JP6305216B2 - Insulating sheet, electric machine using the same, and method for manufacturing insulating sheet - Google Patents
Insulating sheet, electric machine using the same, and method for manufacturing insulating sheet Download PDFInfo
- Publication number
- JP6305216B2 JP6305216B2 JP2014114557A JP2014114557A JP6305216B2 JP 6305216 B2 JP6305216 B2 JP 6305216B2 JP 2014114557 A JP2014114557 A JP 2014114557A JP 2014114557 A JP2014114557 A JP 2014114557A JP 6305216 B2 JP6305216 B2 JP 6305216B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- particles
- insulating
- insulating sheet
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title description 9
- 229920005989 resin Polymers 0.000 claims description 56
- 239000011347 resin Substances 0.000 claims description 56
- 239000010954 inorganic particle Substances 0.000 claims description 47
- 239000011342 resin composition Substances 0.000 claims description 45
- 239000002245 particle Substances 0.000 claims description 35
- 239000011810 insulating material Substances 0.000 claims description 29
- 239000003822 epoxy resin Substances 0.000 claims description 17
- 229920000647 polyepoxide Polymers 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 230000015556 catabolic process Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Description
この発明は、絶縁シートおよびこれを用いた電気機械並びに絶縁シートの製造方法に関するものであり、特に、回転電動機などの電気機械に用いる絶縁シートおよびこれを用いた電気機械並びに絶縁シートの製造方法に関するものである。 The present invention relates to an insulating sheet, an electric machine using the same, and a method for manufacturing the insulating sheet , and more particularly to an insulating sheet used for an electric machine such as a rotary motor, an electric machine using the same, and a method for manufacturing the insulating sheet. Is.
従来、回転電動機のスロットの絶縁に有用な絶縁シートとして、絶縁材および樹脂シート層の2層構造からなる絶縁シートの検討は実施されており、耐湿性を高めるために樹脂に無機粒子を混入した有機絶縁シートを用いている(例えば、特許文献1)。
また、シリカ粒子の表面にプラズマ処理を施し、エポキシ樹脂および硬化剤を含む配合物を混合することによって、シリカ粒子の濡れ性を高め、配合物への吸着力を高める手法が提唱されている(例えば、特許文献2)。
Conventionally, as an insulating sheet useful for insulating a slot of a rotary motor, an insulating sheet having a two-layer structure of an insulating material and a resin sheet layer has been studied. In order to improve moisture resistance, inorganic particles are mixed into the resin. An organic insulating sheet is used (for example, Patent Document 1).
In addition, a method has been proposed in which the surface of the silica particles is subjected to plasma treatment and a compound containing an epoxy resin and a curing agent is mixed to increase the wettability of the silica particles and increase the adsorption power to the compound ( For example, Patent Document 2).
しかしながら、たとえば回転電動機などの電気機械は、実運転環境下において、雨や熱帯地域などの高湿環境下に曝されるため、絶縁層の絶縁特性が大きく低下し、駆動電圧で部分放電が発生することにより、短時間で絶縁破壊に至ることが懸念されている。
また、特許文献1および特許文献2に示すように、耐湿性に優れた絶縁材料を用いることで耐湿性は向上するが、樹脂に添加する無機粒子のばらつきによって、初期の絶縁耐力が低下する。そのため、絶縁層の厚みを厚くする必要が生じ、絶縁材のコストならびにサイズ増大に繋がるという問題点があった。
この発明は、上記のような問題点を解決するためになされたものであり、絶縁層の厚みを増大させることなく、高耐湿かつ高耐圧の絶縁シートおよびこの絶縁シートを用いた電気機械並びに絶縁シートの製造方法を提供することを目的としている。
However, for example, an electric machine such as a rotary motor is exposed to a high humidity environment such as rain or a tropical region in an actual operating environment, so that the insulating characteristics of the insulating layer are greatly deteriorated and partial discharge is generated at a driving voltage. As a result, there is a concern that dielectric breakdown may occur in a short time.
Moreover, as shown in Patent Document 1 and Patent Document 2, the use of an insulating material having excellent moisture resistance improves the moisture resistance, but the initial dielectric strength decreases due to variations in inorganic particles added to the resin. Therefore, it is necessary to increase the thickness of the insulating layer, and there is a problem that the cost and size of the insulating material are increased.
The present invention has been made to solve the above-described problems, and without increasing the thickness of the insulating layer, the insulating sheet having high moisture resistance and high withstand voltage, and the electric machine and the insulation using the insulating sheet. It aims at providing the manufacturing method of a sheet | seat .
この発明に係わる絶縁シートは、絶縁材層と、前記絶縁材層上に積層され、エポキシ樹脂と無機粒子とを含有する樹脂組成シート層と、を有し、前記樹脂組成シート層は、前記無機粒子が互いに間隔をあけて分散するように配置され、前記無機粒子の周囲に前記エポキシ樹脂の樹脂粒子を集合させた複数の樹脂被覆粒子が互いに接触するように配置されているものである。
また、この発明に係わる電気機械は、前記絶縁シートが、コイルと鉄心との間に配置され、前記無機粒子が互いに間隔をあけて分散するように配置された前記樹脂組成シート層が前記コイルに対向し、前記絶縁材層が前記鉄心に対向しているものである。
さらにまた、この発明に係わる電気機械は、前記絶縁シートの前記樹脂組成シート層が、前記コイルとの接触面に配置されているものである。
また、この発明に係わる絶縁シートの製造方法は、絶縁材層と、前記絶縁材層上に積層され、エポキシ樹脂と無機粒子とを含有する樹脂組成シート層とを有する絶縁シートの製造方法において、前記無機粒子の周囲に前記エポキシ樹脂の樹脂粒子を集合させた複数の樹脂被覆粒子を作成し、作成した前記複数の樹脂被覆粒子を分散させたペーストを前記絶縁材層に塗布し、塗布した前記ペーストを乾燥後に加熱して硬化させて前記樹脂組成シート層とするものである。
The insulating sheet according to the present invention includes an insulating material layer, and a resin composition sheet layer that is laminated on the insulating material layer and contains an epoxy resin and inorganic particles. The particles are arranged so as to be dispersed at intervals, and a plurality of resin-coated particles obtained by collecting the resin particles of the epoxy resin around the inorganic particles are arranged so as to contact each other.
In the electric machine according to the present invention, the insulating sheet is disposed between the coil and the iron core, and the resin composition sheet layer is disposed on the coil so that the inorganic particles are dispersed at intervals. Oppositely, the insulating material layer faces the iron core .
Furthermore, in the electric machine according to the present invention, the resin composition sheet layer of the insulating sheet is disposed on a contact surface with the coil.
Moreover, the manufacturing method of the insulating sheet according to the present invention is an insulating sheet manufacturing method including an insulating material layer and a resin composition sheet layer laminated on the insulating material layer and containing an epoxy resin and inorganic particles. A plurality of resin-coated particles in which the resin particles of the epoxy resin are gathered around the inorganic particles, and a paste in which the plurality of resin-coated particles thus prepared are applied are applied to the insulating material layer, and the applied The paste is dried and heated to be cured to obtain the resin composition sheet layer.
この発明の絶縁シートによれば、絶縁シートにおける樹脂組成シート層の無機粒子が互いに間隔をあけて分散するように配置されているので、無機粒子界面を進展していく破壊経路が遮断されるため、絶縁寿命を延ばすことができるとともに、絶縁シートを薄肉化することができる。また、無機粒子を均一に分散し、無機粒子の重なりによるバルク方向の破壊経路を長くすることで高耐圧化が可能となる。
また、この発明の電気機械によれば、上記絶縁シートが、コイルと鉄心との間に配置されているので、耐湿性が向上し、高湿環境下においても絶縁性の劣化を抑制することが可能であり、信頼性の高い電気機械を得ることができる。
さらにまた、この発明の電気機械によれば、絶縁シートの樹脂組成シート層が、コイルとの接触面に配置されているので、コイルと絶縁シート間の絶縁弱点部となる空間ギャップが抑制されるため高耐圧化が可能となり、耐湿性の向上も図ることができるので信頼性の高い電気機械を得ることができる。
また、この発明の絶縁シートの製造方法によれば、樹脂粒子を無機粒子間に確実に介在させることができる。
According to the insulating sheet of the present invention, since the inorganic particles of the resin composition sheet layer in the insulating sheet are arranged so as to be dispersed with a distance from each other, the breaking path that advances the inorganic particle interface is blocked. In addition, the insulation life can be extended and the insulation sheet can be thinned. Further, it is possible to increase the withstand voltage by uniformly dispersing the inorganic particles and lengthening the fracture path in the bulk direction due to the overlap of the inorganic particles.
According to the electric machine of the present invention, since the insulating sheet is disposed between the coil and the iron core, the moisture resistance is improved, and the deterioration of the insulating property can be suppressed even in a high humidity environment. It is possible to obtain a highly reliable electric machine.
Furthermore, according to the electric machine of the present invention, since the resin composition sheet layer of the insulating sheet is disposed on the contact surface with the coil, a space gap serving as an insulating weak point between the coil and the insulating sheet is suppressed. Therefore, a high withstand voltage can be achieved and moisture resistance can be improved, so that a highly reliable electric machine can be obtained.
Moreover, according to the manufacturing method of the insulating sheet of this invention, a resin particle can be reliably interposed between inorganic particles.
実施の形態1.
以下、図面に基づいてこの発明の実施の形態1について説明する。
図1は、実施の形態1における回転電動機の断面図を示す。図1に示した回転電動機1は、回転子2とコイル3がステータコア4へ巻回された固定子5とで構成されている。図2は、図1に示す断面6から見たこの発明の実施の形態1における回転電動機の要部断面図である。図2に示した回転電動機の要部断面6において、コイル3とステータコア4との間には絶縁シート7が介在されている。絶縁シート7は、樹脂組成シート層8と絶縁材層9から構成されている。
回転電動機1は、一般的に様々な環境下で使用され、特に、高湿度環境下では特許文献1の構造では、絶縁シートが吸湿した場合、絶縁特性が大きく低下するため絶縁層を厚くする必要があり、占積率の低下や機器の大型化が懸念されていた。外部の水分は、絶縁シート7のバルク内部を拡散したり、コイル3と絶縁シート7の界面部を浸透したりする。これにより、電界が高いコイル3と絶縁シート7との空間ギャップの絶縁性が低下し、絶縁破壊が生じる可能性があった。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of the rotary electric motor according to the first embodiment. A rotary electric motor 1 shown in FIG. 1 includes a rotor 2 and a stator 5 in which a coil 3 is wound around a stator core 4. FIG. 2 is a cross-sectional view of a main part of the rotary electric motor according to Embodiment 1 of the present invention as seen from the cross section 6 shown in FIG. An insulating sheet 7 is interposed between the coil 3 and the stator core 4 in the cross section 6 of the main part of the rotary motor shown in FIG. The insulating sheet 7 is composed of a resin composition sheet layer 8 and an insulating material layer 9.
The rotary electric motor 1 is generally used in various environments. In particular, in the structure of Patent Document 1 in a high-humidity environment, when the insulating sheet absorbs moisture, the insulating characteristics are greatly deteriorated, so that the insulating layer needs to be thick. There was a concern that the space factor would decrease and the equipment would become larger. External moisture diffuses inside the bulk of the insulating sheet 7 or permeates the interface between the coil 3 and the insulating sheet 7. Thereby, the insulation of the space gap between the coil 3 and the insulating sheet 7 having a high electric field is lowered, and there is a possibility that dielectric breakdown occurs.
耐湿性を上げるには、絶縁シート7内の水分の拡散を遅くするか、水分の注入経路を遮断すれば良い。一般的な絶縁樹脂組成物は、エポキシ樹脂等の熱硬化性樹脂に窒化アルミニウム(AlN)、酸化アルミニウム(アルミナ:Al2O3)、窒化ホウ素(BN)および炭化ケイ素(SiC)などの無機物の粒子を充填した構造となっている。水の拡散を抑制するためには粒子充填量を少なくし、水の経路となる粒子の壁面をなくせばよいが、放熱性が低下するため粒子充填量を減少することは出来ない。一方、水分の注入経路を遮断するには、封止樹脂を用いて固定子5およびコイル3全体をモールドすればよいが、封
止樹脂と絶縁シート7との接着強度を上げる必要があり、接着性を上げるために封止樹脂や絶縁シート7の表面改質を実施すると高コスト化するためメリットが少ない。
実施の形態1では、絶縁材層9のコイル3との接触面に耐湿性の高いエポキシ樹脂(フェノール系)などの樹脂組成シート層8を配置する。具体的な樹脂組成シート層8としては、例えば、フェノール系のエポキシ樹脂などの樹脂11に、溶融シリカなどの無機粒子10を、50から90vol%で充填したものを用いることができる。
In order to increase the moisture resistance, the diffusion of moisture in the insulating sheet 7 may be slowed or the moisture injection path may be blocked. A general insulating resin composition is made of an inorganic material such as aluminum nitride (AlN), aluminum oxide (alumina: Al 2 O 3 ), boron nitride (BN), and silicon carbide (SiC) in a thermosetting resin such as an epoxy resin. It has a structure filled with particles. In order to suppress the diffusion of water, the particle filling amount may be reduced and the wall surface of the particle serving as the water path may be eliminated. However, since the heat dissipation is lowered, the particle filling amount cannot be reduced. On the other hand, in order to cut off the moisture injection path, the stator 5 and the entire coil 3 may be molded using a sealing resin. However, it is necessary to increase the adhesive strength between the sealing resin and the insulating sheet 7. If the surface modification of the sealing resin or the insulating sheet 7 is performed in order to increase the property, the cost is increased and there are few merits.
In the first embodiment, a resin composition sheet layer 8 such as an epoxy resin (phenolic) having high moisture resistance is disposed on the contact surface of the insulating material layer 9 with the coil 3. As the specific resin composition sheet layer 8, for example, a resin 11 such as a phenol-based epoxy resin filled with inorganic particles 10 such as fused silica at 50 to 90 vol% can be used.
図3は、この発明の実施の形態1における回転電動機の絶縁シートとコイル部分の断面模式図である。また、図4は、比較例における回転電動機の絶縁シートとコイル部分の断面模式図である。図4に示すように、絶縁材層9のみをコイル3とステータコア4間に設けた場合は、コイル3と絶縁材層9の間に空間ギャップ17が生じる。サージなどによる高電圧や、高湿環境下などによる絶縁性の低下が生じると、空間ギャップ17で部分放電が発生する。回転電動機、特にインバータで駆動される場合には、高いキャリア周波数で部分放電が発生することにより絶縁材が劣化し、短時間で絶縁破壊に至ることが懸念される。
一方、この発明の実施の形態1における絶縁シート7は、樹脂組成シート層8をコイル3との接触面に形成することによって、空間ギャップ17を小さくすることができる。これにより、部分放電の発生を抑制することが可能である。
FIG. 3 is a schematic cross-sectional view of the insulating sheet and coil portion of the rotary electric motor according to Embodiment 1 of the present invention. FIG. 4 is a schematic cross-sectional view of an insulating sheet and a coil portion of a rotary motor in a comparative example. As shown in FIG. 4, when only the insulating material layer 9 is provided between the coil 3 and the stator core 4, a space gap 17 is generated between the coil 3 and the insulating material layer 9. When a high voltage due to a surge or the like or a decrease in insulation due to a high humidity environment or the like occurs, a partial discharge occurs in the space gap 17. In the case of being driven by a rotary motor, particularly an inverter, there is a concern that a partial discharge is generated at a high carrier frequency, so that the insulating material is deteriorated and dielectric breakdown occurs in a short time.
On the other hand, in the insulating sheet 7 according to Embodiment 1 of the present invention, the space gap 17 can be reduced by forming the resin composition sheet layer 8 on the contact surface with the coil 3. Thereby, it is possible to suppress the occurrence of partial discharge.
図3に示すような空間ギャップ17を抑制した構成は、コイル3をステータコア4に巻回した後に加熱することにより、樹脂組成シート層8を硬化させることで実現できる。
また、コイル3を巻回した後に、樹脂組成シート層8を硬化させることにより、コイル3自体の固定も可能であり、接触面積が増大することにより熱交換能力が向上し、コイル3の放熱性を改善することが可能となる。
図5は、実施の形態1における樹脂組成シート層8の内部構造を示す断面模式図である。図5に示すように、樹脂組成シート層8は、シリカ粒子などの無機粒子10が互いに距離をあけて樹脂11中に均一に分散して配置されるように構成されたものである。これにより、シリカ粒子などの無機粒子10界面の重なりによる樹脂組成シート層8のバルク方向に対する破壊経路12を長くすることによって高耐圧化が得られる。
The configuration in which the space gap 17 as shown in FIG. 3 is suppressed can be realized by curing the resin composition sheet layer 8 by heating the coil 3 after being wound around the stator core 4.
In addition, by winding the resin composition sheet layer 8 after the coil 3 is wound, the coil 3 itself can be fixed, and the heat exchange capacity is improved by increasing the contact area, and the heat dissipation of the coil 3 is improved. Can be improved.
FIG. 5 is a schematic cross-sectional view showing the internal structure of the resin composition sheet layer 8 in the first embodiment. As shown in FIG. 5, the resin composition sheet layer 8 is configured such that inorganic particles 10 such as silica particles are arranged uniformly dispersed in the resin 11 at a distance from each other. Thereby, high breakdown voltage is obtained by lengthening the fracture path 12 in the bulk direction of the resin composition sheet layer 8 due to the overlap of the interface of the inorganic particles 10 such as silica particles.
図6は、乾燥状態での実施の形態1における樹脂組成シート層と比較例の絶縁材層の耐電圧試験結果を示す図である。図6において、(C)は、比較例であり、単に無機粒子と樹脂材料を混入して絶縁層を形成した場合を示し、(E)は、この発明の実施の形態1の樹脂組成シート層8のように、シリカ粒子などの無機粒子10が互いに距離をあけて樹脂11中に分散するように形成した場合を示す。また、図6において、(R)は、エポキシ樹脂単体で絶縁層を形成した場合を示す。
図6に示すように、単にシリカ粒子と樹脂材料を混入して絶縁層を形成した比較例の場合(図6中のC)に対し、この発明の実施の形態1の樹脂組成シート層8のように、シリカ粒子などの無機粒子10が互いに距離をあけて樹脂11中に分散するように形成した場合(図6中のE)の方が優れた破壊耐圧を得られ、最も強固であるエポキシ樹脂単体で絶縁層を形成した場合(図6中のR)の破壊耐圧には及ばないものの、それに近い破壊耐圧を得られることがわかる。
FIG. 6 is a diagram showing a withstand voltage test result of the resin composition sheet layer in Embodiment 1 and the insulating material layer of the comparative example in the dry state. 6, (C) is a comparative example, and shows a case where an insulating layer is formed by simply mixing inorganic particles and a resin material, and (E) is a resin composition sheet layer according to Embodiment 1 of the present invention. 8 shows a case where the inorganic particles 10 such as silica particles are formed so as to be dispersed in the resin 11 at a distance from each other. In FIG. 6, (R) shows a case where an insulating layer is formed of a single epoxy resin.
As shown in FIG. 6, the resin composition sheet layer 8 of Embodiment 1 of the present invention is compared with the comparative example (C in FIG. 6) in which the insulating layer is formed simply by mixing silica particles and a resin material. Thus, when the inorganic particles 10 such as silica particles are formed so as to be dispersed in the resin 11 at a distance from each other (E in FIG. 6), an excellent breakdown pressure can be obtained and the strongest epoxy When the insulating layer is formed of a single resin (R in FIG. 6), it can be seen that although it does not reach the breakdown voltage, a breakdown voltage close to that can be obtained.
また、図7は、この発明の実施の形態1における樹脂組成シート層と比較例の絶縁材層との耐湿寿命比を示す図である。図7では、吸湿状況下(例えば温度85℃、湿度85%)において、一定電圧を印加した場合の破壊までの時間比を表している。図7において、比較例の場合は、短時間で吸湿して飽和するが、この発明の実施の形態1における樹脂組成シート層8(耐湿層有り)の絶縁シート7の構造を適用することで、吸湿する速度が遅くなり飽和までの時間が長くなる。図7に示すように、この発明の実施の形態1における絶縁シート7の構造を適用した場合、比較例に対して約8倍寿命が延ばすことができる。 Moreover, FIG. 7 is a figure which shows the moisture-resistant life ratio of the resin composition sheet layer in Embodiment 1 of this invention and the insulating material layer of a comparative example. FIG. 7 shows a time ratio until breakdown when a constant voltage is applied under a moisture absorption condition (for example, a temperature of 85 ° C. and a humidity of 85%). In FIG. 7, in the case of the comparative example, moisture is absorbed and saturated in a short time, but by applying the structure of the insulating sheet 7 of the resin composition sheet layer 8 (with moisture resistant layer) in Embodiment 1 of the present invention, The rate of moisture absorption becomes slower and the time until saturation becomes longer. As shown in FIG. 7, when the structure of the insulating sheet 7 according to Embodiment 1 of the present invention is applied, the life can be extended by about 8 times compared to the comparative example.
更に詳細に説明すると、シリカ粒子などの無機粒子10を分散させることで、充填量をあげることができ、他の構造材との熱膨張係数の差を小さくすることで水分の浸入路となる剥離や応力集中によるクラックの発生を防止できるため、欠陥の無い場合の高樹脂本来の高い耐湿性を発揮できる。特に、この発明の実施の形態1では、樹脂自体の耐湿性が高い(吸湿性が低い)フェノール系エポキシ樹脂を用いているので、上述のシリカ粒子などの無機粒子10の分散による作用が顕著に発現し、高い耐湿性を有した樹脂組成シート層8を得ることができる。
なお、シリカ粒子などの無機粒子10の形状としては、尖っている破砕シリカではなく、球状の溶融シリカを適用すれば電界集中が低減でき、より高耐圧化が得られるのはいうまでもない。
More specifically, it is possible to increase the filling amount by dispersing the inorganic particles 10 such as silica particles, and to remove the difference in the thermal expansion coefficient from other structural materials to become a moisture infiltration path. Since cracks due to stress concentration can be prevented, the high moisture resistance inherent to high resins when there are no defects can be exhibited. In particular, in Embodiment 1 of the present invention, the phenolic epoxy resin having high moisture resistance (low hygroscopicity) is used in the resin itself, so that the action due to the dispersion of the inorganic particles 10 such as the silica particles is remarkable. The resin composition sheet layer 8 that is expressed and has high moisture resistance can be obtained.
Needless to say, if the shape of the inorganic particles 10 such as silica particles is not spherical crushed silica but spherical fused silica is applied, the electric field concentration can be reduced and higher pressure resistance can be obtained.
実施の形態1においては、樹脂組成シート層8を設けることによって、高湿環境下においても絶縁性の劣化を抑制することが可能である。また、従来は環境劣化においても放電を発生させなくするために絶縁層の厚みを厚くすることが必須であり、コストの増大や機器の大型化、占積率の低下に繋がっていた。しかし、この発明の実施の形態1では、これらの課題に対して、シリカ粒子などの無機粒子10が互いに距離をあけて樹脂11中に均一に分散して配置された樹脂組成シート層8の構造としたため、耐湿性が向上し、絶縁層の厚みを厚くすることなく信頼性の高い電気機械を提供することが可能となる。
また、絶縁シート7は、コイル3を巻回した後に樹脂組成シート層8を完全に硬化させることによって、コイル3の固着およびコイル3と絶縁シート7間の空間ギャップ17を埋めるように構成することで、部分放電を抑制することが可能となる。
In the first embodiment, by providing the resin composition sheet layer 8, it is possible to suppress the deterioration of the insulating property even in a high humidity environment. Conventionally, it has been essential to increase the thickness of the insulating layer in order to prevent discharge even during environmental degradation, leading to an increase in cost, an increase in equipment size, and a decrease in space factor. However, in the first embodiment of the present invention, the structure of the resin composition sheet layer 8 in which the inorganic particles 10 such as silica particles are uniformly dispersed and arranged in the resin 11 at a distance from each other with respect to these problems. Therefore, moisture resistance is improved, and a highly reliable electric machine can be provided without increasing the thickness of the insulating layer.
Further, the insulating sheet 7 is configured to completely fix the resin composition sheet layer 8 after winding the coil 3 so as to fill the space gap 17 between the coil 3 and the insulating sheet 7. Thus, partial discharge can be suppressed.
実施の形態2.
図8は、樹脂組成シート層8を形成するための製造工程中の断面図である。熱サイクルや電気機械の製造プロセスでの加熱等による樹脂組成シート層8や絶縁材層9、コイル3、ステータコア4の伸縮に伴う剥離を抑制するため、樹脂組成シート層8にはα調整として特にシリカ粒子などの無機粒子10の混入が必須である。なお、αは線膨張係数であり、構成する部材間の界面の線膨張係数を同程度にする必要がある。
図8において、シリカ粒子などの無機粒子10の周囲には、樹脂11の樹脂粒子13が配置され、樹脂被覆粒子14を構成している。図8に示すように、樹脂11を無機粒子10の径よりも小さな、例えばナノ形態の樹脂粒子13にし、シリカ粒子などの無機粒子10の表面を樹脂粒子13が覆う樹脂被覆粒子14を作成する。そして、作成した樹脂被覆粒子14を分散させたペースト15を絶縁材層9に塗布し、乾燥後、反応を促進させるための加熱をして樹脂粒子13で構成される樹脂11を溶融させ、加熱して硬化させる。これにより、樹脂粒子13で構成される樹脂11が、無機粒子10間に確実に介在する。つまり、確実に無機粒子10間に樹脂11が存在するような構成を実現できる。
Embodiment 2. FIG.
FIG. 8 is a cross-sectional view during the manufacturing process for forming the resin composition sheet layer 8. In order to suppress peeling due to expansion and contraction of the resin composition sheet layer 8, the insulating material layer 9, the coil 3, and the stator core 4 due to heat cycle, heating in the manufacturing process of the electric machine, etc. It is essential to mix inorganic particles 10 such as silica particles. Α is a linear expansion coefficient, and it is necessary to make the linear expansion coefficient at the interface between the constituent members approximately the same.
In FIG. 8, resin particles 13 of resin 11 are arranged around inorganic particles 10 such as silica particles to constitute resin-coated particles 14. As shown in FIG. 8, the resin 11 is made smaller than the diameter of the inorganic particles 10, for example, nano-shaped resin particles 13, and the resin-coated particles 14 that cover the surfaces of the inorganic particles 10 such as silica particles with the resin particles 13 are created. . Then, the prepared paste 15 in which the resin-coated particles 14 are dispersed is applied to the insulating material layer 9, and after drying, heating for promoting the reaction is performed to melt the resin 11 composed of the resin particles 13, and heating And let it harden. Thereby, the resin 11 composed of the resin particles 13 is reliably interposed between the inorganic particles 10. That is, a configuration in which the resin 11 exists between the inorganic particles 10 can be realized with certainty.
なお、樹脂組成シート層8におけるシリカ粒子などの無機粒子10表面へのナノ粒子形態の樹脂粒子13を配置する方法として、例えば静電吸着法を適用することで実現可能である。静電吸着法とは、例えば、樹脂と粒子などをそれぞれ異なる電解質溶液を用いてプラス・マイナスに帯電させ、静電引力で吸着させる方法である。つまり、無機粒子10をほぼ等間隔に充填させる方法として、静電吸着を用いて、無機粒子10の周囲に絶縁材である樹脂粒子13を殻状に集合させた樹脂被覆粒子14を形成し、この樹脂被覆粒子14が互いに接触するように配置する。その後、樹脂11を加熱することにより硬化させることで、無機粒子10が互いに接触したり重なることのない状態の樹脂組成シート層8を形成することができる。
これにより、樹脂組成シート層8は、シリカ粒子などの無機粒子10が互いに距離をあけて樹脂11中に均一に分散して配置された構造となることが可能となり、シリカ粒子などの無機粒子10界面の重なりによる樹脂組成シート層8のバルク方向に対する破壊経路12を長くすることによって高耐圧化を図ることができる。
In addition, as a method of arranging the resin particles 13 in the form of nanoparticles on the surface of the inorganic particles 10 such as silica particles in the resin composition sheet layer 8, it can be realized by applying, for example, an electrostatic adsorption method. The electrostatic adsorption method is, for example, a method in which resin and particles are charged positively or negatively using different electrolyte solutions and adsorbed by electrostatic attraction. That is, as a method of filling the inorganic particles 10 at substantially equal intervals, the resin-coated particles 14 in which the resin particles 13 that are insulating materials are assembled in a shell shape around the inorganic particles 10 are formed using electrostatic adsorption. The resin-coated particles 14 are arranged so as to contact each other. Then, the resin composition sheet layer 8 in a state where the inorganic particles 10 do not contact or overlap each other can be formed by curing the resin 11 by heating.
Thereby, the resin composition sheet layer 8 can have a structure in which the inorganic particles 10 such as silica particles are arranged in a manner uniformly dispersed in the resin 11 at a distance from each other, and the inorganic particles 10 such as silica particles are arranged. High breakdown voltage can be achieved by lengthening the fracture path 12 in the bulk direction of the resin composition sheet layer 8 due to the overlapping of the interfaces.
なお、実施の形態1においては、理解を容易にするために回転電動機1のコイル3とステータコア4間に挿入する絶縁シート7として用いる例を示しているが、ブスバーや結線板などの電気機械の種々の絶縁部材としても実施の形態1の絶縁シート7は有用である。
また、例えば、電気機械として、リニアモータなどに用いられる直動電動機への適用も可能である。
図9は、この発明の実施の形態2における絶縁シートを用いた直動電動機の断面図である。図9に示すように、電気機械としてリニアモータなどに用いられる直動電動機16は、コア21とコア21の間にコイル20を備えている。また、コイル20とコア21間に、絶縁シート7が挿入されている。また、直動電動機16は、コア21と空間18を挟んで配置された磁石19を備えている。図9に示すように、実施の形態2においては、例えば直動電動機16などの電気機械のコイル20とコア21(鉄心)に挿入される絶縁シート7として利用することができる。
また、絶縁シート7は、変圧器などのコイル間及びコイルと鉄心間へ適用することも可能である。
In the first embodiment, in order to facilitate understanding, an example in which the insulating sheet 7 is inserted between the coil 3 and the stator core 4 of the rotary electric motor 1 is shown. However, an electrical machine such as a bus bar or a wiring board is used. The insulating sheet 7 of Embodiment 1 is useful also as various insulating members.
In addition, for example, the present invention can be applied to a direct acting motor used for a linear motor or the like as an electric machine.
FIG. 9 is a cross-sectional view of a linear motor using an insulating sheet according to Embodiment 2 of the present invention. As shown in FIG. 9, the direct acting motor 16 used for an electric machine such as a linear motor includes a coil 20 between the core 21 and the core 21. An insulating sheet 7 is inserted between the coil 20 and the core 21. The direct acting motor 16 includes a magnet 19 disposed with the core 21 and the space 18 in between. As shown in FIG. 9, in Embodiment 2, it can utilize as the insulating sheet 7 inserted in the coil 20 and the core 21 (iron core) of electric machines, such as the direct acting motor 16, for example.
The insulating sheet 7 can also be applied between coils such as a transformer and between the coil and the iron core.
以上のように、実施の形態1および実施の形態2における絶縁シート7を電気機械に適用する。電気機械が回転電動機の場合は、回転子と、この回転子の外周に対向して配置され、複数のステータコアを有する固定子と、このステータコアに巻回されたコイルと、このコイルとステータコアの間に挿入され、絶縁材層と絶縁材層上に積層された樹脂組成シート層とを含む絶縁シートとを備え、樹脂組成シートは、エポキシ樹脂と無機粒子とを含有し、無機粒子が互いに間隔をあけて分散するように、無機粒子の周囲にエポキシ樹脂の樹脂粒子を集合させた複数の樹脂被覆粒子が互いに接触して配置されているものである。これにより、高耐湿と高耐圧を兼ね備えた電気機械を得ることができる。
なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
As described above, the insulating sheet 7 in the first and second embodiments is applied to an electric machine. When the electric machine is a rotary motor, the rotor, a stator having a plurality of stator cores arranged opposite to the outer periphery of the rotor, a coil wound around the stator core, and a space between the coil and the stator core And an insulating sheet including an insulating material layer and a resin composition sheet layer laminated on the insulating material layer, the resin composition sheet containing an epoxy resin and inorganic particles, and the inorganic particles are spaced from each other. A plurality of resin-coated particles in which resin particles of epoxy resin are gathered around inorganic particles are arranged in contact with each other so as to be opened and dispersed. Thereby, an electric machine having both high moisture resistance and high breakdown voltage can be obtained.
It should be noted that within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.
以上の実施の形態1および実施の形態2では、樹脂に無機粒子が互いに間隔をあけて分散するように配置した絶縁シートに関して述べた。同様に、無機粒子が互いに間隔をあけて分散するように配置したワニスを作製することで、ワニスの絶縁性能を向上させることができる。さらには、このワニスをコイルへ含浸処理することで、高耐圧な電動機を得ることもできる。 In Embodiment 1 and Embodiment 2 described above, the insulating sheet is described in which the inorganic particles are dispersed in the resin so as to be dispersed from each other. Similarly, the insulating performance of the varnish can be improved by preparing a varnish in which the inorganic particles are arranged so as to be dispersed at intervals. Furthermore, by impregnating the varnish into the coil, it is possible to obtain a high pressure-resistant motor.
1 回転電動機、2 回転子、3 コイル、4 ステータコア、5 固定子、6 断面、7 絶縁シート、8 樹脂組成物シート層、9 絶縁材層、10 無機粒子、11 樹脂、12 破壊経路、13 樹脂粒子、14 樹脂被膜粒子、15 ペースト、16 直動電動機、17 空間ギャップ、18 空間、19 磁石、20 コイル、21 コア。 DESCRIPTION OF SYMBOLS 1 Rotating motor, 2 Rotor, 3 Coil, 4 Stator core, 5 Stator, 6 Section, 7 Insulating sheet, 8 Resin composition sheet layer, 9 Insulating material layer, 10 Inorganic particle, 11 Resin, 12 Destruction path, 13 Resin Particles, 14 Resin-coated particles, 15 pastes, 16 linear motion motors, 17 space gaps, 18 spaces, 19 magnets, 20 coils, 21 cores.
Claims (5)
前記絶縁材層上に積層され、エポキシ樹脂と無機粒子とを含有する樹脂組成シート層と、を有し、
前記樹脂組成シート層は、前記無機粒子が互いに間隔をあけて分散するように配置され、前記無機粒子の周囲に前記エポキシ樹脂の樹脂粒子を集合させた複数の樹脂被覆粒子が互いに接触するように配置されていることを特徴とする絶縁シート。 An insulation layer;
A resin composition sheet layer laminated on the insulating material layer and containing an epoxy resin and inorganic particles;
The resin composition sheet layer is arranged such that the inorganic particles are dispersed with a space therebetween, and a plurality of resin-coated particles in which the resin particles of the epoxy resin are aggregated around the inorganic particles are in contact with each other. An insulating sheet characterized by being arranged.
前記無機粒子の周囲に前記エポキシ樹脂の樹脂粒子を集合させた複数の樹脂被覆粒子を作成し、 Creating a plurality of resin-coated particles in which the resin particles of the epoxy resin are assembled around the inorganic particles;
作成した前記複数の樹脂被覆粒子を分散させたペーストを前記絶縁材層に塗布し、 Applying the prepared paste in which the plurality of resin-coated particles are dispersed to the insulating material layer,
塗布した前記ペーストを乾燥後に加熱して硬化させて前記樹脂組成シート層とすることを特徴とする絶縁シートの製造方法。 A method for producing an insulating sheet, wherein the applied paste is heated and cured after drying to form the resin composition sheet layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014114557A JP6305216B2 (en) | 2014-06-03 | 2014-06-03 | Insulating sheet, electric machine using the same, and method for manufacturing insulating sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014114557A JP6305216B2 (en) | 2014-06-03 | 2014-06-03 | Insulating sheet, electric machine using the same, and method for manufacturing insulating sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015228781A JP2015228781A (en) | 2015-12-17 |
JP6305216B2 true JP6305216B2 (en) | 2018-04-04 |
Family
ID=54885943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014114557A Expired - Fee Related JP6305216B2 (en) | 2014-06-03 | 2014-06-03 | Insulating sheet, electric machine using the same, and method for manufacturing insulating sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6305216B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113615047B (en) * | 2019-03-27 | 2022-05-06 | 三菱电机株式会社 | Stator and motor |
WO2022024181A1 (en) * | 2020-07-27 | 2022-02-03 | 三菱電機株式会社 | Thermosetting resin composition, stator coil and rotary electric machine |
DE102020215913A1 (en) | 2020-12-15 | 2022-06-15 | Valeo Siemens Eautomotive Germany Gmbh | Stator core assembly with a stator core and slot liners, stator, electric machine and vehicle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308158A (en) * | 1996-05-14 | 1997-11-28 | Fuji Electric Co Ltd | Low voltage rotating machine stator insulation coil |
JP3796295B2 (en) * | 1996-07-12 | 2006-07-12 | 宇部日東化成株式会社 | Adhesive particles and method for producing the same |
JP2009201228A (en) * | 2008-02-20 | 2009-09-03 | Somar Corp | Insulation sheet, rotating electric machine using the insulation sheet and method for manufacturing the rotating electrical machine |
JP5284847B2 (en) * | 2009-03-30 | 2013-09-11 | 本田技研工業株式会社 | Method for manufacturing stator or rotor for electric motor |
JP2013229535A (en) * | 2012-04-27 | 2013-11-07 | Mitsubishi Electric Corp | Semiconductor device |
-
2014
- 2014-06-03 JP JP2014114557A patent/JP6305216B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015228781A (en) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4913551B2 (en) | Rotating electrical machine winding, rotating electrical machine, and semiconductive insulating substrate used therefor | |
RU2623493C2 (en) | Insulating systems with improved resistance to the partial discharge, its manufacture method | |
RU2534744C2 (en) | Electrically insulating material, insulating paper and insulating tape for high-voltage rotary machine | |
KR20090076809A (en) | Stator bar parts with high thermal conductivity resins, varnishes and putty | |
JP6305216B2 (en) | Insulating sheet, electric machine using the same, and method for manufacturing insulating sheet | |
WO2012140789A1 (en) | Canned motor pump | |
KR20140063615A (en) | Method for producing a tape for an electrical insulation system | |
JP2010158113A (en) | Electrical insulating member, stator coil for rotating electrical machine, and rotating electrical machine | |
EP2434619B1 (en) | Arrangement of conducting bar ends | |
CA2925388C (en) | Slot sealing material, slot seal and method for producing a slot seal | |
JP2012244861A (en) | Insulation coil | |
CN115118050A (en) | High-voltage motor stator coil insulation system and preparation method thereof | |
KR102565033B1 (en) | Heat dissipation cap for stator, and stator assembly and motor comprising thereof | |
JP2016201930A (en) | Coil for high voltage apparatus, and rotary electric machine and high voltage apparatus using the same | |
JP2008227436A (en) | Dynamo-electric-machine coil using multilayer reconstituted mica tape | |
CN104937673B (en) | Insulation arrangement for high-voltage machine | |
CN108604476A (en) | Conductor arrangement with an insulator of an electric machine | |
CN109754966A (en) | A kind of preparation method of high thermal conductivity epoxy glass mica paper tape | |
JP2005281467A (en) | High thermal conductive resin and member, and electric equipment and semiconductor device using the same | |
JP6581390B2 (en) | Rotating electric machine | |
JP6522273B1 (en) | Stator coil, method of manufacturing the same and rotary electric machine | |
JP2012175799A (en) | Rotary electric machine stator, method of manufacturing rotary electric machine stator, and insulation tape for rotary electric machine stator | |
JP3518128B2 (en) | Stator winding of rotating electric machine | |
JP2010154731A (en) | Dynamo-electric machine coil and dynamo-electric machine | |
JP7153437B2 (en) | Rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180306 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6305216 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |