[go: up one dir, main page]

JP6306836B2 - Carbon materials for hybrid capacitors - Google Patents

Carbon materials for hybrid capacitors Download PDF

Info

Publication number
JP6306836B2
JP6306836B2 JP2013177458A JP2013177458A JP6306836B2 JP 6306836 B2 JP6306836 B2 JP 6306836B2 JP 2013177458 A JP2013177458 A JP 2013177458A JP 2013177458 A JP2013177458 A JP 2013177458A JP 6306836 B2 JP6306836 B2 JP 6306836B2
Authority
JP
Japan
Prior art keywords
carbon material
carbon
nitrogen
acidic functional
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013177458A
Other languages
Japanese (ja)
Other versions
JP2015046521A5 (en
JP2015046521A (en
Inventor
靖之 東恩納
靖之 東恩納
哲也 久米
哲也 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2013177458A priority Critical patent/JP6306836B2/en
Publication of JP2015046521A publication Critical patent/JP2015046521A/en
Publication of JP2015046521A5 publication Critical patent/JP2015046521A5/ja
Application granted granted Critical
Publication of JP6306836B2 publication Critical patent/JP6306836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、炭素材料に関する。より詳しくは、ハイブリッドキャパシタ(例えばリチウムイオンキャパシタ)の電極に用いられる炭素材料に関する。   The present invention relates to a carbon material. More specifically, the present invention relates to a carbon material used for an electrode of a hybrid capacitor (for example, a lithium ion capacitor).

リチウムイオンキャパシタ等のハイブリッドキャパシタ(非対称キャパシタ)は、電気二重層キャパシタよりもエネルギー密度が高く、二次電池よりも出力密度や耐久性に優れることから、近年、携帯電子機器の電源や電力貯蔵等の用途に好適に用いられている。
かかるハイブリッドキャパシタでは、高性能化の一環として、更なる高エネルギー密度化や高出力密度化が検討されている。これに関する従来技術として、特許文献1〜4が挙げられる。例えば特許文献1には、ラクトン状カルボキシル官能基の多い炭素材料を正極に用いることで、エネルギー密度や出力密度に優れたリチウムイオンキャパシタを実現し得る旨が記載されている。
Hybrid capacitors (asymmetric capacitors) such as lithium-ion capacitors have higher energy density than electric double layer capacitors and are superior in output density and durability to secondary batteries. It is used suitably for the use of.
In such a hybrid capacitor, further energy density and output density are being studied as part of higher performance. Patent documents 1 to 4 can be cited as conventional techniques related to this. For example, Patent Document 1 describes that a lithium ion capacitor excellent in energy density and output density can be realized by using a carbon material having many lactone-like carboxyl functional groups for the positive electrode.

特開2007−180437号公報JP 2007-180437 A 特開2008−060479号公報JP 2008-060479 A 特開2010−045341号公報JP 2010-054341 A 特開2013−021234号公報JP 2013-021234 A

しかしながら、本発明者らの検討によれば、上記のような従来の炭素材料を用いた場合に、高エネルギー密度化や高出力密度化の背反として、電池の耐久性や信頼性が低下することがあった。具体的には、充放電サイクルを繰り返すにつれて非水電解液が分解したり、上記ラクトン状カルボキシル官能基が炭素材料の表面から脱離して電池内でガスを発生させたりすることがあった。したがって、耐久性(例えばサイクル安定性)や信頼性を大きく低下させずに(好ましくは維持しつつ)、電池特性(例えばエネルギー密度)を向上することが求められている。   However, according to the study by the present inventors, when the conventional carbon material as described above is used, the durability and reliability of the battery are lowered as a contradiction to the increase in energy density and output density. was there. Specifically, as the charge / discharge cycle is repeated, the nonaqueous electrolytic solution may be decomposed, or the lactone-like carboxyl functional group may be detached from the surface of the carbon material to generate gas in the battery. Therefore, it is required to improve battery characteristics (for example, energy density) without significantly reducing (preferably maintaining) durability (for example, cycle stability) and reliability.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、高いエネルギー密度と良好な耐久性とを兼ね備えたハイブリッドキャパシタ用の炭素材料を提供することである。また、関連する他の目的は、かかる材料を正極または負極に備えたハイブリッドキャパシタ(例えば、かかる材料を正極に備えたリチウムイオンキャパシタ)を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a carbon material for a hybrid capacitor having both high energy density and good durability. Another related object is to provide a hybrid capacitor (eg, a lithium ion capacitor having such a material as a positive electrode) provided with such a material as a positive electrode or a negative electrode.

本発明者らは、炭素材料の表面に、より安定性の高い(換言すれば、非水電解液との反応性が低く、炭素材料表面からの脱離が生じ難い)表面官能基を付与することで、上記課題を解決し得ると考えた。そして、鋭意検討を重ね、本発明を完成させた。
本発明によって、ハイブリッドキャパシタの電極に用いられる炭素材料が提供される。かかる炭素材料は、以下の条件(1),(2)を何れも満たしている。
(1)不活性雰囲気下において850℃で熱処理したときの揮発分が、3質量%以上7質量%以下である。
(2)酸性官能基量が0.1mmol/g以上である。ここで、当該酸性官能基の少なくとも一部には窒素原子を含んでいる。
The present inventors give a surface functional group having higher stability (in other words, low reactivity with a non-aqueous electrolyte and less detachment from the surface of the carbon material) to the surface of the carbon material. Therefore, we thought that the above problem could be solved. And earnest examination was repeated and the present invention was completed.
According to the present invention, a carbon material used for an electrode of a hybrid capacitor is provided. Such a carbon material satisfies both of the following conditions (1) and (2).
(1) The volatile content when heat-treated at 850 ° C. in an inert atmosphere is 3% by mass or more and 7% by mass or less.
(2) The amount of acidic functional groups is 0.1 mmol / g or more. Here, at least a part of the acidic functional group contains a nitrogen atom.

酸性官能基量が0.1mmol/g以上で、且つ不活性雰囲気下における850℃の揮発分が3質量%以上である炭素材料を用いることで、酸性官能基由来の疑似容量が増加して、あるいは非水電解液に対する濡れ性が向上して、従来に比べてエネルギー密度や出力密度を向上させることができる。
また、本発明者らの検討によれば、アミド基(例えば−C(=O)−NH)、イミド基(−C(=O)−NH−C(=O)−)、−NHC(=O)O−等の窒素原子を含む酸性官能基(以下、単に「窒素含有基」ということがある。)は、ヒドロキシル基(−OH)やカルボキシル基(−C(=O)OH)等の一般的な酸性官能基に比べて、炭素材料の表面に強固に結合し得る。このため、窒素原子を含む酸性官能基を備え、且つ不活性雰囲気下における850℃の揮発分が7質量%以下である炭素材料を用いることで、当該官能基が非水電解液と反応したり、あるいは炭素材料の表面から脱離することを抑制することができる。したがって、酸性官能基量が少ない炭素材料を用いた場合と同程度の耐久性を実現することができる。
上記の通り、ここに開示される発明によれば、高エネルギー密度と良好な耐久性とを兼ね備えたハイブリッドキャパシタを実現することができる。なお、炭素材料には原料(炭素前駆体)や性状等を異にする多種多様なものがあるが、後述する実施例からも明らかなように、ここに開示される技術はあらゆる炭素材料に適用可能なものである。
By using a carbon material having an acidic functional group amount of 0.1 mmol / g or more and a volatile content at 850 ° C. in an inert atmosphere of 3% by mass or more, the pseudo capacity derived from the acidic functional group is increased. Or the wettability with respect to a non-aqueous electrolyte improves, and an energy density and an output density can be improved compared with the past.
Further, according to the study by the present inventors, an amide group (for example, —C (═O) —NH 2 ), an imide group (—C (═O) —NH—C (═O) —), —NHC ( An acidic functional group containing a nitrogen atom such as ═O) O— (hereinafter sometimes simply referred to as “nitrogen-containing group”) is a hydroxyl group (—OH), a carboxyl group (—C (═O) OH) or the like. Compared with the general acidic functional group, it can be firmly bonded to the surface of the carbon material. Therefore, by using a carbon material having an acidic functional group containing a nitrogen atom and having a volatile content at 850 ° C. of 7% by mass or less under an inert atmosphere, the functional group reacts with the nonaqueous electrolytic solution. Alternatively, desorption from the surface of the carbon material can be suppressed. Therefore, it is possible to achieve the same durability as when a carbon material having a small amount of acidic functional groups is used.
As described above, according to the invention disclosed herein, it is possible to realize a hybrid capacitor having both high energy density and good durability. Although there are a wide variety of carbon materials with different raw materials (carbon precursors) and properties, the technology disclosed here can be applied to all carbon materials, as will be apparent from the examples described later. It is possible.

なお、本明細書において「850℃で熱処理したときの揮発分」とは、窒素雰囲気下において850℃で試料を熱処理し、焼成前後の質量から次式:揮発分(%)=〔(焼成前の質量)−(焼成後の質量)〕/(焼成前の質量)×100を用いて算出した値をいう。また、本明細書において「酸性官能基量」とは、塩基性試薬としてナトリウムエトキシド(CHONa)水溶液を用い、Boehm法(中和滴定法)に従って測定した表面官能基量をいう。また、酸性官能基中に窒素原子を含むか否かは、例えば一般的なCHN元素分析やX線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)等によって確認することができる。 In this specification, “volatile matter when heat-treated at 850 ° C.” means that the sample is heat-treated at 850 ° C. in a nitrogen atmosphere, and the mass before and after firing is expressed by the following formula: volatile matter (%) = [(before firing Mass) − (mass after firing)] / (mass before firing) × 100. Further, in this specification, “amount of acidic functional group” refers to the amount of surface functional groups measured using a sodium ethoxide (CH 3 ONa) aqueous solution as a basic reagent according to the Boehm method (neutralization titration method). Whether or not the acidic functional group contains a nitrogen atom can be confirmed by, for example, general CHN elemental analysis or X-ray photoelectron spectroscopy (XPS).

好適な一態様では、上記酸性官能基量が0.7mmol/g以下である。本発明者らの検討によれば、炭素材料表面の酸性官能基量(典型的には窒素含有基量)が増えるほど当該官能基由来の疑似容量(静電容量)が増大、および/または、非水電解液に対する濡れ性が向上する。しかしながら、実質的には限界があり、作業性やコストの観点からは上記範囲とすることが好ましい。
また、好適な他の一態様では、ここに開示される炭素材料のBET比表面積は100m/g以下である。あるいは、当該BET比表面積は1000m/g以上であってもよい。なお、本明細書において「BET比表面積」とは、窒素(N)ガスを吸着質として用いたガス吸着法(定容量式吸着法)で測定されたガス吸着量を、BET法(例えばBET多点法)で解析した値をいう。
In a preferred embodiment, the amount of the acidic functional group is 0.7 mmol / g or less. According to the study by the present inventors, the pseudo-capacitance (capacitance) derived from the functional group increases as the acidic functional group amount (typically nitrogen-containing group amount) on the surface of the carbon material increases, and / or The wettability with respect to the non-aqueous electrolyte improves. However, there is practically a limit, and the above range is preferable from the viewpoint of workability and cost.
In another preferred embodiment, the carbon material disclosed herein has a BET specific surface area of 100 m 2 / g or less. Alternatively, the BET specific surface area may be 1000 m 2 / g or more. In this specification, the “BET specific surface area” means a gas adsorption amount measured by a gas adsorption method (fixed capacity adsorption method) using nitrogen (N 2 ) gas as an adsorbate, and a BET method (for example, BET method). This is the value analyzed by the multipoint method.

上述のような性状を備えた炭素材料は、例えば、炭素源物質と窒素含有基付与剤(例えば硝酸水溶液)とを混合して反応させた後、熱処理することによって作製することができる。炭素源物質と窒素含有基付与剤とを反応させることにより、炭素源物質の表面に窒素原子を含む酸性官能基(窒素含有基)を好適に付与することができる。その後、熱処理することによって、上記付与した官能基を炭素源物質の表面に強固に定着(安定化)させることができる。これにより、上述のような特徴を備えた炭素材料を好適に作製することができる。なお、本明細書において「炭素源物質」とは、窒素含有基の付与および熱処理を行う前の炭素系(炭素質)の材料全般をいい、例えば炭素前駆体(原料)、炭化物、賦活物等を包含する用語である。   The carbon material having the properties as described above can be produced by, for example, mixing and reacting a carbon source material and a nitrogen-containing group-imparting agent (for example, an aqueous nitric acid solution), followed by heat treatment. By reacting the carbon source material with the nitrogen-containing group imparting agent, an acidic functional group containing a nitrogen atom (nitrogen-containing group) can be suitably imparted to the surface of the carbon source material. Thereafter, the imparted functional group can be firmly fixed (stabilized) on the surface of the carbon source material by heat treatment. Thereby, the carbon material provided with the above characteristics can be produced suitably. In the present specification, the “carbon source material” refers to all carbon-based (carbonaceous) materials before the application of the nitrogen-containing group and the heat treatment, such as a carbon precursor (raw material), a carbide, an activated material, and the like. It is a term encompassing.

また、本発明によれば、正極と、負極と、非水電解液とを備えるハイブリッドキャパシタ(例えばリチウムイオンキャパシタ)が提供される。かかるハイブリッドキャパシタは、正極または負極(典型的には正極)に上述のような炭素材料を備えることを特徴とする。これによって、エネルギー密度(例えば体積エネルギー密度)と耐久性(例えばサイクル特性)とを高いレベルで両立可能なハイブリッドキャパシタを実現することができる。   Moreover, according to this invention, a hybrid capacitor (for example, lithium ion capacitor) provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte is provided. Such a hybrid capacitor is characterized in that the positive electrode or the negative electrode (typically the positive electrode) is provided with the carbon material as described above. As a result, it is possible to realize a hybrid capacitor that can achieve both energy density (for example, volume energy density) and durability (for example, cycle characteristics) at a high level.

一実施形態に係る製造方法のフローチャートである。It is a flowchart of the manufacturing method which concerns on one Embodiment. 一実施形態に係る静電容量(相対値)を酸性官能基量(mmol/g)に対してプロットしたグラフである。It is the graph which plotted the electrostatic capacitance (relative value) which concerns on one Embodiment with respect to the amount of acidic functional groups (mmol / g). 一実施形態に係るサイクル特性試験の容量維持率(%)を850℃揮発分(%)に対してプロットしたグラフである。It is the graph which plotted the capacity | capacitance maintenance factor (%) of the cycle characteristic test which concerns on one Embodiment with respect to 850 degreeC volatile matter (%). 他の一実施形態に係る静電容量(相対値)を酸性官能基量(mmol/g)に対してプロットしたグラフである。It is the graph which plotted the electrostatic capacitance (relative value) which concerns on other one Embodiment with respect to the amount of acidic functional groups (mmol / g). 他の一実施形態に係るサイクル特性試験の容量維持率(%)を850℃揮発分(%)に対してプロットしたグラフである。It is the graph which plotted the capacity | capacitance maintenance factor (%) of the cycle characteristic test which concerns on other one Embodiment with respect to 850 degreeC volatile matter (%).

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示される炭素材料は、ハイブリッドキャパシタの電極(例えばリチウムイオンキャパシタの正極)形成用の炭素材料である。かかる炭素材料は、不活性雰囲気下において850℃で熱処理したときの揮発分が3質量%以上(例えば3.1質量%以上、好ましくは3.4質量%以上)であって、7質量%以下(例えば6.5質量%以下、好ましくは6.2質量%以下)である。これにより、エネルギー密度と耐久性とを高いレベルで両立することができる。なお、後述する実施例にも示すように、一般的な炭素材料(典型的には、ここに開示されるような窒素含有基の付与および熱処理を行っていない炭素材料)の当該揮発分は、通常1〜2質量%程度である。   The carbon material disclosed here is a carbon material for forming an electrode of a hybrid capacitor (for example, a positive electrode of a lithium ion capacitor). Such a carbon material has a volatile content of 3% by mass or more (for example, 3.1% by mass or more, preferably 3.4% by mass or more) when heat-treated at 850 ° C. in an inert atmosphere, and 7% by mass or less. (For example, 6.5% by mass or less, preferably 6.2% by mass or less). Thereby, both energy density and durability can be achieved at a high level. In addition, as shown also in the Example mentioned later, the said volatile matter of a general carbon material (typically the carbon material which is not performing provision of a nitrogen-containing group and heat processing as disclosed here) Usually, it is about 1-2% by mass.

また、ここに開示される炭素材料は、酸性官能基の量が0.1mmol/g以上(例えば0.12mmol/g以上、好ましくは0.15mmol/g以上)であり、且つ、当該酸性官能基の少なくとも一部には窒素原子を含んでいる。これにより、従来に比べて高いエネルギー密度や出力密度を実現することができる。酸性官能基量の上限は特に限定されないが、費用対効果や作業効率の観点から、例えば0.7mmol/g以下(例えば0.6mmol/g以下、好ましくは0.56mmol/g以下)とすることが好ましい。   The carbon material disclosed herein has an acidic functional group amount of 0.1 mmol / g or more (for example, 0.12 mmol / g or more, preferably 0.15 mmol / g or more), and the acidic functional group. At least a part of these contains a nitrogen atom. Thereby, it is possible to realize a higher energy density and output density than conventional ones. The upper limit of the amount of the acidic functional group is not particularly limited, but is 0.7 mmol / g or less (for example, 0.6 mmol / g or less, preferably 0.56 mmol / g or less) from the viewpoint of cost effectiveness and work efficiency. Is preferred.

ここに開示される炭素材料のBET比表面積は特に限定されないが、例えば100m/g以下(典型的には20〜100m/g、例えば30〜60m/g)とすることができる。これにより、特に体積エネルギー密度に優れたハイブリッドキャパシタを実現することができる。あるいは、炭素材料のBET比表面積は1000m/g以上(典型的には1000〜3000m/g、例えば1500〜2500m/g)とすることもできる。これにより、特に入出力密度に優れたハイブリッドキャパシタを実現することができる。 The BET specific surface area of the carbon material disclosed herein is not particularly limited, but can be, for example, 100 m 2 / g or less (typically 20 to 100 m 2 / g, for example, 30 to 60 m 2 / g). As a result, a hybrid capacitor that is particularly excellent in volume energy density can be realized. Alternatively, the BET specific surface area of the carbon material can be 1000 m 2 / g or more (typically 1000 to 3000 m 2 / g, for example 1500 to 2500 m 2 / g). As a result, a hybrid capacitor with particularly excellent input / output density can be realized.

ここに開示される炭素材料の平均粒径は特に限定されないが、例えばサブミクロン〜ミクロンオーダー(典型的には0.1〜10μm、例えば3〜10μm)とすることができる。これにより、一層優れた特性(例えば、高エネルギー密度、高出力密度、高耐久性のうち少なくとも1つ)を実現し得る。なお、本明細書において「平均粒径」とは、レーザー回折・光散乱法に基づく粒度分布測定によって得られた体積基準の粒度分布おいて、微粒子側からの累積50%に相当する粒径(D50粒径、メジアン径ともいう。)をいう。 The average particle diameter of the carbon material disclosed herein is not particularly limited, but may be, for example, submicron to micron order (typically 0.1 to 10 μm, for example, 3 to 10 μm). Thereby, more excellent characteristics (for example, at least one of high energy density, high output density, and high durability) can be realized. In the present specification, the “average particle size” means a particle size corresponding to 50% cumulative from the fine particle side in the volume-based particle size distribution obtained by the particle size distribution measurement based on the laser diffraction / light scattering method. D 50 particle diameter, also referred to as median diameter).

このような炭素材料は、例えば、炭素源物質と窒素含有基付与剤とを混合して一定時間反応させた後、高温環境下で熱処理することによって作製することができる。
図1は、一実施形態に係る炭素材料の製造方法を表すフローチャートである。図1に示す製造方法は、以下の工程:(S10)炭化工程;(S20)賦活工程;(S30)窒素含有基の付与工程;および(S40)熱処理工程;を包含する。ここに開示される製造方法は、炭素源物質(賦活物)を窒素含有基付与剤に曝した後、熱処理することによって特徴づけられる。したがって、それ以外の工程については特に限定されず、従来公知の方法と同様に行うことができる。以下、各工程について順に説明する。
Such a carbon material can be produced, for example, by mixing a carbon source substance and a nitrogen-containing group-imparting agent and reacting them for a certain period of time, followed by heat treatment in a high temperature environment.
FIG. 1 is a flowchart showing a carbon material manufacturing method according to an embodiment. The manufacturing method shown in FIG. 1 includes the following steps: (S10) carbonization step; (S20) activation step; (S30) nitrogen-containing group application step; and (S40) heat treatment step. The production method disclosed herein is characterized by subjecting a carbon source material (activator) to a nitrogen-containing group-imparting agent, followed by heat treatment. Therefore, it is not specifically limited about other processes, It can carry out similarly to a conventionally well-known method. Hereinafter, each process is demonstrated in order.

炭化工程(S10)では、例えば、ヤシ殻、石炭、コークス、ピッチ、樹脂等の炭素前駆体(原料)を炭化・活性化し、必要に応じて粉砕、篩分け等の処理を施す。上記炭化および活性化は、炭素前駆体の種類等にもよるが、例えば不活性雰囲気下において500〜1000℃で1〜10時間程度乾留(熱処理)することで行い得る。また、炭化および活性化は、同時に行ってもよく、段階的に行ってもよい。これによって炭化物を得ることができる。なお、すでに炭化・活性化済みの炭素源物質(炭化物)を購入して使用する場合には、本工程を省略することもできる。炭化工程終了後の炭化物の平均粒径は、後述する賦活工程において均質な賦活を行う観点から、例えば0.1〜5μm程度とするとよい。   In the carbonization step (S10), for example, carbon precursors (raw materials) such as coconut shells, coal, coke, pitch, and resin are carbonized and activated, and processing such as pulverization and sieving is performed as necessary. Although the said carbonization and activation depend on the kind etc. of carbon precursor, it can be performed by carrying out dry distillation (heat processing) for about 1 to 10 hours at 500-1000 degreeC, for example by inert atmosphere. Carbonization and activation may be performed simultaneously or in stages. Thereby, a carbide can be obtained. In addition, this process can also be abbreviate | omitted when purchasing and using the carbon source material (carbide) already carbonized and activated. The average particle size of the carbide after the carbonization step is preferably about 0.1 to 5 μm, for example, from the viewpoint of performing uniform activation in the activation step described later.

賦活工程(S20)では、上記得られた炭化物に、ガス賦活法や薬品賦活法等によって賦活処理を施す。ガス賦活は、例えば上記得られた炭化物を、水蒸気、酸素、二酸化炭素等の存在下において、500〜1000℃で1〜10時間程度乾留(熱処理)することによって行い得る。また、薬品賦活は、例えば上記得られた炭化物を、ナトリウムやカリウム等のアルカリ金属を含むアルカリ薬品(例えば水酸化カリウム、水酸化ナトリウム、炭酸カリウム等)と混合した後、不活性雰囲気下において500〜1000℃で1〜10時間程度乾留(熱処理)することで行い得る。このときの炭化物とアルカリ薬品との比は、例えば当量比で1:1〜1:10(典型的には1:1〜1:5)程度にするとよい。水酸化カリウムのように1価のアルカリ塩を用いる場合には、炭化物とアルカリ薬品との比を、質量比で1:1〜1:10(典型的には1:1〜1:5)程度にするとよい。これによって均質な賦活物を得ることができる。アルカリ賦活を採用した場合は、典型的には、室温環境下(例えば20〜25℃)において、上記得られた賦活物を純水や酸性溶液(例えば塩酸水溶液や硫酸水溶液)で洗浄処理し、残留するアルカリ成分等を除去する。これによって不純物の少ない良質な賦活物を得ることができる。なお、すでに賦活済みの炭素源物質(賦活物)を購入して使用する場合には、本工程を省略することもできる。   In the activation step (S20), activation treatment is performed on the obtained carbide by a gas activation method, a chemical activation method, or the like. The gas activation can be performed, for example, by subjecting the obtained carbide to dry distillation (heat treatment) at 500 to 1000 ° C. for about 1 to 10 hours in the presence of water vapor, oxygen, carbon dioxide and the like. In addition, chemical activation is performed by, for example, mixing the obtained carbide with an alkali chemical containing an alkali metal such as sodium or potassium (for example, potassium hydroxide, sodium hydroxide, potassium carbonate, etc.), and then in an inert atmosphere. It can be carried out by dry distillation (heat treatment) at ˜1000 ° C. for about 1 to 10 hours. At this time, the ratio of the carbide and the alkaline chemical is, for example, preferably about 1: 1 to 1:10 (typically 1: 1 to 1: 5) as an equivalent ratio. When using a monovalent alkali salt such as potassium hydroxide, the ratio of carbide to alkaline chemical is about 1: 1 to 1:10 (typically 1: 1 to 1: 5) in mass ratio. It is good to. Thereby, a uniform activation product can be obtained. When the alkali activation is employed, typically, in a room temperature environment (for example, 20 to 25 ° C.), the activated material obtained above is washed with pure water or an acidic solution (for example, a hydrochloric acid aqueous solution or a sulfuric acid aqueous solution) Remove remaining alkali components. As a result, a high-quality activator with few impurities can be obtained. In addition, when purchasing and using already activated carbon source material (activation material), this process can also be abbreviate | omitted.

窒素含有基の付与工程(S30)では、典型的には常温より高い温度環境下(典型的には30℃以上、例えば50℃以上、好ましくは70℃以上)において、上記得られた賦活物を窒素含有基付与剤に曝すことにより、賦活物の表面に窒素含有基を付与する。
窒素含有基付与剤は、少なくとも窒素原子を有するものであればよく、含窒素化合物の1種または2種以上を適宜用いることができる。また、当該窒素含有基付与剤の形態は、固体または液体であってもよく、気体(ガス)であってもよい。具体例としては、硝酸、水酸化アンモニウム、硝酸アンモニウム、アンモニアガス等の含窒素無機化合物;イミダゾール、ピリジン等の含窒素有機化合物;等が挙げられる。なかでも、反応活性の高い硝酸または硝酸塩を好ましく用いることができる。また、窒素含有基の付与方法は特に限定されず、使用する窒素含有基付与剤の形態等に応じて、従来公知の液相反応法、含窒素ガス環境下での熱処理法、含窒素化合物との共炭化法等の手法を適宜採用することができる。あるいは、賦活物の表面に従来公知の窒素プラズマ処理を施してもよい。
In the nitrogen-containing group application step (S30), the activated material obtained above is typically used in a temperature environment higher than room temperature (typically 30 ° C or higher, for example 50 ° C or higher, preferably 70 ° C or higher). By exposing to a nitrogen-containing group imparting agent, a nitrogen-containing group is imparted to the surface of the activation product.
The nitrogen-containing group-imparting agent only needs to have at least a nitrogen atom, and one or more nitrogen-containing compounds can be appropriately used. The form of the nitrogen-containing group-imparting agent may be solid or liquid, or may be a gas (gas). Specific examples include nitrogen-containing inorganic compounds such as nitric acid, ammonium hydroxide, ammonium nitrate, and ammonia gas; nitrogen-containing organic compounds such as imidazole and pyridine. Among these, nitric acid or nitrate having high reaction activity can be preferably used. Further, the method for imparting a nitrogen-containing group is not particularly limited, and depending on the form of the nitrogen-containing group imparting agent to be used, a conventionally known liquid phase reaction method, a heat treatment method in a nitrogen-containing gas environment, a nitrogen-containing compound and A method such as a co-carbonization method can be appropriately employed. Alternatively, a conventionally known nitrogen plasma treatment may be performed on the surface of the activation material.

好適な一態様では、窒素含有基付与剤として硝酸を用いる。また、好適な他の一態様では、液相反応法を用いる。液相反応法を用いることで、賦活物の表面により均質に窒素含有基を付与することができる。具体的な手順としては、先ず、好適な濃度の硝酸水溶液を準備する。硝酸水溶液中の硝酸濃度は、窒素含有基を付与する炭素源物質(ここでは賦活物)の種類等にもよるが、凡そ1〜10mol/L(例えば2〜6mol/L)に調製するとよい。次に、上記得られた賦活物を硝酸水溶液中に浸漬させて、常温より高い温度(典型的には30℃以上、例えば30〜110℃、好ましくは50〜100℃)で一定時間保持する。硝酸水溶液中における賦活物の割合は、当該賦活物の表面に窒素含有基を均質に付与する観点から、例えば硝酸水溶液と賦活物の合計を100質量%としたときに、0.1〜20質量%以下(例えば5〜20質量%)とするとよい。また、上記温度で保持する時間(反応時間)は、温度等にもよるが、例えば10分〜10時間程度(典型的には30分〜5時間)とすることができる。かかる態様によれば、硝酸水溶液の濃度および保持時間によって酸性官能基(窒素含有基)の付与量を調整することができ、炭素源物質の表面に最適な量の官能基を安定的に付与することができる。また、当該官能基の付与を比較的短い時間で、および/または、少ないエネルギーで安定的に行うことができるため、作業効率やコスト、信頼性の観点から好ましい。窒素含有基付与後の炭素源物質は、典型的には、室温環境下(例えば20〜25℃)において、純水や酸性溶液(例えば塩酸水溶液や硫酸水溶液)を用いて、弱酸性〜中性(例えばpH≒5〜7)になるまで洗浄する。これによって不純物の少ない良質な炭素源物質を得ることができる。   In a preferred embodiment, nitric acid is used as the nitrogen-containing group imparting agent. In another preferred embodiment, a liquid phase reaction method is used. By using the liquid phase reaction method, the nitrogen-containing group can be imparted more uniformly to the surface of the activated material. As a specific procedure, first, an aqueous nitric acid solution having a suitable concentration is prepared. The concentration of nitric acid in the aqueous nitric acid solution may be adjusted to about 1 to 10 mol / L (for example, 2 to 6 mol / L), although it depends on the type of carbon source material (in this case, activated material) that imparts a nitrogen-containing group. Next, the activated material obtained above is immersed in an aqueous nitric acid solution and held at a temperature higher than room temperature (typically 30 ° C. or higher, for example, 30 to 110 ° C., preferably 50 to 100 ° C.) for a certain time. The ratio of the activation product in the aqueous nitric acid solution is 0.1 to 20 masses when the total of the nitric acid aqueous solution and the activation product is 100% by mass, for example, from the viewpoint of uniformly imparting nitrogen-containing groups to the surface of the activation product. % Or less (for example, 5 to 20% by mass). Moreover, although it changes with temperature etc., the time (reaction time) hold | maintained at the said temperature can be made into about 10 minutes-10 hours (typically 30 minutes-5 hours), for example. According to such an embodiment, the amount of acidic functional group (nitrogen-containing group) can be adjusted according to the concentration and holding time of the aqueous nitric acid solution, and an optimal amount of functional group is stably imparted to the surface of the carbon source material. be able to. Moreover, since the functional group can be stably imparted in a relatively short time and / or with a small amount of energy, it is preferable from the viewpoint of work efficiency, cost, and reliability. The carbon source material after imparting the nitrogen-containing group is typically weakly acidic to neutral in a room temperature environment (for example, 20 to 25 ° C.) using pure water or an acidic solution (for example, hydrochloric acid aqueous solution or sulfuric acid aqueous solution). Wash until (for example, pH≈5-7). As a result, a high-quality carbon source material with few impurities can be obtained.

熱処理工程(S40)では、窒素含有基付与後の炭素材料を高温環境下で熱処理する。これにより、付与した酸性官能基(窒素含有基)を炭素源物質の表面に固定化することができる。熱処理の温度は、窒素含有基を安定的に炭素源物質の表面に固定化する観点から、典型的には300℃以上(例えば400℃以上、特には450℃以上)とすることが好ましい。また、熱処理の上限温度は、窒素含有基を炭素源物質の表面に好適に残存させる観点から、典型的には700℃以下(例えば600℃以下、特には550℃以下)とするとよい。また、熱処理時間は、例えば1〜24時間(典型的には5〜20時間)とするとよい。   In the heat treatment step (S40), the carbon material after imparting the nitrogen-containing group is heat-treated in a high temperature environment. Thereby, the provided acidic functional group (nitrogen-containing group) can be immobilized on the surface of the carbon source material. The temperature of the heat treatment is preferably typically 300 ° C. or higher (for example, 400 ° C. or higher, particularly 450 ° C. or higher) from the viewpoint of stably immobilizing the nitrogen-containing group on the surface of the carbon source material. The upper limit temperature of the heat treatment is typically 700 ° C. or lower (for example, 600 ° C. or lower, particularly 550 ° C. or lower) from the viewpoint of suitably leaving the nitrogen-containing group on the surface of the carbon source material. The heat treatment time may be, for example, 1 to 24 hours (typically 5 to 20 hours).

なお、ここでは賦活(S20)後に窒素含有基の付与(S30)および熱処理(S40)を行う製造方法を示したが、窒素含有基の付与および熱処理は、例えば賦活前に行うこともできる。すなわち、窒素含有基の付与および熱処理処理は、炭素材料の製造工程の何れかの段階において行えばよい。   In addition, although the manufacturing method which performs provision (S30) of nitrogen-containing group and heat processing (S40) after activation (S20) was shown here, provision of a nitrogen-containing group and heat processing can also be performed before activation, for example. That is, the application of the nitrogen-containing group and the heat treatment may be performed at any stage of the carbon material manufacturing process.

ここに開示される発明によれば、上述のような炭素材料を電極(典型的には正極)に備えたハイブリッドキャパシタが提供される。かかるハイブリッドキャパシタは、従来の炭素材料を用いたものに比べて表面官能基由来の疑似容量が増加し、静電容量(例えば体積エネルギー密度)の向上したものであり得る。また、複数回繰り返しても静電容量の減少が少なく、長期間に渡って高性能を発揮し得る耐久性(例えばサイクル特性)の高いものである。したがって、このような特徴を活かして、高エネルギー密度や高耐久性が要求される用途で好ましく用いることができる。   According to the invention disclosed herein, a hybrid capacitor including the above-described carbon material as an electrode (typically a positive electrode) is provided. Such a hybrid capacitor can have a higher pseudocapacitance derived from surface functional groups and an improved capacitance (for example, volume energy density) as compared with a conventional carbon material. Further, even if it is repeated a plurality of times, there is little decrease in capacitance, and it has high durability (for example, cycle characteristics) that can exhibit high performance over a long period of time. Therefore, taking advantage of such characteristics, it can be preferably used in applications where high energy density and high durability are required.

以下、好適な一態様として、ここに開示される炭素材料を正極に備えるハイブリッドキャパシタ(例えばリチウムイオンキャパシタ)を例に、本発明を具体的に説明する。なお、当該ハイブリッドキャパシタの形状、構成材料、製造プロセス等は、ここに開示される炭素材料を正極に使用すること以外、従来と同様でよい。
ここに開示されるハイブリッドキャパシタは、正極と負極と非水電解液とを備えている。かかるハイブリッドキャパシタは、例えば、上記炭素材料を使用して従来公知の手法で正極を作製した後、当該正極と負極と非水電解液とをケースに収容することで構築し得る。なお、リチウムイオンキャパシタでは、正極、負極および非水電解液に加えて、更にプレドープ用の金属リチウム箔を含み得る。
Hereinafter, as a preferred embodiment, the present invention will be specifically described by taking a hybrid capacitor (for example, a lithium ion capacitor) including the carbon material disclosed herein as a positive electrode. In addition, the shape, constituent material, manufacturing process, etc. of the said hybrid capacitor may be the same as that of the past, except using the carbon material disclosed here for a positive electrode.
The hybrid capacitor disclosed herein includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. Such a hybrid capacitor can be constructed, for example, by producing a positive electrode by a conventionally known method using the carbon material, and then housing the positive electrode, the negative electrode, and a nonaqueous electrolytic solution in a case. The lithium ion capacitor may further include a pre-doping metallic lithium foil in addition to the positive electrode, the negative electrode, and the non-aqueous electrolyte.

ここに開示されるハイブリッドキャパシタの正極は、少なくとも上述のような炭素材料を備えている。かかる正極は、典型的には、正極集電体と、当該正極集電体上に形成された正極活物質層であって、正極活物質としての上記炭素材料と導電材とバインダとを含む正極活物質層を備えている。正極集電体としては、導電性の良好な金属(例えばアルミニウムやステンレス鋼)からなる導電性部材を好適に採用し得る。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の易黒鉛化炭素材料を好適に採用し得る。バインダとしては、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリエチレンオキサイド(PEO)等のポリマー材料を好適に採用し得る。   The positive electrode of the hybrid capacitor disclosed herein includes at least the carbon material as described above. Such a positive electrode is typically a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, the positive electrode including the carbon material as a positive electrode active material, a conductive material, and a binder. An active material layer is provided. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum or stainless steel) can be suitably used. As the conductive material, an easily graphitizable carbon material such as carbon black (for example, acetylene black or ketjen black) can be suitably used. As the binder, polymer materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polyethylene oxide (PEO) can be suitably used.

ここに開示されるハイブリッドキャパシタの負極は、典型的には、負極集電体と、当該負極集電体上に形成された負極活物質層であって、負極活物質と導電材とバインダとを含む負極活物質層を備えている。負極集電体としては、導電性の良好な金属(例えば銅やステンレス鋼)からなる導電性材料を好適に採用し得る。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)等の炭素材料;ポリアセン系有機半導体等の導電性高分子材料;チタン酸リチウム等の金属酸化物材料;等(リチウムイオンキャパシタでは黒鉛)を好適に用いることができる。導電材やバインダとしては、例えば上記正極と同様のものを適宜含ませることができる。   The negative electrode of the hybrid capacitor disclosed herein is typically a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector, and includes a negative electrode active material, a conductive material, and a binder. A negative electrode active material layer is provided. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper or stainless steel) can be suitably used. As the negative electrode active material, carbon materials such as graphite (hard graphite), conductive polymer materials such as polyacene organic semiconductors, metal oxide materials such as lithium titanate, etc. (lithium ions) In the capacitor, graphite) can be preferably used. As the conductive material and the binder, for example, the same material as the positive electrode can be appropriately included.

また、典型的な一態様では、正極と負極の間に絶縁層としてのセパレータが配置されている。セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シート;不織布;等を好適に採用し得る。   Moreover, in the typical one aspect | mode, the separator as an insulating layer is arrange | positioned between the positive electrode and the negative electrode. As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP); a nonwoven fabric;

ここに開示されるハイブリッドキャパシタの非水電解液は、典型的には非水溶媒中に支持塩を含有させた形態である。あるいは、液状の非水電解質にポリマーが添加され固体状(典型的には、いわゆるゲル状)となったものでもよい。支持塩としては、LiPF、LiBF等のリチウム塩を好適に用いることができる。非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。また、上記電解液には、必要に応じて各種添加剤を添加することもできる。 The non-aqueous electrolyte of the hybrid capacitor disclosed herein is typically in a form in which a supporting salt is contained in a non-aqueous solvent. Alternatively, the liquid non-aqueous electrolyte may be added with a polymer to form a solid (typically a so-called gel). As the supporting salt, lithium salts such as LiPF 6 and LiBF 4 can be preferably used. As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones can be used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used. Moreover, various additives can also be added to the electrolytic solution as necessary.

なお、ここでは上述のような炭素材料を正極に用いる(正極活物質として用いる)場合を示したが、かかる炭素材料を負極に用いる(負極活物質として用いる)場合には、正極活物質として、電荷担体(例えばリチウムイオン)を吸蔵・放出可能な材料を採用する。具体的には、ポリチオフェン、ポリアニオン等の導電性高分子化合物材料;コバルト酸リチウム、酸化マンガン、酸化ルテニウム等の金属酸化物材料;等を用いることができる。   In addition, although the case where the above carbon materials are used for a positive electrode (used as a positive electrode active material) was shown here, when using such a carbon material for a negative electrode (used as a negative electrode active material), as a positive electrode active material, A material capable of inserting and extracting charge carriers (for example, lithium ions) is employed. Specifically, conductive polymer compound materials such as polythiophene and polyanions; metal oxide materials such as lithium cobaltate, manganese oxide, and ruthenium oxide; and the like can be used.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

<I.炭素前駆体として石炭系コークスを用いた場合>
[炭素材料の製造]
本例では、炭素前駆体(原料)として石炭系コークス(BET比表面積:凡そ0〜10m/g)を使用した。
<炭素材料A>
上記石炭系コークスを不活性雰囲気中で860℃、1時間乾留(炭化)した後、アルカリ薬品としての水酸化カリウムを4倍当量加えて混合し、得られた混合物を不活性雰囲気下で800℃、4時間アルカリ賦活した。得られた賦活物を水に分散した後、水洗、酸洗浄を行い、アルカリ成分を除去した。ここでは、残留するカリウム(K)の濃度が5000ppm以下になるまで洗浄を行った。洗浄後の賦活物を乾燥させた後、80℃に加温した2N(2mol/L)の硝酸水溶液と1時間反応させて、当該賦活物の表面に窒素含有基を付与した。反応後、pHが凡そ5〜7になるまで水洗し、これを乾燥させた後、振動ミルで粉砕して平均粒径3μmに調整した。この粉砕物を、不活性雰囲気中で500℃、10時間熱処理して、炭素材料Aを得た。
<炭素材料B>
熱処理(500℃、10時間)を行わなかったこと以外は上記炭素材料Aと同様にして、炭素材料Bを得た。
<炭素材料C>
窒素含有基の付与を行わなかったこと以外は上記炭素材料Aに倣って、炭素材料Cを得た。すなわち、炭素材料Aと同様にして、炭化、アルカリ賦活、洗浄を行った後、振動ミルで粉砕して平均粒径3μmに調整した。この粉砕物を、反応触媒としてのロジウム(Rh)と共に3%水素雰囲気下で750℃、8時間熱処理することによって賦活物表面の酸性官能基量を減らし、炭素材料Cを得た。
上記作製した炭素材料A〜Cの製造方法について、下表1に纏める。また、炭素材料A〜Cについて以下の物性測定を行った。
<I. When coal-based coke is used as the carbon precursor>
[Manufacture of carbon materials]
In this example, coal-based coke (BET specific surface area: approximately 0 to 10 m 2 / g) was used as a carbon precursor (raw material).
<Carbon material A>
The coal-based coke was carbonized (carbonized) at 860 ° C. for 1 hour in an inert atmosphere, mixed with 4 times equivalent amount of potassium hydroxide as an alkaline chemical, and the resulting mixture was mixed at 800 ° C. under an inert atmosphere. The alkali was activated for 4 hours. The obtained activation product was dispersed in water, and then washed with water and acid to remove the alkali component. Here, washing was performed until the concentration of the remaining potassium (K) became 5000 ppm or less. The activated product after washing was dried and then reacted with a 2N (2 mol / L) aqueous nitric acid solution heated to 80 ° C. for 1 hour to give a nitrogen-containing group to the surface of the activated product. After the reaction, it was washed with water until the pH became approximately 5 to 7, dried, and then pulverized with a vibration mill to adjust to an average particle size of 3 μm. This pulverized product was heat-treated at 500 ° C. for 10 hours in an inert atmosphere to obtain a carbon material A.
<Carbon material B>
A carbon material B was obtained in the same manner as the carbon material A except that the heat treatment (500 ° C., 10 hours) was not performed.
<Carbon material C>
A carbon material C was obtained following the carbon material A except that the nitrogen-containing group was not added. That is, in the same manner as the carbon material A, carbonization, alkali activation, and washing were performed, followed by pulverization with a vibration mill to adjust the average particle size to 3 μm. The pulverized product was heat treated with rhodium (Rh) as a reaction catalyst in a 3% hydrogen atmosphere at 750 ° C. for 8 hours to reduce the amount of acidic functional groups on the surface of the activated material, thereby obtaining a carbon material C.
The manufacturing method of the produced carbon materials A to C is summarized in Table 1 below. Moreover, the following physical-property measurements were performed about carbon material AC.

Figure 0006306836
Figure 0006306836

[酸性官能基量の測定]
炭素材料A〜Cの酸性官能基量は、Boehm法に従って測定した。具体的には、予め110℃で2時間真空乾燥した炭素材料を2g秤量し、フラスコに移した。そこへ0.1mol/Lのナトリウムエトキシド水溶液を20ml加え、回転数:2000rpmの条件で3分間遠心分離機にかけて撹拌した。次に、25℃の環境下で超音波機に20分間かけ、炭素材料と薬品とを十分に反応させた。次に、炭素材料を濾別し、濾液から5mlを採取し、0.05mol/Lの塩酸水溶液で逆滴定し、メチルオレンジを指示薬として塩酸滴定量bを測定した。また、ブランクテストとして、ナトリウムエトキシド水溶液20mlに塩酸水溶液を滴下して、上記と同様に、メチルオレンジを指示薬として塩酸滴定量aを測定した。そして、下式(1)により酸性官能基量を算出した。結果を表1に示す。

Figure 0006306836
[Measurement of the amount of acidic functional groups]
The amount of acidic functional groups of the carbon materials A to C was measured according to the Boehm method. Specifically, 2 g of the carbon material previously vacuum-dried at 110 ° C. for 2 hours was weighed and transferred to a flask. 20 ml of a 0.1 mol / L sodium ethoxide aqueous solution was added thereto, and the mixture was stirred for 3 minutes in a centrifuge at a rotational speed of 2000 rpm. Next, in an environment of 25 ° C., it was subjected to an ultrasonic machine for 20 minutes to sufficiently react the carbon material and the chemical. Next, the carbon material was filtered off, 5 ml was collected from the filtrate, back titrated with 0.05 mol / L hydrochloric acid aqueous solution, and the hydrochloric acid titration amount b was measured using methyl orange as an indicator. As a blank test, an aqueous hydrochloric acid solution was dropped into 20 ml of an aqueous sodium ethoxide solution, and a hydrochloric acid titration amount a was measured using methyl orange as an indicator in the same manner as described above. And the amount of acidic functional groups was computed by the following formula (1). The results are shown in Table 1.
Figure 0006306836

表1から明らかなように、硝酸処理(窒素含有基の付与)を行わず、且つ、水素雰囲気下において750℃で熱処理した炭素材料Cは、酸性官能基量が0.01mmol/gと最も少なかった。また、熱処理を行わなかった炭素材料Bでは、0.21mmol/gと最も多くの酸性官能基が残存していた。   As is clear from Table 1, the carbon material C that was not subjected to nitric acid treatment (addition of nitrogen-containing groups) and heat-treated at 750 ° C. in a hydrogen atmosphere had the smallest amount of acidic functional groups of 0.01 mmol / g. It was. Moreover, in the carbon material B which was not heat-treated, the most acidic functional groups remained at 0.21 mmol / g.

[揮発分の測定]
炭素材料A〜Cの揮発分は、所定量を窒素雰囲気下において850℃で熱処理し、焼成前後の質量変化を測定することで算出した。具体的には、先ず、予め110℃で2時間真空乾燥した炭素材料を1g秤量して、窒素雰囲気下で850℃、1時間焼成し、焼成後の質量を測定した。そして、下式(2)から揮発分(%)を算出した。結果を表1に示す。

Figure 0006306836
[Measurement of volatile matter]
The volatile components of the carbon materials A to C were calculated by heat-treating a predetermined amount at 850 ° C. in a nitrogen atmosphere and measuring mass changes before and after firing. Specifically, first, 1 g of a carbon material vacuum-dried at 110 ° C. for 2 hours in advance was weighed and baked at 850 ° C. for 1 hour in a nitrogen atmosphere, and the mass after baking was measured. And volatile matter (%) was computed from the following formula (2). The results are shown in Table 1.
Figure 0006306836

表1から明らかなように、硝酸処理(窒素含有基の付与)を行わず、且つ、水素雰囲気下において750℃で熱処理した炭素材料Cでは、揮発分が1%と最も少なかった。
また、熱処理を行わなかった炭素材料Bは、揮発分が9%と最も多かった。これは、酸性官能基の量が多かったことと、熱処理を行わなかったために官能基が炭素材料の表面に固定化(安定化)されなかったことが原因と推察される。
As is apparent from Table 1, the carbon material C that was not subjected to nitric acid treatment (addition of nitrogen-containing groups) and heat-treated at 750 ° C. in a hydrogen atmosphere had the smallest volatile content of 1%.
Moreover, the carbon material B which was not heat-treated had the largest volatile content of 9%. This is presumably because the amount of acidic functional groups was large and the functional groups were not immobilized (stabilized) on the surface of the carbon material because no heat treatment was performed.

[BET比表面積測定の測定]
炭素材料A〜CのBET比表面積は、Quantachrome社製のQuadrasorbを用いて、窒素吸着法により測定した。結果を表1に示す。
表1から明らかなように、炭素材料A〜CのBET比表面積は、概ね30〜60m/gだった。
[Measurement of BET specific surface area measurement]
The BET specific surface areas of the carbon materials A to C were measured by a nitrogen adsorption method using Quadrasorb manufactured by Quantachrome. The results are shown in Table 1.
As is clear from Table 1, the BET specific surface areas of the carbon materials A to C were approximately 30 to 60 m 2 / g.

[3極式セルの構築]
<例1>
正極活物質として上記作製した炭素材料Aを使用し、評価用セルを構築した。
具体的には、正極活物質としての炭素材料Aと、導電剤としてのカーボンブラック(CB)と、バインダとしてのポリテトラフルオロエチレン(PTFE)とを、これら材料の質量比率が、炭素材料A:CB:PTFE=81.8:9.1:9.1となるよう秤量し、イオン交換水で粘度を調整しながら混練して、正極活物質スラリーを調製した。このスラリーを集電体上に塗布し、乾燥後、ロールプレス機で圧縮してシート状の正極を得た。上記シート状の正極を、打ち抜き機で2cmの大きさに打ち抜いて、120℃、12時間真空乾燥させ、正極を得た。そして、この正極を用いて、グローブボックス内で3極式コインセルを構築した。具体的には、上記作製した正極を作用極に、金属リチウム箔を対極および参照極に使用し、非水電解液(ここでは、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを50:50の体積比で含む非水溶媒中に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。)とともにセルに封入して、3極式コインセル(例1)を構築した。
<例2>
正極活物質として上記作製した炭素材料Bを用いた他は例1と同様にして、3極式コインセル(例2)を構築した。
<例3>
正極活物質として上記作製した炭素材料Cを用いた他は例1と同様にして、3極式コインセル(例3)を構築した。
[Construction of tripolar cell]
<Example 1>
An evaluation cell was constructed using the carbon material A produced above as the positive electrode active material.
Specifically, carbon material A as a positive electrode active material, carbon black (CB) as a conductive agent, and polytetrafluoroethylene (PTFE) as a binder, the mass ratio of these materials is carbon material A: CB: PTFE = 81.8: 9.1: 9.1 was weighed and kneaded while adjusting the viscosity with ion-exchanged water to prepare a positive electrode active material slurry. This slurry was applied onto a current collector, dried, and then compressed with a roll press to obtain a sheet-like positive electrode. The sheet-like positive electrode was punched into a size of 2 cm 2 with a punching machine and vacuum-dried at 120 ° C. for 12 hours to obtain a positive electrode. And using this positive electrode, the 3 pole type coin cell was built in the glove box. Specifically, the above-prepared positive electrode is used as a working electrode, a metal lithium foil is used as a counter electrode and a reference electrode, and a non-aqueous electrolyte (here, ethylene carbonate (EC) and diethyl carbonate (DEC) is 50:50). A tripolar coin cell (Example 1) was constructed by enclosing it in a non-aqueous solvent containing a volume ratio of 1 and a LiPF 6 as a supporting salt dissolved at a concentration of 1 mol / L. did.
<Example 2>
A tripolar coin cell (Example 2) was constructed in the same manner as in Example 1 except that the carbon material B produced above was used as the positive electrode active material.
<Example 3>
A tripolar coin cell (Example 3) was constructed in the same manner as in Example 1 except that the carbon material C prepared above was used as the positive electrode active material.

[静電容量の測定]
上記構築した例1〜3のセルに対して、25℃の温度環境下において、先ず2mA/cmの電流密度で4.8Vまで定電流(CC)充電を行い、次いで同電圧にて1時間の定電圧(CV)充電を行った後、2mA/cmの電流密度で3.0Vまで定電流(CC)放電を行った。続いて、以下のパターンで3サイクルの充放電を行い、3サイクル目のCCCV放電容量を初期の静電容量(F)とした。
(1)2mA/cmの電流密度で4.4VまでCC充電を行い、次いで同電圧にて5分間のCV充電を行う。
(2)2mA/cmの電流密度で3.0VまでCC放電を行う。
そして、初期の静電容量を炭素材料の体積で除して、炭素材料1mlあたりの静電容量(F/ml)を算出した。結果を、炭素材料の物性値と併せて表2に示す。また、静電容量を酸性官能基量に対してプロットしたグラフを図2に示す。
[Capacitance measurement]
The cells of Examples 1 to 3 constructed above were charged at a constant current (CC) up to 4.8 V at a current density of 2 mA / cm 2 in a temperature environment of 25 ° C., and then at the same voltage for 1 hour. After performing constant voltage (CV) charging, constant current (CC) discharging was performed to 3.0 V at a current density of 2 mA / cm 2 . Subsequently, charge / discharge of 3 cycles was performed in the following pattern, and the CCCV discharge capacity at the 3rd cycle was set as the initial capacitance (F).
(1) CC charging is performed up to 4.4 V at a current density of 2 mA / cm 2 , and then CV charging is performed for 5 minutes at the same voltage.
(2) Perform CC discharge to 3.0 V at a current density of 2 mA / cm 2 .
Then, the initial electrostatic capacity was divided by the volume of the carbon material, and the electrostatic capacity per 1 ml of the carbon material (F / ml) was calculated. The results are shown in Table 2 together with the physical property values of the carbon material. Moreover, the graph which plotted the electrostatic capacitance with respect to the amount of acidic functional groups is shown in FIG.

Figure 0006306836
Figure 0006306836

表2および図2から明らかなように、酸性官能基が多いほど静電容量は高い値を示した。例えば、例1,2では、例3に比べて凡そ15〜20%静電容量が向上した。これは、酸性官能基に由来する疑似容量が増大したためと考えられる。   As is clear from Table 2 and FIG. 2, the more the acidic functional group, the higher the capacitance. For example, in Examples 1 and 2, the capacitance was improved by about 15 to 20% compared to Example 3. This is thought to be due to an increase in pseudo capacity derived from acidic functional groups.

[充放電サイクル試験]
例1〜3のセルについて、静電容量の測定時と同様の条件で、さらに200サイクルの充放電を繰り返した。そして、初期放電容量に対する200サイクル目の放電容量を容量維持率(%)として算出した。結果を表2に示す。また、容量維持率を850℃揮発分に対してプロットしたグラフを図3に示す。
[Charge / discharge cycle test]
The cells of Examples 1 to 3 were further charged and discharged for 200 cycles under the same conditions as those for measuring the capacitance. Then, the discharge capacity at the 200th cycle relative to the initial discharge capacity was calculated as a capacity retention rate (%). The results are shown in Table 2. Moreover, the graph which plotted the capacity | capacitance maintenance factor with respect to 850 degreeC volatile matter is shown in FIG.

表2および図3から明らかなように、例2のセルでは、200サイクルの充放電後に初期容量の凡そ25%程度しか発現しなかった。これは、炭素材料表面の酸性官能基が固定化(安定化)されていなかったため、当該酸性官能基が充放電によって脱離して、非水電解液の分解やガスの発生につながったためと考えられる。一方、例1,3のセルは200サイクル後も85%の容量維持率を実現しており、耐久性に優れることがわかった。   As apparent from Table 2 and FIG. 3, the cell of Example 2 developed only about 25% of the initial capacity after 200 cycles of charge and discharge. This is probably because the acidic functional group on the surface of the carbon material was not fixed (stabilized), and the acidic functional group was desorbed by charge / discharge, leading to decomposition of the non-aqueous electrolyte and generation of gas. . On the other hand, the cells of Examples 1 and 3 achieved a capacity retention rate of 85% even after 200 cycles, and were found to be excellent in durability.

<II.炭素前駆体としてヤシ系活性炭を用いた場合>
[炭素材料の製造]
本例では、炭素前駆体(原料)としてヤシ系活性炭(BET比表面積:2000〜2500m/g)を使用した。
<炭素材料D>
先ず、上記ヤシ系活性炭を水蒸気賦活して、BET比表面積が2200m/gになるよう調整した。次に、得られた賦活物を80℃に加温した6N(6mol/L)の硝酸水溶液と1時間反応させて、当該賦活物の表面に窒素含有基を付与した。反応後、pHが凡そ5〜7になるまで水洗し、これを乾燥させた後、振動ミルで粉砕して平均粒径3μmに調整した。この粉砕物を、不活性雰囲気中で500℃、10時間熱処理して、炭素材料Dを得た。
<炭素材料E>
窒素含有基を付与する際に2N(2mol/L)の硝酸水溶液を用いたこと以外は上記炭素材料Dと同様にして、炭素材料Eを得た。
<炭素材料F>
熱処理(500℃、10時間)を行わなかったこと以外は上記炭素材料Eと同様にして、炭素材料Fを得た。
<炭素材料G>
熱処理(500℃、10時間)を行わなかったこと以外は上記炭素材料Dと同様にして、炭素材料Gを得た。
<炭素材料H>
熱処理条件を変更したこと以外は上記炭素材料Dに倣って、炭素材料Hを得た。すなわち、炭素材料Dと同様に水蒸気賦活を行った後、振動ミルで粉砕して平均粒径5μmに調整した。この粉砕物を、反応触媒としてのロジウム(Rh)と共に3%水素雰囲気下で750℃、8時間熱処理して、炭素材料Hを得た。
上記作製した炭素材料D〜Hの製造方法について、下表3に纏める。また、炭素材料D〜Hについて、上記I.と同様の方法によって物性測定を行った。結果を表3に示す。
<II. When coconut-based activated carbon is used as the carbon precursor>
[Manufacture of carbon materials]
In this example, coconut-based activated carbon (BET specific surface area: 2000-2500 m 2 / g) was used as the carbon precursor (raw material).
<Carbon material D>
First, the coconut-based activated carbon was activated with water vapor so that the BET specific surface area was adjusted to 2200 m 2 / g. Next, the obtained activation product was reacted with a 6N (6 mol / L) nitric acid aqueous solution heated to 80 ° C. for 1 hour to give a nitrogen-containing group to the surface of the activation product. After the reaction, it was washed with water until the pH was about 5 to 7, dried, and then pulverized with a vibration mill to adjust the average particle size to 3 μm. This pulverized product was heat-treated in an inert atmosphere at 500 ° C. for 10 hours to obtain a carbon material D.
<Carbon material E>
A carbon material E was obtained in the same manner as the carbon material D except that a 2N (2 mol / L) nitric acid aqueous solution was used when the nitrogen-containing group was imparted.
<Carbon material F>
A carbon material F was obtained in the same manner as the carbon material E except that the heat treatment (500 ° C., 10 hours) was not performed.
<Carbon material G>
A carbon material G was obtained in the same manner as the carbon material D except that the heat treatment (500 ° C., 10 hours) was not performed.
<Carbon material H>
A carbon material H was obtained following the carbon material D except that the heat treatment conditions were changed. That is, after steam activation was performed in the same manner as the carbon material D, it was pulverized with a vibration mill and adjusted to an average particle size of 5 μm. This pulverized product was heat-treated with rhodium (Rh) as a reaction catalyst in a 3% hydrogen atmosphere at 750 ° C. for 8 hours to obtain a carbon material H.
The manufacturing methods of the produced carbon materials D to H are summarized in Table 3 below. Further, regarding the carbon materials D to H, I. The physical properties were measured by the same method. The results are shown in Table 3.

Figure 0006306836
Figure 0006306836

[3極式セルの構築]
<例4〜8>
正極活物質として上記作製した炭素材料Dを用いた他は例1と同様にして、3極式コインセル(例4)を構築した。
正極活物質として上記作製した炭素材料Eを用いた他は例1と同様にして、3極式コインセル(例5)を構築した。
正極活物質として上記作製した炭素材料Fを用いた他は例1と同様にして、3極式コインセル(例6)を構築した。
正極活物質として上記作製した炭素材料Gを用いた他は例1と同様にして、3極式コインセル(例7)を構築した。
正極活物質として上記作製した炭素材料Hを用いた他は例1と同様にして、3極式コインセル(例8)を構築した。
[Construction of tripolar cell]
<Examples 4 to 8>
A tripolar coin cell (Example 4) was constructed in the same manner as in Example 1 except that the carbon material D produced above was used as the positive electrode active material.
A tripolar coin cell (Example 5) was constructed in the same manner as in Example 1 except that the carbon material E produced above was used as the positive electrode active material.
A tripolar coin cell (Example 6) was constructed in the same manner as in Example 1 except that the carbon material F produced above was used as the positive electrode active material.
A tripolar coin cell (Example 7) was constructed in the same manner as in Example 1 except that the carbon material G produced above was used as the positive electrode active material.
A tripolar coin cell (Example 8) was constructed in the same manner as in Example 1 except that the carbon material H produced above was used as the positive electrode active material.

[静電容量の測定および充放電サイクル試験]
上記構築した例1〜8のセルに対して、25℃の温度環境下で静電容量の測定を行った。具体的には、以下のパターンで3サイクルの充放電を行い、3サイクル目のCCCV放電容量を初期の静電容量(F)とした。
(1)2mA/cmの電流密度で4.25VまでCC充電を行い、次いで同電圧にて5分間のCV充電を行う。
(2)2mA/cmの電流密度で3.0VまでCC放電を行う。
そして、初期の静電容量を炭素材料の体積で除して、炭素材料1mlあたりの静電容量(F/ml)を算出した。結果を、炭素材料の物性値と併せて表4に示す。また、静電容量を酸性官能基量に対してプロットしたグラフを図4に示す。
さらに、例1〜8のセルについて、静電容量の測定時と同様の条件で、さらに200サイクルの充放電を繰り返した。そして、初期放電容量に対する200サイクル目の放電容量を容量維持率(%)として算出した。結果を表4に示す。また、容量維持率を850℃揮発分に対してプロットしたグラフを図5に示す。
[Capacitance measurement and charge / discharge cycle test]
The capacitance of the cells of Examples 1 to 8 constructed above was measured under a temperature environment of 25 ° C. Specifically, charging / discharging of 3 cycles was performed with the following pattern, and the CCCV discharge capacity of the 3rd cycle was made into the initial stage electrostatic capacitance (F).
(1) CC charging is performed up to 4.25 V at a current density of 2 mA / cm 2 , and then CV charging is performed for 5 minutes at the same voltage.
(2) Perform CC discharge to 3.0 V at a current density of 2 mA / cm 2 .
Then, the initial electrostatic capacity was divided by the volume of the carbon material, and the electrostatic capacity per 1 ml of the carbon material (F / ml) was calculated. The results are shown in Table 4 together with the physical property values of the carbon material. Moreover, the graph which plotted the electrostatic capacitance with respect to the amount of acidic functional groups is shown in FIG.
Furthermore, about the cell of Examples 1-8, charging / discharging of 200 cycles was repeated on the conditions similar to the time of an electrostatic capacitance measurement. Then, the discharge capacity at the 200th cycle relative to the initial discharge capacity was calculated as a capacity retention rate (%). The results are shown in Table 4. Moreover, the graph which plotted the capacity | capacitance maintenance factor with respect to 850 degreeC volatile matter is shown in FIG.

Figure 0006306836
Figure 0006306836

表4および図4,5から明らかなように、炭素前駆体としてヤシ系活性炭を用いた場合も、上記I.(石炭系コークスを用いた場合)と同様の傾向を示した。
すなわち、何れの実験例においても、以下の条件(1)(2):
(1)不活性雰囲気下において850℃で熱処理したときの揮発分が、3質量%以上7質量%以下である;
(2)酸性官能基量が0.1mmol/g以上である;
を満たす炭素材料を電極材料として用いることで、エネルギー密度と耐久性とを高いレベルで両立可能なハイブリッドキャパシタ(リチウムイオンキャパシタ)を実現できることがわかった。
また、ここに開示される炭素材料の製造方法によれば、種々の炭素前駆体(原料)あるいは炭化物、賦活物の耐久性(例えばサイクル特性)を低下させずに(維持したままで)、エネルギー密度(静電容量)を向上し得ることがわかった。
As apparent from Table 4 and FIGS. 4 and 5, the above-mentioned I.I. The same tendency as in the case of using coal-based coke was shown.
That is, in any experimental example, the following conditions (1) and (2):
(1) The volatile content when heat-treated at 850 ° C. in an inert atmosphere is 3% by mass or more and 7% by mass or less;
(2) The amount of acidic functional group is 0.1 mmol / g or more;
It was found that a hybrid capacitor (lithium ion capacitor) capable of achieving both high energy density and durability can be realized by using a carbon material satisfying the above as an electrode material.
In addition, according to the method for producing a carbon material disclosed herein, energy can be maintained without deteriorating the durability (for example, cycle characteristics) of various carbon precursors (raw materials), carbides, and activated materials. It has been found that the density (capacitance) can be improved.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (7)

ハイブリッドキャパシタの電極に用いられる炭素材料であって、以下の条件:
(1)不活性雰囲気下において850℃で熱処理したときの揮発分が、3質量%以上7質量%以下である;および
(2)酸性官能基量が0.1mmol/g以上である、ここで当該酸性官能基の少なくとも一部には窒素原子を含んでいる;
を満たす、炭素材料。
A carbon material used for an electrode of a hybrid capacitor, under the following conditions:
(1) The volatile content when heat-treated at 850 ° C. in an inert atmosphere is 3% by mass or more and 7% by mass or less; and (2) The amount of the acidic functional group is 0.1 mmol / g or more. At least some of the acidic functional groups contain nitrogen atoms;
Meet the carbon material.
前記酸性官能基量が0.7mmol/g以下である、請求項1に記載の炭素材料。   The carbon material according to claim 1, wherein the amount of the acidic functional group is 0.7 mmol / g or less. 窒素吸着法により測定されるBET比表面積が100m/g以下である、請求項1または2に記載の炭素材料。 The carbon material of Claim 1 or 2 whose BET specific surface area measured by a nitrogen adsorption method is 100 m < 2 > / g or less. 窒素吸着法により測定されるBET比表面積が1000m/g以上である、請求項1または2に記載の炭素材料。 The carbon material of Claim 1 or 2 whose BET specific surface area measured by a nitrogen adsorption method is 1000 m < 2 > / g or more. 請求項1〜4の何れか1つに記載の炭素材料の製造方法であって、
炭素源物質と窒素含有基付与剤とを混合して前記炭素源物質の表面に窒素原子を含む酸性官能基を付与した後、熱処理して前記酸性官能基を前記炭素源物質の表面に固定化する、炭素材料の製造方法。
It is a manufacturing method of the carbon material as described in any one of Claims 1-4,
A carbon source material and a nitrogen-containing group-imparting agent are mixed to impart an acidic functional group containing a nitrogen atom to the surface of the carbon source material, and then heat treated to immobilize the acidic functional group on the surface of the carbon source material. A method for producing a carbon material.
前記窒素含有基付与剤は硝酸水溶液である、請求項に記載の炭素材料の製造方法The method for producing a carbon material according to claim 5 , wherein the nitrogen-containing group imparting agent is an aqueous nitric acid solution. 正極と、負極と、非水電解液とを備えるハイブリッドキャパシタであって、
前記正極または前記負極は、請求項1〜の何れか1つに記載の炭素材料を備える、ハイブリッドキャパシタ。
A hybrid capacitor comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
It said positive electrode or said negative electrode comprises a carbon material according to any one of claims 1-4, hybrid capacitor.
JP2013177458A 2013-08-29 2013-08-29 Carbon materials for hybrid capacitors Active JP6306836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177458A JP6306836B2 (en) 2013-08-29 2013-08-29 Carbon materials for hybrid capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177458A JP6306836B2 (en) 2013-08-29 2013-08-29 Carbon materials for hybrid capacitors

Publications (3)

Publication Number Publication Date
JP2015046521A JP2015046521A (en) 2015-03-12
JP2015046521A5 JP2015046521A5 (en) 2016-09-15
JP6306836B2 true JP6306836B2 (en) 2018-04-04

Family

ID=52671809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177458A Active JP6306836B2 (en) 2013-08-29 2013-08-29 Carbon materials for hybrid capacitors

Country Status (1)

Country Link
JP (1) JP6306836B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666425B2 (en) * 2015-07-17 2020-03-13 キャボット コーポレイションCabot Corporation Oxidized carbon black and its application on lead acid batteries
DE112016004121T5 (en) * 2015-09-10 2018-05-24 Cataler Corporation Lithium-ion capacitor and carbon material for a positive electrode active material
JP2017183591A (en) * 2016-03-31 2017-10-05 株式会社キャタラー Carbon material for power storage device, electrode, and power storage device
JP6862159B2 (en) * 2016-12-01 2021-04-21 株式会社キャタラー Carbon materials for power storage devices and power storage devices
JP2019079861A (en) * 2017-10-20 2019-05-23 Tpr株式会社 Capacitor and method of manufacturing withstand voltage active material for capacitor electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047409B2 (en) * 1989-09-07 2000-05-29 株式会社デンソー Lithium secondary battery
JP2001170482A (en) * 1999-12-15 2001-06-26 Matsushita Electric Ind Co Ltd Active carbon, its manufacturing method and device for purifying treatment of water using the same
JP2001284188A (en) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP2002043193A (en) * 2000-07-25 2002-02-08 Casio Comput Co Ltd Electric double layer capacitor and method of manufacturing the same
US9165720B2 (en) * 2011-04-11 2015-10-20 The Yokohama Rubber Co., Ltd. Conductive polymer/porous carbon material composite and electrode material using same

Also Published As

Publication number Publication date
JP2015046521A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
Iqbal et al. Capacitive and diffusive contribution in strontium phosphide-polyaniline based supercapattery
Ansarinejad et al. Facile synthesis of crumpled-paper like CoWO4-CoMn2O4/N-doped Graphene hybrid nanocomposites for high performance all-solid-state asymmetric supercapacitors
Hu et al. Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries
KR101545116B1 (en) Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
JP6747587B2 (en) Lithium-ion secondary battery negative electrode material, method for manufacturing lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery
JP4035150B2 (en) Pseudo capacitance capacitor
EP3392892B1 (en) Nonaqueous lithium-type power storage element
JP2018523623A (en) Method for preparing graphene from coal
JP6306836B2 (en) Carbon materials for hybrid capacitors
WO2006118120A1 (en) Negative electrode active material for charging device
JP2015225876A (en) Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
Bajorowicz et al. N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance
CN111415821A (en) Method for manufacturing nonaqueous lithium storage element
JP7174956B2 (en) Electrode materials for capacitors
JP2012038686A (en) Method for predoping lithium, method for manufacturing electrode, and power storage device using the methods
JP4081125B2 (en) Positive electrode for electric double layer capacitor and electric double layer capacitor
JP2012204310A (en) Lithium pre-doping method, manufacturing method of electrode, and power storage device made using the methods
JP6297285B2 (en) Activated carbon for hybrid capacitor and method for producing the same
JP3920310B1 (en) Positive electrode for electric double layer capacitor and electric double layer capacitor
JP2012169132A (en) Electrode material, power storage device and method for utilizing power storage device
JP2017147338A (en) Carbon material for capacitor and capacitor
Su et al. Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries
JP2016076673A (en) Carbon material for hybrid capacitor
JP2010254537A (en) Carbonaceous material, power storage device having this carbonaceous material, and method for producing carbonaceous material
Chao et al. Regulation of nitrogen configurations and content in 3D porous carbons for improved lithium storage

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6306836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250