[go: up one dir, main page]

JP6327747B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6327747B2
JP6327747B2 JP2014088691A JP2014088691A JP6327747B2 JP 6327747 B2 JP6327747 B2 JP 6327747B2 JP 2014088691 A JP2014088691 A JP 2014088691A JP 2014088691 A JP2014088691 A JP 2014088691A JP 6327747 B2 JP6327747 B2 JP 6327747B2
Authority
JP
Japan
Prior art keywords
diffusion region
layer
semiconductor device
region
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088691A
Other languages
Japanese (ja)
Other versions
JP2015207720A (en
Inventor
賢志 原
賢志 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2014088691A priority Critical patent/JP6327747B2/en
Publication of JP2015207720A publication Critical patent/JP2015207720A/en
Application granted granted Critical
Publication of JP6327747B2 publication Critical patent/JP6327747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thin Film Transistor (AREA)

Description

本発明は、高耐圧パワーIC等を含む半導体装置に関し、特に横型のMOS電界効果型トランジスタ(横型MOSFET)に関するものである。   The present invention relates to a semiconductor device including a high breakdown voltage power IC, and more particularly to a lateral MOS field effect transistor (lateral MOSFET).

従来、横型IGBT(Insulated Gate Bipolar Transistor)を高耐圧化・高電流密度化するための技術が知られていた(例えば、特許文献1および特許文献2参照)。   Conventionally, a technique for increasing the breakdown voltage and current density of a lateral IGBT (Insulated Gate Bipolar Transistor) has been known (see, for example, Patent Document 1 and Patent Document 2).

また、従来、横型MOSFETとして、ドリフト領域の不純物濃度をpベース領域側からドレイン領域に向けて横方向に増加させている構造のものがあった(例えば、特許文献3参照)。   Conventionally, a lateral MOSFET has a structure in which the impurity concentration of the drift region is increased in the lateral direction from the p base region side toward the drain region (see, for example, Patent Document 3).

特開平6−318714号公報JP-A-6-318714 特開2009−246037号公報JP 2009-246037 A 特開平4−309234号公報JP-A-4-309234

近年、デバイス分離領域が小さく、寄生トランジスタフリーという特徴から、SOI基板を用いた高耐圧パワーICの開発が盛んに行われている。高耐圧パワーICの開発においては、負荷を直接駆動する高耐圧出力デバイスの性能向上が、出力特性やチップサイズ低減の観点から必須となる。そのため、出力デバイスとして、伝導度変調により高い単位面積あたりの電流容量(以下、電流密度と記載)が得られる横型IGBT(Insulated Gate Bipolar Transistor)が主に使用されている。この横型IGBTの高耐圧化、高電流密度化技術が開発されており、例として、特許文献1、特許文献2で開示されているものがある。   In recent years, high-breakdown-voltage power ICs using SOI substrates have been actively developed because of their small device isolation region and parasitic transistor-free characteristics. In the development of a high voltage power IC, it is essential to improve the performance of a high voltage output device that directly drives a load from the viewpoint of output characteristics and chip size reduction. Therefore, a lateral IGBT (Insulated Gate Bipolar Transistor) that can obtain a high current capacity per unit area (hereinafter referred to as current density) by conductivity modulation is mainly used as an output device. Technologies for increasing the withstand voltage and increasing the current density of the lateral IGBT have been developed. Examples thereof are disclosed in Patent Document 1 and Patent Document 2.

しかしながら、IGBTでは、コレクタ領域に形成されたダイオードにより、順方向に電圧を印加したときにビルトイン電圧(約1V)までの領域で電流が流れず、低電流領域を主に使用するパワーIC用途ではMOSFETと比較して損失が大きいという欠点があった。これに対応し、高耐圧で電流密度の高い(オン抵抗の低い)横型MOSFETが提案されており、例として、特許文献3で開示されたものがある。   However, in the IGBT, the diode formed in the collector region does not flow current in the region up to the built-in voltage (about 1V) when a voltage is applied in the forward direction. There was a disadvantage that the loss was large compared to the MOSFET. Corresponding to this, a lateral MOSFET having a high withstand voltage and a high current density (low on-resistance) has been proposed. An example is disclosed in Patent Document 3.

特許文献3の横型MOSFETは図9で示すような構成をしており、薄膜のn型半導体基板1が埋め込み酸化膜10上に形成されており、埋め込み酸化膜10は支持基板9上に形成されている。半導体基板1の一部に選択的にpベース領域2が形成され、そのpベース領域2の一部にソース領域8が形成されている。pベース領域2の形成されていないn型基板1の一部に選択的にドレイン領域3が形成されている。そして、半導体基板1とソース領域8に挟まれたpベース領域2の表面上にゲート酸化膜15を介してゲート電極12が設けられている。また、ソース領域8に接触するソース電極11、ドレイン領域3に接触するドレイン電極13が設けられている。   The lateral MOSFET of Patent Document 3 has a configuration as shown in FIG. 9, in which a thin n-type semiconductor substrate 1 is formed on a buried oxide film 10, and the buried oxide film 10 is formed on a support substrate 9. ing. A p base region 2 is selectively formed in a part of the semiconductor substrate 1, and a source region 8 is formed in a part of the p base region 2. A drain region 3 is selectively formed in a part of the n-type substrate 1 where the p base region 2 is not formed. A gate electrode 12 is provided on the surface of the p base region 2 sandwiched between the semiconductor substrate 1 and the source region 8 via a gate oxide film 15. A source electrode 11 that contacts the source region 8 and a drain electrode 13 that contacts the drain region 3 are also provided.

この横型MOSFETの特徴は、一般的な横型MOSFETではpベース領域2とドレイン領域3の間のドリフト領域4の不純物濃度が一定であるのに対し、ドリフト領域4の不純物濃度をpベース領域2側からドレイン領域3に向けて横方向に増加させていることである。これにより、ドリフト領域4内の横方向電界分布を均一化し高耐圧化が図れると共に、一般的な構造に対しトータルの不純物濃度が高濃度となり、高い電流密度が得られる。   The feature of this lateral MOSFET is that the impurity concentration of the drift region 4 between the p base region 2 and the drain region 3 is constant in a general lateral MOSFET, whereas the impurity concentration of the drift region 4 is changed to the p base region 2 side. That is, it is increased in the lateral direction from the drain toward the drain region 3. As a result, the lateral electric field distribution in the drift region 4 can be made uniform to increase the breakdown voltage, and the total impurity concentration becomes higher than that of a general structure, so that a high current density can be obtained.

しかし、図9に示す横型MOSFETでは、縦方向電界によるアバランシェを抑制するため、半導体基板1(またはドリフト領域4)の厚さを非常に薄くする必要がある。例えば、600Vの耐圧を得るためには、埋め込み酸化膜10の厚さ3.5μmの場合、半導体基板1の厚さは0.5μm程度以下とする必要がある。高温長時間の拡散や酸化工程を含む高耐圧パワーIC製造工程では、半導体基板1の厚さばらつきが発生しやすく、このばらつきにより耐圧特性が大きく影響を受ける。また、ドリフト領域4の不純物濃度分布は、ドリフト領域4上の酸化膜17の厚さやゲート電極12またはソース電極11の配置と関連して決定する必要があり、これらの製造ばらつきによる耐圧への影響も大きい。結果として、製造ばらつきの範囲内で所望の耐圧を得られるよう素子設計をすると、ドリフト領域4の不純物濃度低減や横方向距離拡大が必要となり、電流密度が低くなるという課題があった。   However, in the lateral MOSFET shown in FIG. 9, it is necessary to make the thickness of the semiconductor substrate 1 (or the drift region 4) very thin in order to suppress the avalanche due to the vertical electric field. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film 10 has a thickness of 3.5 μm, the thickness of the semiconductor substrate 1 needs to be about 0.5 μm or less. In a high voltage power IC manufacturing process including diffusion at a high temperature for a long time and an oxidation process, variations in the thickness of the semiconductor substrate 1 are likely to occur, and this variation greatly affects the breakdown voltage characteristics. Further, the impurity concentration distribution in the drift region 4 needs to be determined in relation to the thickness of the oxide film 17 on the drift region 4 and the arrangement of the gate electrode 12 or the source electrode 11, and the influence on the breakdown voltage due to these manufacturing variations. Is also big. As a result, when an element is designed so as to obtain a desired breakdown voltage within the range of manufacturing variations, it is necessary to reduce the impurity concentration of the drift region 4 and to increase the lateral distance, resulting in a problem that the current density is lowered.

上記の課題を解決するために、本発明の半導体装置は、例えば、半導体基板と、前記半導体基板の一方の主表面の表面層に選択的に形成された第一導電型の第一拡散領域と、前記表面層の前記第一拡散領域とは異なる部分に選択的に形成された第二導電型の第二拡散領域と、前記第一拡散領域と前記第二拡散領域との間に選択的に形成された第一導電型の第三拡散領域とを備え、前記第一拡散領域と前記第二拡散領域とが前記半導体基板の前記主表面の面方向に沿って配置された、ユニポーラで動作する横型の半導体装置であって、前記第三拡散領域は、第一層と、前記第一層と前記半導体基板との間に位置する第二層とを含んで成り、前記第二層は、前記第一層より不純物濃度が低く、前記第二拡散領域側の前記第一層と前記第二層の不純物濃度の差は、前記第一拡散領域側の前記第一層と前記第二層の不純物濃度の差より大きく、前記第一拡散領域、前記第二拡散領域、および前記第三拡散領域は、それぞれ前記横型の半導体装置のドレイン領域、ベース領域、およびドリフト領域として機能することを特徴とする。 In order to solve the above-described problems, a semiconductor device of the present invention includes, for example, a semiconductor substrate, a first diffusion region of a first conductivity type selectively formed on a surface layer of one main surface of the semiconductor substrate. The second diffusion region of the second conductivity type selectively formed in a portion different from the first diffusion region of the surface layer, and selectively between the first diffusion region and the second diffusion region. A third diffusion region of the first conductivity type formed, wherein the first diffusion region and the second diffusion region are arranged in a plane direction of the main surface of the semiconductor substrate and operate in a unipolar manner. In the lateral semiconductor device, the third diffusion region includes a first layer and a second layer positioned between the first layer and the semiconductor substrate, and the second layer includes Impurity concentration is lower than the first layer, and the first layer and the second layer on the second diffusion region side are impure. Difference in density, the rather larger than the difference in the impurity concentration of the first diffusion region side of said first layer and said second layer, said first diffusion region, said second diffusion region, and said third diffusion region, Each of them functions as a drain region, a base region, and a drift region of the lateral semiconductor device .

本発明によれば、横型MOSFETの耐圧と電流密度とのトレードオフ関係が良好となり、以て、高耐圧パワーICの低損失化およびチップサイズ低減が可能となる。   According to the present invention, the trade-off relationship between the breakdown voltage and the current density of the lateral MOSFET becomes good, and thus it is possible to reduce the loss and reduce the chip size of the high breakdown voltage power IC.

本発明の第1の実施形態に係る半導体装置の断面構造図である。1 is a cross-sectional structure diagram of a semiconductor device according to a first embodiment of the present invention. 従来技術の半導体装置と本発明の半導体装置とについてのシミュレーション計算の対象とした、従来技術と本発明とで共通の断面構造を示す図である。It is a figure which shows the cross-sectional structure common to the prior art and this invention used as the object of the simulation calculation about the semiconductor device of a prior art, and the semiconductor device of this invention. 従来技術の半導体装置と本発明の半導体装置とについてのシミュレーション計算における、従来技術のドリフト領域不純物濃度を示す図である。It is a figure which shows the drift region impurity concentration of a prior art in the simulation calculation about the semiconductor device of a prior art, and the semiconductor device of this invention. 従来技術の半導体装置と本発明の半導体装置とについてのシミュレーション計算における、本発明のドリフト領域不純物濃度を示す図である。It is a figure which shows the drift region impurity concentration of this invention in the simulation calculation about the semiconductor device of a prior art, and the semiconductor device of this invention. 従来技術の半導体装置と本発明の半導体装置とについてのシミュレーション計算結果であって、従来技術および本発明の耐圧計算結果を示す図である。It is a simulation calculation result about the semiconductor device of a prior art, and the semiconductor device of this invention, Comprising: It is a figure which shows the pressure | voltage resistant calculation result of a prior art and this invention. 従来技術の半導体装置と本発明の半導体装置とについてのシミュレーション計算結果であって、従来技術および本発明のオン状態電圧電流特性計算結果を示す図である。It is a simulation calculation result about the semiconductor device of a prior art, and the semiconductor device of this invention, Comprising: It is a figure which shows a prior art and the ON-state voltage current characteristic calculation result of this invention. 本発明の第1の実施形態に係る半導体装置の断面構造図である。1 is a cross-sectional structure diagram of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows impurity concentration distribution of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る半導体装置の断面構造図である。FIG. 6 is a cross-sectional structure diagram of a semiconductor device according to a second embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る半導体装置の断面構造図である。FIG. 6 is a cross-sectional structure diagram of a semiconductor device according to a third embodiment of the present invention. 本発明の第3の実施形態に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る半導体装置の断面構造図である。FIG. 6 is a cross-sectional structure diagram of a semiconductor device according to a fourth embodiment of the present invention. 本発明の第4の実施形態に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る半導体装置の断面構造図である。FIG. 6 is a cross-sectional structure diagram of a semiconductor device according to a fifth embodiment of the present invention. 本発明の第5の実施形態に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る半導体装置の断面構造図である。It is sectional structure drawing of the semiconductor device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on the 6th Embodiment of this invention. 従来技術による半導体装置の断面構造図である。It is sectional structure drawing of the semiconductor device by a prior art. 従来技術による半導体装置の断面構造図である。It is sectional structure drawing of the semiconductor device by a prior art. 従来技術による半導体装置の断面構造図である。It is sectional structure drawing of the semiconductor device by a prior art.

本発明の横型MOSFETは、耐圧と電流密度のトレードオフ向上のため、ドリフト領域の縦方向と横方向に不純物濃度勾配を形成することを最も主要な特徴とする。   The lateral MOSFET of the present invention has the main feature that an impurity concentration gradient is formed in the vertical direction and the horizontal direction of the drift region in order to improve the trade-off between breakdown voltage and current density.

本発明の横型MOSFETでは、ドリフト領域の素子表面側の不純物濃度を、素子底面側の不純物濃度より高濃度とし、かつ、素子底面側の不純物濃度は、ソース領域からドレイン領域に向けて横方向に増加させる。素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化が図れる。   In the lateral MOSFET of the present invention, the impurity concentration on the element surface side of the drift region is set higher than the impurity concentration on the element bottom side, and the impurity concentration on the element bottom side is laterally directed from the source region to the drain region. increase. By increasing the impurity concentration on the element surface, the on-resistance is reduced, and by setting the source-side impurity concentration on the element bottom surface to be low, the depletion layer easily spreads to the drain side, and a high breakdown voltage can be achieved.

本発明の横型MOSFET構造では、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよい。従って、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を得やすい。   In the lateral MOSFET structure of the present invention, the semiconductor substrate thickness of the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, the thickness of the buried oxide film is 3.5 μm. The thickness of the semiconductor substrate may be about 5 μm. Therefore, compared with the structure of FIG. 9, it is difficult to be affected by manufacturing variations, and it is easy to obtain a semiconductor device having a high breakdown voltage and a high current density.

以下、本発明の半導体装置の実施形態の一例を、図面に基づいて詳細に説明する。   Hereinafter, an example of an embodiment of a semiconductor device of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1の実施形態である実施例1に係る半導体装置(MOSFET)の一例の部分断面構造図である。図1において、n型半導体基板1の一部に選択的にp型ベース領域2が形成され、そのp型ベース領域2の表面層の一部にn型ソース領域8が形成され、そのn型ソース領域8に隣接するようにp型コンタクト領域7が形成されている。p型ベース領域2の形成されていないn型基板1の表面露出部に選択的にn型ドレイン領域3が形成されている。そして、p型ベース領域2表面層のチャネル領域14の表面上にゲート酸化膜15を介してG端子に接続されるゲート電極12が設けられている。また、n型ソース領域8とp型コンタクト領域7の表面に共通に接触するソース電極11が、n型ドレイン領域3の表面上にはドレイン電極13が設けられ、それぞれS端子、D端子に接続される。p型ベース領域2とn型ドレイン領域3の間のドリフト領域4には、第一層5と第二層6が形成されており、第二層6の不純物濃度は第一層5の不純物濃度より低く、かつ、p型ベース領域2側の第一層5と第二層6の不純物濃度の差は、n型ドレイン領域3側の第一層5と第二層6の不純物濃度の差より大きいことを特徴としている。本発明のMOSFETでは、素子表面側に配置した第一層5の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面側の第二層6のソース側不純物濃度を低く設定することで空乏層が広がり易くなり高耐圧化が図れる。   FIG. 1 is a partial cross-sectional structure diagram of an example of a semiconductor device (MOSFET) according to Example 1 which is the first embodiment of the present invention. In FIG. 1, a p-type base region 2 is selectively formed in a part of an n-type semiconductor substrate 1, and an n-type source region 8 is formed in a part of the surface layer of the p-type base region 2. A p-type contact region 7 is formed adjacent to the source region 8. An n-type drain region 3 is selectively formed on the exposed surface of the n-type substrate 1 where the p-type base region 2 is not formed. A gate electrode 12 connected to the G terminal via the gate oxide film 15 is provided on the surface of the channel region 14 in the surface layer of the p-type base region 2. In addition, a source electrode 11 that is in common contact with the surfaces of the n-type source region 8 and the p-type contact region 7 is provided, and a drain electrode 13 is provided on the surface of the n-type drain region 3, and is connected to the S terminal and the D terminal, respectively. Is done. A first layer 5 and a second layer 6 are formed in the drift region 4 between the p-type base region 2 and the n-type drain region 3, and the impurity concentration of the second layer 6 is the impurity concentration of the first layer 5. The difference in impurity concentration between the first layer 5 and the second layer 6 on the p-type base region 2 side is lower than the difference in impurity concentration between the first layer 5 and the second layer 6 on the n-type drain region 3 side. It is characterized by being large. In the MOSFET of the present invention, the on-resistance is reduced by increasing the impurity concentration of the first layer 5 disposed on the element surface side, and the source-side impurity concentration of the second layer 6 on the element bottom side is set low. As a result, the depletion layer easily spreads and a high breakdown voltage can be achieved.

図2a、2b、2c、2eは、従来の一般的なMOSFET(構造1)と本発明のMOSFET(構造2)とについて、耐圧と電流性能とをデバイスシミュレーションで計算確認したものである。図2aは断面構造を示し、構造1と構造2で共通である。図2bは構造1のドリフト領域不純物濃度であり、図2aのA−A’間とB−B’間について横方向位置と不純物濃度の関係を示している。図2cは構造2のドリフト領域不純物濃度について、図2bと同様に示している。図2b、2cより、構造1ではドリフト領域で不純物濃度がほぼ一定であるのに対し、構造2では第一層(A−A’間)の不純物濃度は第二層(B−B’間)の不純物濃度より高く、かつ、ソース領域側の第一層と第二層の不純物濃度の差D1は、ドレイン領域側の第一層と第二層の不純物濃度の差D2より大きく設定している。また、構造2の第一層不純物濃度は構造1の不純物濃度より高い。図2dは構造1および構造2の耐圧計算結果、図2eは構造1および構造2のオン状態電圧電流特性計算結果を示す。なお、チャネル幅やゲート電圧など計算条件は同一としている。図2d、2eより、構造2のNMOSFETとすることで、同等耐圧の構造1と比較し高い電流密度を得られることがわかる。   FIGS. 2a, 2b, 2c, and 2e are obtained by calculating and confirming withstand voltage and current performance of a conventional general MOSFET (structure 1) and a MOSFET of the present invention (structure 2) by device simulation. FIG. 2 a shows a cross-sectional structure, which is common to structure 1 and structure 2. FIG. 2b shows the drift region impurity concentration of structure 1, and shows the relationship between the lateral position and the impurity concentration between A-A 'and B-B' in FIG. 2a. FIG. 2c shows the drift region impurity concentration of structure 2 as in FIG. 2b. 2b and 2c, in structure 1, the impurity concentration in the drift region is almost constant, whereas in structure 2, the impurity concentration of the first layer (between AA ′) is the second layer (between BB ′). The impurity concentration difference D1 between the first layer and the second layer on the source region side is set to be larger than the impurity concentration difference D2 between the first layer and the second layer on the drain region side. . Further, the first layer impurity concentration of structure 2 is higher than the impurity concentration of structure 1. FIG. 2d shows the breakdown voltage calculation results of Structure 1 and Structure 2, and FIG. 2e shows the on-state voltage-current characteristic calculation results of Structure 1 and Structure 2. FIG. The calculation conditions such as channel width and gate voltage are the same. 2d and 2e, it can be seen that the NMOSFET having the structure 2 can obtain a higher current density than the structure 1 having the same breakdown voltage.

なお、横型半導体装置で、ドリフト領域の不純物濃度を縦方向に勾配を持たせる発明として、特許文献1や特許文献2で開示されたものがある。   Note that, in the lateral semiconductor device, there are those disclosed in Patent Document 1 and Patent Document 2 as an invention in which the impurity concentration of the drift region has a gradient in the vertical direction.

図10は特許文献1で開示された構造であり、支持基板9上に埋め込み酸化膜10を介して、n型半導体基板40が形成されている。半導体基板40に、埋め込み酸化膜10に達する深さで所定距離離れてp型ベース領域2、n型ベース領域(バッファ領域)16が形成され、さらに、p型ベース領域2中にn型ソース領域8を、n型ベース領域16中にp型ドレイン領域18が形成されている。n型ソース領域8と半導体基板40により挟まれたp型ベース領域2の表面部をチャネル領域として、この上にゲート酸化膜を介してゲート電極12が形成されている。ソース電極11はn型ソース領域8とp型ベース領域2に同時にコンタクトするように形成され、ドレイン電極13はp型ドレイン領域18にコンタクトするように形成されている。また、電極11,13間には絶縁保護膜17が形成されている。半導体基板40の表面全体からはn型不純物層41が拡散形成され、半導体基板40中は縦方向の濃度勾配がつけられている。これにより、半導体基板40底部での電界集中が緩和され高耐圧が得られる。ここで、図10の構造は横方向には不純物濃度勾配を持たせておらず、本発明の構造とは異なる。また、図10はバイポーラで動作する横型IGBTに関するものであり、半導体基板40または不純物層41中に不純物濃度の高い領域を設けることは好ましくない。これは、IGBTが、オン状態においてドリフト領域の伝導度変調を活性化し低いオン抵抗を得ることを特徴としているためである。伝導度変調は、不純物濃度が薄い領域において活性化する。従って、ドリフト領域の横方向の一部に不純物濃度の高い領域が存在するとオン抵抗が著しく悪化する。これに対し、本発明のMOSFETはユニポーラで動作する半導体装置であり、ドリフト層の不純物濃度が高いほど低いオン抵抗が得られる。従って、本発明の構造は、ドリフト領域4の第一層5と第二層6において、nドレイン領域3側に不純物濃度の高い領域を設けることを特徴としている。   FIG. 10 shows a structure disclosed in Patent Document 1, and an n-type semiconductor substrate 40 is formed on a support substrate 9 with a buried oxide film 10 interposed therebetween. A p-type base region 2 and an n-type base region (buffer region) 16 are formed on the semiconductor substrate 40 at a predetermined distance away to reach the buried oxide film 10, and an n-type source region is formed in the p-type base region 2. 8, a p-type drain region 18 is formed in the n-type base region 16. A surface portion of the p-type base region 2 sandwiched between the n-type source region 8 and the semiconductor substrate 40 is used as a channel region, and a gate electrode 12 is formed thereon via a gate oxide film. The source electrode 11 is formed to contact the n-type source region 8 and the p-type base region 2 simultaneously, and the drain electrode 13 is formed to contact the p-type drain region 18. An insulating protective film 17 is formed between the electrodes 11 and 13. An n-type impurity layer 41 is diffused from the entire surface of the semiconductor substrate 40, and a vertical concentration gradient is given in the semiconductor substrate 40. As a result, the electric field concentration at the bottom of the semiconductor substrate 40 is alleviated and a high breakdown voltage is obtained. Here, the structure of FIG. 10 does not have an impurity concentration gradient in the lateral direction, and is different from the structure of the present invention. FIG. 10 relates to a lateral IGBT operating in a bipolar manner, and it is not preferable to provide a region having a high impurity concentration in the semiconductor substrate 40 or the impurity layer 41. This is because the IGBT is characterized by activating the conductivity modulation of the drift region and obtaining a low on-resistance in the on-state. The conductivity modulation is activated in a region where the impurity concentration is low. Therefore, if a region having a high impurity concentration exists in a part of the drift region in the lateral direction, the on-resistance is remarkably deteriorated. On the other hand, the MOSFET of the present invention is a unipolar semiconductor device, and the lower the on-resistance, the higher the impurity concentration of the drift layer. Therefore, the structure of the present invention is characterized in that a region having a high impurity concentration is provided on the n drain region 3 side in the first layer 5 and the second layer 6 of the drift region 4.

図11は特許文献2で開示された構造であり、支持基板9と、支持基板9上に設けられている埋め込み酸化膜10と、埋め込み酸化膜10上に設けられている半導体基板1を備えている。半導体基板1内には、n型ソース領域8と、p型ドレイン領域18と、n型のドリフト領域4を備えており、p型ベース領域2がn型ソース領域8を囲み、n型ソース領域8とドリフト領域4を分離している。p型コンタクト領域7が、半導体基板1の表面で、p型ベース領域2の内部に設けられている。n型ソース領域8とp型コンタクト領域7は、ソース電極11に接触しており、p型ドレイン領域18は、ドレイン電極13に接触している。n型ソース領域8とドリフト領域4を分離しているp型ベース領域2の表面部をチャネル領域として、この上にゲート酸化膜14を介してゲート電極12が形成されている。半導体基板1の表面には、層間絶縁膜17が設けられている。n型バッファ領域16はp型ドレイン領域18を囲っており、p型ドレイン領域18とドリフト領域4を分離している。ドリフト領域4は、横方向に伸びている第一層41と第二層40を有しており、ドリフト領域4の一端はp型ボディ領域2に接しており、他端はn型バッファ領域16に接している。第二層40の不純物濃度は、p型ドレイン領域18側に向かうに従って濃くなっている。すなわち、範囲41、42、43、44、45、46、47の順に、第二層40の不純物濃度が濃くなっている。ここで、第二層40の不純物濃度は、第一層41の不純物濃度よりも濃く、本発明の構造とは異なる。また、図11はバイポーラで動作する横型半導体装置IGBTに関するものであり、図10と同様の理由から、第一層41中に不純物濃度の高い領域を設けることは好ましくない。   FIG. 11 shows a structure disclosed in Patent Document 2, which includes a support substrate 9, a buried oxide film 10 provided on the support substrate 9, and a semiconductor substrate 1 provided on the buried oxide film 10. Yes. The semiconductor substrate 1 includes an n-type source region 8, a p-type drain region 18, and an n-type drift region 4. The p-type base region 2 surrounds the n-type source region 8, and the n-type source region 8 and the drift region 4 are separated. A p-type contact region 7 is provided inside the p-type base region 2 on the surface of the semiconductor substrate 1. The n-type source region 8 and the p-type contact region 7 are in contact with the source electrode 11, and the p-type drain region 18 is in contact with the drain electrode 13. A surface portion of the p-type base region 2 separating the n-type source region 8 and the drift region 4 is used as a channel region, and a gate electrode 12 is formed thereon with a gate oxide film 14 interposed therebetween. An interlayer insulating film 17 is provided on the surface of the semiconductor substrate 1. The n-type buffer region 16 surrounds the p-type drain region 18 and separates the p-type drain region 18 and the drift region 4. The drift region 4 includes a first layer 41 and a second layer 40 extending in the lateral direction. One end of the drift region 4 is in contact with the p-type body region 2, and the other end is the n-type buffer region 16. Is in contact with The impurity concentration of the second layer 40 increases toward the p-type drain region 18 side. That is, the impurity concentration of the second layer 40 increases in the order of the ranges 41, 42, 43, 44, 45, 46, 47. Here, the impurity concentration of the second layer 40 is higher than the impurity concentration of the first layer 41 and is different from the structure of the present invention. Further, FIG. 11 relates to a lateral semiconductor device IGBT operating in a bipolar manner. For the same reason as in FIG. 10, it is not preferable to provide a region having a high impurity concentration in the first layer 41.

図3aは図1と同様に第1の実施形態に係る半導体装置の部分断面構造図であり、また、図3bは図3aの半導体装置のドリフト領域4の不純物濃度分布を図示したものである。すなわち、図3aに示した第一層5のA−A’間と第二層6のB−B’間について、横方向位置と不純物濃度の関係を図3bに示した。図3bに示すように、第二層6の不純物濃度は第一層5の不純物濃度より低く、かつ、p型ベース領域2側の第一層5と第二層6の不純物濃度の差D1は、n型ドレイン領域3側の第一層5と第二層6の不純物濃度の差D2より大きい。   FIG. 3A is a partial cross-sectional structure diagram of the semiconductor device according to the first embodiment as in FIG. 1, and FIG. 3B illustrates the impurity concentration distribution in the drift region 4 of the semiconductor device in FIG. 3A. That is, the relationship between the lateral position and the impurity concentration between A-A ′ of the first layer 5 and B-B ′ of the second layer 6 shown in FIG. As shown in FIG. 3b, the impurity concentration of the second layer 6 is lower than the impurity concentration of the first layer 5, and the difference D1 between the impurity concentration of the first layer 5 and the second layer 6 on the p-type base region 2 side is The impurity concentration difference D2 between the first layer 5 and the second layer 6 on the n-type drain region 3 side is larger.

なお、本実施例の構成において、ドリフト領域内の第一層の不純物濃度は一定であっても横方向に勾配を持っていてもよい。   In the configuration of this embodiment, the impurity concentration of the first layer in the drift region may be constant or may have a lateral gradient.

以上の本実施例によれば、素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化を図ることが可能である。また、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよいため、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を提供することが可能である。   According to the present embodiment described above, the on-resistance is reduced by increasing the impurity concentration on the element surface, and the depletion layer is easily spread to the drain side by setting the source-side impurity concentration on the element bottom surface to be high. It is possible to increase the breakdown voltage. Further, the thickness of the semiconductor substrate in the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film has a thickness of 3.5 μm, the thickness of the semiconductor substrate is Since it may be about 5 μm, it is possible to provide a semiconductor device having a high breakdown voltage and a high current density, which is less affected by manufacturing variations than the structure of FIG.

図4aは、本発明の第2の実施形態である実施例2に係る半導体装置の部分断面構造図である。この構造は図3aを基本としており、第一層5の不純物濃度に横方向勾配を持たせたことを特徴としている。図4aに記載した第一層5のA−A’間と第二層6のB−B’間について、横方向位置と不純物濃度の関係を図4bに示した。図4bに示すように、第一層、第二層ともp型ベース領域2側からn型ドレイン領域3側に向けて不純物濃度が増加している。第二層6の不純物濃度は第一層5の不純物濃度より低く、かつ、p型ベース領域2側の第一層5と第二層6の不純物濃度の差D1は、n型ドレイン領域3側の第一層5と第二層6の不純物濃度の差D2より大きい。   FIG. 4A is a partial cross-sectional structure diagram of the semiconductor device according to Example 2 which is the second embodiment of the present invention. This structure is based on FIG. 3a and is characterized in that the impurity concentration of the first layer 5 has a lateral gradient. FIG. 4b shows the relationship between the lateral position and the impurity concentration between A-A 'of the first layer 5 and B-B' of the second layer 6 described in FIG. 4a. As shown in FIG. 4b, the impurity concentration increases from the p-type base region 2 side to the n-type drain region 3 side in both the first layer and the second layer. The impurity concentration of the second layer 6 is lower than the impurity concentration of the first layer 5, and the difference D1 between the impurity concentration of the first layer 5 on the p-type base region 2 side and the second layer 6 is on the n-type drain region 3 side. The difference in impurity concentration between the first layer 5 and the second layer 6 is greater than D2.

なお、本実施例の構成において、ドリフト領域内の第一層または第二層の横方向不純物濃度分布は、連続的に変化してもよいし、不連続に変化してもよい。   In the configuration of this embodiment, the lateral impurity concentration distribution of the first layer or the second layer in the drift region may change continuously or discontinuously.

以上の本実施例によれば、素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化を図ることが可能である。また、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよいため、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を提供することが可能である。   According to the present embodiment described above, the on-resistance is reduced by increasing the impurity concentration on the element surface, and the depletion layer is easily spread to the drain side by setting the source-side impurity concentration on the element bottom surface to be high. It is possible to increase the breakdown voltage. Further, the thickness of the semiconductor substrate in the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film has a thickness of 3.5 μm, the thickness of the semiconductor substrate is Since it may be about 5 μm, it is possible to provide a semiconductor device having a high breakdown voltage and a high current density, which is less affected by manufacturing variations than the structure of FIG.

図5aは、本発明の第3の実施形態である実施例3に係る半導体装置の部分断面構造図である。この構造は図3aを基本としており、第二層6の不純物濃度を横方向に階段状に変化させていることを特徴としている。図5aに記載した第一層5のA−A’間と第二層6のB−B’間について、横方向位置と不純物濃度の関係を図5bに示した。第二層6は6a、6b、6cの3つの領域から成り、6a、6b、6cの順に不純物濃度が高くなっている。第二層6の不純物濃度は第一層5の不純物濃度より低く、かつ、p型ベース領域2側の第一層5と第二層6の不純物濃度の差D1は、n型ドレイン領域3側の第一層5と第二層6の不純物濃度の差D2より大きい。なお、図5では第二層6を3つの領域で記載したが、当然ながら領域の数は3に限られたものではない。   FIG. 5A is a partial cross-sectional structure diagram of the semiconductor device according to Example 3 which is the third embodiment of the present invention. This structure is based on FIG. 3a and is characterized in that the impurity concentration of the second layer 6 is changed stepwise in the lateral direction. FIG. 5b shows the relationship between the lateral position and the impurity concentration between A-A 'of the first layer 5 and B-B' of the second layer 6 described in FIG. 5a. The second layer 6 includes three regions 6a, 6b, and 6c, and the impurity concentration increases in the order of 6a, 6b, and 6c. The impurity concentration of the second layer 6 is lower than the impurity concentration of the first layer 5, and the difference D1 between the impurity concentration of the first layer 5 on the p-type base region 2 side and the second layer 6 is on the n-type drain region 3 side. The difference in impurity concentration between the first layer 5 and the second layer 6 is greater than D2. In FIG. 5, the second layer 6 is described with three regions, but the number of regions is not limited to three as a matter of course.

以上の本実施例によれば、素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化を図ることが可能である。また、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよいため、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を提供することが可能である。   According to the present embodiment described above, the on-resistance is reduced by increasing the impurity concentration on the element surface, and the depletion layer is easily spread to the drain side by setting the source-side impurity concentration on the element bottom surface to be high. It is possible to increase the breakdown voltage. Further, the thickness of the semiconductor substrate in the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film has a thickness of 3.5 μm, the thickness of the semiconductor substrate is Since it may be about 5 μm, it is possible to provide a semiconductor device having a high breakdown voltage and a high current density, which is less affected by manufacturing variations than the structure of FIG.

図6aは、本発明の第4の実施形態である実施例4に係る半導体装置の部分断面構造図である。この構造は図3aを基本としており、第一層5、第二層6の不純物濃度を横方向に階段状に変化させていることを特徴としている。図6aに記載した第一層5のA−A’間と第二層6のB−B’間について、横方向位置と不純物濃度の関係を図6bに示した。第一層5は5a、5b、5cの3つの領域から成り、5a、5b、5cの順に不純物濃度が高くなっている。また、第二層6は6a、6b、6cの3つの領域から成り、6a、6b、6cの順に不純物濃度が高くなっている。第二層6の不純物濃度は第一層5の不純物濃度より低く、かつ、p型ベース領域2側の第一層5と第二層6の不純物濃度の差D1は、n型ドレイン領域3側の第一層5と第二層6の不純物濃度の差D2より大きい。なお、図6では第一層5、第二層6を3つの領域で記載したが、当然ながら領域の数は3に限られたものではない。また、領域の数は第一層5と第二層6で異なってもよい。   FIG. 6A is a partial cross-sectional structure diagram of the semiconductor device according to Example 4 which is the fourth embodiment of the present invention. This structure is based on FIG. 3a and is characterized in that the impurity concentrations of the first layer 5 and the second layer 6 are changed stepwise in the lateral direction. FIG. 6B shows the relationship between the lateral position and the impurity concentration between A-A ′ of the first layer 5 and B-B ′ of the second layer 6 described in FIG. 6A. The first layer 5 includes three regions 5a, 5b, and 5c, and the impurity concentration increases in the order of 5a, 5b, and 5c. The second layer 6 includes three regions 6a, 6b, and 6c, and the impurity concentration increases in the order of 6a, 6b, and 6c. The impurity concentration of the second layer 6 is lower than the impurity concentration of the first layer 5, and the difference D1 between the impurity concentration of the first layer 5 on the p-type base region 2 side and the second layer 6 is on the n-type drain region 3 side. The difference in impurity concentration between the first layer 5 and the second layer 6 is greater than D2. In FIG. 6, the first layer 5 and the second layer 6 are described in three regions, but the number of regions is not limited to three as a matter of course. The number of regions may be different between the first layer 5 and the second layer 6.

以上の本実施例によれば、素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化を図ることが可能である。また、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよいため、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を提供することが可能である。   According to the present embodiment described above, the on-resistance is reduced by increasing the impurity concentration on the element surface, and the depletion layer is easily spread to the drain side by setting the source-side impurity concentration on the element bottom surface to be high. It is possible to increase the breakdown voltage. Further, the thickness of the semiconductor substrate in the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film has a thickness of 3.5 μm, the thickness of the semiconductor substrate is Since it may be about 5 μm, it is possible to provide a semiconductor device having a high breakdown voltage and a high current density, which is less affected by manufacturing variations than the structure of FIG.

図7aは、本発明の第5の実施形態である実施例5に係る半導体装置の部分断面構造図である。この構造は図3aを基本としており、第一層5または第二層6の不純物濃度が、局所的にp型ベース領域2側よりn型ドレイン領域3側が低い領域を有していることを特徴としている。図7aに記載した第一層5のA−A’間と第二層6のB−B’間について、横方向位置と不純物濃度の関係を図7bに示した。第一層、第二層ともp型ベース領域2側からn型ドレイン領域3側に向けて不純物濃度が増加しているが、素子中央部で局所的にp型ベース領域2側よりn型ドレイン領域3側の不純物濃度が低い領域を持つ。第二層6の不純物濃度は第一層5の不純物濃度より低く、かつ、p型ベース領域2側の第一層5と第二層6の不純物濃度の差D1は、n型ドレイン領域3側の第一層5と第二層6の不純物濃度の差D2より大きい。なお、図7では第一層5、第二層6とも局所的にp型ベース領域2側よりn型ドレイン領域3側の不純物濃度が低い領域を持つよう記載したが、当然ながら第一層またはと第二層のいずれかが局所的にp型ベース領域2側よりn型ドレイン領域3側の不純物濃度が低い領域を持っていてもよい。   FIG. 7A is a partial cross-sectional structure diagram of the semiconductor device according to Example 5 which is the fifth embodiment of the present invention. This structure is based on FIG. 3a, and has a feature that the impurity concentration of the first layer 5 or the second layer 6 is locally lower on the n-type drain region 3 side than on the p-type base region 2 side. It is said. FIG. 7 b shows the relationship between the lateral position and the impurity concentration between A-A ′ of the first layer 5 and B-B ′ of the second layer 6 described in FIG. 7 a. In both the first layer and the second layer, the impurity concentration increases from the p-type base region 2 side to the n-type drain region 3 side, but the n-type drain locally from the p-type base region 2 side in the center of the element. The region 3 has a low impurity concentration region. The impurity concentration of the second layer 6 is lower than the impurity concentration of the first layer 5, and the difference D1 between the impurity concentration of the first layer 5 on the p-type base region 2 side and the second layer 6 is on the n-type drain region 3 side. The difference in impurity concentration between the first layer 5 and the second layer 6 is greater than D2. In FIG. 7, both the first layer 5 and the second layer 6 are described as having regions where the impurity concentration is locally lower on the n-type drain region 3 side than on the p-type base region 2 side. And the second layer may locally have a region having a lower impurity concentration on the n-type drain region 3 side than on the p-type base region 2 side.

以上の本実施例によれば、素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化を図ることが可能である。また、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよいため、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を提供することが可能である。   According to the present embodiment described above, the on-resistance is reduced by increasing the impurity concentration on the element surface, and the depletion layer is easily spread to the drain side by setting the source-side impurity concentration on the element bottom surface to be high. It is possible to increase the breakdown voltage. Further, the thickness of the semiconductor substrate in the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film has a thickness of 3.5 μm, the thickness of the semiconductor substrate is Since it may be about 5 μm, it is possible to provide a semiconductor device having a high breakdown voltage and a high current density, which is less affected by manufacturing variations than the structure of FIG.

図8aは、本発明の第6の実施形態である実施例6に係る半導体装置の部分断面構造図である。この構造は図3aを基本としており、ドレイン領域3を囲むようにn型バッファ領域16を設けていることを特徴としている。この場合でも、図3aの構造と同様の効果により、高耐圧と高電流密度とを得ることができる。   FIG. 8A is a partial cross-sectional structure diagram of the semiconductor device according to Example 6 which is the sixth embodiment of the present invention. This structure is based on FIG. 3 a, and is characterized in that an n-type buffer region 16 is provided so as to surround the drain region 3. Even in this case, a high breakdown voltage and a high current density can be obtained by the same effect as the structure of FIG.

なお、図8aのn型バッファ領域16は、図4a、図5a、図6a、図7aの各構造にも適用可能である。   Note that the n-type buffer region 16 in FIG. 8a is also applicable to the structures in FIGS. 4a, 5a, 6a, and 7a.

以上の本実施例によれば、素子表面の不純物濃度を高濃度とすることでオン抵抗が低減され、素子底面のソース側不純物濃度を低く設定することで空乏層がドレイン側に広がり易くなり高耐圧化を図ることが可能である。また、ドリフト領域の半導体基板厚さは図9の構造ほど薄くする必要はなく、例えば、600Vの耐圧を得るためには、埋め込み酸化膜の厚さ3.5μmの場合、半導体基板の厚さは5μm程度でよいため、図9の構造と比較し製造ばらつきによる影響を受けにくく、高耐圧で高電流密度の半導体装置を提供することが可能である。   According to the present embodiment described above, the on-resistance is reduced by increasing the impurity concentration on the element surface, and the depletion layer is easily spread to the drain side by setting the source-side impurity concentration on the element bottom surface to be high. It is possible to increase the breakdown voltage. Further, the thickness of the semiconductor substrate in the drift region does not need to be as thin as the structure of FIG. 9. For example, in order to obtain a withstand voltage of 600 V, when the buried oxide film has a thickness of 3.5 μm, the thickness of the semiconductor substrate is Since it may be about 5 μm, it is possible to provide a semiconductor device having a high breakdown voltage and a high current density, which is less affected by manufacturing variations than the structure of FIG.

1 n型半導体基板
2 p型ベース領域
3 n型ドレイン領域
4 ドリフト領域
5 ドリフト領域第一層
6 ドリフト領域第二層
7 p型コンタクト領域
8 n型ソース領域
9 支持基板
10 埋め込み酸化膜
11 ソース電極
12 ゲート電極
13 ドリフト電極
14 チャネル領域
15 ゲート酸化膜
16 nバッファ領域
17 絶縁膜
18 p型ドレイン領域
40 ドリフト領域第二層
41 ドリフト領域第一層
1 n-type semiconductor substrate 2 p-type base region 3 n-type drain region 4 drift region 5 drift region first layer 6 drift region second layer 7 p-type contact region 8 n-type source region 9 support substrate 10 buried oxide film 11 source electrode 12 gate electrode 13 drift electrode 14 channel region 15 gate oxide film 16 n buffer region 17 insulating film 18 p-type drain region 40 drift region second layer 41 drift region first layer

Claims (15)

半導体基板と、
前記半導体基板の一方の主表面の表面層に選択的に形成された第一導電型の第一拡散領域と、
前記表面層の前記第一拡散領域とは異なる部分に選択的に形成された第二導電型の第二拡散領域と、
前記第一拡散領域と前記第二拡散領域との間に選択的に形成された第一導電型の第三拡散領域と
を備え、
前記第一拡散領域と前記第二拡散領域とが前記半導体基板の前記主表面の面方向に沿って配置された、ユニポーラで動作する横型の半導体装置であって、
前記第三拡散領域は、第一層と、前記第一層と前記半導体基板との間に位置する第二層とを含んで成り、
前記第二層は、前記第一層より不純物濃度が低く、
前記第二拡散領域側の前記第一層と前記第二層の不純物濃度の差は、前記第一拡散領域側の前記第一層と前記第二層の不純物濃度の差より大きく、
前記第一拡散領域、前記第二拡散領域、および前記第三拡散領域は、それぞれ前記横型の半導体装置のドレイン領域、ベース領域、およびドリフト領域として機能する
ことを特徴とする半導体装置。
A semiconductor substrate;
A first diffusion region of a first conductivity type selectively formed on a surface layer of one main surface of the semiconductor substrate;
A second diffusion region of a second conductivity type selectively formed in a portion different from the first diffusion region of the surface layer;
A third diffusion region of a first conductivity type selectively formed between the first diffusion region and the second diffusion region;
The first diffusion region and the second diffusion region are arranged along the surface direction of the main surface of the semiconductor substrate, and operate in a unipolar lateral type semiconductor device,
The third diffusion region comprises a first layer and a second layer located between the first layer and the semiconductor substrate,
The second layer has a lower impurity concentration than the first layer,
The difference in the impurity concentration of said second layer and said first layer of said second diffusion region side is much larger than the difference between the impurity concentration of said second layer and said first layer of said first diffusion region side,
The semiconductor device, wherein the first diffusion region, the second diffusion region, and the third diffusion region function as a drain region, a base region, and a drift region of the lateral semiconductor device, respectively. .
請求項1に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region And the third diffusion region is formed in the active layer.
請求項1に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成され、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域の第二層は、前記絶縁層に接している
ことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region The third diffusion region is formed in the active layer, and the first diffusion region, the second diffusion region, and the second layer of the third diffusion region are in contact with the insulating layer. A featured semiconductor device.
半導体基板と、
前記半導体基板の一方の主表面の表面層に選択的に形成された第一導電型の第一拡散領域と、
前記表面層の前記第一拡散領域とは異なる部分に選択的に形成された第二導電型の第二拡散領域と、
前記第一拡散領域と前記第二拡散領域との間に選択的に形成された第一導電型の第三拡散領域と
を備え、
前記第一拡散領域と前記第二拡散領域とが前記半導体基板の前記主表面の面方向に沿って配置された、ユニポーラで動作する横型の半導体装置であって、
前記第三拡散領域は、第一層と、前記第一層と前記半導体基板との間に位置する第二層とを含んで成り、
前記第二層は、前記第一層より不純物濃度が低く、かつ、前記第一拡散領域側から前記第二拡散領域側に向かって不純物濃度が次第に低減しており、
前記第一拡散領域、前記第二拡散領域、および前記第三拡散領域は、それぞれ前記横型の半導体装置のドレイン領域、ベース領域、およびドリフト領域として機能する
ことを特徴とする半導体装置。
A semiconductor substrate;
A first diffusion region of a first conductivity type selectively formed on a surface layer of one main surface of the semiconductor substrate;
A second diffusion region of a second conductivity type selectively formed in a portion different from the first diffusion region of the surface layer;
A third diffusion region of a first conductivity type selectively formed between the first diffusion region and the second diffusion region;
The first diffusion region and the second diffusion region are arranged along the surface direction of the main surface of the semiconductor substrate, and operate in a unipolar lateral type semiconductor device,
The third diffusion region comprises a first layer and a second layer located between the first layer and the semiconductor substrate,
The second layer has a lower impurity concentration than the first layer, and the impurity concentration gradually decreases from the first diffusion region side toward the second diffusion region side ,
The semiconductor device, wherein the first diffusion region, the second diffusion region, and the third diffusion region function as a drain region, a base region, and a drift region of the lateral semiconductor device, respectively. .
請求項4に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 4,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region And the third diffusion region is formed in the active layer.
請求項4に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成され、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域の第二層は、前記絶縁層に接している
ことを特徴とする半導体装置。
The semiconductor device according to claim 4,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region The third diffusion region is formed in the active layer, and the first diffusion region, the second diffusion region, and the second layer of the third diffusion region are in contact with the insulating layer. A featured semiconductor device.
請求項4に記載の半導体装置において、
前記第一層は、前記第一拡散領域側から前記第二拡散領域側に向かって不純物濃度が次第に低減している
ことを特徴とする半導体装置。
The semiconductor device according to claim 4,
The semiconductor device according to claim 1, wherein the first layer has an impurity concentration that gradually decreases from the first diffusion region side toward the second diffusion region side.
請求項7に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 7,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region And the third diffusion region is formed in the active layer.
請求項7に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成され、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域の第二層は、前記絶縁層に接している
ことを特徴とする半導体装置。
The semiconductor device according to claim 7,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region The third diffusion region is formed in the active layer, and the first diffusion region, the second diffusion region, and the second layer of the third diffusion region are in contact with the insulating layer. A featured semiconductor device.
半導体基板と、
前記半導体基板の一方の主表面の表面層に選択的に形成された第一導電型の第一拡散領域と、
前記表面層の前記第一拡散領域とは異なる部分に選択的に形成された第二導電型の第二拡散領域と、
前記第一拡散領域と前記第二拡散領域との間に選択的に形成された第一導電型の第三拡散領域と
を備え、
前記第一拡散領域と前記第二拡散領域とが前記半導体基板の前記主表面の面方向に沿って配置された、ユニポーラで動作する横型の半導体装置であって、
前記第三拡散領域は、第一層と、前記第一層と前記半導体基板との間に位置する第二層とを含んで成り、
前記第二層は、前記第一層より不純物濃度が低く、かつ、前記第二拡散領域側の不純物濃度が前記第一拡散領域側の不純物濃度より低く形成されており、
前記第一拡散領域、前記第二拡散領域、および前記第三拡散領域は、それぞれ前記横型の半導体装置のドレイン領域、ベース領域、およびドリフト領域として機能する
ことを特徴とする半導体装置。
A semiconductor substrate;
A first diffusion region of a first conductivity type selectively formed on a surface layer of one main surface of the semiconductor substrate;
A second diffusion region of a second conductivity type selectively formed in a portion different from the first diffusion region of the surface layer;
A third diffusion region of a first conductivity type selectively formed between the first diffusion region and the second diffusion region;
The first diffusion region and the second diffusion region are arranged along the surface direction of the main surface of the semiconductor substrate, and operate in a unipolar lateral type semiconductor device,
The third diffusion region comprises a first layer and a second layer located between the first layer and the semiconductor substrate,
The second layer has an impurity concentration lower than that of the first layer, and the impurity concentration on the second diffusion region side is lower than the impurity concentration on the first diffusion region side ,
The semiconductor device, wherein the first diffusion region, the second diffusion region, and the third diffusion region function as a drain region, a base region, and a drift region of the lateral semiconductor device, respectively. .
請求項10に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 10.
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region And the third diffusion region is formed in the active layer.
請求項10に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成され、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域の第二層は、前記絶縁層に接している
ことを特徴とする半導体装置。
The semiconductor device according to claim 10.
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region The third diffusion region is formed in the active layer, and the first diffusion region, the second diffusion region, and the second layer of the third diffusion region are in contact with the insulating layer. A featured semiconductor device.
請求項10に記載の半導体装置において、
前記第一層は、前記第二拡散領域側の不純物濃度が前記第一拡散領域側の不純物濃度より低く形成されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 10.
The semiconductor device according to claim 1, wherein the first layer has an impurity concentration on the second diffusion region side lower than the impurity concentration on the first diffusion region side.
請求項13に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 13,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region And the third diffusion region is formed in the active layer.
請求項13に記載の半導体装置において、
前記半導体基板は、支持基板と、前記支持基板上に形成された絶縁層と、前記絶縁層上に形成された活性層からなるSOI基板であり、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域が前記活性層内に形成され、前記第一拡散領域と、前記第二拡散領域と、前記第三拡散領域の第二層は、前記絶縁層に接している
ことを特徴とする半導体装置。
The semiconductor device according to claim 13,
The semiconductor substrate is an SOI substrate including a support substrate, an insulating layer formed on the support substrate, and an active layer formed on the insulating layer, and the first diffusion region and the second diffusion region The third diffusion region is formed in the active layer, and the first diffusion region, the second diffusion region, and the second layer of the third diffusion region are in contact with the insulating layer. A featured semiconductor device.
JP2014088691A 2014-04-23 2014-04-23 Semiconductor device Active JP6327747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088691A JP6327747B2 (en) 2014-04-23 2014-04-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088691A JP6327747B2 (en) 2014-04-23 2014-04-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015207720A JP2015207720A (en) 2015-11-19
JP6327747B2 true JP6327747B2 (en) 2018-05-23

Family

ID=54604294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088691A Active JP6327747B2 (en) 2014-04-23 2014-04-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6327747B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438220A (en) * 1987-02-26 1995-08-01 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device
EP0497427B1 (en) * 1991-02-01 1996-04-10 Koninklijke Philips Electronics N.V. Semiconductor device for high voltage application and method of making the same
US5362979A (en) * 1991-02-01 1994-11-08 Philips Electronics North America Corporation SOI transistor with improved source-high performance
JP3792734B2 (en) * 1992-07-02 2006-07-05 株式会社東芝 High voltage semiconductor element
TW564557B (en) * 1999-12-22 2003-12-01 Matsushita Electric Works Ltd Semiconductor device and process for producing the same
JP2004063918A (en) * 2002-07-31 2004-02-26 Nec Kansai Ltd Lateral mos transistor
JP4857590B2 (en) * 2005-04-19 2012-01-18 サンケン電気株式会社 Semiconductor element

Also Published As

Publication number Publication date
JP2015207720A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US10818782B2 (en) Insulated-gate bipolar transistor (IGBT) including a branched gate trench
CN107996003B (en) Insulated gate switching device and method of manufacturing the same
JP6197995B2 (en) Wide band gap insulated gate semiconductor device
JP5150675B2 (en) Semiconductor device
JP5833277B1 (en) Semiconductor device
JP2009135360A (en) Semiconductor device and manufacturing method thereof
CN105580139A (en) Semiconductor device
JP2014187141A (en) Semiconductor device
JP2019503591A (en) Power semiconductor devices
US10199457B2 (en) Silicon carbide semiconductor device
WO2015141212A1 (en) Semiconductor device
CN104112769A (en) Semiconductor power device
JP2022143238A (en) semiconductor equipment
JP2012089824A (en) Semiconductor element and manufacturing method thereof
US20160181357A1 (en) Semiconductor device
CN107919383B (en) switching element
JP7127389B2 (en) Silicon carbide semiconductor device
JP2011091231A (en) Semiconductor device
JP2016207876A (en) Semiconductor device
JP6327747B2 (en) Semiconductor device
US9882043B2 (en) Semiconductor device with trench termination structure
JP7326991B2 (en) switching element
JP5456147B2 (en) Semiconductor device
TWI577020B (en) High voltage metal-oxide-semiconductor transistor device
JP7230477B2 (en) Manufacturing method of trench gate type switching element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

R150 Certificate of patent or registration of utility model

Ref document number: 6327747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350