JP6319042B2 - Ejector refrigeration cycle - Google Patents
Ejector refrigeration cycle Download PDFInfo
- Publication number
- JP6319042B2 JP6319042B2 JP2014217455A JP2014217455A JP6319042B2 JP 6319042 B2 JP6319042 B2 JP 6319042B2 JP 2014217455 A JP2014217455 A JP 2014217455A JP 2014217455 A JP2014217455 A JP 2014217455A JP 6319042 B2 JP6319042 B2 JP 6319042B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- compressor
- ejector
- flow rate
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/06—Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0011—Ejectors with the cooled primary flow at reduced or low pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0014—Ejectors with a high pressure hot primary flow from a compressor discharge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2515—Flow valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Jet Pumps And Other Pumps (AREA)
Description
本発明は、冷媒減圧手段としてエジェクタを備えるエジェクタ式冷凍サイクルに関する。 The present invention relates to an ejector-type refrigeration cycle including an ejector as refrigerant decompression means.
従来、冷媒減圧手段としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。 2. Description of the Related Art Conventionally, an ejector refrigeration cycle that is a vapor compression refrigeration cycle apparatus including an ejector as refrigerant decompression means is known.
この種のエジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、吸入冷媒の圧力を上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。 In this type of ejector-type refrigeration cycle, the pressure of the suction refrigerant is lower than that of a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the suction refrigerant sucked into the compressor are substantially equal due to the boosting action of the ejector. Can be raised. Thereby, in the ejector type refrigeration cycle, the power consumption of the compressor can be reduced and the coefficient of performance (COP) of the cycle can be improved.
さらに、特許文献1には、ノズル部(ノズル通路)へ流入する過冷却液相冷媒に旋回流れを生じさせる旋回空間が設けられたエジェクタを備えるエジェクタ式冷凍サイクルが開示されている。 Furthermore, Patent Document 1 discloses an ejector-type refrigeration cycle including an ejector provided with a swirling space that causes a swirling flow to occur in a supercooled liquid phase refrigerant flowing into a nozzle portion (nozzle passage).
この特許文献1のエジェクタでは、旋回空間にて過冷却液相冷媒を旋回させることによって、旋回中心側の冷媒を減圧沸騰させて、旋回空間の外周側よりも中心側に気相冷媒が多く存在する二相分離状態の冷媒とする。そして、二相分離状態の冷媒をノズル通路へ流入させることで、ノズル通路における冷媒の沸騰を促進し、ノズル通路にて冷媒の圧力エネルギを運動エネルギに変換する際のエネルギ変換効率を向上させている。 In the ejector of Patent Document 1, the refrigerant on the swivel center side is boiled under reduced pressure by swirling the supercooled liquid phase refrigerant in the swirl space, and there is more gas phase refrigerant on the center side than on the outer peripheral side of the swirl space. The refrigerant is in a two-phase separated state. And by flowing the refrigerant in the two-phase separated state into the nozzle passage, the boiling of the refrigerant in the nozzle passage is promoted, and the energy conversion efficiency when the pressure energy of the refrigerant is converted into kinetic energy in the nozzle passage is improved. Yes.
しかしながら、本発明者らの検討によれば、特許文献1のエジェクタ式冷凍サイクルでは、圧縮機の起動時に、エジェクタから騒音が生じてしまうことがあった。なお、圧縮機の起動時とは、圧縮機の起動直後であって、少なくとも圧縮機が冷媒吐出能力を発揮していない状態から所望の目標冷媒吐出能力を発揮する状態になる迄の時間を含むものとする。 However, according to studies by the present inventors, in the ejector refrigeration cycle of Patent Document 1, noise may be generated from the ejector when the compressor is started. It should be noted that the time when the compressor is started includes the time immediately after the compressor is started, and at least the time from when the compressor does not exhibit the refrigerant discharge capability to the state where the desired target refrigerant discharge capability is achieved. Shall be.
そこで、本発明者らがその原因について調査したところ、例えば、高外気温時にエジェクタ式冷凍サイクルを始動させると、圧縮機の起動時に、放熱器から充分に冷却されていない気液二相冷媒が流出してしまい、この気液二相冷媒がエジェクタに流入してしまうことが原因であると判った。 Therefore, the present inventors investigated the cause.For example, when the ejector-type refrigeration cycle is started at a high outside air temperature, the gas-liquid two-phase refrigerant that is not sufficiently cooled from the radiator is started when the compressor is started. It was found that this was caused by the fact that the gas-liquid two-phase refrigerant flowed into the ejector.
その理由は、特許文献1のエジェクタでは、旋回空間内に過冷却液相冷媒を流入させて適切に旋回させるために、エジェクタの外部から旋回空間へ冷媒を導く冷媒流入通路の通路断面積を比較的小さな値に設定しているからである。 The reason is that, in the ejector of Patent Document 1, in order to allow the supercooled liquid-phase refrigerant to flow into the swirling space and properly swivel, the passage cross-sectional areas of the refrigerant inflow passages that guide the refrigerant from the outside of the ejector to the swirling space are compared. This is because it is set to a small value.
このため、冷媒流入通路へ気液二相冷媒が流入してしまうと、密度の高い過冷却液相冷媒が流入する場合に対して、冷媒流入通路を流通する気液二相冷媒が高速となり、冷媒流入通路を通過する際に摩擦音を生じさせてしまう。さらに、この摩擦音が旋回空間の中心側に柱状に偏在する気相冷媒に共鳴してしまうと、いわゆる気柱共鳴によって大きな騒音が生じてしまうおそれもある。 For this reason, when the gas-liquid two-phase refrigerant flows into the refrigerant inflow passage, the gas-liquid two-phase refrigerant flowing through the refrigerant inflow passage becomes faster than the case where the dense supercooled liquid phase refrigerant flows in, Frictional noise is generated when passing through the refrigerant inflow passage. Furthermore, if this frictional sound resonates with the gas-phase refrigerant that is unevenly distributed in a columnar shape on the center side of the swirling space, there is a possibility that a large noise is generated due to so-called air column resonance.
本発明は、上記点に鑑み、旋回流発生手段を有するエジェクタを備えるエジェクタ式冷凍サイクルにおいて、圧縮機の起動時にエジェクタから生じる騒音を低減させることを目的とする。 In view of the above points, an object of the present invention is to reduce noise generated from an ejector when a compressor is started in an ejector refrigeration cycle including an ejector having a swirl flow generating means.
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒に旋回流れを生じさせる旋回流発生手段(30a、31e)と、旋回流発生手段(30a、31e)から流出した冷媒を減圧させるノズル部(13a)、並びに、ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、および噴射冷媒と冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)が形成されたボデー部(30)を有するエジェクタ(13)と、冷媒を蒸発させて冷媒吸引口(31b)側へ流出させる蒸発器(14)と、圧縮機(11)の冷媒吐出能力を制御する吐出能力制御手段(60a)と、を備え、
旋回流発生手段は、回転体形状に形成された旋回空間(30a)を形成する部位、および旋回空間(30a)の外周側壁面に沿って流れるように冷媒を流入させる冷媒流入通路(31e)を形成する部位を有して構成されており、
吐出能力制御手段(60a)は、圧縮機(11)の起動時に、冷媒吐出能力の所定時間あたりの増加量が、予め定めた基準能力増加量より低くなるように、冷媒吐出能力を増加させるものであり、
基準能力増加量は、圧縮機(11)が所定時間あたりに増加させることのできる最大能力増加量であるエジェクタ式冷凍サイクルを特徴としている。
The present invention has been devised in order to achieve the above object. In the invention according to claim 1, the compressor (11) compresses and discharges the refrigerant, and the compressor (11) discharges the refrigerant. A radiator (12) for radiating the refrigerant, a swirling flow generating means (30a, 31e) for generating a swirling flow in the refrigerant flowing out of the radiator (12), and a refrigerant flowing out of the swirling flow generating means (30a, 31e) , The refrigerant suction port (31b) for sucking the refrigerant by the suction action of the high-speed jet refrigerant jetted from the nozzle portion (13a), and the jet refrigerant and the refrigerant suction port (31b) Ejector (13) having a body part (30) formed with a pressure increasing part (13c) for mixing and increasing the pressure of the suctioned refrigerant sucked from, and evaporating the refrigerant to flow out to the refrigerant suction port (31b) side Steam Comprising a vessel (14), the discharge capacity control means for controlling the refrigerant discharge capacity of the compressor (11) and (60a), a
The swirling flow generating means includes a portion that forms a swirling space (30a) formed in the shape of a rotating body, and a refrigerant inflow passage (31e) that allows the refrigerant to flow along the outer peripheral side wall surface of the swirling space (30a). It has a part to form,
Discharge capacity control means (60a) is at the start of the compressor (11), an increase amount per predetermined time of the refrigerant discharge capacity is to be lower than the reference capacity increment a predetermined, which increases the refrigerant discharge capacity And
The reference capacity increase is characterized by an ejector refrigeration cycle, which is the maximum capacity increase that the compressor (11) can increase per predetermined time .
これによれば、圧縮機(11)の起動時に、冷媒吐出能力の所定時間あたりの増加量が予め定めた基準能力増加量より低くなるように、吐出能力制御手段(60a)が冷媒吐出能力を増加させる。従って、冷媒流入通路(31e)に気液二相冷媒が流入したとしても、この気液二相冷媒の流速が高速になってしまうことを抑制し、気液二相冷媒が冷媒流入通路(31e)を流通する際の摩擦音を低減させることができる。 According to this, when the compressor (11) is started, the discharge capacity control means (60a) reduces the refrigerant discharge capacity so that the increase amount of the refrigerant discharge capacity per predetermined time is lower than the predetermined reference capacity increase amount. increase. Therefore, even if the gas-liquid two-phase refrigerant flows into the refrigerant inflow passage (31e), the flow rate of the gas-liquid two-phase refrigerant is suppressed from becoming high, and the gas-liquid two-phase refrigerant is transferred to the refrigerant inflow passage (31e). ) Can be reduced.
その結果、旋回流発生手段(30a、31e)を有するエジェクタを備えるエジェクタ式冷凍サイクルにおいて、圧縮機(11)の起動時にエジェクタ(13)から生じる騒音を低減させることができる。さらに、基準能力増加量としては、圧縮機(11)が所定時間あたりに増加させることのできる最大能力増加量、すなわち、圧縮機(11)の固有の能力によって決定される所定時間あたりの最大能力増加量を採用すればよい。 As a result, in an ejector-type refrigeration cycle including an ejector having swirl flow generating means (30a, 31e), noise generated from the ejector (13) when the compressor (11) is started can be reduced. Further, as the reference capacity increase amount, the maximum capacity increase amount that the compressor (11) can increase per predetermined time, that is, the maximum capacity per predetermined time determined by the inherent capacity of the compressor (11). An increase amount may be adopted .
また、請求項2に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒に旋回流れを生じさせる旋回流発生手段(30a、31e)と、旋回流発生手段(30a、31e)から流出した冷媒を減圧させるノズル部(13a)、並びに、ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、および噴射冷媒と冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)が形成されたボデー部(30)を有するエジェクタ(13)と、冷媒を蒸発させて冷媒吸引口(31b)側へ流出させる蒸発器(14)と、旋回流発生手段(30a、31e)へ流入する流入冷媒流量を調整する流入流量調整手段(16)と、を備え、
旋回流発生手段は、回転体形状に形成された旋回空間(30a)を形成する部位、および旋回空間(30a)の外周側壁面に沿って流れるように冷媒を流入させる冷媒流入通路(31e)を形成する部位を有して構成されており、
流入流量調整手段(16)は、圧縮機(11)の起動時に、流入冷媒流量の所定時間あたりの増加量が、予め定めた基準流量増加量より低くなるように、流入冷媒流量を増加させるものであり、
基準流量増加量は、流入流量調整手段(16)が所定時間あたりに増加させることが可能な最大流量増加量であるエジェクタ式冷凍サイクルを特徴としている。
In the invention according to claim 2 , the compressor (11) that compresses and discharges the refrigerant, the radiator (12) that radiates the refrigerant discharged from the compressor (11), and the radiator (12) Swirling flow generating means (30a, 31e) for generating a swirling flow in the refrigerant flowing out from the nozzle, a nozzle section (13a) for depressurizing the refrigerant flowing out from the swirling flow generating means (30a, 31e), and a nozzle section (13a) The refrigerant suction port (31b) that sucks the refrigerant by the suction action of the high-speed jet refrigerant that is jetted from and the booster unit that boosts the pressure by mixing the jetted refrigerant and the suction refrigerant sucked from the refrigerant suction port (31b) ( 13c), an ejector (13) having a body part (30), an evaporator (14) for evaporating the refrigerant and flowing out to the refrigerant suction port (31b) side, and swirl flow generating means (30a, 31e) And adjusting the inflow flow rate of refrigerant flowing into the inlet flow adjusting means (16) comprises a,
The swirling flow generating means includes a portion that forms a swirling space (30a) formed in the shape of a rotating body, and a refrigerant inflow passage (31e) that allows the refrigerant to flow along the outer peripheral side wall surface of the swirling space (30a). It has a part to form,
Inlet flow adjusting means (16), when starting the compressor (11), an increase amount per predetermined time of the inflow refrigerant flow rate, so as to be lower than the reference flow rate increment a predetermined, those that increase the inflow refrigerant flow rate And
The reference flow rate increase amount is characterized by an ejector-type refrigeration cycle that is the maximum flow rate increase amount that the inflow flow rate adjusting means (16) can increase per predetermined time .
これによれば、圧縮機(11)の起動時に、流入冷媒流量の所定時間あたりの増加量が予め定めた基準流量増加量より低くなるように、流入流量調整手段(16)が流入冷媒流量を増加させる。従って、冷媒流入通路(31e)に気液二相冷媒が流入したとしても、この気液二相冷媒の流速が高速になってしまうことを抑制し、気液二相冷媒が冷媒流入通路(31e)を流通する際の摩擦音を低減させることができる。 According to this, when the compressor (11) is started, the inflow flow rate adjusting means (16) reduces the inflow refrigerant flow rate so that the increase amount of the inflow refrigerant flow rate per predetermined time is lower than the predetermined reference flow rate increase amount. increase. Therefore, even if the gas-liquid two-phase refrigerant flows into the refrigerant inflow passage (31e), the flow rate of the gas-liquid two-phase refrigerant is suppressed from becoming high, and the gas-liquid two-phase refrigerant is transferred to the refrigerant inflow passage (31e). ) Can be reduced.
その結果、旋回流発生手段(30a、31e)を有するエジェクタを備えるエジェクタ式冷凍サイクルにおいて、圧縮機(11)の起動時にエジェクタ(13)から生じる騒音を低減させることができる。さらに、基準流量増加量としては、流入流量調整手段(16)が所定時間あたりに増加可能な最大流量増加量を採用すればよい。 As a result, in an ejector-type refrigeration cycle including an ejector having swirl flow generating means (30a, 31e), noise generated from the ejector (13) when the compressor (11) is started can be reduced. Further, as the reference flow rate increase amount, a maximum flow rate increase amount that can be increased per predetermined time by the inflow flow rate adjusting means (16) may be adopted .
なお、上記の請求項に記載された、圧縮機(11)の起動時とは、圧縮機(11)の起動直後であって、少なくとも圧縮機(11)が冷媒吐出能力を発揮していない状態から所望の目標冷媒吐出能力を発揮する状態となる迄の時間を含むものとする。また、冷媒流入通路(31e)は、1つに限定されるものではなく、複数設けられていてもよい。 In addition, when the compressor (11) is started as described in the above claims, it is immediately after the compressor (11) is started, and at least the compressor (11) does not exhibit the refrigerant discharge capability. It is assumed that the time until a state in which a desired target refrigerant discharge capacity is exhibited is reached is included. Further, the refrigerant inflow passage (31e) is not limited to one, and a plurality of refrigerant inflow passages (31e) may be provided.
また、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 Moreover, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.
(第1実施形態)
以下、図1〜図4を用いて、本発明の第1実施形態を説明する。図1の全体構成図に示す本実施形態のエジェクタ式冷凍サイクル10は、車両用空調装置1に適用されており、空調対象空間である車室内(室内空間)へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
(First embodiment)
The first embodiment of the present invention will be described below with reference to FIGS. The
また、エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。また、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
The
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力する図示しない内燃機関(エンジン)とともにエンジンルーム内に配置されている。そして、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される。
Among the constituent devices of the
より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用している。この圧縮機11の吐出容量(冷媒吐出能力)は、後述する制御装置60から圧縮機11の吐出容量制御弁に出力される制御電流によって制御される。
More specifically, in the present embodiment, a variable displacement compressor configured to adjust the refrigerant discharge capacity by changing the discharge capacity is adopted as the
ここで、本実施形態におけるエンジンルームとは、エンジンが収容される室外空間であって、車両ボデーや後述するファイアウォール50等によって囲まれた空間である。エンジンルームは、エンジンコンパートメントと呼ばれることもある。圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒流入口が接続されている。
Here, the engine room in the present embodiment is an outdoor space in which the engine is accommodated, and is a space surrounded by a vehicle body, a
放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両の前方側に配置されている。
The
より具体的には、本実施形態の放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器として構成されている。
More specifically, the
冷却ファン12dは、制御装置60から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒流出口には、エジェクタモジュール13の冷媒流入口31aが接続されている。
The cooling
エジェクタモジュール13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させる冷媒減圧手段としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環手段(冷媒輸送手段)としての機能を果たすものである。
The
さらに、本実施形態のエジェクタモジュール13は、減圧させた冷媒の気液を分離する気液分離手段としての機能も有している。
Furthermore, the
つまり、本実施形態のエジェクタモジュール13は、「気液分離手段一体型エジェクタ」あるいは「気液分離機能付きエジェクタ」として構成されている。本実施形態では、気液分離手段(気液分離空間)を有していないエジェクタとの相違を明確化するために、エジェクタと気液分離手段とを一体化(モジュール化)させた構成を、エジェクタモジュールという用語を用いて表す。
That is, the
エジェクタモジュール13は、圧縮機11および放熱器12とともに、エンジンルーム内に配置されている。なお、図1における上下の各矢印は、エジェクタモジュール13を車両に搭載した状態における上下の各方向を示したものであり、他の構成部材を車両に搭載した状態における上下の各方向は、これに限定されない。また、図1では、エジェクタモジュール13の軸方向断面図を図示している。
The
より具体的には、本実施形態のエジェクタモジュール13は、図1に示すように、複数の構成部材を組み合わせることによって構成されたボデー部30を備えている。ボデー部30は、円柱状あるいは角柱状の金属部材にて形成されている。このボデー部30には、複数の冷媒流入口や複数の内部空間等が形成されている。
More specifically, as shown in FIG. 1, the
ボデー部30に形成された複数の冷媒流入出口としては、具体的に、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー部30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入側へ流出させる気相冷媒流出口31dが形成されている。
Specifically, the plurality of refrigerant inflow / outflow ports formed in the
また、ボデー部30の内部に形成された内部空間としては、冷媒流入口31aから流入した冷媒を旋回させる旋回空間30a、旋回空間30aから流出した冷媒を減圧させる減圧用空間30b、減圧用空間30bから流出した冷媒を流入させる昇圧用空間30e、昇圧用空間30eから流出した冷媒の気液を分離する気液分離空間30f等が形成されている。
The internal space formed in the
旋回空間30aおよび気液分離空間30fは、略円柱状の回転体形状に形成されている。減圧用空間30bおよび昇圧用空間30eは、旋回空間30a側から気液分離空間30f側へ向かって徐々に拡大する略円錐台状の回転体形状に形成されている。これらの空間の中心軸はいずれも同軸上に配置されている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。
The
さらに、ボデー部30には、冷媒吸引口31bから吸引された冷媒を、減圧用空間30bの冷媒流れ下流側であって昇圧用空間30eの冷媒流れ上流側へ導く吸引用通路13bが形成されている。
Further, the
冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31eは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31eから旋回空間30aへ流入した冷媒は、旋回空間30aの外周側壁面に沿って流れ、旋回空間30aの中心軸周りに旋回する。
The
旋回空間30a内で旋回する冷媒には遠心力が作用するので、旋回空間30a内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させるようにしている。
Since centrifugal force acts on the refrigerant swirling in the swirling
このような旋回空間30a内の中心軸側の冷媒圧力の調整は、旋回空間30a内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路31eの通路断面積と旋回空間30aの軸方向垂直断面積との面積比を調整すること等によって行うことができる。
Such adjustment of the refrigerant pressure on the central axis side in the swirling
このため、本実施形態では、冷媒流入通路31eの通路断面積を、旋回空間30aの軸方向垂直断面積よりも小さく形成し、比較的小さな値に設定している。なお、本実施形態の旋回流速とは、旋回空間30aの最外周部近傍における冷媒の旋回方向の流速を意味している。
For this reason, in this embodiment, the passage sectional area of the
また、減圧用空間30bおよび昇圧用空間30eの内部には、通路形成部材35が配置されている。通路形成部材35は、減圧用空間30bから離れるに伴って外周側に広がる略円錐形状に形成されており、通路形成部材35の中心軸も減圧用空間30b等の中心軸と同軸上に配置されている。
A
そして、ボデー部30の減圧用空間30bおよび昇圧用空間30eを形成する部位の内周面と通路形成部材35の円錐状側面との間には、軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)の冷媒通路が形成されている。
The shape of the vertical cross section in the axial direction is annular (circular) between the inner peripheral surface of the portion forming the
この冷媒通路のうち、ボデー部30の減圧用空間30bを形成する部位と通路形成部材35の円錐状側面の頂部側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を小さく絞る形状に形成されている。この形状により、この冷媒通路は、冷媒を等エントロピ的に減圧させて噴射するノズル部として機能するノズル通路13aを構成している。
Among these refrigerant passages, the refrigerant passage formed between the portion forming the
より具体的には、本実施形態のノズル通路13aは、ノズル通路13aの入口側から最小通路面積部へ向かって通路断面積を徐々に縮小させ、最小通路面積部からノズル通路13aの出口側に向かって通路断面積を徐々に拡大させる形状に形成されている。つまり、本実施形態のノズル通路13aでは、いわゆるラバールノズルと同様に冷媒通路断面積が変化する。
More specifically, the
ここで、前述の旋回空間30aは、ノズル通路13aの上方側であって冷媒流れ上流側に配置されている。このため、本実施形態の旋回空間30aは、ノズル通路13aへ流入する過冷却液相冷媒をノズル通路13aの軸周りに旋回させている。従って、本実施形態では、ボデー30のうち旋回空間30aを形成する部位、および冷媒流入通路31eを形成する部位によって、特許請求の範囲に記載された旋回流発生手段が構成されている。換言すると、本実施形態では、エジェクタと旋回流発生手段が一体的に構成されている。
Here, the
一方、ボデー部30の昇圧用空間30eを形成する部位と通路形成部材35の円錐状側面の下流側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。この形状により、この冷媒通路は、ノズル通路13aから噴射された噴射冷媒と冷媒吸引口31bから吸引された吸引冷媒とを混合させて昇圧させるディフューザ部(昇圧部)として機能するディフューザ通路13cを構成している。
On the other hand, the refrigerant passage formed between the portion of the
また、ボデー部30の内部には、通路形成部材35を変位させてノズル通路13aの最小通路面積部の通路断面積を変化させる駆動手段としてのエレメント37が配置されている。
An
より具体的には、エレメント37は、吸引用通路13bを流通する冷媒(すなわち、蒸発器14流出冷媒)の温度および圧力に応じて変位するダイヤフラムを有している。そして、このダイヤフラムの変位を作動棒37aを介して、通路形成部材35へ伝達することによって、通路形成部材35を上下方向に変位させる。
More specifically, the
さらに、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が上昇するに伴って、最小通路面積部の通路断面積を拡大させる方向(鉛直方向下方側)に通路形成部材35を変位させる。一方、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が低下するに伴って、最小通路面積部の通路断面積を縮小させる方向(鉛直方向上方側)に通路形成部材35を変位させる。
Further, the
本実施形態では、このように、エレメント37が蒸発器14流出冷媒の過熱度に応じて通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、ノズル通路13aの最小通路面積部の通路断面積が調整される。
In the present embodiment, the
気液分離空間30fは、通路形成部材35の下方側に配置されている。気液分離空間30fは、ディフューザ通路13cから流出した冷媒を中心軸周りに旋回させて、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離手段を構成している。
The gas-
さらに、本実施形態では、気液分離空間30fの内容積を、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても極少量の余剰冷媒しか貯めることのできない程度の容積、あるいは実質的に余剰冷媒を殆ど溜めることができない程度の容積として、エジェクタモジュール13全体としての小型化を図っている。
Furthermore, in the present embodiment, the internal volume of the gas-
また、ボデー部30のうち気液分離空間30fの底面を形成する部位には、分離された液相冷媒中の冷凍機油を、気液分離空間30fと気相冷媒流出口31dとを接続する気相冷媒通路へ戻すためのオイル戻し通路31fが形成されている。気相冷媒流出口31dには、圧縮機11の吸入口が接続されている。
Further, in the part of the
一方、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路には、蒸発器14へ流入させる冷媒を減圧させる減圧手段としてのオリフィス31iが配置されている。液相冷媒流出口31cには、入口配管15aを介して、蒸発器14の冷媒流入口が接続されている。
On the other hand, an orifice 31i as a pressure reducing means for reducing the pressure of the refrigerant flowing into the
蒸発器14は、エジェクタモジュール13のノズル通路13aにて減圧された低圧冷媒と送風機42から車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。さらに、蒸発器14は、後述する室内空調ユニット40のケーシング41内に配置されている。
The
ここで、本実施形態の車両には、車室内と車室外のエンジンルームとを仕切る仕切り板としてのファイアウォール50が設けられている。ファイアウォール50は、エンジンルーム内から車室内へ伝達される熱、音等を低減する機能も有しており、ダッシュパネルと呼ばれることもある。
Here, the vehicle according to the present embodiment is provided with a
そして、図1に示すように、室内空調ユニット40は、ファイアウォール50よりも車室内側に配置されている。従って、蒸発器14は車室内(室内空間)に配置されている。蒸発器14の冷媒流出口には、出口配管15bを介して、エジェクタモジュール13の冷媒吸引口31bが接続されている。
As shown in FIG. 1, the indoor
ここで、前述の如くエジェクタモジュール13は、エンジンルーム内(室外空間)に配置されているので、入口配管15aおよび出口配管15bは、ファイアウォール50を貫通するように配置されている。
Here, as described above, since the
より具体的には、ファイアウォール50には、エンジンルーム側と車室内側とを貫通する円形状あるいは矩形状の貫通穴50aが設けられている。また、入口配管15aおよび出口配管15bは、接続用の金属部材であるコネクタ51に接続されることによって一体化されている。そして、入口配管15aおよび出口配管15bは、コネクタ51によって一体化された状態で貫通穴50aを貫通するように配置されている。
More specifically, the
この際、コネクタ51は、貫通穴50aの内周側あるいは近傍に位置付けられる。そして、コネクタ51の外周側と貫通穴50aの開口縁部との隙間には、弾性部材で形成されたパッキン52が配置されている。本実施形態では、パッキン52として、耐熱性に優れるゴム材料であるエチレンプロピレンジエン共重合ゴム(EPDM)にて形成されたものを採用している。
At this time, the
このようにコネクタ51と貫通穴50aとの隙間にパッキン52を介在させることによって、コネクタ51と貫通穴50aとの隙間を介して、エンジンルーム内から車室内へ水や騒音等が漏れてしまうことを抑制している。
In this way, by interposing the packing 52 in the gap between the
次に、室内空調ユニット40について説明する。室内空調ユニット40は、エジェクタ式冷凍サイクル10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。さらに、室内空調ユニット40は、その外殻を形成するケーシング41内に送風機42、蒸発器14、ヒータコア44、エアミックスドア46等を収容することによって構成されている。
Next, the indoor
ケーシング41は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング41内の送風空気流れ最上流側には、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替装置43が配置されている。
The
内外気切替装置43は、ケーシング41内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。
The inside / outside
内外気切替装置43の送風空気流れ下流側には、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する送風手段としての送風機(ブロワ)42が配置されている。この送風機42は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、制御装置60から出力される制御電圧によって回転数(送風空気量)が制御される。
A
送風機42の送風空気流れ下流側には、蒸発器14およびヒータコア44が、送風空気の流れに対して、この順に配置されている。換言すると、蒸発器14は、ヒータコア44よりも送風空気流れ上流側に配置されている。ヒータコア44は、エンジン冷却水と蒸発器14通過後の送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。
On the downstream side of the blower air flow of the
また、ケーシング41内には、蒸発器14を通過した送風空気を、ヒータコア44を迂回させて下流側へ流す冷風バイパス通路45が形成されている。蒸発器14の送風空気流れ下流側であって、かつ、ヒータコア44の送風空気流れ上流側には、エアミックスドア46が配置されている。
Further, in the
エアミックスドア46は、蒸発器14通過後の空気のうち、ヒータコア44を通過させる空気と冷風バイパス通路45を通過させる空気との風量割合を調整する風量割合調整手段である。エアミックスドア46は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。
The
ヒータコア44の空気流れ下流側および冷風バイパス通路45の空気流れ下流側には、ヒータコア44を通過した空気と冷風バイパス通路45を通過した空気とを混合させる混合空間が設けられている。従って、エアミックスドア46が、風量割合を調整することによって、混合空間にて混合された送風空気(空調風)の温度が調整される。
On the downstream side of the air flow of the
さらに、ケーシング41の送風空気流れ最下流部には、混合空間にて混合された空調風を、空調対象空間である車室内へ吹き出す図示しない開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴が設けられている。
Furthermore, an opening hole (not shown) for blowing the conditioned air mixed in the mixing space into the vehicle interior, which is the air-conditioning target space, is arranged at the most downstream portion of the blast air flow of the
これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 The air flow downstream of these face opening holes, foot opening holes, and defroster opening holes is connected to the face air outlet, foot air outlet, and defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. Neither is shown).
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 Further, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively. A defroster door (both not shown) for adjusting the opening area of the hole is disposed.
これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、制御装置60から出力される制御信号によって、その作動が制御される。
These face doors, foot doors, and defroster doors constitute the outlet mode switching means for switching the outlet mode, and are linked to and linked to the electric actuator for driving the outlet mode door via a link mechanism or the like. And rotated. The operation of this electric actuator is also controlled by a control signal output from the
なお、吹出口モードとしては、フェイス開口穴を全開として乗員の上半身へ向けて送風空気を吹き出すフェイスモード、フェイス開口穴およびフット開口穴の両方を開口して乗員の上半身と足元へ向けて送風空気を吹き出すバイレベルモード、フット開口穴を全開するとともにデフロスタ開口穴を小開度だけ開口して主に車室内乗員の足元へ向けて送風空気を吹き出すフットモード、デフロスタ開口穴を全開として車両フロント窓ガラス内面に向けて送風空気を吹き出すデフロスタモード等がある。 Note that the blowout mode is the face mode in which the face opening hole is fully open and blows air to the upper body of the occupant, and both the face opening hole and the foot opening hole are opened and the air is blown toward the occupant's upper body and feet. Front mode that opens the defroster opening hole and opens the defroster opening hole only by a small opening, and blows out the blowing air mainly toward the feet of the passengers in the passenger compartment, with the defroster opening hole fully open. There is a defroster mode that blows air toward the inner surface of the glass.
次に、図2を用いて、本実施形態の電気制御部の概要について説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置60は、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行う。そして、出力側に接続された圧縮機11、冷却ファン12d、送風機42等の各種電気式のアクチュエータの作動を制御する。
Next, the outline of the electric control unit of the present embodiment will be described with reference to FIG. The
また、制御装置60には、車室内温度(内気温)Trを検出する内気温センサ61、外気温Tamを検出する外気温センサ62、車室内の日射量Asを検出する日射センサ63、蒸発器14の吹出空気温度(蒸発器温度)Tefinを検出する蒸発器温度センサ64、ヒータコア44へ流入するエンジン冷却水の冷却水温度Twを検出する冷却水温度センサ65、圧縮機11から吐出された高圧冷媒の圧力(高圧側冷媒圧力)Pdを検出する高圧側圧力センサ66等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
Further, the
さらに、制御装置60の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネル70が接続され、この操作パネル70に設けられた各種操作スイッチからの操作信号が制御装置60へ入力される。操作パネル70に設けられた各種操作スイッチとしては、車両用空調装置1の自動制御運転を設定するオートスイッチ、車室内設定温度Tsetを設定する車室内温度設定スイッチ、送風機42の風量をマニュアル設定する風量設定スイッチ等が設けられている。
Further, an operation panel 70 (not shown) disposed near the instrument panel in front of the passenger compartment is connected to the input side of the
なお、本実施形態の制御装置60は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、制御装置60のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各種制御対象機器の制御手段を構成している。
The
例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御する構成が、圧縮機11の冷媒吐出能力を制御する吐出能力制御手段60aを構成している。もちろん、吐出能力制御手段を制御装置60に対して別体の制御装置で構成してもよい。
For example, in the present embodiment, the configuration that controls the operation of the discharge capacity control valve of the
次に、図3、図4を用いて、上記構成における本実施形態の車両用空調装置1の作動について説明する。図3のフローチャートは、制御装置60が実行する空調制御プログラムのメインルーチンの制御処理を示している。この空調制御プログラムは、操作パネル70のオートスイッチが投入(ON)されると実行される。なお、図3、図4に示すフローチャートの各制御ステップは、制御装置60が有する各種の機能実現手段を構成している。
Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described with reference to FIGS. 3 and 4. The flowchart of FIG. 3 shows the control processing of the main routine of the air conditioning control program executed by the
まず、ステップS1では、制御装置60の記憶回路によって構成されるフラグ、タイマ等の初期化、および上述した各種電動アクチュエータの初期位置合わせ等のイニシャライズが行われる。なお、ステップS1のイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置1の停止時や車両システム終了時に記憶された値が読み出されるものもある。
First, in step S1, initialization such as initialization of flags and timers configured by the storage circuit of the
次に、ステップS2では、空調制御用のセンサ群61〜67等の検出信号および操作パネル70の操作信号等を読み込む。続くステップS3では、ステップS2にて読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出す送風空気の目標温度である目標吹出温度TAOを算出する。
Next, in step S2, detection signals from the sensor groups 61 to 67 for air conditioning control, operation signals from the
具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F1)
なお、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気温センサ61によって検出された車室内温度(内気温)であり、Tamは外気温センサ62によって検出された外気温であり、Asは日射センサ63によって検出された日射量である。また、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Specifically, the target blowing temperature TAO is calculated by the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Note that Tset is the vehicle interior temperature set by the vehicle interior temperature setting switch, Tr is the vehicle interior temperature (internal air temperature) detected by the internal air temperature sensor 61, and Tam is the external air temperature detected by the external air temperature sensor 62. As is the amount of solar radiation detected by the solar radiation sensor 63. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
続くステップS4〜S8では、制御装置60に接続された各種制御対象機器の制御状態が決定される。
In subsequent steps S4 to S8, control states of various control target devices connected to the
まず、ステップS4では、送風機42の回転数(送風能力)、すなわち送風機42の電動モータに印加するブロワモータ電圧(制御電圧)を決定してステップS5へ進む。具体的には、ステップS4では、ステップS3にて決定された目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、ブロワモータ電圧を決定する。
First, in step S4, the rotational speed (blower capacity) of the
より詳細には、ブロワモータ電圧については、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で略最大値となるように決定する。さらに、目標吹出温度TAOが極低温域あるいは極高温域から中間温度域に向かうに伴って、ブロワモータ電圧を略最大値から徐々に減少させるように決定する。 More specifically, the blower motor voltage is determined so as to have a substantially maximum value in the extremely low temperature range (maximum cooling range) and the extremely high temperature range (maximum heating range) of the target blowout temperature TAO. Further, the blower motor voltage is determined so as to gradually decrease from the substantially maximum value as the target blowing temperature TAO moves from the extremely low temperature range or the extremely high temperature range to the intermediate temperature range.
次に、ステップS5では、吸込口モード、すなわち内外気切替ドア用の電動アクチュエータに出力される制御信号を決定してステップS6へ進む。具体的には、ステップS5では、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、吸込口モードを決定する。
Next, in step S5, the control signal output to the suction port mode, that is, the electric actuator for the inside / outside air switching door, is determined, and the process proceeds to step S6. Specifically, in step S5, the suction port mode is determined with reference to a control map stored in advance in the
より詳細には、吸込口モードについては、基本的に外気を導入する外気モードに決定される。そして、目標吹出温度TAOが極低温域となって高い冷房性能を得たい場合等に、内気を導入する内気モードに決定される。 More specifically, the suction port mode is basically determined as an outside air mode for introducing outside air. Then, when the target blowing temperature TAO is in an extremely low temperature range and high cooling performance is desired, the inside air mode for introducing the inside air is determined.
次に、ステップS6では、エアミックスドア46の開度、すなわちエアミックスドア駆動用の電動アクチュエータに出力される制御信号を決定してステップS7へ進む。
Next, in step S6, the opening degree of the
具体的には、ステップS6では、目標吹出温度TAO、蒸発器温度センサ64によって検出された蒸発器温度Tefin、および冷却水温度センサ65によって検出された冷却水温度Twに基づいて、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくようにエアミックスドア46の開度を算定する。
Specifically, in step S6, air is blown into the vehicle interior based on the target air temperature TAO, the evaporator temperature Tefin detected by the evaporator temperature sensor 64, and the coolant temperature Tw detected by the coolant temperature sensor 65. The opening degree of the
次に、ステップS7では、吹出口モード、すなわち吹出口モードドア駆動用の電動アクチュエータに出力される制御信号を決定してステップS8へ進む。具体的には、ステップS8では、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して吹出口モードを決定する。
Next, in step S7, the control signal output to the blower outlet mode, that is, the electric actuator for driving the blower outlet mode door, is determined, and the process proceeds to step S8. Specifically, in step S8, the outlet mode is determined with reference to the control map stored in advance in the
より詳細には、吹出口モードについては、目標吹出温度TAOが高温域から低温域へと下降するに伴って、吹出口モードをフットモード→バイレベルモード→フェイスモードの順で切り替えられる。 More specifically, with respect to the air outlet mode, as the target air outlet temperature TAO decreases from the high temperature region to the low temperature region, the air outlet mode can be switched in the order of foot mode → bilevel mode → face mode.
次に、ステップS8では、圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流を決定してステップS9へ進む。ステップS8の詳細については、図4のフローチャートを用いて説明する。
Next, in step S8, the refrigerant discharge capacity of the
図4のステップS81では、圧縮機11の起動時であるか否かを判定する。より具体的には、ステップS81では、判定時に吐出容量制御弁へ出力されている制御電流の値が0となっている際に、圧縮機11の起動時であると判定する。そして、ステップS81にて、圧縮機11の起動時ではないと判定された際には、ステップS82へ進み、圧縮機11の起動時であると判定された際には、ステップS83へ進む。
In step S81 of FIG. 4, it is determined whether or not the
ステップS82では、通常制御における圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流を決定してステップS9へ進む。具体的には、ステップS82では、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、蒸発器14の目標蒸発器吹出温度TEOを決定する。
In step S82, the refrigerant discharge capacity of the
そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の目標冷媒吐出能力を決定する。
Then, based on the deviation between the target evaporator outlet temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor, the evaporator temperature Tefin approaches the target evaporator outlet temperature TEO using a feedback control method. The target refrigerant discharge capacity of the
ステップS83では、起動時における圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流を決定してステップS9へ進む。具体的には、ステップS83では、ステップS82と同様に起動時における圧縮機11の目標冷媒吐出能力を決定する。そして、図4のステップS83に記載された制御特性図に太実線で示すように、目標冷媒吐出能力に到達する迄、実際の冷媒吐出能力を徐々に上昇させる。
In step S83, the refrigerant discharge capacity of the
より詳細には、ステップS83では、冷媒吐出能力の所定時間(予め定めた基準時間)あたりの増加量(能力増加度合)が、予め定めた基準能力増加量(基準能力増加度合)より低くなるように、冷媒吐出能力を増加させている。さらに、本実施形態では、基準能力増加量を、圧縮機11が所定時間あたりに増加させることのできる最大能力増加量としている。この最大能力増加量は、図4のステップS83に記載された制御特性図の破線の傾きで表される。
More specifically, in step S83, the increase amount (capacity increase degree) per predetermined time (predetermined reference time) of the refrigerant discharge capacity is set to be lower than the predetermined reference capacity increase amount (reference capacity increase degree). In addition, the refrigerant discharge capacity is increased. Further, in the present embodiment, the reference capacity increase amount is set as the maximum capacity increase amount that the
換言すると、本実施形態のステップS83では、予め定めた所定時間が経過するまで、実際の圧縮機11の冷媒吐出能力を目標冷媒吐出能力に到達させないように、冷媒吐出能力を徐々に上昇させていると表現することもできる。また、圧縮機11が最大能力増加量を発揮している際よりも長い時間をかけて、実際の圧縮機11の冷媒吐出能力を目標冷媒吐出能力に到達するまで徐々に上昇させていると表現することもできる。
In other words, in step S83 of the present embodiment, the refrigerant discharge capacity is gradually increased so that the actual refrigerant discharge capacity of the
次に、図3に示すステップS9では、上述のステップS4〜S8にて決定された制御状態が得られるように、制御装置60から出力側に接続された各種制御対象機器に対して、制御信号および制御電圧が出力される。続くステップS10では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2に戻るようになっている。
Next, in step S9 shown in FIG. 3, control signals are sent from the
つまり、制御装置60が実行する空調制御プログラムでは、車両用空調装置1の作動停止が要求されるまで、検出信号および操作信号の読み込み→各制御対象機器の制御状態の決定→各制御対象機器に対する制御信号および制御電圧の出力を繰り返す。そして、この空調制御プログラムが実行されることにより、エジェクタ式冷凍サイクル10では、図1の太実線矢印に示すように冷媒が流れる。
That is, in the air-conditioning control program executed by the
すなわち、圧縮機11から吐出された高温高圧冷媒が放熱器12の凝縮部12aへ流入する。凝縮部12aへ流入した冷媒は、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる。
That is, the high-temperature and high-pressure refrigerant discharged from the
放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタモジュール13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される。この際、減圧用空間30bの最小通路面積部における冷媒通路面積は、蒸発器14出口側冷媒の過熱度が基準過熱度に近づくように調整される。
The supercooled liquid-phase refrigerant that has flowed out of the supercooling
そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒が、冷媒吸引口31bからエジェクタモジュール13の内部へ吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する。
The refrigerant flowing out of the
ディフューザ通路13cでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される。気液分離空間30fにて分離された液相冷媒は、オリフィス30iにて減圧されて、蒸発器14へ流入する。
In the
蒸発器14へ流入した冷媒は、送風機42によって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される。
The refrigerant flowing into the
また、室内空調ユニット40では、蒸発器14にて冷却された送風空気が、エアミックスドア46の開度に応じて、ヒータコア44側の通風路および冷風バイパス通路45へ流入する。ヒータコア44側の通風路へ流入した冷風は、ヒータコア44を通過する際に再加熱され、混合空間にて冷風バイパス通路45を通過した冷風と混合される。混合空間にて温度調整された空調風は、各吹出口を介して車室内に吹き出される。
In the indoor
以上の如く、本実施形態の車両用空調装置1によれば、車室内の空調を行うことができる。さらに、本実施形態のエジェクタ式冷凍サイクル10によれば、ディフューザ通路13cにて昇圧された冷媒を圧縮機11に吸入させるので、圧縮機11の駆動動力を低減させて、サイクル効率(COP)を向上させることができる。
As described above, according to the vehicle air conditioner 1 of the present embodiment, the air conditioning of the passenger compartment can be performed. Furthermore, according to the ejector-
さらに、本実施形態のエジェクタモジュール13では、旋回空間30aへ過冷却液相冷媒を流入させて旋回させることで、旋回空間30a内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させている。そして、旋回中心側に気相冷媒が多く存在する気液二相冷媒をノズル通路13aへ流入させている。
Furthermore, in the
これにより、冷媒とノズル通路13aの壁面との摩擦による壁面沸騰、および旋回中心側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって、ノズル通路13aにおける冷媒の沸騰を促進することができる。その結果、ノズル通路13aにて冷媒の圧力エネルギを速度エネルギへ変換する際のエネルギ変換効率を向上させることができる。
Thereby, the boiling of the refrigerant in the
ところで、例えば、エジェクタ式冷凍サイクル10を始動させる際に外気温が比較的高くなっていると、放熱器内に気相冷媒が残存していることがある。このため、高外気温時等にエジェクタ式冷凍サイクル10を始動させると、圧縮機11の起動時に、放熱器12から充分に冷却されていない気液二相冷媒が流出してしまい、この気液二相冷媒がエジェクタモジュール13の冷媒流入通路31eへ流入してしまうことがある。
By the way, for example, when the outside air temperature is relatively high when the
なお、本実施形態における圧縮機11の起動時とは、圧縮機11の起動直後であって、少なくとも圧縮機11が冷媒吐出能力を発揮していない状態から目標冷媒吐出能力を発揮する状態になる迄の時間を含むものとする。
In addition, at the time of starting of the
また、本実施形態のエジェクタモジュール13では、旋回空間30a内で過冷却液相冷媒を適切に旋回させるために、前述の如く、冷媒流入通路31eの通路断面積を比較的小さな値に設定している。
Further, in the
このため、冷媒流入通路31eへ気液二相冷媒が流入してしまうと、密度の高い過冷却液相冷媒が流入する場合に対して、冷媒流入通路31eを流通する気液二相冷媒が高速となり、冷媒流入通路31eを流通する際に摩擦音を生じさせてしまう。さらに、この摩擦音が旋回空間の中心側に柱状に偏在する気相冷媒に共鳴してしまうと、いわゆる気柱共鳴によって大きな騒音が生じてしまうおそれもある。
For this reason, if the gas-liquid two-phase refrigerant flows into the
これに対して、本実施形態のエジェクタ式冷凍サイクル10では、制御ステップS83にて説明したように、圧縮機11の起動時に、冷媒吐出能力の所定時間あたりの増加量が基準能力増加量より低くなるように、冷媒吐出能力を増加させている。
On the other hand, in the
従って、冷媒流入通路31eに気液二相冷媒が流入したとしても、この気液二相冷媒の流速が高速になってしまうことを抑制し、気液二相冷媒が冷媒流入通路31eを流通する際の摩擦音を低減させることができる。その結果、圧縮機11の起動時にエジェクタモジュール13から生じる騒音を低減させることができる。
Therefore, even if the gas-liquid two-phase refrigerant flows into the
また、本実施形態では、基準能力増加量として、圧縮機11の固有の能力によって決定される所定時間あたりの最大能力増加量を採用している。従って、圧縮機11の起動時に成り行き的に最大能力増加量で冷媒吐出能力を上昇させる場合に対して、確実にエジェクタモジュール13から生じる騒音を低減させることができる。
In this embodiment, the maximum capacity increase amount per predetermined time determined by the inherent capacity of the
さらに、基準能力増加量を、圧縮機11の起動時にエジェクタモジュール13から生じる騒音がユーザにとって耳障りとならない程度の能力増加量に設定することで、エジェクタモジュール13から生じる騒音を効果的に低減させることができる。
Furthermore, the noise generated from the
(第2実施形態)
本実施形態では、図5の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、放熱器12の冷媒出口からエジェクタモジュール13の冷媒流入口31aへ至る冷媒流路に、流量調整弁16を追加した例を説明する。
(Second Embodiment)
In the present embodiment, as shown in the overall configuration diagram of FIG. 5, the refrigerant flow path from the refrigerant outlet of the
この流量調整弁16は、旋回流発生手段を構成する冷媒流入通路31eへ流入する流入冷媒流量を調整する流入流量調整手段である。より具体的には、流量調整弁16は、冷媒通路面積を変更可能に構成された弁体、およびこの弁体を変位させる電動アクチュエータを有して構成されている。さらに、流量調整弁16は、制御装置60から出力される制御電圧によって、その作動が制御される。
The flow
このため、図6のブロック図に示すように、本実施形態の制御装置60の出力側には、流量調整弁16が接続されている。さらに、本実施形態では、流入流量調整手段を構成する流量調整弁16の作動を制御する構成が、流入流量制御手段60bを構成している。その他の構成は第1実施形態と同様である。
For this reason, as shown in the block diagram of FIG. 6, the flow
また、本実施形態の車両用空調装置1では、図7のフローチャートのステップS8’にて、第1実施形態で説明した制御ステップS82の通常制御と同様に圧縮機11の冷媒吐出能力を決定する。
Further, in the vehicle air conditioner 1 of the present embodiment, the refrigerant discharge capacity of the
さらに、ステップS85にて、流量調整弁16の弁開度、すなわち流量調整弁16に出力される制御進行を決定してステップS9へ進む。このステップS85では、圧縮機11の起動時でなければ、流量調整弁16の弁開度を最大(全開)とする。一方、圧縮機11の起動時には、図8の制御特性図に太実線で示す流入冷媒流量となるように、流量調整弁16の弁開度を徐々に増加させる。
Furthermore, in step S85, the valve opening degree of the flow
より詳細には、ステップS85では、圧縮機11の起動時には、流入冷媒流量の所定時間(予め定めた基準時間)あたりの増加量(流量増加度合)が、予め定めた基準流量増加量(基準流量増加度合)よりも低くなるように、流入冷媒流量を増加させている。さらに、本実施形態では、基準流量増加量を、流量調整弁16が所定時間あたりに増加させることのできる最大流量増加量としている。
More specifically, in step S85, when the
つまり、最大流量増加量は、圧縮機11の起動時に流量調整弁16の弁開度が最大となっている際の流量増加量に相当する。さらに、最大流量増加量は、図8の制御特性図の破線の傾きで表される。
That is, the maximum flow rate increase amount corresponds to the flow rate increase amount when the valve opening degree of the flow
換言すると、本実施形態のステップS85では、圧縮機11の起動時には、予め定めた所定時間が経過するまで、流量調整弁16の弁開度を最大にしないように、弁開度(流入冷媒流量)を徐々に増加させていると表現することもできる。また、流量調整弁16の弁開度が最大となっている際よりも長い時間をかけて、流入冷媒流量を徐々に増加させていると表現することもできる。
In other words, in step S85 of this embodiment, when the
その他の作動は第1実施形態と同様である。従って、本実施形態の車両用空調装置1においても、第1実施形態と同様に車室内の空調を行うことができるとともに、第1実施形態と同様の効果を得ることができる。 Other operations are the same as those in the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, the air-conditioning of the vehicle interior can be performed similarly to the first embodiment, and the same effect as the first embodiment can be obtained.
さらに、本実施形態のエジェクタ式冷凍サイクル10では、制御ステップS85にて説明したように、圧縮機11の起動時に、流入冷媒流量の所定時間あたりの増加量が基準流量増加量より低くなるように、流入冷媒流量を増加させている。
Furthermore, in the
従って、冷媒流入通路31eに気液二相冷媒が流入したとしても、この気液二相冷媒の流速が高速になってしまうことを抑制し、気液二相冷媒が冷媒流入通路31eを流通する際の摩擦音を低減させることができる。その結果、第1実施形態と同様に、圧縮機11の起動時にエジェクタモジュール13から生じる騒音を低減させることができる。
Therefore, even if the gas-liquid two-phase refrigerant flows into the
また、本実施形態では、基準流量増加量として、流量調整弁16の弁開度を最大とした際の所定時間あたりの最大流量増加量を採用している。従って、圧縮機11の起動時に、流量調整弁16の弁開度を最大とする場合に対して、確実にエジェクタモジュール13から生じる騒音を低減させることができる。
In this embodiment, the maximum flow rate increase amount per predetermined time when the valve opening degree of the flow
さらに、基準流量増加量を、圧縮機11の起動時にエジェクタモジュール13から生じる騒音がユーザにとって耳障りとならない程度の流量増加量に設定することで、エジェクタモジュール13から生じる騒音を効果的に低減させることができる。
Furthermore, the noise generated from the
(第3実施形態)
本実施形態では、第2実施形態に対して、図9の全体構成図に示すように、エジェクタモジュール13の気相冷媒流出口31dから圧縮機11の吸入口へ至る冷媒流路に、流量調整弁16を配置している。その他の構成および作動は、第2実施形態と同様である。
(Third embodiment)
In the present embodiment, as compared with the second embodiment, as shown in the overall configuration diagram of FIG. 9, the flow rate is adjusted in the refrigerant flow path from the gas-phase
従って、本実施形態の車両用空調装置1においても、第1実施形態と同様に車室内の空調を行うことができるとともに、第1実施形態と同様の効果を得ることができる。さらに、第2実施形態と同様に、圧縮機11の起動時にエジェクタモジュール13から生じる騒音を低減させることができる。
Therefore, also in the vehicle air conditioner 1 of the present embodiment, the air-conditioning of the vehicle interior can be performed similarly to the first embodiment, and the same effect as the first embodiment can be obtained. Furthermore, as in the second embodiment, noise generated from the
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present invention.
(1)上述の第1実施形態では、圧縮機11の起動時に、図4の制御ステップS83に図示するように、圧縮機11の冷媒吐出能力を段階的に上昇させた例を説明したが、圧縮機11の冷媒吐出能力を上昇させる際の制御態様はこれに限定されない。つまり、冷媒吐出能力の所定時間あたりの増加量が、基準能力増加量より低くなっていれば、例えば、図8の制御特性図と同様に、圧縮機11の冷媒吐出能力を連続的に上昇させてもよい。
(1) In the first embodiment described above, the example in which the refrigerant discharge capacity of the
また、このことは第2実施形態で説明した流入冷媒流量についても同様である。すなわち、図4の制御ステップS83に記載された制御特性図と同様に、流入冷媒流量を段階的に増加させてもよい。 This also applies to the inflow refrigerant flow rate described in the second embodiment. That is, similarly to the control characteristic diagram described in the control step S83 of FIG.
(2)上述の第2実施形態では、流入流量調整手段として電気式の流量調整弁16を採用した例を説明したが、流入流量調整弁はこれに限定されない。例えば、複数の冷媒通路と、それぞれの冷媒通路を開閉する複数の開閉弁(電磁弁)によって、流入流量調整弁を構成してもよい。これによれば、冷媒通路を開く開閉弁の数に応じて段階的に流入冷媒流量を調整することができる。
(2) In the second embodiment described above, the example in which the electric flow
また、サイクル内の所定の部位を流通する冷媒の温度および圧力に応じて変位する変位部材、およびこの変位部材に連結されて冷媒通路面積を変化させる弁体部を有し、機械的機構によって冷媒通路面積を変化させる流量調整機構を採用してもよい。具体的には、放熱器12出口側冷媒の温度および圧力に基づいて放熱器12出口側冷媒の過熱度を検知し、検知された過熱度の低下に伴って弁開度を増加させる流量調整機構を採用できる。
Further, it has a displacement member that is displaced according to the temperature and pressure of the refrigerant flowing through a predetermined part in the cycle, and a valve body portion that is connected to the displacement member and changes the area of the refrigerant passage. A flow rate adjusting mechanism that changes the passage area may be employed. Specifically, a flow rate adjustment mechanism that detects the degree of superheat of the refrigerant on the outlet side of the
(3)上述の実施形態では、例えば、第1実施形態の制御ステップS81で説明したように、吐出容量制御弁へ出力されている制御電流の値に基づいて、圧縮機11の起動時であるか否かを判定した例を説明したが、圧縮機11の起動時であるか否かの判定はこれに限定されない。
(3) In the above-described embodiment, for example, as described in the control step S81 of the first embodiment, the
例えば、圧縮機11の出口側からエジェクタモジュール13の冷媒流入口31a側へ至る冷媒流路を流通する冷媒の圧力(高圧側冷媒圧力)Pdを用いて、圧縮機11の起動時であるか否かを判定してもよい。また、圧縮機11の回転数を検出する回転計を備えている場合には、回転計の検出値に基づいて、圧縮機11の起動時であるか否かを判定してもよい。
For example, whether or not the
(4)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
(4) Each component apparatus which comprises the ejector
例えば、上述の実施形態では、圧縮機11として、可変容量型圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。圧縮機11として、電磁クラッチ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される固定容量型圧縮機を採用してもよい。
For example, in the above-described embodiment, an example in which a variable capacity compressor is employed as the
固定容量型圧縮機では、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整すればよい。また、圧縮機11として、電動モータの回転数を変化させて冷媒吐出能力を調整する電動圧縮機を採用してもよい。
In the fixed capacity type compressor, the refrigerant discharge capacity may be adjusted by changing the operating rate of the compressor by the on / off of the electromagnetic clutch. Moreover, you may employ | adopt as the
例えば、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を採用してもよい。
For example, in the above-described embodiment, an example in which a subcool type heat exchanger is employed as the
また、エジェクタモジュール13を構成する各構成部材は、上述の実施形態に開示されたものに限定されない。例えば、エジェクタモジュール13のボデー部30、通路形成部材35等の構成部材は金属で形成されたものに限定されず、樹脂にて形成されたものであってもよい。
Moreover, each structural member which comprises the
さらに、上述の実施形態のエジェクタモジュール13では、オリフィス31iを設けた例を説明したが、オリフィス31iを廃止して、入口配管15aに減圧手段を配置してもよい。このような減圧手段としては、オリフィスやキャピラリチューブ等を採用することができる。
Furthermore, in the
さらに、上述の実施形態では、気液分離手段一体型エジェクタのエジェクタモジュール13を採用した例を説明したが、もちろん、エジェクタとして、気液分離手段が一体的に構成されていない通常のエジェクタを採用してもよい。
Furthermore, in the above-described embodiment, the example in which the
(5)上述の実施形態では、エジェクタモジュール13をエンジンルーム内に配置した例を説明したが、ファイアウォール50よりも車室内側に配置してもよい。
(5) In the above-described embodiment, the example in which the
さらに、エジェクタモジュール13を、ファイアウォール50の貫通穴50aの内周側に配置してもよい。この場合は、エジェクタモジュール13の一部がエンジンルーム側に配置され、別の一部が車室内側に配置される。従って、エジェクタモジュール13の外周側と貫通穴50aの開口縁部の隙間には、第1実施形態と同様の機能を果たすパッキンを配置することが望ましい。
Further, the
(6)上述の実施形態では、本発明に係るエジェクタ式冷凍サイクル10を、車両用空調装置1に適用した例を説明したが、本発明に係るエジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、車両用の冷凍冷蔵装置に適用してもよい。さらに、車両用に限定されることなく、据置型空調装置、冷温保存庫等に適用してもよい。
(6) In the above-described embodiment, the example in which the
10 エジェクタ式冷凍サイクル
11 圧縮機
12 放熱器
13 エジェクタモジュール
14 蒸発器
13a ノズル通路(ノズル部)
13c ディフューザ通路(昇圧部)
31b 冷媒吸引口
16 流量調整弁
DESCRIPTION OF
13c Diffuser passage (pressure booster)
31b
Claims (5)
前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
前記放熱器(12)から流出した冷媒に旋回流れを生じさせる旋回流発生手段(30a、31e)と、
前記旋回流発生手段(30a、31e)から流出した冷媒を減圧させるノズル部(13a)、並びに、前記ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、および前記噴射冷媒と前記冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)が形成されたボデー部(30)を有するエジェクタ(13)と、
冷媒を蒸発させて前記冷媒吸引口(31b)側へ流出させる蒸発器(14)と、
前記圧縮機(11)の冷媒吐出能力を制御する吐出能力制御手段(60a)と、を備え、
前記旋回流発生手段は、回転体形状に形成された旋回空間(30a)を形成する部位、および前記旋回空間(30a)の外周側壁面に沿って流れるように冷媒を流入させる冷媒流入通路(31e)を形成する部位を有して構成されており、
前記吐出能力制御手段(60a)は、前記圧縮機(11)の起動時に、前記冷媒吐出能力の所定時間あたりの増加量が、予め定めた基準能力増加量より低くなるように、前記冷媒吐出能力を増加させるものであり、
前記基準能力増加量は、前記圧縮機(11)が所定時間あたりに増加させることのできる最大能力増加量であることを特徴とするエジェクタ式冷凍サイクル。 A compressor (11) for compressing and discharging the refrigerant;
A radiator (12) for radiating the refrigerant discharged from the compressor (11);
Swirl flow generating means (30a, 31e) for generating a swirl flow in the refrigerant flowing out of the radiator (12);
Refrigerant suction for sucking the refrigerant by the suction action of the high-speed jet refrigerant jetted from the nozzle part (13a) for depressurizing the refrigerant flowing out from the swirl flow generating means (30a, 31e) and the nozzle part (13a) Ejector (13) having a mouth portion (31b) and a body portion (30) formed with a pressure increasing portion (13c) for mixing and increasing the pressure of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port (31b) When,
An evaporator (14) for evaporating the refrigerant to flow out to the refrigerant suction port (31b) side;
Discharge capacity control means (60a) for controlling the refrigerant discharge capacity of the compressor (11),
The swirling flow generating means includes a refrigerant inflow passage (31e) for allowing a refrigerant to flow along a portion forming a swirling space (30a) formed in a rotating body shape and an outer peripheral side wall surface of the swirling space (30a). ) To form a part,
The discharge capacity control means (60a) is configured to set the refrigerant discharge capacity so that an increase amount of the refrigerant discharge capacity per predetermined time is lower than a predetermined reference capacity increase amount when the compressor (11) is started. Is to increase ,
The ejector-type refrigeration cycle, wherein the reference capacity increase amount is a maximum capacity increase amount that the compressor (11) can increase per predetermined time .
前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
前記放熱器(12)から流出した冷媒に旋回流れを生じさせる旋回流発生手段(30a、31e)と、
前記旋回流発生手段(30a、31e)から流出した冷媒を減圧させるノズル部(13a)、並びに、前記ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、および前記噴射冷媒と前記冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)が形成されたボデー部(30)を有するエジェクタ(13)と、
冷媒を蒸発させて前記冷媒吸引口(31b)側へ流出させる蒸発器(14)と、
前記旋回流発生手段(30a、31e)へ流入する流入冷媒流量を調整する流入流量調整手段(16)と、を備え、
前記旋回流発生手段は、回転体形状に形成された旋回空間(30a)を形成する部位、および前記旋回空間(30a)の外周側壁面に沿って流れるように冷媒を流入させる冷媒流入通路(31e)を形成する部位を有して構成されており、
前記流入流量調整手段(16)は、前記圧縮機(11)の起動時に、前記流入冷媒流量の所定時間あたりの増加量が、予め定めた基準流量増加量より低くなるように、前記流入冷媒流量を増加させるものであり、
前記基準流量増加量は、前記流入流量調整手段(16)が所定時間あたりに増加させることが可能な最大流量増加量であることを特徴とするエジェクタ式冷凍サイクル。 A compressor (11) for compressing and discharging the refrigerant;
A radiator (12) for radiating the refrigerant discharged from the compressor (11);
Swirl flow generating means (30a, 31e) for generating a swirl flow in the refrigerant flowing out of the radiator (12);
Refrigerant suction for sucking the refrigerant by the suction action of the high-speed jet refrigerant jetted from the nozzle part (13a) for depressurizing the refrigerant flowing out from the swirl flow generating means (30a, 31e) and the nozzle part (13a) Ejector (13) having a mouth portion (31b) and a body portion (30) formed with a pressure increasing portion (13c) for mixing and increasing the pressure of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port (31b) When,
An evaporator (14) for evaporating the refrigerant to flow out to the refrigerant suction port (31b) side;
Inflow rate adjusting means (16) for adjusting the inflow refrigerant flow rate flowing into the swirl flow generating means (30a, 31e),
The swirling flow generating means includes a refrigerant inflow passage (31e) for allowing a refrigerant to flow along a portion forming a swirling space (30a) formed in a rotating body shape and an outer peripheral side wall surface of the swirling space (30a). ) To form a part,
The inflow refrigerant flow adjusting means (16) is configured to increase the inflow refrigerant flow rate so that an increase amount of the inflow refrigerant flow rate per predetermined time is lower than a predetermined reference flow rate increase amount when the compressor (11) is started. Is to increase ,
The ejector refrigeration cycle, wherein the reference flow rate increase amount is a maximum flow rate increase amount that the inflow flow rate adjusting means (16) can increase per predetermined time .
前記流入流量調整手段(16)は、前記気液分離手段(30f)の気相冷媒流出口(31d)から前記圧縮機(11)の吸入口へ至る冷媒流路に配置されていることを特徴とする請求項2に記載のエジェクタ式冷凍サイクル。 Gas-liquid separation means (30f) for separating the gas-liquid of the refrigerant flowing out from the pressurizing section (13c),
The inflow flow rate adjusting means (16) is arranged in a refrigerant flow path from the gas-phase refrigerant outlet (31d) of the gas-liquid separation means (30f) to the suction port of the compressor (11). The ejector-type refrigeration cycle according to claim 2 .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217455A JP6319042B2 (en) | 2014-10-24 | 2014-10-24 | Ejector refrigeration cycle |
CN201580053233.0A CN106796059B (en) | 2014-10-24 | 2015-08-18 | Ejector-type refrigerating circulatory device |
PCT/JP2015/004094 WO2016063442A1 (en) | 2014-10-24 | 2015-08-18 | Ejector-type refrigeration cycle device |
US15/513,469 US20170307259A1 (en) | 2014-10-24 | 2015-08-18 | Ejector-type refrigeration cycle device |
DE112015004790.5T DE112015004790T5 (en) | 2014-10-24 | 2015-08-18 | Ejektorkältekreislaufvorrichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217455A JP6319042B2 (en) | 2014-10-24 | 2014-10-24 | Ejector refrigeration cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016084965A JP2016084965A (en) | 2016-05-19 |
JP6319042B2 true JP6319042B2 (en) | 2018-05-09 |
Family
ID=55760506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014217455A Expired - Fee Related JP6319042B2 (en) | 2014-10-24 | 2014-10-24 | Ejector refrigeration cycle |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170307259A1 (en) |
JP (1) | JP6319042B2 (en) |
CN (1) | CN106796059B (en) |
DE (1) | DE112015004790T5 (en) |
WO (1) | WO2016063442A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004036943A (en) * | 2002-07-01 | 2004-02-05 | Denso Corp | Vapor compression type refrigerator |
JP4147918B2 (en) * | 2002-11-29 | 2008-09-10 | 株式会社デンソー | Ejector cycle and ejector |
CN1291196C (en) * | 2004-02-18 | 2006-12-20 | 株式会社电装 | Ejector cycle having multiple evaporators |
JP2008002759A (en) * | 2006-06-23 | 2008-01-10 | Matsushita Electric Ind Co Ltd | Binary refrigerating system and cold storage |
JP4858399B2 (en) * | 2007-10-16 | 2012-01-18 | 株式会社デンソー | Refrigeration cycle |
JP5920110B2 (en) * | 2012-02-02 | 2016-05-18 | 株式会社デンソー | Ejector |
WO2014162520A1 (en) * | 2013-04-02 | 2014-10-09 | 三菱電機株式会社 | Refrigeration cycle device |
-
2014
- 2014-10-24 JP JP2014217455A patent/JP6319042B2/en not_active Expired - Fee Related
-
2015
- 2015-08-18 DE DE112015004790.5T patent/DE112015004790T5/en not_active Withdrawn
- 2015-08-18 CN CN201580053233.0A patent/CN106796059B/en not_active Expired - Fee Related
- 2015-08-18 WO PCT/JP2015/004094 patent/WO2016063442A1/en active Application Filing
- 2015-08-18 US US15/513,469 patent/US20170307259A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN106796059A (en) | 2017-05-31 |
WO2016063442A1 (en) | 2016-04-28 |
CN106796059B (en) | 2019-01-11 |
JP2016084965A (en) | 2016-05-19 |
US20170307259A1 (en) | 2017-10-26 |
DE112015004790T5 (en) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384374B2 (en) | Ejector refrigeration cycle | |
JP5729359B2 (en) | Refrigeration cycle equipment | |
JP4832458B2 (en) | Vapor compression refrigeration cycle | |
JP6248499B2 (en) | Ejector refrigeration cycle | |
JP2013068407A (en) | Refrigeration cycle device | |
JP2008045774A (en) | Ejector type refrigerating cycle | |
JP6610313B2 (en) | Ejector, ejector manufacturing method, and ejector refrigeration cycle | |
JP5083106B2 (en) | Expansion valve and vapor compression refrigeration cycle provided with the same | |
JP2018146219A (en) | Ejector module | |
WO2016063441A1 (en) | Ejector refrigeration cycle device | |
JP6319043B2 (en) | Ejector refrigeration cycle | |
JP6512071B2 (en) | Ejector type refrigeration cycle | |
JP6720934B2 (en) | Ejector module | |
JP6459807B2 (en) | Ejector refrigeration cycle | |
JP6319041B2 (en) | Ejector refrigeration cycle | |
WO2016031157A1 (en) | Ejector-type refrigeration cycle | |
JP6319042B2 (en) | Ejector refrigeration cycle | |
JP6327088B2 (en) | Ejector refrigeration cycle | |
JP6511873B2 (en) | Ejector and ejector-type refrigeration cycle | |
WO2016181639A1 (en) | Refrigeration cycle device | |
WO2018159321A1 (en) | Ejector module | |
WO2025041633A1 (en) | Ejector and refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180319 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6319042 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |