[go: up one dir, main page]

JP6299618B2 - Power converter and manufacturing method thereof - Google Patents

Power converter and manufacturing method thereof Download PDF

Info

Publication number
JP6299618B2
JP6299618B2 JP2015015206A JP2015015206A JP6299618B2 JP 6299618 B2 JP6299618 B2 JP 6299618B2 JP 2015015206 A JP2015015206 A JP 2015015206A JP 2015015206 A JP2015015206 A JP 2015015206A JP 6299618 B2 JP6299618 B2 JP 6299618B2
Authority
JP
Japan
Prior art keywords
housing member
cooler
semiconductor module
generating electronic
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015015206A
Other languages
Japanese (ja)
Other versions
JP2016139749A (en
Inventor
直樹 平澤
直樹 平澤
龍太 田辺
龍太 田辺
哲矢 松岡
哲矢 松岡
和哉 竹内
和哉 竹内
坂本 章
章 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015015206A priority Critical patent/JP6299618B2/en
Publication of JP2016139749A publication Critical patent/JP2016139749A/en
Application granted granted Critical
Publication of JP6299618B2 publication Critical patent/JP6299618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体モジュール及び発熱電子部品を有する電力変換装置及びその製造方法に関する。   The present invention relates to a power conversion device having a semiconductor module and a heat generating electronic component, and a manufacturing method thereof.

従来から、電気自動車、ハイブリッド自動車等の動力源である交流モータと、車両に搭載された直流バッテリーとの間において、電力の変換を行うための電力変換装置がある。電力変換装置には、スイッチング素子を内蔵してなる複数の半導体モジュールが配設されている。半導体モジュールは、スイッチング素子に流れる被制御電流によって発熱する。   Conventionally, there is a power conversion device for converting power between an AC motor, which is a power source of an electric vehicle, a hybrid vehicle, and the like, and a DC battery mounted on the vehicle. In the power converter, a plurality of semiconductor modules each including a switching element are disposed. The semiconductor module generates heat due to the controlled current flowing through the switching element.

また、電力変換装置には、半導体モジュール以外にも、リアクトル等の発熱電子部品が組み込まれている。そのため、半導体モジュールのみならず、それ以外の発熱電子部品についても、冷却を行うことが求められる場合がある。   In addition to the semiconductor module, the power conversion device incorporates a heat generating electronic component such as a reactor. Therefore, it may be required to cool not only the semiconductor module but also other heat generating electronic components.

そこで、特許文献1に記載の電力変換装置においては、半導体モジュール及びリアクトルと共に複数の冷却管を積層して積層体を構成している。これにより、半導体モジュールとリアクトルとの双方を冷却管にて冷却することができる。そして、上記積層体は、積層方向の両側から加圧されることにより、半導体モジュール及びリアクトルと冷却管との密着度を高め、冷却性能の向上を図っている。   Therefore, in the power conversion device described in Patent Document 1, a plurality of cooling pipes are stacked together with the semiconductor module and the reactor to form a stacked body. Thereby, both a semiconductor module and a reactor can be cooled with a cooling pipe. And the said laminated body is pressurized from the both sides of a lamination direction, raises the adhesiveness of a semiconductor module, a reactor, and a cooling pipe, and aims at the improvement of cooling performance.

特開2014−138012号公報JP 2014-138812 A

しかしながら、近年、電力変換装置の高出力化に伴う大電流化によって発熱電子部品の発熱量も大きくなる傾向にある。それゆえ、発熱電子部品の冷却性能をより向上させることが要望されている。   However, in recent years, the amount of heat generated by the heat-generating electronic components tends to increase due to the increase in current accompanying the increase in output of the power converter. Therefore, it is desired to further improve the cooling performance of the heat generating electronic component.

本発明は、かかる背景に鑑みてなされたものであり、発熱電子部品の冷却性能の向上を図ることができる電力変換装置及びその製造方法を提供しようとするものである。   The present invention has been made in view of such a background, and an object of the present invention is to provide a power conversion device capable of improving the cooling performance of heat-generating electronic components and a method for manufacturing the same.

本発明の一態様は、半導体素子を内蔵してなる半導体モジュールと、
通電により発熱する発熱電子部品と、
上記発熱電子部品を収容する収容部材と、
上記半導体モジュール及び上記発熱電子部品を冷却する冷却器と、を有し、
上記冷却器は、互いの間に間隔を設けて配置された複数の冷却管を有し、
上記収容部材は、熱伝導性を有する部材からなると共に、底面部と、該底面部の端縁の全周から立設した側面部とからなり、
上記半導体モジュールと上記収容部材に収容された上記発熱電子部品と上記冷却管とは、積層配置されて積層体を構成しており、
上記半導体モジュール及び上記収容部材は、それぞれ積層方向の両側から上記冷却管によって挟持されており、
上記収容部材は、側面部の立設方向が、積層方向に直交する方向となるように配されており、
上記積層体は、積層方向に加圧されており、
上記収容部材は、ろう付けにより上記冷却器に接合されていることを特徴とする電力変換装置にある。
One embodiment of the present invention is a semiconductor module including a semiconductor element;
Heat-generating electronic components that generate heat when energized;
A housing member for housing the heat generating electronic component;
A cooler for cooling the semiconductor module and the heat generating electronic component,
The cooler has a plurality of cooling pipes arranged at intervals between each other,
The housing member is composed of a member having thermal conductivity, and includes a bottom surface portion, and a side surface portion erected from the entire circumference of the edge of the bottom surface portion,
The semiconductor module, the heat generating electronic component housed in the housing member, and the cooling pipe are stacked to form a stacked body,
The semiconductor module and the housing member are sandwiched by the cooling pipes from both sides in the stacking direction,
The housing member is arranged so that the standing direction of the side surface portion is a direction orthogonal to the stacking direction,
The laminate is pressurized in the lamination direction,
The power storage device is characterized in that the housing member is joined to the cooler by brazing.

本発明の他の態様は、上記電力変換装置を製造する方法であって、
上記冷却器の構成部材同士の接合面、及び、上記冷却器の構成部材と上記収容部材との接合面にろう材が配置された状態において、上記構成部材及び上記収容部材を仮組みして仮組体を形成する仮組工程と、
上記仮組体を加熱処理して、上記複数の接合面をろう付けして複数の上記構成部材及び上記収容部材を互いに固定して、上記収容部材を一体化した上記冷却器を形成するろう付け工程と、
隣り合う上記冷却管の間に上記半導体モジュールを配置すると共に、上記収容部材に上記発熱電子部品を配置する部品配置工程と、を有することを特徴とする電力変換装置の製造方法にある。
Another aspect of the present invention is a method for manufacturing the above power converter,
In the state where the brazing material is disposed on the joining surfaces of the constituent members of the cooler and the joining surfaces of the constituent members of the cooler and the housing member, the constituent members and the housing member are temporarily assembled and temporarily installed. A temporary assembly process for forming an assembly;
The temporary assembly is heat-treated, the plurality of joint surfaces are brazed, the plurality of constituent members and the housing member are fixed to each other, and the cooler integrated with the housing member is formed. Process,
The semiconductor module is disposed between the adjacent cooling pipes, and a component disposing step of disposing the heat generating electronic component on the housing member.

上記電力変換装置は、発熱電子部品を収容する収容部材を有する。そして、収容部材は、熱伝導性を有する部材からなると共に、底面部と、該底面部の端縁の全周から立設した側面部とからなる。それゆえ、発熱電子部品は、収容部材の底面部と側面部とから囲われるため、発熱電子部品の各部位から収容部材までの伝熱距離を短くすることができる。そして、収容部材は、積層方向の両側から冷却管によって挟持されているため、収容部材から冷却管までの伝熱距離を小さくすることができる。その結果、発熱電子部品の各部位から冷却管までの伝熱距離を小さくすることができ、発熱電子部品の冷却性能の向上を図ることができる。   The power converter includes a housing member that houses a heat generating electronic component. The housing member includes a member having thermal conductivity, and includes a bottom surface portion and a side surface portion erected from the entire periphery of the edge of the bottom surface portion. Therefore, since the heat generating electronic component is surrounded by the bottom surface portion and the side surface portion of the housing member, the heat transfer distance from each part of the heat generating electronic component to the housing member can be shortened. And since the accommodating member is clamped by the cooling pipe from both sides in the stacking direction, the heat transfer distance from the accommodating member to the cooling pipe can be reduced. As a result, the heat transfer distance from each part of the heat generating electronic component to the cooling pipe can be reduced, and the cooling performance of the heat generating electronic component can be improved.

また、収容部材は、冷却器に対してろう付けされている。それゆえ、収容部材と冷却器との間の熱抵抗を小さくすることができ、これに伴い、収容部材に収容された発熱電子部品の各部から冷却器までの熱抵抗を小さくすることができ、発熱電子部品の冷却性能を一層向上させることができる。   Further, the housing member is brazed to the cooler. Therefore, the thermal resistance between the housing member and the cooler can be reduced, and accordingly, the thermal resistance from each part of the heat generating electronic component housed in the housing member to the cooler can be reduced, The cooling performance of the heat generating electronic component can be further improved.

また、上記電力変換装置の製造方法は、仮組体を加熱処理して、上記複数の接合面をろう付けして複数の上記構成部材及び収容部材を互いに固定して、収容部材を一体化した冷却器を形成するろう付け工程を有する。それゆえ、冷却器の構成部材同士の接合面と、冷却器の構成部材と収容部材との接合面とのろう付けを同時に行うことができ、上記電力変換装置を効率よく製造することができる。   Further, in the method for manufacturing the power conversion device, the temporary assembly is heat-treated, the plurality of joining surfaces are brazed, the plurality of the constituent members and the housing member are fixed to each other, and the housing member is integrated. A brazing step for forming a cooler; Therefore, it is possible to simultaneously braze the joint surface between the constituent members of the cooler and the joint surface of the constituent member of the cooler and the housing member, and the power converter can be efficiently manufactured.

以上のごとく、本発明によれば、発熱電子部品の冷却性能の向上を図ることができる電力変換装置及びその製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a power conversion device capable of improving the cooling performance of a heat generating electronic component and a manufacturing method thereof.

実施形態1における、電力変換装置の平面図。The top view of the power converter device in Embodiment 1. FIG. 実施形態1における、収容部材が一体化された冷却器の斜視図。The perspective view of the cooler with which the accommodating member in Embodiment 1 was integrated. 実施形態1における、収容部材が一体化された冷却器の平面図。The top view of the cooler with which the accommodating member in Embodiment 1 was integrated. 図3の、IV−IV線矢視断面図。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. 図3の、V−V線矢視断面図。The VV arrow directional cross-sectional view of FIG. 実施形態1における、収容部材及び冷却器の分解斜視図。FIG. 3 is an exploded perspective view of a housing member and a cooler in the first embodiment.

(実施形態1)
電力変換装置の実施形態につき、図1〜図6を用いて説明する。
電力変換装置1は、図1に示すごとく、半導体素子を内蔵してなる半導体モジュール2と、通電により発熱する発熱電子部品3と、発熱電子部品3を収容する収容部材4と、半導体モジュール2及び発熱電子部品3を冷却する冷却器5と、を有する。図1〜図3、図5に示すごとく、冷却器5は、互いの間に間隔を設けて配置された複数の冷却管51を有する。図1〜図5に示すごとく、収容部材4は、熱伝導性を有する部材からなると共に、底面部41と、底面部41の端縁の全周から立設した側面部42とからなる。
(Embodiment 1)
An embodiment of a power conversion device will be described with reference to FIGS.
As shown in FIG. 1, the power conversion device 1 includes a semiconductor module 2 including a semiconductor element, a heat generating electronic component 3 that generates heat when energized, a housing member 4 that stores the heat generating electronic component 3, a semiconductor module 2, And a cooler 5 that cools the heat generating electronic component 3. As shown in FIG. 1 to FIG. 3 and FIG. 5, the cooler 5 includes a plurality of cooling pipes 51 that are arranged with a space therebetween. As shown in FIGS. 1 to 5, the housing member 4 is composed of a member having thermal conductivity, and includes a bottom surface portion 41 and a side surface portion 42 erected from the entire periphery of the edge of the bottom surface portion 41.

図1に示すごとく、半導体モジュール2と収容部材4に収容された発熱電子部品3と冷却管51とは、積層配置されて積層体11を構成している。半導体モジュール2及び収容部材4は、それぞれ積層方向Xの両側から冷却管51によって挟持されている。図2、図4、図5に示すごとく、収容部材4は、側面部42の立設方向が、積層方向Xに直交する方向となるように配されている。図1に示すごとく、積層体11は、積層方向Xに加圧されている。収容部材4は、ろう付けにより冷却器5に接合されている。   As shown in FIG. 1, the semiconductor module 2, the heat generating electronic component 3 housed in the housing member 4, and the cooling pipe 51 are stacked and constitute a stacked body 11. The semiconductor module 2 and the housing member 4 are sandwiched by cooling pipes 51 from both sides in the stacking direction X, respectively. As shown in FIGS. 2, 4, and 5, the accommodating member 4 is arranged such that the standing direction of the side surface portion 42 is a direction orthogonal to the stacking direction X. As shown in FIG. 1, the stacked body 11 is pressurized in the stacking direction X. The housing member 4 is joined to the cooler 5 by brazing.

本実施形態において、発熱電子部品3は、電力変換装置1における電源電圧を所定電圧に昇圧する昇圧回路の一部を構成するリアクトルである。以下において、適宜、リアクトル3という。
また、以下において、積層方向Xに直交する方向であって、収容部材4の側面部42が立設する方向を高さ方向Zという。また、積層方向Xと高さ方向Zとの双方に直交する方向を幅方向Yという。
In the present embodiment, the heat generating electronic component 3 is a reactor that constitutes a part of a booster circuit that boosts the power supply voltage in the power conversion device 1 to a predetermined voltage. Hereinafter, it is referred to as a reactor 3 as appropriate.
In the following, the direction perpendicular to the stacking direction X and in which the side surface portion 42 of the housing member 4 stands is referred to as the height direction Z. A direction perpendicular to both the stacking direction X and the height direction Z is referred to as a width direction Y.

図1〜図3に示すごとく、冷却器5は、幅方向Yを長手方向とした複数の冷却管51を、互いに隙間を設けつつ積層してなる。本実施形態においては、図1に示すごとく、冷却管51の間の隙間のうち、積層方向Xの一端側の隙間に収容部材4が配され、その他の隙間に半導体モジュール2が配される。   As shown in FIGS. 1 to 3, the cooler 5 is formed by laminating a plurality of cooling pipes 51 whose longitudinal direction is the width direction Y while providing gaps therebetween. In the present embodiment, as shown in FIG. 1, among the gaps between the cooling pipes 51, the housing member 4 is arranged in the gap on one end side in the stacking direction X, and the semiconductor module 2 is arranged in the other gap.

なお、以下においては、便宜上、冷却器5における収容部材4が配される側を後側、その反対側を前側という。   In the following, for convenience, the side of the cooler 5 where the housing member 4 is disposed is referred to as a rear side, and the opposite side is referred to as a front side.

図1〜図3に示すごとく、積層方向Xにおいて隣り合う冷却管51は、互いに、幅方向Yの両端部付近において連結されている。収容部材4を挟持する一対の冷却管51は、連結管52によって連結されている。つまり、冷却器5は、収容部材4を挟んで積層方向Xに隣り合う冷却管51同士を、冷却管51の流路方向の両端部においてそれぞれ連結する一対の連結管52を有する。収容部材4は、連結管52にろう付けによって接合されている。半導体モジュール2を挟んで隣り合う冷却管51同士の連結部53は、冷却管51から積層方向Xに突出した部位同士をろう付けして構成されていてもよいし、別部材を一対の冷却管51にろう付けして構成されていてもよい。   As shown in FIGS. 1 to 3, the cooling pipes 51 adjacent in the stacking direction X are connected to each other in the vicinity of both ends in the width direction Y. The pair of cooling pipes 51 that sandwich the housing member 4 are connected by a connecting pipe 52. That is, the cooler 5 includes a pair of connecting pipes 52 that connect the cooling pipes 51 adjacent to each other in the stacking direction X across the housing member 4 at both ends of the cooling pipe 51 in the flow path direction. The accommodating member 4 is joined to the connecting pipe 52 by brazing. The connecting portion 53 between the cooling pipes 51 that are adjacent to each other with the semiconductor module 2 interposed therebetween may be configured by brazing portions protruding from the cooling pipe 51 in the stacking direction X, or another member may be a pair of cooling pipes. 51 may be brazed.

本実施形態において、リアクトル3は、積層方向Xにおける寸法が、半導体モジュール2よりも大きい。これに伴い、冷却器5における収容部材4が配置される隙間は、半導体モジュール2が配置される隙間よりも、積層方向Xの寸法が大きく、連結管52は連結部53よりも長い。   In the present embodiment, the reactor 3 is larger in dimension in the stacking direction X than the semiconductor module 2. Accordingly, the gap in the cooler 5 in which the housing member 4 is arranged has a larger dimension in the stacking direction X than the gap in which the semiconductor module 2 is arranged, and the connecting pipe 52 is longer than the connecting portion 53.

冷却器5における積層方向Xの前端部には、冷却器5に冷媒を導入する冷媒導入管54と、冷却器5から冷媒を排出する冷媒排出管55とが設けてある。   At the front end of the cooler 5 in the stacking direction X, a refrigerant introduction pipe 54 that introduces a refrigerant into the cooler 5 and a refrigerant discharge pipe 55 that discharges the refrigerant from the cooler 5 are provided.

図2〜図5に示すごとく、収容部材4は、高さ方向Zに立設した略矩形筒状の側面部42と、高さ方向Zにおける側面部42の一端を閉塞する略矩形状の底面部41とを有する。収容部材4は、高さ方向Zにおける側面部42の底面部41と反対側が開口している。なお、以下においては、便宜上、高さ方向Zにおける収容部材4の開口側を上側、その反対側を下側という。   As shown in FIGS. 2 to 5, the housing member 4 includes a substantially rectangular cylindrical side surface 42 erected in the height direction Z, and a substantially rectangular bottom surface that closes one end of the side surface 42 in the height direction Z. Part 41. The accommodation member 4 is open on the side opposite to the bottom surface portion 41 of the side surface portion 42 in the height direction Z. In the following, for convenience, the opening side of the housing member 4 in the height direction Z is referred to as the upper side, and the opposite side is referred to as the lower side.

収容部材4は、幅方向Yにおける側面部42の両端側に、積層方向Xに直交する断面形状が下側に凸の略円弧状を有する一対の面接触部43と、側面部42の上端から延設されて側面部42と面接触部43における側面部42に近い側の端部とをつなぐ一対の延設部44とを有する。本実施形態において、面接触部43は、積層方向Xにおける寸法が、連結管52の寸法の半分以上であって、連結管52の全長以下である。   The accommodating member 4 has a pair of surface contact portions 43 having a substantially arc shape with a cross-sectional shape perpendicular to the stacking direction X projecting downward from both ends of the side surface portion 42 in the width direction Y, and an upper end of the side surface portion 42. A pair of extending portions 44 that extend and connect the side surface portion 42 and the end portion of the surface contact portion 43 near the side surface portion 42 are provided. In the present embodiment, the surface contact portion 43 has a dimension in the stacking direction X that is not less than half the dimension of the connecting pipe 52 and not more than the entire length of the connecting pipe 52.

収容部材4の一対の面接触部43の上面は、一対の連結管52の外周面に面接触しており、当該接触面の全体において、面接触部43と連結管52とはろう付けにより接合されている。また、図3、図5に示すごとく、収容部材4の側面部42の前端面421及び後端面422は、それぞれ、冷却管51に面接触しており、当該接触面の全体において、側面部42の前端面421及び後端面422と冷却管51とは、ろう付けにより接合されている。   The upper surfaces of the pair of surface contact portions 43 of the housing member 4 are in surface contact with the outer peripheral surfaces of the pair of connection tubes 52, and the surface contact portions 43 and the connection tubes 52 are joined by brazing over the entire contact surfaces. Has been. Further, as shown in FIGS. 3 and 5, the front end surface 421 and the rear end surface 422 of the side surface portion 42 of the housing member 4 are in surface contact with the cooling pipe 51, respectively. The front end surface 421 and the rear end surface 422 are connected to the cooling pipe 51 by brazing.

本実施形態において、収容部材4は、冷却器5と同じ材料からなる。収容部材4及び冷却器5は、アルミニウムからなる。   In the present embodiment, the housing member 4 is made of the same material as the cooler 5. The housing member 4 and the cooler 5 are made of aluminum.

図1に示すごとく、収容部材4には、リアクトル3が収容されている。リアクトル3は、磁性粉末混合樹脂31と、磁性粉末混合樹脂31に埋設されたコイル(図示略)とからなる。リアクトル3は、上面以外の表面を、収容部材4の内面に密着させている。すなわち、リアクトル3の磁性粉末混合樹脂31の底面は、収容部材4の底面部41に面接触しており、磁性粉末混合樹脂31の側面は、収容部材4の側面部42に面接触している。   As shown in FIG. 1, the reactor 3 is accommodated in the accommodating member 4. The reactor 3 includes a magnetic powder mixed resin 31 and a coil (not shown) embedded in the magnetic powder mixed resin 31. The reactor 3 has a surface other than the upper surface in close contact with the inner surface of the housing member 4. That is, the bottom surface of the magnetic powder mixed resin 31 of the reactor 3 is in surface contact with the bottom surface portion 41 of the housing member 4, and the side surface of the magnetic powder mixed resin 31 is in surface contact with the side surface portion 42 of the housing member 4. .

連結部53によって連結された冷却管51同士の間の隙間に、半導体モジュール2が配されている。半導体モジュール2は、両主面において、例えばグリスを介して冷却管51と面接触している。半導体モジュール2と収容部材4と冷却管51とによって積層体11が構成されている。   The semiconductor module 2 is arranged in a gap between the cooling pipes 51 connected by the connecting portion 53. The semiconductor module 2 is in surface contact with the cooling pipe 51 via, for example, grease on both main surfaces. A stacked body 11 is configured by the semiconductor module 2, the housing member 4, and the cooling pipe 51.

冷媒導入管54から導入された冷媒は、連結管52を適宜通り、各冷却管51に分配されると共に、冷却管51内部の冷媒流路を介してその長手方向(幅方向Y)に流通する。そして、各冷却管51を流れる間に、冷媒は半導体モジュール2及びリアクトル3との間で熱交換を行う。熱交換により温度上昇した冷媒は、下流側の連結管52を適宜通り、冷媒排出管55に導かれ、冷却器5から排出される。   The refrigerant introduced from the refrigerant introduction pipe 54 passes through the connecting pipe 52 as appropriate, is distributed to each cooling pipe 51, and circulates in the longitudinal direction (width direction Y) via the refrigerant flow path inside the cooling pipe 51. . Then, the refrigerant exchanges heat between the semiconductor module 2 and the reactor 3 while flowing through the cooling pipes 51. The refrigerant whose temperature has increased due to heat exchange passes through the downstream connection pipe 52 as appropriate, is led to the refrigerant discharge pipe 55, and is discharged from the cooler 5.

冷媒としては、例えば、水やアンモニア等の自然冷媒、エチレングリコール系の不凍液を混入した水、フロリナート(商標)等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、メタノール、アルコール等のアルコール系冷媒、アセトン等のケトン系冷媒等の冷媒を用いることができる。   Examples of the refrigerant include natural refrigerants such as water and ammonia, water mixed with ethylene glycol antifreeze, fluorocarbon refrigerants such as Fluorinert (trademark), chlorofluorocarbon refrigerants such as HCFC123 and HFC134a, methanol, alcohol, and the like. A refrigerant such as an alcohol refrigerant or a ketone refrigerant such as acetone can be used.

上述のごとく、積層体11は、積層方向Xに加圧されている。すなわち、電力変換装置1は、ケース6内に積層体11を配置し、積層体11の後端側に、加圧部材7を配置してなる。加圧部材7は、積層体11の後端面111を、積層方向Xに、前方へ向かって加圧している。加圧部材7は、例えば板バネからなり、積層方向Xに圧縮弾性変形した状態で、積層体11の後端面111と、該後端面111に対向するケース6の内壁面61との間に介設されている。ただし、加圧部材7の構成や配置の仕方は、特に限定されるものではない。   As described above, the stacked body 11 is pressurized in the stacking direction X. That is, the power conversion device 1 is configured by disposing the stacked body 11 in the case 6 and the pressing member 7 on the rear end side of the stacked body 11. The pressing member 7 pressurizes the rear end surface 111 of the stacked body 11 in the stacking direction X toward the front. The pressure member 7 is made of, for example, a leaf spring, and is interposed between the rear end surface 111 of the multilayer body 11 and the inner wall surface 61 of the case 6 facing the rear end surface 111 in a state of being compressed and elastically deformed in the stacking direction X. It is installed. However, the configuration and arrangement of the pressure member 7 are not particularly limited.

電力変換装置1は、例えば、電気自動車やハイブリッド自動車等に搭載され、電源電力を駆動用モータの駆動に必要な駆動用電力に変換するインバータとして用いられる。   The power conversion device 1 is mounted on, for example, an electric vehicle, a hybrid vehicle, or the like, and is used as an inverter that converts power supply power to drive power necessary for driving a drive motor.

次に、電力変換装置1の製造方法について、説明する。
電力変換装置1の製造方法は、以下の仮組工程とろう付け工程と部品配置工程とを有する。
Next, the manufacturing method of the power converter device 1 is demonstrated.
The manufacturing method of the power converter device 1 includes the following temporary assembly process, brazing process, and component placement process.

仮組工程においては、冷却器5の構成部材50(図6参照)同士の接合面、及び、冷却器5の構成部材50と収容部材4との接合面にろう材が配置された状態において、構成部材50及び収容部材4を仮組みして仮組体を形成する。ろう付け工程においては、仮組体を加熱処理して、複数の接合面をろう付けして複数の構成部材50及び収容部材4を互いに固定して、収容部材4を一体化した冷却器5を形成する。部品配置工程においては、隣り合う冷却管51の間に半導体モジュール2を配置すると共に、収容部材4にリアクトル3を配置する。   In the temporary assembly process, in the state where the brazing material is disposed on the joint surfaces between the constituent members 50 (see FIG. 6) of the cooler 5 and the joint surfaces of the constituent members 50 and the housing member 4 of the cooler 5, The component member 50 and the housing member 4 are temporarily assembled to form a temporary assembly. In the brazing process, the temporary assembly is heat-treated, the plurality of joining surfaces are brazed, the plurality of constituent members 50 and the housing member 4 are fixed to each other, and the cooler 5 in which the housing member 4 is integrated is provided. Form. In the component placement step, the semiconductor module 2 is placed between the adjacent cooling pipes 51, and the reactor 3 is placed in the housing member 4.

冷却器5の構成部材50としては、上述の冷却管51、冷媒導入管54、冷媒排出管55、連結管52、連結部53がある。本例において、冷却管51は、一対の外殻プレート510と、外殻プレート510の間に配置されるフィン511とを接合してなる。それゆえ、外殻プレート510及びフィン511も、冷却器5の構成部材50となる。なお、連結部53については、外殻プレート510の一部同士を連結することによって構成されていてもよい。   The component member 50 of the cooler 5 includes the above-described cooling pipe 51, refrigerant introduction pipe 54, refrigerant discharge pipe 55, connection pipe 52, and connection portion 53. In this example, the cooling pipe 51 is formed by joining a pair of outer shell plates 510 and fins 511 disposed between the outer shell plates 510. Therefore, the outer shell plate 510 and the fins 511 are also constituent members 50 of the cooler 5. The connecting portion 53 may be configured by connecting parts of the outer shell plate 510 to each other.

外殻プレート510は、片面もしくは両面にろう材層を備えたクラッド材をプレス成型することによって構成することができる。また、フィン511も、同様に、片面もしくは両面にろう材層を備えたクラッド材をプレス成型することによって構成することができる。また、収容部材4も、ろう材層を備えたクラッド材によって構成することもできる。   The outer shell plate 510 can be configured by press-molding a clad material having a brazing material layer on one side or both sides. Similarly, the fins 511 can also be configured by press molding a clad material provided with a brazing material layer on one or both sides. The housing member 4 can also be constituted by a clad material provided with a brazing material layer.

これにより、例えば、外殻プレート510同士の間、外殻プレート510とフィン511との間、外殻プレート510と、連結管52、連結部53、冷媒導入管54、冷媒排出管55等の構成部材50及び収容部材4、との間、或は、連結管52と収容部材4(面接触部43)との間の接合面にろう材を介在させた状態にて、構成部材50を仮組みすることができる。すなわち、接合面を構成する2つの構成部材50、或は、構成部材50及び収容部材4のうちの少なくともいずれか一方の面に、ろう材層が配された状態にて、構成部材50及び収容部材4を仮組みする。   Thereby, for example, between outer shell plates 510, between outer shell plates 510 and fins 511, outer shell plate 510, connecting pipe 52, connecting portion 53, refrigerant introduction pipe 54, refrigerant discharge pipe 55, etc. The component member 50 is temporarily assembled in a state where a brazing material is interposed between the member 50 and the housing member 4 or between the connecting pipe 52 and the housing member 4 (surface contact portion 43). can do. That is, in the state where the brazing filler metal layer is disposed on at least one of the two constituent members 50 constituting the joining surface, or the constituent member 50 and the containing member 4, the constituent member 50 and the containing member 50 are accommodated. The member 4 is temporarily assembled.

なお、構成部材50をクラッド材によって形成しなくても、接合面にろう材を塗布等によって配置した後、仮組体を構成してもよい。   In addition, even if it does not form the structural member 50 with a clad material, after arrange | positioning a brazing material to a joint surface by application | coating etc., you may comprise a temporary assembly.

ろう付け工程においては、仮組体を加熱炉内においてろう材の融点以上に加熱し、冷却器5の各構成部材50同士の接合面、冷却器5と冷媒導入管54及び冷媒排出管55との接合面、及び、収容部材4と冷却器5の構成部材50との接合面をろう付けする。これにより、複数の構成部材50及び収容部材4が互いに固定され、収容部材4が一体化された冷却器5を形成することができる。   In the brazing step, the temporary assembly is heated in the heating furnace to the melting point or higher of the brazing material, the joining surfaces of the constituent members 50 of the cooler 5, the cooler 5, the refrigerant introduction pipe 54, and the refrigerant discharge pipe 55. And the joining surfaces of the housing member 4 and the component member 50 of the cooler 5 are brazed. Thereby, the some component member 50 and the accommodating member 4 are mutually fixed, and the cooler 5 with which the accommodating member 4 was integrated can be formed.

次に、部品配置工程においては、連結部53によって連結された冷却管51同士の間の隙間に半導体モジュール2を配置する。また、収容部材4の内側には、コイルを配置し、その周囲に磁性粉末混合樹脂31を充填し、硬化させる。これにより、収容部材4にリアクトル3を配置することができる。このようにして、積層体11を構成することができる。   Next, in the component placement step, the semiconductor module 2 is placed in the gap between the cooling pipes 51 connected by the connecting portion 53. In addition, a coil is disposed inside the housing member 4, and the magnetic powder mixed resin 31 is filled around the coil and cured. Thereby, the reactor 3 can be arrange | positioned at the accommodating member 4. FIG. Thus, the laminated body 11 can be comprised.

そして、積層体11を冷媒導入管54及び冷媒排出管55を突出させつつケース6内に収容し、積層体11の後端面111とケース6の内壁面61との間に、圧縮された状態の加圧部材7を配置することにより、電力変換装置1を製造することができる。   And the laminated body 11 is accommodated in the case 6 with the refrigerant introduction pipe 54 and the refrigerant discharge pipe 55 protruding, and is compressed between the rear end surface 111 of the laminated body 11 and the inner wall surface 61 of the case 6. By arranging the pressure member 7, the power conversion device 1 can be manufactured.

次に、本実施形態の作用効果につき説明する。
電力変換装置1は、リアクトル3を収容する収容部材4を有する。そして、収容部材4は、熱伝導性を有する部材からなると共に、底面部41と、該底面部41の端縁の全周から立設した側面部42とからなる。それゆえ、リアクトル3は、収容部材4の底面部41と側面部42とから囲われるため、リアクトル3の各部位から収容部材4までの伝熱距離を短くすることができる。そして、収容部材4は、積層方向Xの両側から冷却管51によって挟持されているため、収容部材4から冷却管51までの伝熱距離を小さくすることができる。その結果、リアクトル3の各部位から冷却管51までの伝熱距離を小さくすることができ、リアクトル3の冷却性能の向上を図ることができる。
Next, the effect of this embodiment is demonstrated.
The power conversion device 1 includes a housing member 4 that houses the reactor 3. The housing member 4 is made of a member having thermal conductivity, and further comprises a bottom surface portion 41 and a side surface portion 42 erected from the entire circumference of the edge of the bottom surface portion 41. Therefore, since the reactor 3 is surrounded by the bottom surface portion 41 and the side surface portion 42 of the housing member 4, the heat transfer distance from each part of the reactor 3 to the housing member 4 can be shortened. Since the housing member 4 is sandwiched by the cooling pipes 51 from both sides in the stacking direction X, the heat transfer distance from the housing member 4 to the cooling pipe 51 can be reduced. As a result, the heat transfer distance from each part of the reactor 3 to the cooling pipe 51 can be reduced, and the cooling performance of the reactor 3 can be improved.

また、収容部材4は、冷却器5に対してろう付けされている。それゆえ、収容部材4と冷却器5との間の熱抵抗を小さくすることができ、これに伴い、収容部材4に収容されたリアクトル3の各部から冷却器5までの熱抵抗を小さくすることができ、リアクトル3の冷却性能を一層向上させることができる。   The accommodating member 4 is brazed to the cooler 5. Therefore, the thermal resistance between the accommodating member 4 and the cooler 5 can be reduced, and accordingly, the thermal resistance from each part of the reactor 3 accommodated in the accommodating member 4 to the cooler 5 is reduced. The cooling performance of the reactor 3 can be further improved.

また、リアクトル3は、積層方向Xにおける寸法が、半導体モジュール2よりも大きい。それゆえ、半導体モジュール2と比較して、リアクトル3は、各部位から冷却管51までの伝熱距離が長くなりやすい。そこで、収容部材4にリアクトル3を収容することにより、リアクトル3を、積層方向Xの両側、幅方向Yの両側、及び高さ方向Zの一方の5つの方向から効果的に冷却することができる。   Further, the reactor 3 is larger in dimension in the stacking direction X than the semiconductor module 2. Therefore, compared to the semiconductor module 2, the reactor 3 tends to have a longer heat transfer distance from each part to the cooling pipe 51. Therefore, by accommodating the reactor 3 in the accommodating member 4, the reactor 3 can be effectively cooled from the five directions of both sides in the stacking direction X, both sides in the width direction Y, and the height direction Z. .

また、収容部材4は、冷却器5と同じ部材からなる。それゆえ、冷却器5と収容部材4との間に線膨張係数の差が生じることを防ぐことができる。その結果、冷却器5と収容部材4との接合部に、冷却器5と収容部材4との線膨張係数差に起因する応力がかかることを防止することができる。   The accommodating member 4 is made of the same member as the cooler 5. Therefore, it is possible to prevent a difference in linear expansion coefficient between the cooler 5 and the housing member 4. As a result, it is possible to prevent the stress caused by the difference in linear expansion coefficient between the cooler 5 and the housing member 4 from being applied to the joint portion between the cooler 5 and the housing member 4.

また、収容部材4は、連結管52にろう付けによって接合されている。それゆえ、連結管52によっても収容部材4を効率的に冷却することができ、収容部材4に収容されたリアクトル3の冷却性能を一層向上させることができる。また、積層体11は積層方向Xに加圧されているが、本実施形態において、連結管52は、連結部53よりも長いため連結部53よりも剛性が低くなりやすい。そこで、収容部材4を連結管52にろう付けにて接合することにより、連結管52の剛性の向上も図ることができる。   The accommodating member 4 is joined to the connecting pipe 52 by brazing. Therefore, the housing member 4 can be efficiently cooled also by the connecting pipe 52, and the cooling performance of the reactor 3 housed in the housing member 4 can be further improved. Moreover, although the laminated body 11 is pressurized in the lamination direction X, in this embodiment, since the connecting pipe 52 is longer than the connecting part 53, the rigidity is likely to be lower than that of the connecting part 53. Therefore, the rigidity of the connecting pipe 52 can be improved by joining the housing member 4 to the connecting pipe 52 by brazing.

また、電力変換装置1の製造方法は、ろう付け工程において、複数の構成部材50及び収容部材4を互いに固定して、収容部材4を一体化した冷却器5を形成する。それゆえ、冷却器5の構成部材50同士の接合面と、冷却器5の構成部材50と収容部材4との接合面とのろう付けを同時に行うことができ、電力変換装置1を効率よく製造することができる。   Moreover, the manufacturing method of the power converter device 1 fixes the some structural member 50 and the accommodating member 4 mutually in the brazing process, and forms the cooler 5 which integrated the accommodating member 4. FIG. Therefore, it is possible to simultaneously braze the joint surfaces between the constituent members 50 of the cooler 5 and the joint surfaces of the constituent members 50 of the cooler 5 and the housing member 4, and efficiently manufacture the power conversion device 1. can do.

以上のごとく、本実施形態によれば、発熱電子部品の冷却性能の向上を図ることができる電力変換装置及びその製造方法を提供することができる。   As described above, according to the present embodiment, it is possible to provide a power conversion device that can improve the cooling performance of heat-generating electronic components and a method for manufacturing the same.

なお、上記実施形態においては、発熱電子部品としてリアクトルを用いたが、これに限られず、通電により発熱する部品であればよい。例えば、発熱電子部品はコンデンサとすることもできる。
また、収容部材の形状は、底面部と側面部の端縁の全周から立設した側面部とを有すれば上記実施形態に示したものに限定されない。また、上記実施形態において、収容部材を連結管に接合されるための構成として、収容部材に延設部と面接触部とを設けたが、これに限られない。すなわち、収容部材が連結管にろう付けによって接合される構成であれば種々の態様を採り得る。
また、積層体における収容部材の配設位置については、積層体の後端の隙間に限らず、前端の隙間など、他の配設位置とすることもできる。
In the above-described embodiment, the reactor is used as the heat generating electronic component. For example, the heat generating electronic component can be a capacitor.
Further, the shape of the housing member is not limited to that shown in the above embodiment as long as it has a bottom surface and a side surface erected from the entire periphery of the edge of the side surface. Moreover, in the said embodiment, although the extending part and the surface contact part were provided in the accommodating member as a structure for joining an accommodating member to a connecting pipe, it is not restricted to this. That is, various modes can be adopted as long as the housing member is joined to the connecting pipe by brazing.
Moreover, about the arrangement | positioning position of the accommodating member in a laminated body, it can also be set as other arrangement | positioning positions, such as the clearance gap of a front end, not only in the clearance gap of the rear end of a laminated body.

1 電力変換装置
11 積層体
2 半導体モジュール
3 発熱電子部品(リアクトル)
4 収容部材
41 底面部
42 側面部
5 冷却器
51 冷却管
X 積層方向
DESCRIPTION OF SYMBOLS 1 Power converter 11 Laminate body 2 Semiconductor module 3 Heat generating electronic component (reactor)
4 housing member 41 bottom face part 42 side face part 5 cooler 51 cooling pipe X stacking direction

Claims (5)

半導体素子を内蔵してなる半導体モジュール(2)と、
通電により発熱する発熱電子部品(3)と、
上記発熱電子部品(3)を収容する収容部材(4)と、
上記半導体モジュール(2)及び上記発熱電子部品(3)を冷却する冷却器(5)と、を有し、
上記冷却器(5)は、互いの間に間隔を設けて配置された複数の冷却管(51)を有し、
上記収容部材(4)は、熱伝導性を有する部材からなると共に、底面部(41)と、該底面部(41)の端縁の全周から立設した側面部(42)とからなり、
上記半導体モジュール(2)と上記収容部材(4)に収容された上記発熱電子部品(3)と上記冷却管(51)とは、積層配置されて積層体(11)を構成しており、
上記半導体モジュール(2)及び上記収容部材(4)は、それぞれ積層方向(X)の両側から上記冷却管(51)によって挟持されており、
上記収容部材(4)は、側面部(42)の立設方向が、積層方向(X)に直交する方向となるように配されており、
上記積層体(11)は、積層方向(X)に加圧されており、
上記収容部材(4)は、ろう付けにより上記冷却器(5)に接合されていることを特徴とする電力変換装置(1)。
A semiconductor module (2) comprising a semiconductor element;
A heat generating electronic component (3) that generates heat when energized;
A housing member (4) for housing the heat generating electronic component (3);
A cooler (5) for cooling the semiconductor module (2) and the heat generating electronic component (3),
The cooler (5) has a plurality of cooling pipes (51) arranged at intervals between each other,
The housing member (4) is made of a member having thermal conductivity, and includes a bottom surface portion (41) and a side surface portion (42) erected from the entire periphery of the edge of the bottom surface portion (41).
The semiconductor module (2), the heat generating electronic component (3) housed in the housing member (4), and the cooling pipe (51) are laminated to form a laminate (11),
The semiconductor module (2) and the housing member (4) are sandwiched by the cooling pipe (51) from both sides in the stacking direction (X),
The housing member (4) is arranged so that the standing direction of the side surface portion (42) is a direction orthogonal to the stacking direction (X),
The laminate (11) is pressurized in the lamination direction (X),
The power conversion device (1), wherein the housing member (4) is joined to the cooler (5) by brazing.
上記発熱電子部品(3)は、積層方向(X)における寸法が、上記半導体モジュール(2)よりも大きいことを特徴とする請求項1に記載の電力変換装置(1)。   The power conversion device (1) according to claim 1, wherein the heat generating electronic component (3) has a dimension in the stacking direction (X) larger than that of the semiconductor module (2). 上記収容部材(4)は、上記冷却器(5)と同じ材料からなることを特徴とする請求項1又は2に記載の電力変換装置(1)。   The power conversion device (1) according to claim 1 or 2, wherein the housing member (4) is made of the same material as the cooler (5). 上記冷却器(5)は、上記収容部材(4)を挟んで積層方向(X)に隣り合う上記冷却管(51)同士を、上記冷却管(51)の流路方向の両端部においてそれぞれ連結する一対の連結管(52)を有し、上記収容部材(4)は、上記連結管(52)にろう付けによって接合されていることを特徴とする請求項1〜3のいずれか一項に記載の電力変換装置(1)。   The cooler (5) connects the cooling pipes (51) adjacent to each other in the stacking direction (X) across the housing member (4) at both ends of the cooling pipe (51) in the flow path direction. A pair of connecting pipes (52), wherein the housing member (4) is joined to the connecting pipe (52) by brazing. The power converter (1) described. 請求項1〜4のいずれか一項に記載の電力変換装置(1)を製造する方法であって、
上記冷却器(5)の構成部材(50)同士の接合面、及び、上記冷却器(5)の構成部材(50)と上記収容部材(4)との接合面にろう材が配置された状態において、上記構成部材(50)及び上記収容部材(4)を仮組みして仮組体を形成する仮組工程と、
上記仮組体を加熱処理して、上記複数の接合面をろう付けして複数の上記構成部材(50)及び上記収容部材(4)を互いに固定して、上記収容部材(4)を一体化した上記冷却器(5)を形成するろう付け工程と、
隣り合う上記冷却管(51)の間に上記半導体モジュール(2)を配置すると共に、上記収容部材(4)に上記発熱電子部品(3)を配置する部品配置工程と、を有することを特徴とする電力変換装置(1)の製造方法。
It is a method of manufacturing the power converter device (1) according to any one of claims 1 to 4,
A state in which a brazing material is disposed on the joint surface between the constituent members (50) of the cooler (5) and the joint surface between the constituent member (50) of the cooler (5) and the housing member (4). A temporary assembling step of temporarily assembling the component member (50) and the housing member (4) to form a temporary assembly;
The temporary assembly is heat-treated, the plurality of joining surfaces are brazed, the plurality of the constituent members (50) and the housing member (4) are fixed to each other, and the housing member (4) is integrated. Brazing step to form the cooler (5),
The semiconductor module (2) is disposed between the adjacent cooling pipes (51), and the component disposing step of disposing the heat generating electronic component (3) in the housing member (4). The manufacturing method of the power converter device (1) to do.
JP2015015206A 2015-01-29 2015-01-29 Power converter and manufacturing method thereof Active JP6299618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015206A JP6299618B2 (en) 2015-01-29 2015-01-29 Power converter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015206A JP6299618B2 (en) 2015-01-29 2015-01-29 Power converter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016139749A JP2016139749A (en) 2016-08-04
JP6299618B2 true JP6299618B2 (en) 2018-03-28

Family

ID=56559363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015206A Active JP6299618B2 (en) 2015-01-29 2015-01-29 Power converter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6299618B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825542B2 (en) * 2017-11-20 2021-02-03 株式会社デンソー Power converter
KR102001205B1 (en) * 2018-01-15 2019-07-18 주식회사 고산 Heat exchanger for power semiconductor cooling of eco-friendly vehicle
JP2019165170A (en) * 2018-03-20 2019-09-26 ダイハツ工業株式会社 Power control unit cooling structure
CN116157916A (en) * 2020-07-21 2023-05-23 三菱电机株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP7176653B1 (en) * 2022-03-04 2022-11-22 富士電機株式会社 semiconductor equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166423A (en) * 2006-12-27 2008-07-17 Denso Corp Cooling pipe and manufacturing method thereof
JP5126136B2 (en) * 2009-03-23 2013-01-23 株式会社デンソー Power conversion unit
JP2011250607A (en) * 2010-05-27 2011-12-08 Denso Corp Power conversion equipment
JP5807646B2 (en) * 2013-01-15 2015-11-10 トヨタ自動車株式会社 Reactor with cooler
JP5924277B2 (en) * 2013-01-28 2016-05-25 株式会社デンソー Power converter

Also Published As

Publication number Publication date
JP2016139749A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6299618B2 (en) Power converter and manufacturing method thereof
JP5760985B2 (en) Power converter
JP6197769B2 (en) Power converter and manufacturing method thereof
CN106787620B (en) Power converter
JP2017152612A (en) Electric power conversion system
JP6758264B2 (en) Reactor cooling structure
JP2016140212A (en) Power conversion device
JP5664472B2 (en) Power converter
JP5494210B2 (en) Power converter and manufacturing method thereof
JP2010135697A (en) Lamination module structure
JP2010140969A (en) Stacked module structure
JP5126136B2 (en) Power conversion unit
JP5440324B2 (en) Power converter
JP2009021404A (en) Cooling device for electronic component, and manufacturing method thereof
JP6428313B2 (en) Power converter
JP5971051B2 (en) Semiconductor unit
JP4123279B2 (en) Power converter
JP6459904B2 (en) Power converter
JP2010165714A (en) Apparatus for cooling semiconductor module
JP2007173372A (en) Power converter
JP2017092151A (en) Cooler module and method of manufacturing cooler module
JP5745962B2 (en) Semiconductor device and manufacturing method thereof
JP6119419B2 (en) Power converter
JP5626158B2 (en) Power converter
JP6200716B2 (en) Laminated structure and laminated unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R151 Written notification of patent or utility model registration

Ref document number: 6299618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250