JP6303258B2 - Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film - Google Patents
Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film Download PDFInfo
- Publication number
- JP6303258B2 JP6303258B2 JP2012255102A JP2012255102A JP6303258B2 JP 6303258 B2 JP6303258 B2 JP 6303258B2 JP 2012255102 A JP2012255102 A JP 2012255102A JP 2012255102 A JP2012255102 A JP 2012255102A JP 6303258 B2 JP6303258 B2 JP 6303258B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- composite
- wood
- csnf
- cellulose fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920003043 Cellulose fiber Polymers 0.000 title claims description 48
- 239000002131 composite material Substances 0.000 title claims description 47
- 229910052709 silver Inorganic materials 0.000 title claims description 43
- 239000004332 silver Substances 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 230000004888 barrier function Effects 0.000 title claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 34
- 239000007864 aqueous solution Substances 0.000 claims description 34
- 239000006185 dispersion Substances 0.000 claims description 29
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 21
- 230000003595 spectral effect Effects 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- -1 silver ions Chemical class 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 15
- 238000000862 absorption spectrum Methods 0.000 claims description 14
- 229910021645 metal ion Inorganic materials 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002023 wood Substances 0.000 description 63
- 239000000463 material Substances 0.000 description 35
- 229920002678 cellulose Polymers 0.000 description 34
- 235000010980 cellulose Nutrition 0.000 description 34
- 239000001913 cellulose Substances 0.000 description 33
- 239000010408 film Substances 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 238000000034 method Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 18
- 239000000835 fiber Substances 0.000 description 17
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 16
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 239000002082 metal nanoparticle Substances 0.000 description 9
- 229910001961 silver nitrate Inorganic materials 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 239000012279 sodium borohydride Substances 0.000 description 7
- 229910000033 sodium borohydride Inorganic materials 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000001724 microfibril Anatomy 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229920002201 Oxidized cellulose Polymers 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229940107304 oxidized cellulose Drugs 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229920002749 Bacterial cellulose Polymers 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000005016 bacterial cellulose Substances 0.000 description 2
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 2
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical group CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 206010019345 Heat stroke Diseases 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- PPWHTZKZQNXVAE-UHFFFAOYSA-N Tetracaine hydrochloride Chemical compound Cl.CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 PPWHTZKZQNXVAE-UHFFFAOYSA-N 0.000 description 1
- 241001478802 Valonia Species 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、微細化されたセルロース繊維と銀イオンを含む分散液中で、少なくとも1種類以上の金属を還元析出させることにより得られる銀と微細化セルロース繊維の複合体の製造方法及び遮熱フィルムに関する。 The present invention relates to a method for producing a composite of silver and refined cellulose fibers obtained by reducing and precipitating at least one metal in a dispersion containing refined cellulose fibers and silver ions, and a thermal barrier film. About.
一般的に、太陽光の主成分は波長およそ400nmから700nmの範囲にある電磁波、すなわち可視光である。一方で、波長およそ400nm以下の成分は紫外線、およそ700nm以上の成分は赤外線と呼ばれ、人間には視認できない領域の光である。 In general, the main component of sunlight is an electromagnetic wave having a wavelength in the range of about 400 nm to 700 nm, that is, visible light. On the other hand, a component having a wavelength of about 400 nm or less is called ultraviolet light, and a component having a wavelength of about 700 nm or more is called infrared light.
赤外線の中でも可視光に近い波長領域(およそ700nmから2500nm)の電磁波は近赤外線と呼ばれ、可視光に近い性質を有しており、特に波長領域物700nmから1200nm付近の物は、物体表面に吸収され、熱エネルギーに変換されやすいことが知られている。 Among infrared rays, electromagnetic waves in a wavelength region close to visible light (approximately 700 nm to 2500 nm) are called near infrared rays and have properties close to visible light. Particularly, those in the wavelength region of 700 nm to 1200 nm are present on the object surface. It is known that it is easily absorbed and converted to thermal energy.
この近赤外線はガラスを透過し易く、太陽光が建築物の窓に当たることで透過した近赤外線により室内が暖められる。この熱は遠赤外線としてさらに室内に放出されるが、ガラスは遠赤外線を透過しにくいので室内に熱がこもる、いわゆる温室効果が発生する。 This near-infrared ray is easily transmitted through the glass, and the room is warmed by the transmitted near-infrared ray when sunlight hits a building window. This heat is further emitted into the room as far-infrared rays, but since glass is difficult to transmit far-infrared rays, a so-called greenhouse effect occurs in which heat is trapped in the room.
これにより夏の室内では窓際の温度が上昇し、空調コントロールによる冷房効率が著しく低下することから、温室効果は夏場の電力不足における主要因となっている。近年原子力発電におけるリスク問題が取り沙汰されていることからも、夏場の冷房需要ピークを解消するための節電対応は急務である。 As a result, the temperature at the window rises indoors in the summer, and the cooling efficiency due to air conditioning control is significantly reduced. Therefore, the greenhouse effect is a major factor in the summer power shortage. In recent years, there has been an urgent need to save electricity in order to eliminate the peak cooling demand in summer, as risk problems in nuclear power generation have been addressed.
しかしながら、冷房のような空調コントロールによる効果が得られないままの節電対策では熱中症の危険があり、冷房効率と節電効果の両立が必要となる。そこで現在、対応策のひとつとして用いられるのが、建築物の窓などに用いられる赤外線カットフィルムすなわち遮熱フィルムである。 However, there is a risk of heat stroke in power saving measures such as cooling where the effect of air conditioning control is not obtained, and both cooling efficiency and power saving effect are required. Therefore, at present, as one of the countermeasures, an infrared cut film, that is, a heat shielding film used for a building window or the like is used.
一般的に赤外線カットフィルムは可視光を透過し、近赤外線を透過しないように仕様が設計されている。これにより、可視光を取り込むことで室内外の景観を損なわずに、温室効果の原因となる近赤外線のみを遮断することができ、少ない電力で室内の温度を快適に保つことが可能となる。 In general, the specification of the infrared cut film is designed so as to transmit visible light but not near infrared light. Thus, by capturing visible light, it is possible to block only the near infrared rays that cause the greenhouse effect without damaging the indoor and outdoor scenery, and it is possible to keep the indoor temperature comfortable with a small amount of power.
このような赤外線カットフィルムとして、コレステリック液晶層を含む積層体を用いた例が特許文献1に開示されている。特許文献1によれば、特定の波長のみを選択的に遮断するコレステリック液晶の特長を活かして、可視光領域の光を透過させつつ近赤外線を遮断する積層体の提供が可能となる。しかしながらコレステリック液晶層を用いる場合、多重の積層膜を必要とするため生産コストが上昇してしまうという問題がある。また、コレステリック液晶層は化石燃料由来の物質を原料として合成されることから環境への負荷は免れない。 As such an infrared cut film, Patent Document 1 discloses an example in which a laminate including a cholesteric liquid crystal layer is used. According to Patent Document 1, it is possible to provide a laminate that blocks near-infrared rays while transmitting light in the visible light region by utilizing the feature of cholesteric liquid crystal that selectively blocks only a specific wavelength. However, when the cholesteric liquid crystal layer is used, there is a problem that the production cost increases because a multi-layered film is required. Further, since the cholesteric liquid crystal layer is synthesized using a material derived from fossil fuel as a raw material, an environmental load is inevitable.
一方で、銀ナノ粒子を近赤外線遮蔽材料として用いた例が特許文献2に開示されている。一般に球状銀ナノ粒子は表面プラズモンによって黄色味を呈し、分光吸収スペクトルにおいて波長400nm付近にピークを有するが、粒子径のサイズや形状によってはピーク位置が近赤外領域にシフトすることが知られている。特許文献2に記載の方法はこの現象を利用したものであり、銀ナノ粒子の作製条件を高度に制御することで可視光の透過性をある程度確保しつつ近赤外線を遮断することに成功している。しかしながら、該特許文献に記載の方法では、銀ナノ粒子の作製法が煩雑で、形状制御が難しいという問題がある。 On the other hand, Patent Document 2 discloses an example in which silver nanoparticles are used as a near-infrared shielding material. In general, spherical silver nanoparticles are yellowish due to surface plasmons and have a peak in the vicinity of a wavelength of 400 nm in the spectral absorption spectrum, but the peak position is known to shift to the near infrared region depending on the size and shape of the particle diameter. Yes. The method described in Patent Document 2 utilizes this phenomenon, and succeeded in blocking near-infrared rays while ensuring visible light transmittance to some extent by highly controlling the production conditions of silver nanoparticles. Yes. However, the method described in the patent document has a problem that the method for producing silver nanoparticles is complicated and shape control is difficult.
一方近年、環境問題への関心の高まりから、持続的に利用可能な環境調和型材料であるバイオマスを用いた機能性材料の開発が盛んに行われている。その中でも木材の主成分であるセルロースは地球上に最も大量に蓄積された天然高分子材料であることから、資源循環型社会への移行を目指す取り組みの中核を担う材料として期待が寄せられている。 On the other hand, in recent years, functional materials using biomass, which is an environmentally harmonious material that can be used continuously, have been actively developed due to the growing interest in environmental issues. Among them, cellulose, which is the main component of wood, is a natural polymer material that is accumulated in the largest amount on the earth, and is expected to be a core material for efforts to shift to a resource recycling society. .
しかしながら、木材中のセルロースは、その分子鎖が数十本束になることで、高結晶性でナノサイズの繊維径をもつ微細繊維であるセルロースミクロフィブリルを形成しており、それらが互いに水素結合して植物の支持体となっている。この極めて安定な構造のため水および汎用有機溶媒には不溶であり、成形性にも乏しく、高機能部材としては扱いにくい面があった。 However, cellulose in wood has several tens of molecular chains, forming cellulose microfibrils, which are fine fibers with high crystallinity and nano-sized fiber diameters. And has become a plant support. Because of this extremely stable structure, it is insoluble in water and general-purpose organic solvents, has poor moldability, and is difficult to handle as a highly functional member.
そこで、このような特徴を持つ木材中のセルロースをダウンサイジングし、微細繊維単位で利用しようとする試みが活発に行われている。例えば特許文献3に示されるように、木材セルロースに対しブレンダーやグラインダーによる機械処理を繰り返すことで、微細化セルロース繊維、すなわちセルロースナノファイバー(以下CNFと称する)が得られることが開示されている。この方法で得られるCNFの短軸径は10〜50nm、長軸径は1μmから10mmに及ぶことが報告されている。 Therefore, attempts have been actively made to downsize cellulose in wood having such characteristics and use it in units of fine fibers. For example, as disclosed in Patent Document 3, it is disclosed that fine cellulose fibers, that is, cellulose nanofibers (hereinafter referred to as CNF) can be obtained by repeating mechanical processing using wood blender or grinder on wood cellulose. It has been reported that the short axis diameter of CNF obtained by this method ranges from 10 to 50 nm and the long axis diameter ranges from 1 μm to 10 mm.
また、化学的処理による微細化として、特許文献4に示されるように比較的安定なN−オキシル化合物である2,2,6,6−テトラメチルピペリジニル−1−オキシラジカル(TEMPO)を触媒として用い、セルロースの微細繊維表面を選択的に酸化する手法が報告されている。TEMPO酸化反応は水系、常温、常圧で進行する環境調和型の化学改質が可能で、木材中のセルロースに適用した場合、結晶内部には反応が進行せず、結晶表面のセルロース分子鎖が持つアルコール性1級炭素のみを選択的にカルボキシル基へと変換することができる。 As refinement by chemical treatment, 2,2,6,6-tetramethylpiperidinyl-1-oxy radical (TEMPO), which is a relatively stable N-oxyl compound as shown in Patent Document 4, is used. A technique for selectively oxidizing the surface of cellulose fine fibers has been reported as a catalyst. The TEMPO oxidation reaction can be chemically modified in an environmentally friendly manner that proceeds in water, normal temperature, and normal pressure. When applied to cellulose in wood, the reaction does not proceed inside the crystal, and the cellulose molecular chains on the crystal surface Only the alcoholic primary carbon possessed can be selectively converted into a carboxyl group.
このように結晶表面に導入されたカルボキシル基同士の静電的な反発により、水溶媒中で一本一本のセルロースミクロフィブリル単位に分散させた、セルロースシングルナノファイバー(以下CSNFと称する)を得ることが可能となる。木材からTEMPO酸化によって得られる木材CSNFは短軸径4nm前後、長軸径500nm〜1μmに及ぶ高アスペクト比を有する構造体であり、その水分散液および積層体は高い透明性を有することが報告されている。 Thus, the cellulose single nanofiber (henceforth CSNF) disperse | distributed to each cellulose microfibril unit in the water solvent by the electrostatic repulsion of the carboxyl groups introduce | transduced into the crystal | crystallization surface is obtained. It becomes possible. Wood CSNF obtained by TEMPO oxidation from wood is a structure having a high aspect ratio ranging from about 4 nm short axis diameter to 500 nm to 1 μm long axis diameter, and its aqueous dispersion and laminate are reported to have high transparency. Has been.
前記CSNFの用途としては、特許文献5において金属/CSNF複合体のナノ粒子の担持用材、およびそれを触媒として用いる例が開示されている。しかしながら当該文献には金属/CSNF複合体を近赤外線遮蔽材料としての利用すること、あるいはその可能性に関して、一切の記述も示唆も無い。 As the use of the CSNF, Patent Document 5 discloses a material for supporting metal / CSNF composite nanoparticles, and an example of using it as a catalyst. However, there is no description or suggestion regarding the use of the metal / CSNF composite as a near-infrared shielding material, or the possibility thereof.
本発明は上記事情を鑑みてなされたものであり、金属微粒子の形態制御が簡便で環境負荷の低い近赤外線遮蔽材料、その製造方法ならびに遮熱フィルムを提供することを課題とする。 This invention is made | formed in view of the said situation, and makes it a subject to provide the near-infrared shielding material which the shape control of a metal microparticle is simple, and its environmental load is low, its manufacturing method, and a heat-shielding film.
上記課題の解決のため鋭意検討を重ねたところ、特定の条件で銀ナノ粒子と木材CSNFを複合化することで、可視光透過率が高く近赤外線を遮蔽する材料が得られることを突き止め、本発明に至った。すなわち、木材CSNFおよび銀イオンを含む水分散液中で銀イオンを還元し、銀ナノ粒子として析出させる際に、析出条件と銀イオン濃度を制御することによって、近赤外領域に分光吸収スペクトルの吸収帯および吸収ピークを有する銀/木材CSNF複合体の作製に成功した。 As a result of intensive studies to solve the above-mentioned problems, it was found that a material that has high visible light transmittance and shields near infrared rays can be obtained by combining silver nanoparticles and wood CSNF under specific conditions. Invented. That is, when silver ions are reduced and precipitated as silver nanoparticles in an aqueous dispersion containing wood CSNF and silver ions, by controlling the deposition conditions and the silver ion concentration, the spectral absorption spectrum is reduced in the near infrared region. A silver / wood CSNF composite with an absorption band and an absorption peak was successfully produced.
すなわち、本発明は以下の項目によって規定されるものである。 That is, the present invention is defined by the following items.
少なくとも1種類以上の金属またはそれらの化合物からなる金属微粒子が、微細化されたセルロース繊維と複合体を形成することで、近赤外領域において透過率が最小となることを特徴とする近赤外線遮蔽材料である。 Metal fine particles comprising one or more metals or their compounds even without less is, by forming the fine cellulose fibers with complex, near, characterized in that the transmittance is minimum in the near-infrared region Infrared shielding material.
前記微細化されたセルロース繊維の数平均短軸径が1nm以上100nm以下、数平均長軸径が100nm以上であり、かつ数平均長軸径が数平均短軸径の50倍以上であることを特徴とする。 Number average minor axis diameter of the cellulose fibers prior Symbol miniaturization 1nm or 100nm or less, the number-average major axis diameter is at 100nm or more and is the number average long axis diameter of several average more than 50 times the minor axis diameter the shall be the feature.
前記近赤外線遮蔽材料に含まれる金属のうち少なくとも1種類が銀であることを特徴とする。 You characterized in that at least one of the metals contained in the prior SL near-infrared shielding material is silver.
前記微細化されたセルロース繊維は、N−オキシル化合物を用いた酸化反応により繊維表面にカルボキシル基が導入されていることを特徴とする。 Cellulose fibers prior Symbol miniaturized, characterized in that the carboxyl group is introduced into the fiber surface by oxidation reaction using N- oxyl compound.
波長700nmから2500nmの領域に、分光吸収スペクトルのピークを有することを特徴とする。 From wavelength 700nm in the region of 2500 nm, characterized by having a peak of spectral absorption spectrum.
請求項1に記載の発明は、微細化されたセルロース繊維を少なくとも水を50%以上含む溶媒に分散させて、微細化されたセルロース繊維の濃度が0.1%以上5%未満にした微細化セルロース繊維分散体を得る工程と、該微細化セルロース繊維分散体と少なくとも銀イオンを含む金属イオン含有水溶液を混合することで混合溶液を得る工程と、該混合溶液中の銀イオンを還元して、前記微細化されたセルロース繊維ネットワーク構造中に、銀ナノ粒子(球状を除く)が析出した、前記銀ナノ粒子(球状を除く)と微細化セルロース繊維の複合体を作製する工程と、を具備する、前記混合溶液中の銀イオン濃度を変更することにより、分光吸収スペクトルの吸収ピークを変化させることを特徴とする銀と微細化セルロース繊維の複合体の製造方法である。
さらに、前記混合溶液中の金属イオン量が、微細化セルロース繊維表面に存在するカルボキシル基量未満とすることを特徴とする請求項1に記載の銀と微細化セルロース繊維の複合体の製造方法である。
In the invention according to claim 1, the refined cellulose fiber is dispersed in a solvent containing at least 50% of water so that the concentration of the refined cellulose fiber is 0.1% or more and less than 5%. A step of obtaining a cellulose fiber dispersion, a step of obtaining a mixed solution by mixing the refined cellulose fiber dispersion and a metal ion-containing aqueous solution containing at least silver ions, and reducing silver ions in the mixed solution, A step of producing a composite of the silver nanoparticles (excluding spheres) and the refined cellulose fibers in which silver nanoparticles (excluding spheres) are precipitated in the micronized cellulose fiber network structure. The production of a composite of silver and refined cellulose fibers, wherein the absorption peak of the spectral absorption spectrum is changed by changing the silver ion concentration in the mixed solution It is the law.
Furthermore, the amount of metal ions in the mixed solution is less than the amount of carboxyl groups present on the surface of the refined cellulose fiber. The method for producing a composite of silver and refined cellulose fiber according to claim 1, is there.
請求項3に記載の発明は、請求項1または2に記載の製造方法で製造された銀と微細化セルロース繊維の複合体を基材上に塗布し、乾燥させる工程を有することを特徴とする遮熱フィルムの製造方法である。 According to a third aspect of the invention, a complex of silver and fine cellulose fibers produced by the production method according to claim 1 or 2 was coated on a substrate, characterized by having a step of drying It is a manufacturing method of a thermal barrier film.
本発明を用いれば、微細化セルロース繊維および金属イオンを含む分散液中において金属ナノ粒子を還元析出することで、近赤外線遮蔽材料として利用可能な金属/微細化セルロース繊維複合体を1段階反応で作成することができる。また、前記金属/微細化セルロース繊維複合体の光学特性は主に還元処理前の金属イオンの濃度により制御できることから、非常に簡便な処方で再現性良く近赤外線遮蔽材料としての金属/微細化セルロース繊維複合体を得ることが出来る。これにより、例えば透明なプラスチック基材などに該金属/微細化セルロース繊維複合体の水分散液を塗布し乾燥させることで、可視光透過率の高い近赤外線遮蔽フィルムおよび遮熱フィルムを安価に提供することが可能となった。 According to the present invention, a metal / micronized cellulose fiber composite that can be used as a near-infrared shielding material can be obtained by a one-step reaction by reducing and depositing metal nanoparticles in a dispersion containing micronized cellulose fibers and metal ions. Can be created. Further, since the optical properties of the metal / micronized cellulose fiber composite can be controlled mainly by the concentration of metal ions before the reduction treatment, the metal / micronized cellulose as a near-infrared shielding material with a very simple formulation and good reproducibility. A fiber composite can be obtained. As a result, a near-infrared shielding film and a thermal insulation film with high visible light transmittance can be provided at low cost by applying an aqueous dispersion of the metal / fine cellulose fiber composite to a transparent plastic substrate, for example, and drying. It became possible to do.
また、金属ナノ粒子の形状制御剤、分散剤、および成形体のマトリクスとしての役割を担う微細化セルロース繊維はバイオマスであることから、本発明で得られる近赤外線遮蔽材料および遮熱フィルムは、カーボンニュートラルな環境調和型材料としての特徴も併せ持つ高機能部材である。このような材料自体の環境調和性と目的である省エネ効果との相乗効果によって、本発明は持続的に発展可能な資源循環型社会構築のために多大な貢献をもたらすものと期待される。 In addition, since the refined cellulose fiber that plays a role as a shape control agent, a dispersing agent, and a molded body matrix of metal nanoparticles is biomass, the near-infrared shielding material and the thermal insulation film obtained in the present invention are made of carbon. It is a high-performance member that also has features as a neutral environmentally friendly material. Due to the synergistic effect of the environmental harmony of the material itself and the energy saving effect that is the purpose, the present invention is expected to make a great contribution to the construction of a resource recycling society that can be continuously developed.
以下、本発明の詳細を説明する。 Details of the present invention will be described below.
〔微細化セルロース繊維とその製造方法〕
本発明において用いる微細化セルロース繊維は、その繊維径が以下に示す範囲内にあればよく、その調製方法については特に限定されない。すなわち短軸径において数平均短軸径が1nm以上100nm以下であればよく、好ましくは2nm以上50nm以下、より好ましくは4nm以上20nm以下である。数平均短軸径が1nm未満では高結晶性の剛直な微細化セルロース繊維構造をとることが出来ず、例えばフィルムに塗布して薄膜成型した際に十分な材料強度が得られない。一方、100nmを超えると、光学材料として用いた際に十分な透明性、すなわち可視光透過性が得られない。また、長軸径においては数平均長軸径が100nm以上、好ましくは500nm以上、より好ましくは1μm以上である。数平均長軸径が100nm未満では繊維の絡み合い効果が不足し、金属との複合化の際に金属ナノ粒子の形状制御が不十分となる。
[Fine refined cellulose fiber and its production method]
The refined cellulose fiber used in the present invention may have a fiber diameter in the range shown below, and the preparation method is not particularly limited. That is, in the minor axis diameter, the number average minor axis diameter may be 1 nm or more and 100 nm or less, preferably 2 nm or more and 50 nm or less, more preferably 4 nm or more and 20 nm or less. If the number average minor axis diameter is less than 1 nm, a highly crystalline rigid fine cellulose fiber structure cannot be obtained, and sufficient material strength cannot be obtained, for example, when applied to a film and formed into a thin film. On the other hand, when the thickness exceeds 100 nm, sufficient transparency, that is, visible light transmittance cannot be obtained when used as an optical material. The major axis diameter has a number average major axis diameter of 100 nm or more, preferably 500 nm or more, and more preferably 1 μm or more. If the number average major axis diameter is less than 100 nm, the fiber entanglement effect is insufficient, and the shape control of the metal nanoparticles becomes insufficient when complexing with the metal.
微細化セルロース繊維の原料として用いることが出来るセルロースの種類も特に限定されず、例えば木材系天然セルロースに加えて、コットンリンター、竹、麻、バガス、ケナフ、バクテリアセルロース、ホヤセルロース、バロニアセルロースといった非木材系天然セルロース、さらにはレーヨン繊維、キュプラ繊維に代表される再生セルロースを用いることが出来る。 The type of cellulose that can be used as a raw material for the fine cellulose fiber is not particularly limited. For example, in addition to wood-based natural cellulose, non-cotton linter, bamboo, hemp, bagasse, kenaf, bacterial cellulose, squirt cellulose, valonia cellulose Wood-based natural cellulose, as well as regenerated cellulose represented by rayon fiber and cupra fiber can be used.
セルロース繊維の微細化方法もとくに限定されないが、前述の高圧ホモジナイザーによる機械処理、TEMPO酸化処理等による化学処理の他、希酸加水分解処理や酵素処理などを用いても良い。また、バクテリアセルロースも微細化セルロース繊維として用いることが出来る。さらには各種天然セルロースを各種セルロース溶剤に溶解させたのち、電解紡糸することによって得られる微細再生セルロース繊維を用いても良い。 The method for refining cellulose fibers is not particularly limited, but dilute acid hydrolysis treatment, enzyme treatment, or the like may be used in addition to the above-described mechanical treatment using a high-pressure homogenizer and chemical treatment such as TEMPO oxidation treatment. Bacterial cellulose can also be used as finely divided cellulose fibers. Furthermore, finely regenerated cellulose fibers obtained by dissolving various natural celluloses in various cellulose solvents and then performing electrospinning may be used.
例えば特許文献3に記載の方法に従い、木材セルロースをブレンダー等により繰り返し処理して得られる木材CNFと金属を複合化すれば、金属ナノ粒子の形状を制御しながら金属/微細化セルロース繊維複合体を得ることが出来る。しかし、繊維幅は10〜20nmとなるため、分散液およびそれを用いた成型体の透明性が低下するという問題がある。 For example, according to the method described in Patent Document 3, if a metal is combined with wood CNF obtained by repeatedly treating wood cellulose with a blender or the like, the metal / fine cellulose fiber composite can be formed while controlling the shape of the metal nanoparticles. Can be obtained. However, since the fiber width is 10 to 20 nm, there is a problem in that the transparency of the dispersion and a molded body using the dispersion is lowered.
一方、特許文献4に記載の方法に従い、木材セルロースをTEMPO触媒酸化することにより得られる木材CSNFと金属を複合化した場合、十分に金属ナノ粒子の形状を制御できることに加えて、CSNFの短軸径が4nm程度とカーボンナノチューブ並みに極細であることから分散液およびそれを用いた成型体の高透明性をも達成することが出来る。木材CNF、木材CSNFともに本発明において使用される微細化セルロース繊維としては好ましいが、透明性の面から、木材CSNFがより好ましい。 On the other hand, when wood CSNF obtained by TEMPO-catalyzed oxidation of wood cellulose and metal are compounded according to the method described in Patent Document 4, in addition to being able to sufficiently control the shape of metal nanoparticles, the short axis of CSNF Since the diameter is about 4 nm, which is as fine as a carbon nanotube, high transparency of the dispersion and a molded body using the dispersion can be achieved. Both wood CNF and wood CSNF are preferable as the fine cellulose fiber used in the present invention, but wood CSNF is more preferable from the viewpoint of transparency.
以下、木材CSNFを製造する方法について説明する。 Hereinafter, a method for producing wood CSNF will be described.
本発明で用いられる木材CSNFは、セルロースを酸化する工程と、微細化し分散液化する工程と、により得られる。また、酸化の際に導入されるカルボキシル基量は0.1mmol/g以上5.0mmol/g以下が好ましく、0.5mmol/g以上2.0mmol/g以下がより好ましい。カルボキシル基量が0.1mmol/g未満であると、セルロースミクロフィブリル間に静電的な反発が働かないため、セルロースを微細化して均一に分散させることは難しい。また、5.0mmol/gを超えるとTEMPO酸化に伴う副反応によりセルロースミクロフィブリルが低分子化するため、例えばフィルムに塗布して薄膜成型した際に十分な材料強度が得られない。 Wood CSNF used in the present invention is obtained by a step of oxidizing cellulose and a step of pulverizing and dispersing it. Further, the amount of carboxyl groups introduced during oxidation is preferably 0.1 mmol / g or more and 5.0 mmol / g or less, and more preferably 0.5 mmol / g or more and 2.0 mmol / g or less. When the amount of carboxyl groups is less than 0.1 mmol / g, electrostatic repulsion does not work between cellulose microfibrils, so it is difficult to make cellulose finely dispersed uniformly. On the other hand, if it exceeds 5.0 mmol / g, cellulose microfibrils are reduced in molecular weight due to side reactions accompanying TEMPO oxidation, so that sufficient material strength cannot be obtained, for example, when applied to a film and formed into a thin film.
〔セルロースを酸化する工程〕
酸化される木材セルロースの原料としては特に限定されないが、一般的には針葉樹パルプや広葉樹パルプ、古紙パルプ、などが用いられ、精製および微細化のしやすさから、針葉樹パルプを用いることが好ましい。
[Step of oxidizing cellulose]
Although it does not specifically limit as a raw material of the wood cellulose oxidized, A conifer pulp, a hardwood pulp, a waste paper pulp, etc. are generally used, and it is preferable to use a conifer pulp from the ease of refinement | purification and refinement | miniaturization.
木材セルロースの繊維表面を酸化しカルボキシル基を導入する方法としては、水系の比較的温和な条件で、可能な限り構造を保ちながら、アルコール性一級炭素の酸化に対する選択性が高い、TEMPOをはじめとするN−オキシル化合物の存在下、共酸化剤を用いた手法が望ましい。前記のN−オキシル化合物としては、TEMPOのほか、2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、4−メトキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−エトキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−アセトアミド−2,2,6,6−テトラメチルピペリジン−N−オキシル、等が挙げられる。その中でも、反応性の高さからTEMPOが好ましく用いられる。 As a method for oxidizing the fiber surface of wood cellulose and introducing a carboxyl group, it is possible to start with TEMPO, which has high selectivity to the oxidation of alcoholic primary carbon while maintaining the structure as much as possible under relatively mild conditions in water. A technique using a co-oxidant in the presence of the N-oxyl compound is desirable. Examples of the N-oxyl compound include TEMPO, 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidine-N. -Oxyl, 4-ethoxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-acetamido-2,2,6,6-tetramethylpiperidine-N-oxyl, and the like. Among these, TEMPO is preferably used because of its high reactivity.
また、前記の共酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸や過ハロゲン酸、またはそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、酸化反応を推進することが可能であれば、いずれの酸化剤も用いることができる。入手の容易さや反応性から次亜塩素酸ナトリウムが好ましい。 The co-oxidant may promote an oxidation reaction such as halogen, hypohalous acid, halous acid or perhalogen acid, or a salt thereof, halogen oxide, nitrogen oxide, or peroxide. Any oxidant can be used if possible. Sodium hypochlorite is preferred because of its availability and reactivity.
さらに、臭化物やヨウ化物の共存下で行うと、酸化反応を円滑に進行させることができ、カルボキシル基の導入効率を改善することができる。 Furthermore, when carried out in the presence of bromide or iodide, the oxidation reaction can proceed smoothly, and the introduction efficiency of the carboxyl group can be improved.
N−オキシル化合物としてはTEMPOが好ましく、触媒として機能する量があれば十分である。また臭化物としては臭化ナトリウムまたは臭化リチウムを用いた系が好ましく、コストや安定性から臭化ナトリウムがより好ましい。共酸化剤、臭化物またはヨウ化物の使用量は、酸化反応を促進することができる量があれば十分である。反応はpH9〜11がより望ましいが、酸化が進行するにつれて、カルボキシル基が生成されて系内のpHが低下してしまうため、系内をpH9〜11の弱アルカリ性に保つ必要がある。 As the N-oxyl compound, TEMPO is preferable, and an amount that functions as a catalyst is sufficient. As the bromide, a system using sodium bromide or lithium bromide is preferable, and sodium bromide is more preferable from the viewpoint of cost and stability. The amount of the co-oxidant, bromide or iodide used is sufficient if there is an amount capable of promoting the oxidation reaction. The reaction is more preferably pH 9 to 11, but as the oxidation proceeds, carboxyl groups are generated and the pH in the system is lowered. Therefore, it is necessary to keep the inside of the system weakly alkaline at pH 9 to 11.
系内を弱アルカリ性に保つためにはpHの低下に応じてアルカリ水溶液を添加していくことで調整することができる。アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、さらには水酸化テトラメチルアンモニウム水溶液、水酸化テトラエチルアンモニウム水溶液、水酸化テトラブチルアンモニウム水溶液、水酸化ベンジルトリメチルアンモニウム水溶液などの有機アルカリ水溶液などが用いられるが、コストの面から水酸化ナトリウム水溶液が好ましい。 In order to keep the inside of the system weakly alkaline, it can be adjusted by adding an alkaline aqueous solution as the pH decreases. Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, an ammonia aqueous solution, and further a tetramethylammonium hydroxide aqueous solution, a tetraethylammonium hydroxide aqueous solution, a tetrabutylammonium hydroxide aqueous solution, and a benzyltrimethylammonium hydroxide. An organic alkaline aqueous solution such as an aqueous solution is used, but an aqueous sodium hydroxide solution is preferred from the viewpoint of cost.
酸化反応を終了させるためには系内のpHを保ちながら他のアルコールを添加し共酸化剤を完全に反応し終える必要がある。添加するアルコールとしては反応をすばやく終了させるためメタノール、エタノール、プロパノールなどの低分子量のアルコールが望ましいが、反応により生成される副産物の安全性などからエタノールがより好ましい。 In order to complete the oxidation reaction, it is necessary to add the other alcohol while maintaining the pH in the system and complete the reaction of the co-oxidant. The alcohol to be added is preferably a low molecular weight alcohol such as methanol, ethanol or propanol in order to quickly terminate the reaction, but ethanol is more preferable from the viewpoint of safety of by-products generated by the reaction.
酸化反応が終了した酸化パルプの洗浄方法としては、アルカリと塩を形成したまま洗浄する方法、酸を添加してカルボン酸にして洗浄する方法等がある。ハンドリング性や収率等から酸を添加してカルボン酸にして洗浄する方法が好ましい。なお洗浄溶媒としては水が好ましい。 As a method for washing oxidized pulp after the completion of the oxidation reaction, there are a method of washing with an alkali and salt formed, a method of adding an acid to obtain a carboxylic acid, and the like. In view of handling properties and yield, a method of adding an acid to obtain a carboxylic acid and washing it is preferred. The washing solvent is preferably water.
〔酸化セルロースを微細化し分散液化する工程〕
酸化セルロースを微細化する方法としては、まず酸化セルロースを水やアルコールをはじめとした各種有機溶媒やそれらの混合溶媒中に懸濁させる。必要とあれば、分散性を上げるために分散液のpH調整を行ってもよい。pH調整に用いられるアルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、さらには水酸化テトラメチルアンモニウム水溶液、水酸化テトラエチルアンモニウム水溶液、水酸化テトラブチルアンモニウム水溶液、水酸化ベンジルトリメチルアンモニウム水溶液などの有機アルカリ水溶液などが挙げられる。コストや入手のしやすさなどから水酸化ナトリウム水溶液が好ましい。
[Step of refining oxidized cellulose into liquid dispersion]
As a method for refining oxidized cellulose, firstly, oxidized cellulose is suspended in various organic solvents such as water and alcohol or a mixed solvent thereof. If necessary, the pH of the dispersion may be adjusted to increase dispersibility. Examples of alkaline aqueous solutions used for pH adjustment include sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, tetramethylammonium hydroxide aqueous solution, tetraethylammonium hydroxide aqueous solution, tetrabutylammonium hydroxide aqueous solution, An organic alkali aqueous solution such as a benzyltrimethylammonium hydroxide aqueous solution can be used. A sodium hydroxide aqueous solution is preferable from the viewpoint of cost and availability.
続いて物理的に解繊する方法としては、高圧ホモジナイザー、超高圧ホモジナイザー、ボールミル、ロールミル、カッターミル、遊星ミル、ジェットミル、アトライター、グラインダー、ジューサーミキサー、ホモミキサー、超音波ホモジナイザー、ナノジナイザー、水中対向衝突などを用いることで微細化することができる。これらのような微細化処理を任意の時間や回数行うことで表面にカルボキシル基を有する木材CSNFの水分散液を得ることができる。このとき前記木材CSNFの数平均繊維幅は1nm以上100nm以下が好ましく、繊維幅が1nmより小さい場合、木材CSNFの結晶性が低下して材料強度が損なわれてしまい、100nmより大きい場合、その分散液および積層体の透明性が損なわれてしまう。また、数平均繊維長は数平均繊維幅の50倍以上であることが好ましく、50倍未満では繊維同士の絡み合いによる金属ナノ粒子の形状制御効果が失われてしまう。 Subsequent physical defibration methods include high pressure homogenizer, ultra high pressure homogenizer, ball mill, roll mill, cutter mill, planetary mill, jet mill, attritor, grinder, juicer mixer, homomixer, ultrasonic homogenizer, nanogenizer, underwater It can be miniaturized by using an opposing collision or the like. An aqueous dispersion of wood CSNF having a carboxyl group on the surface can be obtained by performing such a micronization treatment for an arbitrary time or number of times. At this time, the number average fiber width of the wood CSNF is preferably 1 nm or more and 100 nm or less. When the fiber width is smaller than 1 nm, the crystallinity of the wood CSNF is deteriorated and the material strength is impaired. The transparency of a liquid and a laminated body will be impaired. The number average fiber length is preferably 50 times or more of the number average fiber width, and if it is less than 50 times, the shape control effect of the metal nanoparticles due to the entanglement of the fibers is lost.
前記木材CSNF分散液は、必要に応じて、本発明の効果を損なわない範囲で、セルロースおよびpH調整に用いた成分以外の他の成分を含有してもよい。該他の成分としては、特に限定されず、該木材CSNFの用途等に応じて、公知の添加剤のなかから適宜選択できる。具体的には、アルコキシシラン等の有機金属化合物またはその加水分解物、無機層状化合物、無機針状鉱物、レベリング剤、消泡剤、水溶性高分子、合成高分子、無機系粒子、有機系粒子、潤滑剤、帯電防止剤、紫外線吸収剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、架橋剤等が挙げられる。 The wood CSNF dispersion may contain cellulose and other components other than the components used for pH adjustment as long as the effects of the present invention are not impaired. The other components are not particularly limited, and can be appropriately selected from known additives depending on the use of the wood CSNF. Specifically, organometallic compounds such as alkoxysilanes or hydrolysates thereof, inorganic layered compounds, inorganic needle minerals, leveling agents, antifoaming agents, water-soluble polymers, synthetic polymers, inorganic particles, organic particles , Lubricants, antistatic agents, ultraviolet absorbers, dyes, pigments, stabilizers, magnetic powders, orientation promoters, plasticizers, crosslinking agents and the like.
〔赤外線遮蔽材料を作製する工程〕
前記木材CSNFと複合化する金属種としては、特に限定しないが、例えば、白金やパラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、金、銀、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属、金属塩、金属錯体およびこれらの合金、または酸化物、複酸化物等が挙げられる。また、複数の金属種を用いても良い。しかしながら、銀ナノ粒子は形状制御により近赤外領域に分光スペクトルの吸収帯をもたせることが容易であることから、析出させる金属のうち少なくとも1種類は銀であることが好ましい。また、銀と複合体を形成することで抗菌性をも付与できることから、木材CSNFの耐候性改善も期待できる。析出した銀ナノ粒子の周りを、銀より貴な金属で被覆して、銀ナノ粒子の安定性を向上させても良い。木材CSNF分散液中に金属微粒子を析出させ複合体を製造する方法としては、特に限定しないが、銀をはじめとする前記金属または合金、酸化物、複酸化物等の溶液とCSNF分散液を混合した状態で、還元剤を添加すれば容易に析出させることができる。銀の場合、還元を行う際に用いる銀イオンを含む水溶液の種類には特に制限は無いが、入手の容易さと取り扱い易さの点から硝酸銀水溶液であることが好ましい。用いる還元剤に関しても特に限定しない。例えば水素化ホウ素ナトリウム、アスコルビン酸、クエン酸、ヒドロキノン等が用いられる。安全性や汎用性の点から水素化ホウ素ナトリウムが好ましい。
[Process for producing infrared shielding material]
Although it does not specifically limit as a metal seed | species compounded with the said wood CSNF, For example, gold, silver, iron, lead, copper, chromium, cobalt other than the platinum group element of platinum, palladium, ruthenium, iridium, rhodium, osmium And metals such as nickel, manganese, vanadium, molybdenum, gallium, and aluminum, metal salts, metal complexes and alloys thereof, oxides, and double oxides. A plurality of metal species may be used. However, since silver nanoparticles can easily have an absorption band of a spectral spectrum in the near infrared region by shape control, it is preferable that at least one of the deposited metals is silver. In addition, antibacterial properties can be imparted by forming a composite with silver, so that the weather resistance of wood CSNF can also be improved. The stability of the silver nanoparticles may be improved by covering the deposited silver nanoparticles with a metal nobler than silver. A method for producing a composite by depositing metal fine particles in a wood CSNF dispersion is not particularly limited, but a solution of the above metals or alloys including silver, oxides, double oxides, and the like and a CSNF dispersion are mixed. In this state, it can be easily deposited by adding a reducing agent. In the case of silver, the type of the aqueous solution containing silver ions used for the reduction is not particularly limited, but a silver nitrate aqueous solution is preferable from the viewpoint of availability and ease of handling. There is no particular limitation on the reducing agent used. For example, sodium borohydride, ascorbic acid, citric acid, hydroquinone and the like are used. Sodium borohydride is preferable from the viewpoint of safety and versatility.
前記木材CSNFの分散に用いる溶媒は、50%以上の水を含み、水以外の溶媒としては親水性溶媒が好ましい。水の割合が50%以下になると木材CSNFの分散が阻害され、金属ナノ粒子と木材CSNFの均一な複合体形成が難しくなる。親水性溶媒については特に制限は無いが、メタノール、エタノール、イソプロパノールなどのアルコール類;テトラヒドロフラン等の環状エーテル類が好ましい。 The solvent used for dispersion of the wood CSNF contains 50% or more of water, and a hydrophilic solvent is preferable as a solvent other than water. When the proportion of water is 50% or less, the dispersion of wood CSNF is inhibited, and it becomes difficult to form a uniform composite of metal nanoparticles and wood CSNF. The hydrophilic solvent is not particularly limited, but alcohols such as methanol, ethanol and isopropanol; cyclic ethers such as tetrahydrofuran are preferred.
調製に用いるCSNFの分散体の濃度は特に限定しないが、0.1%以上5%未満が好ましい。0.1%未満では成形体形成用組成物としては溶媒過多となってしまう上に金属ナノ粒子の粒径制御効果が不十分となり、5%以上では微細化セルロース繊維同士の絡み合いで粘度が上昇し、均一な攪拌が難しくなる。同様に用いる金属イオンを含む溶液の金属イオン濃度も限定しないが、分散液中の金属イオン量がCSNF表面に存在するカルボキシル基量未満となるように調製することが好ましい。分散液中の金属イオン量がCSNF表面に存在するカルボキシル基量を上回ってしまうとCSNFが凝集してしまうためである。金属イオンの濃度は析出する金属微粒子の大きさ、すなわち光学特性に影響することから、近赤外線遮蔽材料としての用途に用いる場合、前記金属/微細化セルロース繊維複合体が近赤外領域に分光吸収スペクトルの吸収帯を付与するためには、金属イオン濃度条件を適宜設定する必要がある。また、前記金属/微細化セルロース繊維複合体は、分光吸収スペクトルにおいて、波長400nmから700nmの領域における吸光度の最大値が、波長700nmから2500nmの領域における吸光度の最大値の50%以下であることが好ましい。波長400nmから700nmの領域における吸光度の最大値が、波長700nmから2500nmの領域における吸光度の最大値の50%以上になってしまうと、透明基材などに塗布した際に可視光透過率が低下して該遮熱フィルムの透明性が損なわれてしまう。金属イオン濃度と析出する金属ナノ粒子の形状、および分光吸収スペクトルの変化に関する理論的なメカニズムについては不明な点が多く残されているものの、前記赤外線遮蔽材料の具体的な作製法については実施例にて詳細を記した。 The concentration of the CSNF dispersion used for the preparation is not particularly limited, but is preferably 0.1% or more and less than 5%. If it is less than 0.1%, the composition for forming a molded body becomes excessive in solvent and the effect of controlling the particle size of the metal nanoparticles is insufficient, and if it is 5% or more, the viscosity increases due to the entanglement between fine cellulose fibers. And uniform stirring becomes difficult. Similarly, the metal ion concentration of the solution containing metal ions to be used is not limited, but it is preferable to prepare so that the amount of metal ions in the dispersion is less than the amount of carboxyl groups present on the CSNF surface. This is because CSNF aggregates when the amount of metal ions in the dispersion exceeds the amount of carboxyl groups present on the CSNF surface. Since the concentration of metal ions affects the size of the deposited fine metal particles, that is, optical properties, when used as a near-infrared shielding material, the metal / micronized cellulose fiber composite has spectral absorption in the near-infrared region. In order to provide a spectrum absorption band, it is necessary to appropriately set the metal ion concentration condition. In the spectral absorption spectrum of the metal / micronized cellulose fiber composite, the maximum absorbance in the wavelength region of 400 nm to 700 nm is 50% or less of the maximum absorbance in the wavelength region of 700 nm to 2500 nm. preferable. When the maximum absorbance in the wavelength region of 400 nm to 700 nm is 50% or more of the maximum absorbance in the wavelength region of 700 nm to 2500 nm, the visible light transmittance decreases when applied to a transparent substrate. Thus, the transparency of the heat shield film is impaired. Although many unclear points remain regarding the theoretical mechanism regarding the change in the metal ion concentration, the shape of the deposited metal nanoparticles, and the spectral absorption spectrum, a specific method for producing the infrared shielding material is described in Examples. Details.
〔遮熱フィルムを作製する工程〕
前記遮熱フィルムは金属/微細化セルロース繊維複合体からなる前記近赤外線遮蔽材料を水系溶媒に分散させたものを塗液として基材上に塗布し、乾燥させることによって得ることが出来る。前記近赤外線遮蔽材料の分散液を基材に塗布する際には公知の塗布方法を用いることができ、例えば、ロールコーター、リバースロールコーター、グラビアコーター、マイクログラビアコーター、ナイフコーター、バーコーター、ワイヤーバーコーター、ダイコーター、ディップコーター、スピンコーター等を用いることができる。以上の塗布方法を用いて、基材の少なくとも一方の面に塗布する。前記近赤外線遮蔽材料を乾燥させる方法としては、特に限定しないが、乾燥する温度としては30℃以上200℃以下が好ましいが、50℃以上150℃以下がより好ましい。乾燥温度が30℃未満になると乾燥時間が長くなることで、生産性が低下し、200℃より高い乾燥温度では木材CSNFが黄変し、フィルムの可視光透過率が低下する。
[Process for producing thermal barrier film]
The heat-shielding film can be obtained by applying a near-infrared shielding material made of a metal / micronized cellulose fiber composite in an aqueous solvent as a coating liquid and drying it. When applying the dispersion of the near infrared shielding material to the substrate, a known coating method can be used. For example, a roll coater, reverse roll coater, gravure coater, micro gravure coater, knife coater, bar coater, wire A bar coater, a die coater, a dip coater, a spin coater, or the like can be used. It applies to at least one surface of a substrate using the above application method. The method for drying the near-infrared shielding material is not particularly limited, but the drying temperature is preferably 30 ° C. or higher and 200 ° C. or lower, but more preferably 50 ° C. or higher and 150 ° C. or lower. When the drying temperature is less than 30 ° C., the drying time becomes longer, resulting in a decrease in productivity. At a drying temperature higher than 200 ° C., the wood CSNF turns yellow, and the visible light transmittance of the film decreases.
用いることが出来る基材にも特に制限は無く、種々の高分子組成物から成るプラスチックまたはガラス基板を用いることができる。例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、セルロース系(トリアセチルセルロース、ジアセチルセルロース、セロファン等)、ポリアミド系(6−ナイロン、6,6−ナイロン等)、アクリル系(ポリメチルメタクリレート等)や、ポリスチレン、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネート、エチレンビニルアルコール等からなるものが用いられる。また、前述のプラスチック材料の中から、少なくとも1種以上の成分を持つ、或いは共重合成分に持つ、或いはそれらの化学修飾体を成分に有する有機高分子材料も可能である。 The base material that can be used is not particularly limited, and plastic or glass substrates made of various polymer compositions can be used. For example, polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), cellulose (triacetylcellulose, diacetylcellulose, cellophane, etc.), polyamide (6-nylon, 6,6-nylon, etc.) ), Acrylic (polymethyl methacrylate, etc.), polystyrene, polyvinyl chloride, polyimide, polyvinyl alcohol, polycarbonate, ethylene vinyl alcohol, etc. are used. In addition, organic polymer materials having at least one or more components from among the above-described plastic materials, having a copolymer component, or having a chemical modification thereof as a component are also possible.
また、環境への配慮から、用いる基材にも環境負荷の低いものが求められる。そのため、基材として、例えば、ポリ乳酸、バイオポリオレフィンなど植物から化学合成されるバイオプラスチック、或いはヒドロキシアルカノエートなど微生物が生産するプラスチックを含む基材、更にはセルロース系材料を含む、紙、セロハン、アセチル化セルロース、セルロース誘導体、微細化セルロース繊維を含む基材も用いることができる。 In addition, in consideration of the environment, the substrate to be used is required to have a low environmental load. Therefore, as a base material, for example, a bioplastic chemically synthesized from a plant such as polylactic acid or biopolyolefin, or a base material containing a plastic produced by a microorganism such as hydroxyalkanoate, further including a cellulosic material, paper, cellophane, Substrates containing acetylated cellulose, cellulose derivatives, and finely divided cellulose fibers can also be used.
こうして得られた前記積層体は可視光透過性が高く、また近赤外線領域に分光スペクトルの吸収帯を有する金属/微細化セルロース繊維複合体を含む層を有しているため、高い透明性と近赤外線遮蔽効果を併せ持つ、新規バイオナノ素材由来の遮熱フィルムとして産業利用が可能である。 The laminate obtained in this way has high visible light transmittance and has a layer containing a metal / fine cellulose fiber composite having a spectral spectrum absorption band in the near infrared region. Industrial use is possible as a thermal barrier film derived from a novel bio-nano material that also has an infrared shielding effect.
以下、本発明を実施例に基づいて詳細に説明するが、本発明の技術範囲はこれらの実施形態に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, the technical scope of this invention is not limited to these embodiment.
<実施例1>
〔木材セルロースのTEMPO酸化〕
針葉樹クラフトパルプ70gを蒸留水3500gに懸濁し、蒸留水350gにTEMPOを0.7g、臭化ナトリウムを7g溶解させた溶液を加え、20℃まで冷却した。ここに2mol/L、密度1.15g/mLの次亜塩素酸ナトリウム水溶液450gを滴下により添加し、酸化反応を開始した。系内の温度は常に20℃に保ち、反応中のpHの低下は0.5Nの水酸化ナトリウム水溶液を添加することでpH10に保ち続けた。セルロースの質量に対して、水酸化ナトリウムが3.00mmol/gになった時点で、過剰量のエタノールを添加し反応を停止させた。その後、ガラスフィルターを用いて蒸留水によるろ過洗浄を繰り返し、酸化パルプを得た。
<Example 1>
[TEMPO oxidation of wood cellulose]
70 g of softwood kraft pulp was suspended in 3500 g of distilled water, and a solution of 0.7 g of TEMPO and 7 g of sodium bromide dissolved in 350 g of distilled water was added and cooled to 20 ° C. 450 g of sodium hypochlorite aqueous solution having a concentration of 2 mol / L and a density of 1.15 g / mL was added dropwise thereto to initiate an oxidation reaction. The temperature in the system was always kept at 20 ° C., and the decrease in pH during the reaction was kept at pH 10 by adding a 0.5N aqueous sodium hydroxide solution. When sodium hydroxide reached 3.00 mmol / g based on the mass of cellulose, an excessive amount of ethanol was added to stop the reaction. Thereafter, filtration and washing with distilled water were repeated using a glass filter to obtain oxidized pulp.
〔酸化パルプのカルボキシル基量測定〕
上記TEMPO酸化で得た酸化パルプおよび再酸化パルプを固形分重量で0.1g量りとり、1%濃度で水に分散させ、塩酸を加えてpHを2.5とした。その後0.5M水酸化ナトリウム水溶液を用いた電導度滴定法により、カルボキシル基量(mmol/g)を求めた。結果は1.6mmol/gであった。
[Measurement of carboxyl group content of oxidized pulp]
Oxidized pulp and re-oxidized pulp obtained by the TEMPO oxidation were weighed in an amount of 0.1 g by solid content, dispersed in water at a concentration of 1%, and hydrochloric acid was added to adjust the pH to 2.5. Thereafter, the amount of carboxyl groups (mmol / g) was determined by conductivity titration using a 0.5 M aqueous sodium hydroxide solution. The result was 1.6 mmol / g.
〔酸化パルプの解繊処理〕
前記TEMPO酸化で得た酸化パルプ1gを99gの蒸留水に分散させ、ジューサーミキサーで30分間微細化処理し、1%木材CSNF水分散液を得た。
[Defibration treatment of oxidized pulp]
1 g of oxidized pulp obtained by the TEMPO oxidation was dispersed in 99 g of distilled water and refined with a juicer mixer for 30 minutes to obtain a 1% wood CSNF aqueous dispersion.
〔硝酸銀水溶液の調製〕
硝酸銀17mgを蒸留水10mLに溶解させ、硝酸銀水溶液を調製した。
[Preparation of aqueous silver nitrate solution]
17 mg of silver nitrate was dissolved in 10 mL of distilled water to prepare an aqueous silver nitrate solution.
〔水素化ホウ素ナトリウム水溶液の調製〕
水素化ホウ素ナトリウム38mgを蒸留水10mLに溶解させ、水素化ホウ素ナトリウム水溶液を調製した。
(Preparation of aqueous sodium borohydride solution)
Sodium borohydride 38mg was dissolved in distilled water 10mL, and sodium borohydride aqueous solution was prepared.
〔銀/木材CSNF複合体の作製〕
前記1%木材CSNF水分散液対し、表1に示した各種条件(A,B,C)で前記硝酸銀水溶液および前記水素化ホウ素ナトリウム水溶液を室温(25℃)で攪拌しながら添加し、銀/木材CSNF複合体の作製を行った。
[Preparation of silver / wood CSNF composite]
To the 1% wood CSNF aqueous dispersion, the silver nitrate aqueous solution and the sodium borohydride aqueous solution were added with stirring at room temperature (25 ° C.) under the various conditions (A, B, C) shown in Table 1, and silver / A wood CSNF composite was prepared.
〔銀/木材CSNF複合体の形態観察〕
前記銀/木材CSNF複合体を、走査型透過型電子顕微鏡(日立ハイテク社製、S−4800)を用いて観察した結果を図1に示す。この結果、硝酸銀水溶液の添加量が増えるに従い、析出する銀ナノ粒子の粒子径が増大し、凝集することなく分散状態を保っていることが判明した。また、その粒子形状は球形ではなくキューブ状、あるいはピラミッド状であることが観察画像から示唆された。この現象に関して、木材CSNFのネットワーク構造中で銀ナノ粒子が析出したためではないかと考えられる。
[Surface observation of silver / wood CSNF composite]
The result of observing the silver / wood CSNF composite using a scanning transmission electron microscope (S-4800, manufactured by Hitachi High-Tech) is shown in FIG. As a result, it was found that as the addition amount of the aqueous silver nitrate solution increased, the particle diameter of the silver nanoparticles deposited increased and maintained a dispersed state without agglomeration. The observation image suggested that the particle shape was not spherical but cube or pyramid. Regarding this phenomenon, it is considered that silver nanoparticles were precipitated in the network structure of wood CSNF.
〔積層体の作製〕
前記銀/木材CSNF複合体の水分散液を膜厚25μmのA4サイズのPETフィルム上にバーコーター#16を用いて塗布し、80℃で3分乾燥して該銀/木材CSNF複合体を含む層を有する積層体を作製した。
(Production of laminate)
The silver / wood CSNF composite aqueous dispersion is applied onto an A4 size PET film having a film thickness of 25 μm using a bar coater # 16 and dried at 80 ° C. for 3 minutes to contain the silver / wood CSNF composite. A laminate having a layer was produced.
〔銀/木材CSNF複合体を含む積層体の分光吸収スペクトル測定〕
前記銀/木材CSNF複合体を含む積層体を適当な大きさに切り分け、分光光度計(島津製作所社製、UV−3600)の測定箇所に設置し、光吸収スペクトル測定を行った。その結果を図2に示す。この結果、硝酸銀水溶液の添加量が増えるに従い、分光吸収スペクトルの吸収ピークが近赤外領域へとシフトしていく様子が確認された。この結果、本実施例において銀イオン濃度を変化させることによって、近赤外線遮蔽材料として利用可能な銀/木材CSNFを作製可能であることが判明した。
[Spectral absorption spectrum measurement of laminate containing silver / wood CSNF composite]
The laminate containing the silver / wood CSNF composite was cut into an appropriate size and placed at a measurement location of a spectrophotometer (manufactured by Shimadzu Corporation, UV-3600), and a light absorption spectrum was measured. The result is shown in FIG. As a result, it was confirmed that the absorption peak of the spectral absorption spectrum shifted to the near infrared region as the amount of silver nitrate aqueous solution added increased. As a result, it was found that silver / wood CSNF that can be used as a near-infrared shielding material can be produced by changing the silver ion concentration in this example.
〔遮熱効果の測定〕
前記銀/木材CSNF複合体を含む積層体のうち、試料Cによって作製したフィルムを用いて遮熱効果を確かめた。空調の無い室内で南向き窓の内側の一部分に該フィルムをあらかじめ貼り付けておき、2012年8月31日の午後2時(外気温36℃)にフィルムを貼った部分と貼っていない部分で窓際の温度を測定し比較した。すると、フィルムを貼った部分の窓際の温度は38℃であったのに対し、貼っていない部分の温度は45℃にまで上昇していた。このことから該フィルムが遮熱フィルムとして利用可能であることが確認された。
[Measurement of thermal insulation effect]
Among the laminates containing the silver / wood CSNF composite, the heat shielding effect was confirmed using the film prepared by Sample C. In a room without air conditioning, the film is pasted on a part of the inside of the south-facing window in advance, and at 2 pm on August 31, 2012 (outside air temperature 36 ° C.) The temperature at the window was measured and compared. Then, while the temperature at the window of the portion where the film was pasted was 38 ° C., the temperature of the portion where the film was not pasted rose to 45 ° C. From this, it was confirmed that the film can be used as a thermal barrier film.
<実施例2>
実施例1の試料Cの条件において、還元析出及び攪拌中の温度を10℃に保持した以外は、実施例1の試料Cと同様の条件で銀/木材CSNF複合体を作成し、得られた該銀/木材CSNF複合体の分光吸収スペクトルを実施例1と同様の方法で測定したところ、分光スペクトルの吸収ピークは850nm付近であった。このことから、銀/木材CSNF複合体作製時の温度条件を変えることによって銀/木材CSNF複合体の近赤外線遮蔽効果がさらに改善されることがわかった。
<Example 2>
A silver / wood CSNF composite was prepared and obtained under the same conditions as Sample C of Example 1 except that the temperature during reduction precipitation and stirring was maintained at 10 ° C. under the conditions of Sample C of Example 1. When the spectral absorption spectrum of the silver / wood CSNF composite was measured in the same manner as in Example 1, the absorption peak of the spectral spectrum was around 850 nm. From this, it was found that the near-infrared shielding effect of the silver / wood CSNF composite can be further improved by changing the temperature condition during the production of the silver / wood CSNF composite.
<比較例1>
用いるCSNF分散液の固形分濃度を0.05%に調製し、表2に従って各水溶液を混合した以外は実施例1と同様の条件で銀/木材CSNF複合体の作製を行った。
<Comparative Example 1>
A silver / wood CSNF composite was prepared under the same conditions as in Example 1 except that the solid content concentration of the CSNF dispersion to be used was adjusted to 0.05% and each aqueous solution was mixed according to Table 2.
前記銀/木材CSNF複合体に関して、実施例1と同様の方法で分光吸収スペクトルを測定したところ、近赤外領域における分光スペクトル吸収帯および吸収ピークは全く見られず、硝酸銀水溶液添加量が増加するに従い、球状銀ナノ粒子に由来する400nm付近の吸収ピーク強度が増大していた。実施例1と同様の方法でSTEM観察により該銀/木材CSNF複合体の形状を観察したとこと、木材CSNF上に粒子径20nm以下の球状銀ナノ粒子が高密度に担持されていることが判明した。 With respect to the silver / wood CSNF composite, the spectral absorption spectrum was measured in the same manner as in Example 1. As a result, no spectral spectrum absorption band and absorption peak in the near infrared region were observed, and the amount of silver nitrate aqueous solution added increased. As a result, the absorption peak intensity around 400 nm derived from spherical silver nanoparticles increased. It was found that the shape of the silver / wood CSNF composite was observed by STEM observation in the same manner as in Example 1, and that spherical silver nanoparticles having a particle diameter of 20 nm or less were supported at high density on the wood CSNF. did.
該銀/木材CSNF複合体を用い、実施例1と同様の方法で積層体を作製および遮熱効果を確認したところ、有意な遮熱効果は得られなかった。また、該積層体自体の外観において非常に黄色味が強く、本条件において作製された積層体は遮熱フィルムとしての利用には適さないことが確認された。 Using the silver / wood CSNF composite, a laminate was prepared and the heat shielding effect was confirmed in the same manner as in Example 1. As a result, a significant heat shielding effect was not obtained. Further, the appearance of the laminate itself was very yellow, and it was confirmed that the laminate produced under these conditions was not suitable for use as a heat-shielding film.
<比較例2>
バイアル瓶に固形分0.2%の木材CSNFを2mLずつとり、室温で攪拌しながら、用意した各濃度の塩化金酸水溶液(1.5、2.0、2.5、3.0mM)を2mLずつそれぞれ添加し、金イオンを還元するのに十分な量の水素化ホウ素ナトリウム水溶液をさらに添加して金/CSNF複合体を作製した。
<Comparative example 2>
Take 2 mL of 0.2% solid wood CSNF in a vial and stir at room temperature with each prepared chloroauric acid aqueous solution (1.5, 2.0, 2.5, 3.0 mM). 2 mL each was added, and a sufficient amount of aqueous sodium borohydride solution to reduce gold ions was further added to prepare a gold / CSNF composite.
前記金/CSNF複合体に関して、実施例1と同様の方法でSTEM観察したところ、1.5mMの塩化金酸を用いた場合は木材CSNF上に金ナノ粒子が高密度に析出しており、塩化金酸濃度が上昇するに連れて、金ナノ粒子が凝集している様子が観察された。さらに実施例1と同様に分光吸収スペクトルを測定したところ、1.5mMの塩化金酸を用いた試料では510nm付近に金ナノ粒子の吸収ピークが観察されたが、塩化金酸の濃度が高くなるに連れて510nm付近の吸収ピークが高波長側に向けてブロードになっていることが分かった。この現象は金ナノ粒子同士の凝集を示している。本手法で作製された金/木材CSNF複合体には、近赤外領域において吸収を示すピークは見出されなかった。 Regarding the gold / CSNF composite, STEM observation was performed in the same manner as in Example 1. As a result, when 1.5 mM chloroauric acid was used, gold nanoparticles were precipitated at a high density on wood CSNF. As the gold acid concentration increased, it was observed that gold nanoparticles aggregated. Further, when the spectral absorption spectrum was measured in the same manner as in Example 1, the absorption peak of gold nanoparticles was observed near 510 nm in the sample using 1.5 mM chloroauric acid, but the concentration of chloroauric acid was increased. It was found that the absorption peak near 510 nm broadens toward the high wavelength side. This phenomenon indicates aggregation of gold nanoparticles. In the gold / wood CSNF composite produced by this method, no peak showing absorption in the near infrared region was found.
本発明によればバイオマス材料を用いた低環境負荷且つ簡便なプロセスにより近赤外線遮蔽材料とその製造方法およびそれを用いた遮熱フィルムを提供することが可能となる。該遮熱フィルムを官公庁施設、商業施設、工場施設、オフィスビル、戸建て住宅、マンションなどの建築物あるいは自動車用のウィンドウフィルムとして用いれば、快適な空調コントロールを保ちつつ、節電および省エネ効果が達成される。こうしたエネルギー問題の解決と材料自体の持つ環境調和性との相乗効果によって、本発明は持続的に発展可能な資源循環型社会の構築に大きく貢献することが予想される。また、本発明で得られる金属/微細化セルロース繊維複合体は、カーボンニュートラルな新規光学材料として例えばセキュリティ材料への応用も可能であり、様々な分野への波及効果も期待される。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a near-infrared shielding material, its manufacturing method, and a thermal-insulation film using the same by the low environmental load and simple process using biomass material. If this thermal barrier film is used as a window film for government buildings, commercial facilities, factory facilities, office buildings, detached houses, condominiums, or automobiles, it is possible to achieve power saving and energy saving effects while maintaining comfortable air conditioning control. The It is expected that the present invention will greatly contribute to the construction of a resource recycling society that can be continuously developed by the synergistic effect of the solution of the energy problem and the environmental harmony of the material itself. Further, the metal / micronized cellulose fiber composite obtained by the present invention can be applied to, for example, a security material as a new carbon neutral optical material, and a ripple effect in various fields is also expected.
特になし nothing special
Claims (3)
該微細化セルロース繊維分散体と少なくとも銀イオンを含む金属イオン含有水溶液を混合することで混合溶液を得る工程と、
該混合溶液中の銀イオンを還元して、前記微細化されたセルロース繊維ネットワーク構造中に、銀ナノ粒子(球状を除く)が析出した、前記銀ナノ粒子(球状を除く)と微細化セルロース繊維の複合体を作製する工程と、
を具備する、前記混合溶液中の銀イオン濃度を変更することにより、分光吸収スペクトルの吸収ピークを変化させることを特徴とする銀と微細化セルロース繊維の複合体の製造方法。 A step of dispersing the refined cellulose fiber in a solvent containing at least 50% of water to obtain a refined cellulose fiber dispersion in which the concentration of the refined cellulose fiber is 0.1% or more and less than 5%;
A step of obtaining a mixed solution by mixing the fine cellulose fiber dispersion and a metal ion-containing aqueous solution containing at least silver ions;
The silver nanoparticles (excluding spheres) and the refined cellulose fibers are obtained by reducing silver ions in the mixed solution and depositing silver nanoparticles (excluding spheres) in the refined cellulose fiber network structure. Producing a composite of
A method for producing a composite of silver and fine cellulose fibers, wherein the absorption peak of the spectral absorption spectrum is changed by changing the silver ion concentration in the mixed solution.
A method for producing a thermal barrier film, comprising: applying a composite of silver and fine cellulose fiber produced by the production method according to claim 1 or 2 onto a substrate and drying the composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012255102A JP6303258B2 (en) | 2012-11-21 | 2012-11-21 | Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012255102A JP6303258B2 (en) | 2012-11-21 | 2012-11-21 | Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014101461A JP2014101461A (en) | 2014-06-05 |
JP6303258B2 true JP6303258B2 (en) | 2018-04-04 |
Family
ID=51024261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012255102A Active JP6303258B2 (en) | 2012-11-21 | 2012-11-21 | Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6303258B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6260451B2 (en) * | 2014-05-21 | 2018-01-17 | 凸版印刷株式会社 | POROUS BODY, PROCESS FOR PRODUCING THE SAME, AND HEAT SHIELDING FILM |
JP6558768B2 (en) * | 2015-06-23 | 2019-08-14 | 国立大学法人信州大学 | Method for producing composite nanofiber |
JP6728588B2 (en) * | 2015-07-29 | 2020-07-22 | 凸版印刷株式会社 | Cut flower prolongation agent and method for producing cut flower prolongation agent |
CN111057273A (en) * | 2019-12-18 | 2020-04-24 | 华南理工大学 | Preparation and application of ATO heat insulation film based on natural cellulose nanofibers |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4393459B2 (en) * | 2003-01-15 | 2010-01-06 | 株式会社ブリヂストン | Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell |
JP2005105376A (en) * | 2003-09-30 | 2005-04-21 | Sumitomo Osaka Cement Co Ltd | Silver fine particle and its production method |
CN1942271A (en) * | 2005-02-07 | 2007-04-04 | 信浓绢糸株式会社 | Method for producing composite particles |
JP4855040B2 (en) * | 2005-10-14 | 2012-01-18 | 富士フイルム株式会社 | Infrared shielding filter |
JP2010202855A (en) * | 2009-02-06 | 2010-09-16 | Kao Corp | Film-like formed article and manufacturing method therefor |
JP2010202856A (en) * | 2009-02-06 | 2010-09-16 | Kao Corp | Suspension of cellulose fiber and method for producing the same |
WO2010095574A1 (en) * | 2009-02-18 | 2010-08-26 | 国立大学法人 九州大学 | Complex comprising cellulose nanofibers and metal nanoparticles, and process for producing same |
-
2012
- 2012-11-21 JP JP2012255102A patent/JP6303258B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014101461A (en) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6690531B2 (en) | Composite, composite manufacturing method, dispersion, dispersion manufacturing method, and optical material | |
JP6083165B2 (en) | Method for producing metal / cellulose composite fine fiber, dispersion containing metal / cellulose composite fine fiber, and method for producing transparent conductive film | |
JP6260077B2 (en) | Antibacterial coating agent | |
JP6421455B2 (en) | Method for producing composite, and composite | |
JP6446834B2 (en) | Method for producing composite and dispersion of fine cellulose fiber | |
JP6248511B2 (en) | Thickening and coloring antibacterial agent, method for producing the same, and composition for personal care products | |
JP6260451B2 (en) | POROUS BODY, PROCESS FOR PRODUCING THE SAME, AND HEAT SHIELDING FILM | |
JP6303258B2 (en) | Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film | |
JP6446829B2 (en) | Infrared shielding material, coating composition, and infrared shielding film | |
JP2013209779A (en) | Formed body and method for producing the same | |
US20230349095A1 (en) | Method for sonochemical deposition of metals on textile substrates and products thereof | |
JP6926571B2 (en) | Manufacturing method of freshness-preserving sheet and freshness-preserving sheet | |
JP6631260B2 (en) | Antifogging film and antifogging composition | |
JP7167433B2 (en) | Resin composition and method for producing resin composition | |
Zhou et al. | A facile method for fabricating color adjustable multifunctional cotton fabrics with solid solution BiOBr x I 1− x nanosheets | |
JP6402454B2 (en) | Optical material and optical filter | |
JP7143628B2 (en) | Resin molding and its manufacturing method | |
JP7031144B2 (en) | Resin molded body, manufacturing method of resin molded body, and resin composition | |
JP2019065409A (en) | Dry solid and method for producing dry solid | |
JP7009762B2 (en) | Porous body and method for manufacturing the porous body | |
JP6925948B2 (en) | Antibacterial fine cellulose | |
JP6728588B2 (en) | Cut flower prolongation agent and method for producing cut flower prolongation agent | |
JP6638783B2 (en) | Optical filter | |
JP2013096000A (en) | Copper plating polymer and method for manufacturing the same | |
JP2016207879A (en) | Ferrofluid and method for producing ferrofluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6303258 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |