JP6310131B1 - 電子部品用チタン銅 - Google Patents
電子部品用チタン銅 Download PDFInfo
- Publication number
- JP6310131B1 JP6310131B1 JP2017182751A JP2017182751A JP6310131B1 JP 6310131 B1 JP6310131 B1 JP 6310131B1 JP 2017182751 A JP2017182751 A JP 2017182751A JP 2017182751 A JP2017182751 A JP 2017182751A JP 6310131 B1 JP6310131 B1 JP 6310131B1
- Authority
- JP
- Japan
- Prior art keywords
- copper
- titanium
- mass
- titanium copper
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 238000005452 bending Methods 0.000 claims abstract description 54
- 239000013078 crystal Substances 0.000 claims abstract description 38
- 239000010936 titanium Substances 0.000 claims abstract description 29
- 239000010949 copper Substances 0.000 claims abstract description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052802 copper Inorganic materials 0.000 claims abstract description 19
- 238000005482 strain hardening Methods 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 5
- 238000005097 cold rolling Methods 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 26
- 238000005096 rolling process Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 15
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000000630 rising effect Effects 0.000 claims description 4
- 238000010079 rubber tapping Methods 0.000 abstract description 9
- 229910052719 titanium Inorganic materials 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 229910000881 Cu alloy Inorganic materials 0.000 description 12
- 230000035882 stress Effects 0.000 description 12
- 238000000137 annealing Methods 0.000 description 11
- 230000032683 aging Effects 0.000 description 7
- 239000000956 alloy Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000001330 spinodal decomposition reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
また、特許文献2(国際公開第2012/029717号)には、Tiを1.0〜5.0mass%含有し、残部が銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、Cube方位{001}<100>の面積率が5〜50%であることを特徴とする銅合金板材が記載されている。当該公報によれば、Cube方位集積割合と曲げ加工性について相関があり、これを制御することで曲げ加工性に優れ、優れた強度を有する銅合金板材が得られる。
また、たたき加工を加えられた電子部品用チタン銅の曲げ加工性に有益な制御方法は明らかにされていない。
また、本発明者らは、上記制御を行うには、チタン銅のインゴットを熱間圧延した後、冷間圧延工程及びその後の最終溶体化処理工程等を経てチタン銅を製造するにあたり、冷間圧延工程における1パス当たりの最小加工度、トータルの加工度を一定範囲とし、さらに最終溶体化処理工程の400℃以上における昇温速度を一定範囲とし、加熱温度を一定範囲とすることが必要であることを見出した。
本発明は、上記知見に基づいて完成したものである。
(1)Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなり、加工硬化指数が0.05〜0.25であり、表面における{200}結晶面からのX線回折積分強度I{200}と、純銅標準粉末のX線回析積分強度I0{200}とが、0.15≦I{200}/I0{200}≦0.70の関係を満たすチタン銅。
(2)加工度10%の冷間圧延を加えたのちに、JIS−H3130(2012)に従ってW曲げ試験をBadway方向にr/t=1.0で行ったときに、曲げ部の外周表面における平均粗さRaが1.0μm以下である(1)に記載のチタン銅。
(3)圧延面に対するEBSD測定における結晶方位解析において、方位差5°以上を結晶粒界とみなしたときの平均結晶粒径が2〜30μmである(1)又は(2)に記載のチタン銅。
(4)JIS−Z2241(2011)に従って引張試験を行ったときの、圧延方向に平行な方向における0.2%耐力が800MPa以上である(1)〜(3)のいずれか一項に記載のチタン銅。
(5)(1)〜(4)の何れか一項に記載のチタン銅を備えた電子部品。
(6)Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを熱間圧延した後、冷間圧延工程及びその後の最終溶体化処理工程を含む(1)〜(4)のいずれか一項に記載のチタン銅の製造方法であって、
前記最終溶体化処理前の冷間圧延工程における1パスあたりの最小加工度が10〜30%であり、トータルの加工度をηとし、η=ln{(冷間圧延前の厚み)/(冷間圧延後の厚み)}で表したとき、ηが3.0以上5.0未満であり、
前記最終溶体化処理工程において、Tiの添加量(質量%)をXとする場合、加熱温度(℃)が52×X+610〜52×X+680であり、400℃以上における昇温速度が20〜30℃/秒である
ことを特徴とするチタン銅の製造方法。
本発明に係るチタン銅においては、Ti濃度を2.0〜4.5質量%とする。チタン銅は、溶体化処理によりCuマトリックス中へTiを固溶させ、時効処理により微細な析出物を合金中に分散させることにより、強度及び導電率を上昇させる。
Ti濃度が2.0質量%未満になると、析出物の析出が不充分となり所望の強度が得られない。Ti濃度が4.5質量%を超えると、加工性が劣化し、圧延の際に材料が割れやすくなる。強度及び加工性のバランスを考慮すると、好ましいTi濃度は2.5〜3.5質量%である。
本発明に係るチタン銅においては、Fe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択される第三元素の1種以上を含有させることにより、強度を更に向上させることができる。但し、第三元素の合計濃度が0.5質量%を超えると、加工性が劣化し、圧延の際に材料が割れやすくなる。そこで、これら第三元素は合計で0〜0.5質量%含有することができ、強度及び加工性のバランスを考慮すると、上記元素の1種以上を総量で0.1〜0.4質量%含有させることが好ましい。なお、添加元素ごとには、Zr、P、B、V、MgおよびSiは0.01〜0.15質量%、Fe、Co、Ni、Cr、Mo、NbおよびMnは0.01〜0.3質量%、Znは0.1〜0.5質量%含有させることができる。
引張試験において試験片を引張り、荷重を負荷すると、弾性限度を越えて最高荷重点に達するまでの塑性変形域では試験片各部は一様に伸びる(均一伸び)。この均一伸びが発生する塑性変形域では真応力σtと真ひずみεtの間には、下記の式(1)の関係が成立し、これをn乗硬化則という。
σt=Kεt n (1)
ここで、式(1)中、nは、加工硬化指数といい(須藤一著:材料試験法、内田老鶴圃社、(1976)、p.34)、0≦n≦1の値をとる。
εt=ln(1+ε) (2)
本発明に係るチタン銅においては、表面における{200}結晶面からのX線回折積分強度I{200}と、純銅標準粉末のX線回析積分強度I0{200}とが、0.15≦I{200}/I0{200}≦0.70の関係を満たすことが好ましい。これは、I{200}/I0{200}の強度が高いと、結晶粒ごとのひずみが不均一となり、曲げ加工性が劣化するためである。
一方、I{200}/I0(200)の比が小さすぎると、圧延集合組織が発達し、曲げ加工性が劣化するためである。
従って、I{200}/I0(200)の比は、0.25以上かつ0.60以下とすることが好ましく、0.30以上かつ0.50以下とすることがより好ましい。
なおX線回折積分強度は、所定のX線回折装置を用いることにより測定可能である。
本発明に係るチタン銅は優れた曲げ加工性を有することができる。本発明に係るチタン銅においては一実施形態において、たたき加工を模擬した加工度10%の冷間圧延を加えたのちに、JIS−H3130(2012)に従ってW曲げ試験をBadway方向にr/t=1.0で行ったときに、曲げ部の外周表面における平均粗さRaが1.0μm以下であるという特性を有する。平均粗さRaはJIS−B0601(2013)に準拠して算出する。曲げ加工後にも曲げ部の平均粗さが小さいということは、破断を引き起こすおそれのある有害なクラックが曲げ部に入りにくいことを意味する。一般的には曲げ試験前の本発明に係るチタン銅の表面の平均粗さRaは0.2μm以下である。
たたき加工を模擬した加工度は、下記の数式に基づくものである。式中、T0は、冷間圧延を行う前のインゴットの厚さであり、Tは、冷間圧延が終了した時のインゴットの厚さである。
加工度(%)={(T0−T)/T0}×100
強度、曲げ加工性及び疲労特性をバランス良く高める観点から、本発明に係るチタン銅の一実施形態においては、圧延面における平均結晶粒径を2〜30μmの範囲に制御することが好ましく、2〜15μmの範囲に制御することがより好ましく、2〜10μmの範囲に制御することが更により好ましい。
平均結晶粒径とは、圧延面に対するEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析により、EBSDに付属している解析ソフト(例:TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなした場合における平均結晶粒径をいう。
本発明に係るチタン銅においては一実施形態において、圧延方向に平行な方向での0.2%耐力が800MPa以上を達成することができる。本発明に係るチタン銅の0.2%耐力は好ましい実施形態において850MPa以上であり、更に好ましい実施形態において900MPa以上であり、更に好ましい実施形態においては950MPa以上である。
0.2%耐力の上限値は、本発明が目的とする強度の点からは特に規制されないが、手間及び費用がかかることから、本発明に係るチタン銅の0.2%耐力は一般には1300MPa以下であり、典型的には1200MPa以下であり、より典型的には1100MPa以下である。
本発明においては、チタン銅の圧延方向に平行な方向での0.2%耐力は、JIS−Z2241(2011)(金属材料引張試験方法)に準拠して測定する。
本発明に係るチタン銅の一実施形態においては、厚みを1.0mm以下とすることができ、典型的な実施形態においては厚みを0.02〜0.8mmとすることができ、より典型的な実施形態においては厚みを0.05〜0.5mmとすることができる。
本発明に係るチタン銅は種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクタ、オートフォーカスカメラモジュール、ジャック、端子(特に、バッテリー端子)、リレー等の電子部品における導電材やばね材として好適に使用することができる。これらの電子部品は例えば車載部品や電気・電子機器用部品として使用可能である。
以下、本発明に係るチタン銅の好適な製造例を工程毎に順次説明する。
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の第三元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第三元素の溶解後に添加すればよい。従って、Cuに、Fe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択される1種以上を合計で0〜0.5質量%含有するように添加し、次いでTiを2.0〜4.5質量%含有するように添加してインゴットを製造することが望ましい。
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の圧下率が90%までのパスは900℃以上とするのが好ましい。
熱間圧延後、冷間圧延を行う。冷間圧延の加工度は典型的には30%以上とする。
次いで、焼鈍を実施することができる。ここで、焼鈍の条件は典型的には900℃で1〜5分とする。この冷間圧延及び焼鈍は必要に応じて適宜繰り返すことができる。
冷間圧延及び焼鈍を適宜繰り返した後、第一溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
加工硬化指数や結晶方位は、最終の溶体化処理における再結晶が大きく影響する。その再結晶の駆動力となるのは、前の工程である中間圧延で導入されるひずみであるため、1パスあたりの最小加工度やトータルの加工度を制御することが重要となる。ここで、冷間圧延工程における1パスあたりの最小加工度を10〜30%とし、トータルの加工度をηとし、η=ln{(冷間圧延前の厚み)/(冷間圧延後の厚み)}で表したとき、ηを3.0以上5.0未満とすることが必要である。
1パスあたりの最小加工度が10%未満の場合、最終的に得られるチタン銅のI(200)/I0(200)を0.70以下に制御することが困難となり、一方、1パスあたりの最小加工度が30%を超えると材料が破断するなど、製造が困難となる。この観点から、1パスあたりの最小加工度は13〜27%が好ましく、16〜24%がより好ましい。
また、トータルの加工度ηが3.0未満の場合、最終的に得られるチタン銅のI(200)/I0(200)を0.15以上に制御することが困難となり、一方、トータルの加工度ηが5.0以上であっても、最終的に得られるチタン銅のI(200)/I0(200)を0.70以下に制御することが困難となる。この観点から、トータルの加工度ηは3.3〜4.7が好ましく、3.6〜4.4がより好ましい。
1パスあたりの加工度は、下記の数式から求められる。式中、T0は、当該パスによる圧延を行う前のインゴットの厚さであり、Tは、当該パスによる圧延が終了した時のインゴットの厚さである。
加工度(%)={(T0−T)/T0}×100
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化しやすいので、加熱温度は第二相粒子組成の固溶限付近の温度とする。具体的には、Tiの添加量(質量%)をXとする場合、加熱温度(℃)を52×X+610〜52×X+680とする。加熱温度が52×X+610を下回る場合、未再結晶となり、加熱温度が52×X+680を上回る場合、結晶粒径が粗大化し、最終的に得られるチタン銅の曲げ性はいずれも著しく劣化する。
ここで、400℃以上における昇温速度を20〜30℃/秒に制御する必要がある。400℃以上の温度範囲において、昇温速度が20℃/秒未満の場合、昇温時間が長くなるため昇温過程での析出が起こり、昇温速度が30℃/秒を超える場合、昇温時間が短くなるため不安定な熱処理となり最終的に得られるチタン銅の加工硬化指数を0.25以下に制御することが困難となる。
最終の溶体化処理に引き続いて最終の冷間圧延を行う。最終の冷間加工によって強度を高めることができるが、本発明において意図されるような曲げ加工性を得るためには圧下率を5〜50%、好ましくは20〜40%とすることが望ましい。
最終の冷間圧延に引き続いて時効処理を行う。材料温度300〜500℃で1〜50時間加熱することが好ましく、材料温度350〜450℃で10〜30時間加熱することがより好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを鋳造する工程と、
当該インゴットを熱間圧延した後、
1パスあたりの最小加工度が10〜30%であり、トータルの加工度をηとし、η=ln{(冷間圧延前の厚み)/(冷間圧延後の厚み)}で表したとき、ηが3.0以上5.0未満である冷間圧延を行う工程、及び
Tiの添加量(質量%)をXとする場合、加熱温度(℃)が52×X+610〜52×X+680であり、400℃以上における昇温速度が20〜30℃/秒である最終溶体化処理工程
を含む。
(0.2%耐力)
JIS13B号試験片を作製し、上述した測定方法に従い引張試験機を用いて圧延方向と平行な方向の0.2%耐力を測定した。
(平均結晶粒径)
各試験片の板面(圧延面)を研磨したのちエッチングし、これに対しEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析により、EBSDに付属している解析ソフト(例:TSLソリューションズ社製のOIM Analysis)を用いて、方位差5°以上を結晶粒界とみなした場合における平均結晶粒径を測定した。
(加工硬化指数(n値))
圧延方向と平行な方向の引張試験を行い、応力−ひずみ曲線を得て、前述した方法によりn値を求めた。
(結晶方位)
各試験片について、株式会社リガク製、RINT2500のX線回折装置を用いて、以下の測定条件で表面の回折強度曲線を取得し、{200}結晶面、{220}結晶面、{311}結晶面のそれぞれの積分強度Iを測定して、(I{220}+I{311})/I{200}を算出した。また純銅標準粉末試料についても、同様の測定条件で{200}結晶面の積分強度Iを測定し、I{200}/I0{200}を算出した。
・ターゲット:Co管球
・管電圧:30kV
・管電流:100mA
・走査速度:5°/min
・サンプリング幅:0.02°
・測定範囲(2θ):5°〜150°
(圧延後の曲げ性)
たたき加工を模擬した加工度10%の圧延を加えたのち、JIS−H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、r/t=1.0で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS−B0601:2013に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
発明例1〜18では、加工硬化指数及びI{200}/I0{200}が本発明の範囲内であるので、曲げ加工性が優れている。また、平均結晶粒径が2〜30μmであり、0.2%耐力が800MPa以上であった。
一方、比較例1は、1パス当たりの最小加工度が低すぎたことでI{200}/I0{200}が本発明の範囲外となり、曲げ加工性が発明例よりも劣っていた。
比較例2は、1パス当たりの最小加工度が高すぎたことにより、材料が破断し、製造が不可能であった。
比較例3のトータルの加工度が低すぎたことにより、I{200}/I0{200}が本発明の下限値を下回った。そのため、曲げ加工性が発明例よりも劣っていた。
比較例4のトータルの加工度が高すぎたことにより、I{200}/I0{200}が本発明の上限値を上回った。そのため、曲げ加工性が発明例よりも劣っていた。
比較例5の400℃以上における昇温速度が低すぎたことにより、加工硬化指数が本発明の下限値を下回った。そのため、曲げ加工性が発明例よりも劣っていた。
比較例6の400℃以上における昇温速度が高すぎたことにより、加工硬化指数が本発明の上限値を上回った。そのため、曲げ加工性が発明例よりも劣っていた。
比較例7の加熱温度が低すぎたことにより、再結晶ができず、本発明が意図するチタン銅を製造できなかった。
比較例8の加熱温度が高すぎたことにより、加工硬化指数が本発明の上限値を上回った。そのため、曲げ加工性が発明例よりも劣っていた。
比較例9に添加される第三元素が多すぎたことにより、圧延の際に材料が割れてしまい、本発明が意図するチタン銅を製造できなかった。
比較例10に添加されるTiが少なすぎたことにより、I{200}/I0{200}が本発明の上限値を上回った。そのため、曲げ加工性が発明例よりも劣っていた。
比較例11に添加されるTiが多すぎたことにより、圧延の際に材料が割れてしまい、本発明が意図するチタン銅を製造できなかった。
比較例12は、1パス当たりの最小加工度が10%を下回り、また400℃以上における昇温速度が20℃/分を下回ったので、I{200}/I0{200}が本発明の上限値を上回った。そのため、曲げ加工性が発明例よりも劣っていた。
Claims (6)
- Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなり、加工硬化指数が0.05〜0.25であり、表面における{200}結晶面からのX線回折積分強度I{200}と、純銅標準粉末のX線回析積分強度I0{200}とが、0.15≦I{200}/I0{200}≦0.70の関係を満たすチタン銅。
- 加工度10%の冷間圧延を加えたのちに、JIS−H3130(2012)に従ってW曲げ試験をBadway方向にr/t=1.0で行ったときに、曲げ部の外周表面における平均粗さRaが1.0μm以下である請求項1に記載のチタン銅。
- 圧延面に対するEBSD測定における結晶方位解析において、方位差5°以上を結晶粒界とみなしたときの平均結晶粒径が2〜30μmである請求項1又は2に記載のチタン銅。
- JIS−Z2241(2011)に従って引張試験を行ったときの、圧延方向に平行な方向における0.2%耐力が800MPa以上である請求項1〜3のいずれか一項に記載のチタン銅。
- 請求項1〜4の何れか一項に記載のチタン銅を備えた電子部品。
- Tiを2.0〜4.5質量%含有し、第三元素としてFe、Co、Ni、Zn、Cr、Zr、P、B、Mo、V、Nb、Mn、Mg、及びSiからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなるチタン銅のインゴットを熱間圧延した後、冷間圧延工程及びその後の最終溶体化処理工程を含む請求項1〜4のいずれか一項に記載のチタン銅の製造方法であって、
前記最終溶体化処理工程前の冷間圧延工程における1パスあたりの最小加工度(各パスのうち加工度が最小であるパスの加工度)が10〜30%であり、トータルの加工度をηとし、η=ln{(冷間圧延前の厚み)/(冷間圧延後の厚み)}で表したとき、ηが3.0以上5.0未満であり、
前記最終溶体化処理工程において、Tiの添加量(質量%)をXとする場合、加熱温度(℃)が52×X+610〜52×X+680であり、400℃以上における昇温速度が20〜30℃/秒である
ことを特徴とする請求項1〜4のいずれか一項に記載のチタン銅の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017182751A JP6310131B1 (ja) | 2017-09-22 | 2017-09-22 | 電子部品用チタン銅 |
RU2018133256A RU2690737C1 (ru) | 2017-09-22 | 2018-09-20 | Титаново-медный материал для электронных компонентов |
EP18196026.1A EP3460082B1 (en) | 2017-09-22 | 2018-09-21 | Titanium copper for electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017182751A JP6310131B1 (ja) | 2017-09-22 | 2017-09-22 | 電子部品用チタン銅 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6310131B1 true JP6310131B1 (ja) | 2018-04-11 |
JP2019056167A JP2019056167A (ja) | 2019-04-11 |
Family
ID=61902016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017182751A Active JP6310131B1 (ja) | 2017-09-22 | 2017-09-22 | 電子部品用チタン銅 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3460082B1 (ja) |
JP (1) | JP6310131B1 (ja) |
RU (1) | RU2690737C1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006274289A (ja) * | 2005-03-28 | 2006-10-12 | Nikko Kinzoku Kk | 強度と曲げ加工性に優れたチタン銅合金及びその製造方法 |
JP2011026635A (ja) * | 2009-07-22 | 2011-02-10 | Dowa Metaltech Kk | 銅合金板材、銅合金板材の製造方法、および電気電子部品 |
JP2014074193A (ja) * | 2012-10-02 | 2014-04-24 | Jx Nippon Mining & Metals Corp | チタン銅及びその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60114558A (ja) * | 1983-11-22 | 1985-06-21 | Ngk Insulators Ltd | 時効硬化性チタニウム銅合金展伸材の製造法 |
RU2104139C1 (ru) * | 1996-09-20 | 1998-02-10 | Товарищество с ограниченной ответственностью Научно-техническая фирма "Техма" | Дисперсно-упрочненный материал для электродов контактной сварки |
RU2118393C1 (ru) * | 1997-03-27 | 1998-08-27 | Товарищество с ограниченной ответственностью Научно-техническая фирма "Техма" | Дисперсно-упрочненный материал для электродов контактных сварочных машин |
JP3942505B2 (ja) | 2002-07-16 | 2007-07-11 | ヤマハメタニクス株式会社 | チタン銅合金材及びその製造方法 |
KR100559814B1 (ko) * | 2002-11-29 | 2006-03-10 | 닛꼬 긴조꾸 가꼬 가부시키가이샤 | 구리합금 및 그 제조방법 |
TW200730643A (en) * | 2005-08-03 | 2007-08-16 | Nippon Mining Co | High-strength copper alloy for electronic component use and electronic component thereof |
EP2196548B1 (en) * | 2008-12-02 | 2012-05-16 | Dowa Metaltech Co., Ltd. | Cu-Ti based copper alloy sheet material and method of manufacturing same |
US8097102B2 (en) * | 2008-12-08 | 2012-01-17 | Dowa Metaltech Co., Ltd. | Cu-Ti-based copper alloy sheet material and method of manufacturing same |
EP2612934A1 (en) | 2010-08-31 | 2013-07-10 | Furukawa Electric Co., Ltd. | Copper alloy sheet material and process for producing same |
JP5214701B2 (ja) * | 2010-10-18 | 2013-06-19 | Jx日鉱日石金属株式会社 | 強度、導電率及び曲げ加工性に優れたチタン銅及びその製造方法 |
JP2013100586A (ja) | 2011-11-09 | 2013-05-23 | Jx Nippon Mining & Metals Corp | チタン銅及びその製造方法 |
JP6263333B2 (ja) * | 2013-03-25 | 2018-01-17 | Dowaメタルテック株式会社 | Cu−Ti系銅合金板材およびその製造方法並びに通電部品 |
JP5718443B1 (ja) * | 2013-12-27 | 2015-05-13 | Jx日鉱日石金属株式会社 | 電子部品用チタン銅 |
JP6368518B2 (ja) | 2014-03-28 | 2018-08-01 | Dowaメタルテック株式会社 | Cu−Ti系銅合金板材およびその製造方法並びに通電部品 |
-
2017
- 2017-09-22 JP JP2017182751A patent/JP6310131B1/ja active Active
-
2018
- 2018-09-20 RU RU2018133256A patent/RU2690737C1/ru active
- 2018-09-21 EP EP18196026.1A patent/EP3460082B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006274289A (ja) * | 2005-03-28 | 2006-10-12 | Nikko Kinzoku Kk | 強度と曲げ加工性に優れたチタン銅合金及びその製造方法 |
JP2011026635A (ja) * | 2009-07-22 | 2011-02-10 | Dowa Metaltech Kk | 銅合金板材、銅合金板材の製造方法、および電気電子部品 |
JP2014074193A (ja) * | 2012-10-02 | 2014-04-24 | Jx Nippon Mining & Metals Corp | チタン銅及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019056167A (ja) | 2019-04-11 |
EP3460082B1 (en) | 2020-05-13 |
RU2690737C1 (ru) | 2019-06-05 |
EP3460082A3 (en) | 2019-05-15 |
EP3460082A2 (en) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9412482B2 (en) | Cu-Ni-Co-Si based copper alloy sheet material and method for producing the same | |
JP5718443B1 (ja) | 電子部品用チタン銅 | |
JP5718436B1 (ja) | 電子部品用チタン銅 | |
JP5226056B2 (ja) | 銅合金、伸銅品、電子部品及びコネクタ | |
JP6125409B2 (ja) | 電子部品用チタン銅 | |
WO2012169405A1 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材、及び電子機器用部品 | |
JP5611773B2 (ja) | 銅合金及びこれを用いた伸銅品、電子部品及びコネクタ及び銅合金の製造方法 | |
JP6151636B2 (ja) | 電子部品用チタン銅 | |
JP6080823B2 (ja) | 電子部品用チタン銅 | |
JP2011208243A (ja) | 銅合金、銅合金の製造方法及び電子部品の製造方法 | |
JP4834781B1 (ja) | 電子材料用Cu−Co−Si系合金 | |
JP6125410B2 (ja) | 電子部品用チタン銅 | |
JP2020066756A (ja) | チタン銅、チタン銅の製造方法及び電子部品 | |
JP6080822B2 (ja) | 電子部品用チタン銅及びその製造方法 | |
JP2015127440A (ja) | 電子部品用チタン銅 | |
JP2016130370A (ja) | 電子部品用チタン銅 | |
JP6310130B1 (ja) | 電子部品用チタン銅 | |
JP6246174B2 (ja) | 電子部品用Cu−Co−Ni−Si合金 | |
JP6310131B1 (ja) | 電子部品用チタン銅 | |
JP6629400B1 (ja) | 時効処理前のチタン銅板、プレス加工品およびプレス加工品の製造方法 | |
JP5319578B2 (ja) | 電子部品用チタン銅の製造方法 | |
JP2017071811A (ja) | 電子部品用Cu−Co−Ni−Si合金 | |
JP6736631B2 (ja) | チタン銅、チタン銅の製造方法及び電子部品 | |
JP2017210674A (ja) | 電子部品用Cu−Co−Ni−Si合金 | |
JP2019203202A (ja) | 電子部品用Cu−Ni−Co−Si合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6310131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |