing damage. The sample can be easily detected by adding a freezing operation immediately before the measurement.
(2−6.食品の評価−トマト等の抗酸化活性の評価)
次に、市販のプチトマト及び市販のトマト飲料における抗酸化活性の評価を行った。
(2-6. Evaluation of food-Evaluation of antioxidant activity such as tomato)
Next, the antioxidant activity in commercially available cherry tomatoes and commercially available tomato beverages was evaluated.
まず、検体液としてプチトマト汁又はトマト飲料を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。なお、本試験においてトマト飲料は2種類を使用し、検体の異なる合計3種類の測定サンプル液の調製を行った。 First, the measurement sample liquid was prepared according to the above-mentioned measurement sample preparation method, using a small tomato juice or a tomato drink as a sample liquid. In this test, two types of tomato beverages were used, and a total of three types of measurement sample solutions with different specimens were prepared.
調製した測定サンプル液は活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図9にその結果を示す。 The prepared measurement sample solution was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the luminescence intensity derived from luciferins and changes with time were measured. FIG. 9 shows the result.
図9中縦軸はルシフェリン類由来の発光の強度であり、横軸は時間(秒)である。図9からも分かるように、プチトマト汁、2種のトマト飲料のいずれについても、ルシフェリン類由来の発光強度はポジティブコントロールよりも顕著に低く、抗酸化活性を有することが示された。 In FIG. 9, the vertical axis represents the intensity of luminescence derived from luciferins, and the horizontal axis represents time (seconds). As can be seen from FIG. 9, the luminescence intensity derived from luciferins was significantly lower than that of the positive control for both the tomato juice and the two tomato beverages, indicating that it has antioxidant activity.
また興味深いことに、それぞれの測定サンプル液同士を比較すると、未加工のプチトマトの抗酸化活性が最も高く、2種のトマト飲料の比較では、ストレートトマト飲料の方が、濃縮還元トマト飲料に比して抗酸化活性が高いということが示唆された。提示したサンプルにおいて、濃縮還元法による抗酸化活性の失活を思わせる結果となったが、提示していない他のサンプルにおいては、濃縮還元法においても優れた抗酸化活性を呈するサンプルもあり、製法や素材により抗酸化活性を高く維持しうることが示唆された。 Interestingly, when the measured sample solutions are compared, the antioxidant activity of the raw cherry tomatoes is the highest, and in the comparison of the two tomato beverages, the straight tomato beverage is more than the concentrated reduced tomato beverage. It was suggested that the antioxidant activity is high. In the presented sample, the result was reminiscent of the antioxidant activity by the concentration reduction method, but in other samples not presented, there are also samples that exhibit excellent antioxidant activity in the concentration reduction method, It was suggested that the antioxidant activity can be kept high by the production method and materials.
(2−7.食品の評価−清涼飲料水の抗酸化活性の評価)
ジュース等の清涼飲料水においても、ポリフェノールやアントシアニンによる抗酸化活性を謳うものがある。しかし清涼飲料水の中には、還元糖とアミノ酸の反応によりMeillard様反応が惹起され、活性酸素種の生成反応が生じる可能性があるとされている。
(2-7. Evaluation of food-Evaluation of antioxidant activity of soft drinks)
Some soft drinks such as juices also have an antioxidant activity due to polyphenols and anthocyanins. However, in soft drinks, it is said that a Meillard-like reaction is induced by the reaction of reducing sugars and amino acids, and there is a possibility that a reaction of generating reactive oxygen species occurs.
まず、検体液として容器より開封し取り出した清涼飲料を用い、前述の測定サンプル調製法に準じて測定サンプル液を調製した。なお、本試験において使用した清涼飲料水は、2種類の果物を用いてポリフェノール210mg、アントシアニン60mgを含有するとされたものである。 First, a measurement sample solution was prepared according to the above-described measurement sample preparation method using a soft drink opened and taken out from a container as a sample solution. In addition, the soft drink used in this test is said to contain 210 mg of polyphenol and 60 mg of anthocyanin using two kinds of fruits.
測定サンプルは同様に活性酸素含有水の添加後直ちに測定装置(ATTO社製ルミネッセンサー)にセットし、ルシフェリン類由来の発光の強度及び経時変化について測定を行った。図10にその結果を示す。 Similarly, the measurement sample was set in a measuring device (ATTO Co., Ltd. luminescence sensor) immediately after the addition of active oxygen-containing water, and the intensity of luminescence derived from luciferins and changes with time were measured. FIG. 10 shows the result.
図10からも分かるように、測定開始直後よりルシフェリン類由来の発光強度はポジティブコントロールよりも顕著に高い値を示し、あたかも高濃度の活性酸素を生成するかのように強い発光を呈する。その後含有するポリフェノールやアントシアニンによる抗酸化活性により発光強度は低下する。 As can be seen from FIG. 10, the luminescence intensity derived from the luciferins immediately after the start of the measurement shows a significantly higher value than that of the positive control, and exhibits strong luminescence as if producing a high concentration of active oxygen. Thereafter, the emission intensity decreases due to the antioxidant activity of polyphenols and anthocyanins contained therein.
このことは、特筆する抗酸化活性があるとされる果物の中には、輸送中の保存状態により果糖と果物中のアミノ酸が反応しMaillard様反応が生じた可能性があることが示された。 This indicates that some of the fruits that have special antioxidant activity may have a Maillard-like reaction due to the reaction of fructose and amino acids in the fruits depending on the storage state during transport. .
〔3.記録媒体の作成〕
前述の抗酸化活性の検査方法を行って得られた結果を、紙面上に文字及び数字にて記載し、ポジティブコントロールの発光強度と、各測定サンプル液の発光強度との比が分かるデータが記録された検体における抗酸化活性の有無を判定するための、又は、所定のサンプル液中の検体における抗酸化活性の前記他のサンプル液中の検体に対する強弱を判定するためのデータが記録された紙媒体を作成した。
[3. (Create recording medium)
The results obtained by carrying out the above-mentioned method for testing antioxidant activity are written on the paper in letters and numbers, and data that shows the ratio between the luminescence intensity of the positive control and the luminescence intensity of each measurement sample solution is recorded. Paper on which data for determining the presence or absence of antioxidant activity in a given sample or for determining the strength of the antioxidant activity of a sample in a predetermined sample solution relative to the sample in the other sample solution is recorded Created media.
また、同様に、上記データをコンピュータ上にて入力することによりデータファイルを作成し、このデータファイルをCD−Rに記録することで、ポジティブコントロールの発光強度と、各測定サンプル液の発光強度との比が分かるデータが記録された検体における抗酸化活性の有無を判定するための、又は、所定のサンプル液中の検体における抗酸化活性の前記他のサンプル液中の検体に対する強弱を判定するためのCD−Rを作成した。 Similarly, a data file is created by inputting the above data on a computer, and the data file is recorded on a CD-R, so that the emission intensity of the positive control, the emission intensity of each measurement sample solution, and In order to determine the presence or absence of antioxidant activity in a sample in which data with a known ratio is recorded, or to determine the strength of antioxidant activity in a sample in a predetermined sample solution relative to the sample in the other sample solution CD-R was prepared.
そして、これらの紙媒体やCD−Rによれば、検体が抗酸化活性を有するか否かや、所定のサンプル液中の検体における抗酸化活性の他のサンプル液中の検体に対する強弱について容易に知ることができる。 Then, according to these paper media and CD-R, it is easy to determine whether or not a specimen has antioxidant activity and the strength of the antioxidant activity of a specimen in a predetermined sample liquid with respect to the specimen in another sample liquid. I can know.
また、これらのデータが記録された媒体には、本実施形態に係る抗酸化活性の検査方法、すなわち、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて測定サンプル液を調製し、同測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ計測することにより、前記測定サンプル液からの化学発光の強度が前記発光基液からの化学発光の強度を下回った場合、前記検体は抗酸化活性を有すると判定する抗酸化活性の検査方法にて評価を行った結果である旨を表示する検査方法表示部を紙面上に付記したり、デジタル媒体であれば所定のソフトウェア等を介して視認可能な状態にデジタルデータとして設けても良い。このような検査方法表示部を設けることにより、検査方法を明確に認識させることができる。なお、検査方法表示部に記載する内容は、本実施形態に係る抗酸化活性の検査方法にて検査されたことが分かる記載であれば必ずしも上記文言でなくとも良く、通称などの簡略的な表示であっても良い。 Further, the medium in which these data are recorded contains the method for testing antioxidant activity according to the present embodiment, that is, the active oxygen species is converted to at least potassium superoxide (KO 2 ) at a concentration of 1 μM or more. Prepare a sample solution to be measured in the presence of a sample to be evaluated for antioxidant activity in a luminescent base solution in which active oxygen-containing water and luciferins that emit light in the presence of the active oxygen species are mixed. By measuring the intensity of chemiluminescence derived from the luciferins emitted from the sample liquid and the luminescent base liquid not containing the analyte, respectively, the intensity of chemiluminescence from the measurement sample liquid is determined from the luminescent base liquid. When the intensity of chemiluminescence is lower, the test method display section is displayed on the paper to indicate that the specimen is the result of evaluation by the test method of antioxidant activity that is determined to have antioxidant activity. Or it may be provided as digital data in a predetermined visible state or the like via the software if the digital medium. By providing such an inspection method display unit, the inspection method can be clearly recognized. Note that the content described in the test method display section is not necessarily the above wording as long as it is understood that the test is performed by the method for testing antioxidant activity according to the present embodiment, and a simple display such as a common name is used. It may be.
上述してきたように、本実施形態に係る抗酸化活性の検査方法によれば、活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に抗酸化活性の評価対象となる検体を存在させて測定サンプル液を調製し、同測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ計測することにより、前記測定サンプル液からの化学発光の強度が前記発光基液からの化学発光の強度を下回った場合、前記検体は抗酸化活性を有すると判定することとしたため、抗酸化組成物の抗酸化活性について、より人体に近い中性域にて評価することのできる抗酸化活性の検査方法を提供することができる。 As described above, according to the method for testing antioxidant activity according to the present embodiment, active oxygen-containing water containing active oxygen species at a concentration of 1 μM or more in terms of at least potassium superoxide (KO 2 ) and the above-mentioned A measurement sample solution is prepared in the presence of a sample to be evaluated for antioxidant activity in a luminescent base solution mixed with luciferins that emit luminescence in the presence of reactive oxygen species. By measuring the intensity of chemiluminescence derived from the luciferin that is emitted from the luminescent base solution containing no luminescence, the intensity of chemiluminescence from the measurement sample solution is less than the intensity of chemiluminescence from the luminescent base solution. In this case, since the specimen is determined to have antioxidant activity, the antioxidant activity of the antioxidant composition can be evaluated in a neutral range closer to the human body. The law can be provided.
最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention other than the embodiments described above.
Claims (8)
シトシン及びグアニンの繰り返し配列を有するオリゴDNAと銅との複合体をスーパーオキシドアニオンラジカルの消去物質の指標物質として用いることを特徴とする抗酸化活性の検査方法。 In a luminescent base solution in which active oxygen-containing water containing active oxygen species at a concentration of at least 1 μM in terms of potassium superoxide (KO 2 ) and luciferins that emit light in the presence of the active oxygen species are mixed A sample liquid to be evaluated is prepared in the presence of a sample to be evaluated for antioxidant activity, and the intensity of chemiluminescence derived from the luciferins emitted from the sample liquid and the luminescent base solution not containing the sample is measured. By each measuring, when the intensity of chemiluminescence from the measurement sample solution is lower than the intensity of chemiluminescence from the luminescent base solution , the test method for determining the antioxidant activity that determines that the specimen has antioxidant activity There,
A method for testing antioxidant activity, wherein a complex of oligo DNA having a repetitive sequence of cytosine and guanine and copper is used as an indicator substance for a superoxide anion radical scavenging substance .
前記所定の物質は、酸素ガス、オゾンガス、塩素ガス、一酸化窒素ガス、アンモニアガス、金属塩から選ばれる少なくともいずれか1種であることを特徴とする請求項3に記載の抗酸化活性の検査方法。 The water to be brought into contact with the photocatalyst body is supplied through a supply water treatment unit that adds a predetermined substance to the water,
4. The antioxidant activity test according to claim 3, wherein the predetermined substance is at least one selected from oxygen gas, ozone gas, chlorine gas, nitric oxide gas, ammonia gas, and metal salt. Method.
前記水中における濃度は、NaCl及びCaCl2にあっては0.05mM〜50mMの濃度であり、
KCl、MgCl2にあっては0.05mM〜5mMの濃度であり、
CuSO4にあっては50μM〜200μMであることを特徴とする請求項4に記載の抗酸化活性の検査方法。 The metal salt is at least one selected from NaCl, CaCl 2 , KCl, MgCl 2 , CuSO 4 ,
The concentration in the water is 0.05 mM to 50 mM for NaCl and CaCl 2 ,
For KCl and MgCl2, the concentration is 0.05 mM to 5 mM.
5. The method for testing antioxidant activity according to claim 4, wherein CuSO 4 is 50 μM to 200 μM.
活性酸素種を少なくとも超酸化カリウム(KO2)に換算して1μM以上の濃度で含有する活性酸素含有水と前記活性酸素種の存在下で発光を示すルシフェリン類とが混合された発光基液中に、前記第1の抗酸化活性薬剤を検体として存在させた第1の測定サンプル液と前記発光基液中に前記第2の抗酸化活性薬剤を検体として存在させた第2の測定サンプル液とを調製し、各測定サンプル液と、前記検体を含まない前記発光基液とより発せられる前記ルシフェリン類由来の化学発光の強度をそれぞれ経時的に計測し、前記発光基液の発光強度の経時変化曲線下面積に対する前記第2の抗酸化活性薬剤の発光強度の経時変化曲線下面積の割合の±25%の誤差範囲内に含まれる前記第1の抗酸化活性薬剤の発光強度の経時変化曲線下面積となる濃度を前記第1の抗酸化活性薬剤の指標投与量とすることを特徴とする指標投与量の決定方法。 An index for producing a drug effect equivalent to that of a second antioxidant active agent whose dosage is substantially effective in vivo, of the first antioxidant active drug whose unknown effective dose in vivo is unknown A method for determining a dose of
In a luminescent base solution in which active oxygen-containing water containing active oxygen species at a concentration of at least 1 μM in terms of potassium superoxide (KO 2 ) and luciferins that emit light in the presence of the active oxygen species are mixed A first measurement sample solution in which the first antioxidant active agent is present as a specimen, and a second measurement sample solution in which the second antioxidant active agent is present as a specimen in the luminescent base solution; The intensity of chemiluminescence derived from the luciferins emitted from each measurement sample solution and the luminescent base solution not containing the specimen is measured over time, and the luminescence intensity of the luminescent base solution changes over time. Under the time-dependent change curve of the luminescence intensity of the first antioxidant active agent included in the error range of ± 25% of the ratio of the area under the curve with time of the luminescence intensity of the second antioxidant active agent to the area under the curve The concentration to be the area Indicators dose determination method, characterized by an indicator dosage of 1 antioxidant active agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014038082A JP6332737B2 (en) | 2014-02-28 | 2014-02-28 | Testing method for antioxidant activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014038082A JP6332737B2 (en) | 2014-02-28 | 2014-02-28 | Testing method for antioxidant activity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015161635A JP2015161635A (en) | 2015-09-07 |
JP6332737B2 true JP6332737B2 (en) | 2018-05-30 |
Family
ID=54184806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014038082A Active JP6332737B2 (en) | 2014-02-28 | 2014-02-28 | Testing method for antioxidant activity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6332737B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7658944B2 (en) * | 2003-10-10 | 2010-02-09 | Lifecycle Pharma A/S | Solid dosage form comprising a fibrate |
JP2007051103A (en) * | 2005-08-19 | 2007-03-01 | Taiyo Kagaku Co Ltd | Antioxidant composition |
JP5371060B2 (en) * | 2008-09-16 | 2013-12-18 | 公益財団法人北九州産業学術推進機構 | Water for expressing a pathogenic resistance gene (PR gene group) encoding a plant immunostimulatory protein, a method for preventing plant diseases using the water, and a device for producing the water |
JP5435722B2 (en) * | 2010-01-22 | 2014-03-05 | 学校法人君が淵学園 | Superoxide analysis method and superoxide analysis kit |
-
2014
- 2014-02-28 JP JP2014038082A patent/JP6332737B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015161635A (en) | 2015-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qi et al. | Recent advances in small-molecule fluorescent probes for studying ferroptosis | |
Ghiselli et al. | Total antioxidant capacity as a tool to assess redox status: critical view and experimental data | |
Du et al. | Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits | |
Gliszczyńska-Świgło | Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays | |
Keyrouz et al. | Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany | |
Piljac-Žegarac et al. | Electrochemical determination of antioxidant capacity of fruit tea infusions | |
Andersen et al. | Potential antioxidants in beer assessed by ESR spin trapping | |
Hoelzl et al. | Methods for the detection of antioxidants which prevent age related diseases: a critical review with particular emphasis on human intervention studies | |
Braga et al. | Antioxidant activity of bisabolol: inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems | |
Ahmad et al. | Review on methods used to determine antioxidant activity | |
Huang et al. | Antioxidant capacity of follicular fluid from patients undergoing in vitro fertilization | |
Noguer et al. | Synergism effect between phenolic metabolites and endogenous antioxidants in terms of antioxidant activity | |
CN101855538B (en) | Method for measuring the ability of a sample to withstand reactive oxygen species (ROS) | |
Nemzer et al. | New insights on effects of a dietary supplement on oxidative and nitrosative stress in humans | |
JP6332737B2 (en) | Testing method for antioxidant activity | |
US20210208140A1 (en) | Diagnostic methods for the detection and quantification of blood-related diseases | |
TW201441620A (en) | Xylem fiber device for detection | |
Wang et al. | Generation of reactive oxidative species from thermal treatment of sugar solutions | |
Parisi et al. | Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone) | |
Bigot et al. | Increased singlet oxygen-induced secondary ROS production in the serum of cancer patients | |
Girotti et al. | Chemiluminescent determination of antioxidant capacity of beverages | |
RU2238554C1 (en) | Method for determining total antioxidation activity of biologically active substances | |
Olivier et al. | Secondary oxidants in human serum exposed to singlet oxygen: the influence of hemolysis | |
Pateiro | Natural Antioxidants to Enhance the Shelf-Life of Food | |
Zalesskaya et al. | Spectral signs of photochemical reactions when blood is exposed in vivo to therapeutic doses of ultraviolet radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6332737 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |