[go: up one dir, main page]

JP6296295B2 - Surface coated cutting tool with excellent wear resistance - Google Patents

Surface coated cutting tool with excellent wear resistance Download PDF

Info

Publication number
JP6296295B2
JP6296295B2 JP2014161406A JP2014161406A JP6296295B2 JP 6296295 B2 JP6296295 B2 JP 6296295B2 JP 2014161406 A JP2014161406 A JP 2014161406A JP 2014161406 A JP2014161406 A JP 2014161406A JP 6296295 B2 JP6296295 B2 JP 6296295B2
Authority
JP
Japan
Prior art keywords
layer
tool
crystal grains
average
tool base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014161406A
Other languages
Japanese (ja)
Other versions
JP2016036873A (en
Inventor
峻 佐藤
峻 佐藤
和明 仙北屋
和明 仙北屋
正訓 高橋
正訓 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014161406A priority Critical patent/JP6296295B2/en
Publication of JP2016036873A publication Critical patent/JP2016036873A/en
Application granted granted Critical
Publication of JP6296295B2 publication Critical patent/JP6296295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、硬質被覆層がすぐれた耐摩耗性を備えた表面被覆切削工具に関し、さらに詳しくは、炭素鋼や合金鋼などの高速切削加工に供した場合においても、チッピング、欠損、剥離等の異常損傷を発生することなく、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関する。   The present invention relates to a surface-coated cutting tool having a hard coating layer with excellent wear resistance. More specifically, even when subjected to high-speed cutting such as carbon steel or alloy steel, chipping, chipping, peeling, etc. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of time without causing abnormal damage.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。
従来から、被覆工具としては、例えば、WC基超硬合金、TiCN基サーメット、cBN焼結体を工具基体とし、これに硬質被覆層を形成した被覆工具が知られており、切削性能の改善を目的として種々の提案がなされている。
In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills An insert type end mill is known.
Conventionally, as a coated tool, for example, a coated tool in which a WC-based cemented carbide, a TiCN-based cermet, and a cBN sintered body are used as a tool base and a hard coating layer is formed on the tool base is known. Various proposals have been made for the purpose.

例えば、特許文献1には、工具基体と硬質被覆層の密着性を向上させるとともに、靭性と耐摩耗性を両立させるために、工具基体の表面に例えば(Ti,Al)N層からなる硬質被覆層を形成し、該層は微細組織領域と粗大組織領域とを含み、該微細組織領域は、それを構成する化合物の平均結晶粒径が10〜200nmであり、かつ該層の表面側から該層の全体の厚みに対して50%以上の厚みとなる範囲を占めて存在し、かつ−4GPa以上−2GPa以下の範囲の応力である平均圧縮応力を有し、該層は、その厚み方向に応力分布を有しており、その応力分布において2つ以上の極大値または極小値を持ち、それらの極大値または極小値は厚み方向表面側に位置するものほど高い圧縮応力を形成させた被覆工具が提案されている。   For example, Patent Document 1 discloses a hard coating made of, for example, a (Ti, Al) N layer on the surface of a tool substrate in order to improve the adhesion between the tool substrate and the hard coating layer and to achieve both toughness and wear resistance. Forming a layer, and the layer includes a fine structure region and a coarse structure region, and the fine structure region has an average crystal grain size of a compound constituting the layer of 10 to 200 nm, and from the surface side of the layer It occupies a range of 50% or more with respect to the total thickness of the layer, and has an average compressive stress that is a stress in a range of −4 GPa or more and −2 GPa or less. A coated tool which has a stress distribution and has two or more maximum values or minimum values in the stress distribution, and those maximum values or minimum values are located closer to the surface in the thickness direction, and a higher compressive stress is formed. Has been proposed.

また、特許文献2には、硬質被覆層がすぐれた高温硬さ、高温強度を備えることによって、チッピング、欠損、剥離等の発生を防止するとともに、耐摩耗性の向上を図るために、工具基体の表面に、(Ti,Al)Nからなる硬質被覆層を蒸着形成した被覆工具において、該硬質被覆層を、粒状晶(Ti,Al)Nからなる薄層Aと柱状晶(Ti,Al)Nからなる薄層Bの交互積層構造として構成し、薄層Aおよび薄層Bはそれぞれ0.05〜2μmの層厚とし、さらに、上記粒状晶の結晶粒径は30nm以下、また、上記柱状晶の結晶粒径は50〜500nmとした被覆工具が提案されている。   Patent Document 2 discloses that a tool substrate is provided with a hard coating layer having excellent high-temperature hardness and high-temperature strength, thereby preventing chipping, chipping, peeling, and the like, and improving wear resistance. In the coated tool in which a hard coating layer made of (Ti, Al) N is vapor-deposited on the surface, the hard coating layer is divided into a thin layer A made of granular crystals (Ti, Al) N and columnar crystals (Ti, Al). It is configured as an alternating laminated structure of thin layers B made of N, each of the thin layers A and B has a layer thickness of 0.05 to 2 μm, and the crystal grain size of the granular crystals is 30 nm or less, and the columnar shape A coated tool having a crystal grain size of 50 to 500 nm has been proposed.

さらに、特許文献3には、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工における硬質被覆層の耐チッピング性向上を図るために、工具基体表面に、(Ti1−xAl)(C1−y)で表される領域A層と領域B層とからなる交互積層構造を形成し、領域A層は、0.70≦x≦0.80、0.0005≦y≦0.005を満足するとともに、平均粒子幅Wを0.1μm以下、平均粒子長さLを0.1μm以下とし、一方、領域B層は、0.85≦x≦0.95、0.0005≦y≦0.005を満足するとともに、平均粒子幅Wを0.1〜2.0μm、平均粒子長さLを0.5〜5.0μmとした被覆工具が提案されている。 Furthermore, in Patent Document 3, in order to improve the chipping resistance of the hard coating layer in high-speed intermittent cutting with high heat generation and impact load acting on the cutting edge, Ti 1-x Al x ) (C y N 1-y ) represents an alternate stacked structure composed of a region A layer and a region B layer, and the region A layer has 0.70 ≦ x ≦ 0.80. 0.0005 ≦ y ≦ 0.005, the average particle width W is 0.1 μm or less, and the average particle length L is 0.1 μm or less, while the region B layer has 0.85 ≦ x ≦ 0.95, 0.0005 ≦ y ≦ 0.005, a coated tool with an average particle width W of 0.1 to 2.0 μm and an average particle length L of 0.5 to 5.0 μm is proposed Has been.

特開2011−67883号公報JP2011-67883A 特開2011−224715号公報JP2011-224715A 特開2014−61588号公報JP 2014-61588 A

前記従来技術で提案されているTiとAlの窒化物、炭窒化物からなる結晶組織を制御した硬質被覆層は、硬さ、耐熱性とともにすぐれた耐摩耗性を期待できるが、高速切削加工のように切れ刃に高負荷が作用する切削条件においては、従来被覆工具は十分に満足できる耐摩耗性を発揮することはできなかった。
したがって、高速切削加工に供した場合であっても、長期にわたって安定した耐摩耗性を発揮するような被覆工具が求められている。
The hard coating layer with a controlled crystal structure composed of nitrides and carbonitrides of Ti and Al proposed in the prior art can be expected to have excellent wear resistance as well as hardness and heat resistance. Thus, under the cutting conditions in which a high load acts on the cutting edge, the conventional coated tool has not been able to exhibit a sufficiently satisfactory wear resistance.
Therefore, there is a need for a coated tool that exhibits stable wear resistance over a long period of time even when subjected to high-speed cutting.

そこで、本発明者らは、前記課題を解決すべく硬質被覆層の構造について鋭意検討したところ、次のような知見を得た。   Therefore, the present inventors diligently studied about the structure of the hard coating layer in order to solve the above problems, and obtained the following knowledge.

工具基体表面に、例えばアークイオンプレーティング装置を用いて硬質被覆層を蒸着形成するにあたり、微細粒状結晶組織を有するTiとAlの窒化物(以下、「(Ti,Al)N」という場合もある)からなるA層と、柱状結晶組織を有する(Ti,Al)NからなるB層の積層構造として硬質被覆層を形成し、また、A層とB層との界面近傍から、幅の広い柱状結晶粒を工具基体表面に垂直な方向に成長させ、さらに、B層の柱状結晶組織を特定の形状の結晶粒として形成することによって、硬質被覆層の耐摩耗性を向上させ得ることを見出した。
また、A層とB層との蒸着条件を制御することで、A層とB層との結晶配向性を揃えることによって、A層とB層との層間付着強度を向上させることにより、チッピング、欠損、剥離等の異常損傷を招くことなく耐摩耗性を向上させ得ることを見出したのである。
When a hard coating layer is vapor-deposited on the surface of a tool base using, for example, an arc ion plating apparatus, a Ti and Al nitride having a fine granular crystal structure (hereinafter referred to as “(Ti, Al) N”) may be used. A hard coating layer is formed as a laminated structure of an A layer composed of (A) and a B layer composed of (Ti, Al) N having a columnar crystal structure, and a wide column shape is formed from the vicinity of the interface between the A layer and the B layer. It has been found that the wear resistance of the hard coating layer can be improved by growing the crystal grains in a direction perpendicular to the surface of the tool substrate and further forming the columnar crystal structure of the B layer as crystal grains having a specific shape. .
In addition, by controlling the deposition conditions of the A layer and the B layer, by aligning the crystal orientation of the A layer and the B layer, by improving the interlayer adhesion strength between the A layer and the B layer, chipping, It has been found that the wear resistance can be improved without causing abnormal damage such as defects and peeling.

本発明は、前記の知見に基づいてなされたものであって、
「 WC超硬合金、TiCN基サーメット、立方晶型窒化硼素焼結体のいずれかからなる工具基体の表面に、A層とB層が積層された硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記A層は、
組成式:(Ti1−xAl)N(但し、xは原子比で、0.45≦x≦0.65)を満足する岩塩型立方晶の結晶構造を有し、0.1〜1.0μmの平均層厚と0.01〜0.1μmの結晶粒の平均幅を有する微細粒状結晶組織のTiとAlの窒化物層からなり、
(b)前記B層は、
組成式:(Ti1−yAl)N(但し、yは原子比で、0.4≦y≦0.65)を満足する岩塩型立方晶の結晶構造を有し、0.5〜3.0μmの平均層厚を有する柱状結晶組織のTiとAlの窒化物層からなり、
(c)前記B層の柱状結晶粒を工具基体表面に垂直な縦断面で観察した場合、工具基体表面に垂直な方向の最大結晶粒長さLがB層の平均層厚の60%以上であって、かつ、柱状結晶粒の近似幅が0.1〜1.5μmおよびアスペクト比が1.4以上であって、かつ、前記最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置においてそれぞれ測定した柱状結晶粒の幅W0.2、W0.8と柱状結晶粒の近似幅との差がそれぞれ20%以内である柱状結晶粒が、工具基体表面に垂直なB層の縦断面面積の50%以上の面積割合を占め、
(d)前記A層と硬質被覆層全体について、X線回折によって(200)面の回折ピーク強度をI(200)、(111)面の回折ピーク強度をI(111)として求めた時、I(200)/I(111)が7〜20であることを特徴とする表面被覆切削工具。」
を特徴とするものである。
なお、本発明は、A層とB層の積層からなる前記硬質被覆層を最大の特徴とするものであるが、本発明の前記硬質被覆層の上部に、表面層として、耐摩耗性や潤滑性に優れる窒化物、炭窒化物等の他の層をさらに設けることを妨げるものではない。なお、この表面層としては、例えば、TiN層、CrN層、TiCN層、TiSiN層、AlCrN層、AlTiSiN層などを挙げることができる。
The present invention has been made based on the above knowledge,
In a surface-coated cutting tool in which a hard coating layer in which an A layer and a B layer are laminated is formed on the surface of a tool base made of any of WC cemented carbide, TiCN-based cermet, and cubic boron nitride sintered body. ,
(A) The A layer is
Compositional formula: (Ti 1-x Al x ) N (where x is an atomic ratio, 0.45 ≦ x ≦ 0.65), and has a rock salt cubic crystal structure, 0.1 to 1 A fine grained Ti and Al nitride layer having an average layer thickness of 0.0 μm and an average width of 0.01-0.1 μm crystal grains;
(B) The B layer is
Compositional formula: (Ti 1-y Al y ) N (where y is an atomic ratio, 0.4 ≦ y ≦ 0.65) and has a rock salt cubic crystal structure, 0.5-3 A nitride layer of Ti and Al with a columnar crystal structure having an average layer thickness of 0.0 μm;
(C) When the columnar crystal grains of the B layer are observed in a longitudinal section perpendicular to the tool base surface, the maximum crystal grain length L in the direction perpendicular to the tool base surface is 60% or more of the average layer thickness of the B layer. In addition, the approximate width of the columnar crystal grains is 0.1 to 1.5 μm, the aspect ratio is 1.4 or more, and 0.2 L, 0 from the tool base side of the maximum crystal grain length L The columnar crystal grains having a difference between the columnar crystal grain widths W 0.2 and W 0.8 measured at the height of 0.8 L and the approximate width of the columnar crystal grains within 20% respectively are formed on the tool base surface. Occupies an area ratio of 50% or more of the vertical cross-sectional area of the vertical B layer,
(D) When the diffraction peak intensity on the (200) plane was determined as I (200) and the diffraction peak intensity on the (111) plane was determined as I (111) by X-ray diffraction for the A layer and the entire hard coating layer, (200) / I (111) is 7-20, The surface coating cutting tool characterized by the above-mentioned. "
It is characterized by.
It should be noted that the present invention is characterized in that the hard coating layer composed of a laminate of the A layer and the B layer has the greatest feature. However, as a surface layer on the hard coating layer of the present invention, wear resistance and lubrication are provided. It does not prevent further providing other layers such as nitride and carbonitride having excellent properties. Examples of the surface layer include a TiN layer, a CrN layer, a TiCN layer, a TiSiN layer, an AlCrN layer, and an AlTiSiN layer.

ここで、本発明の被覆工具について、より詳しく説明する。   Here, the coated tool of the present invention will be described in more detail.

A層:
図1の模式図に示すように、A層は、組成式:(Ti1−xAl)N(但し、xは原子比で、0.45≦x≦0.65)を満足する0.1〜1.0μmの平均層厚を有する(Ti,Al)N層として構成するが、A層におけるAl成分の含有量が、Ti成分との合量に占める割合で0.45(但し、原子比)未満になると結晶粒が粗大化しやすくなり、一方、Ti成分との合量に占める割合で0.65(但し、原子比)を超えると、一部組織の結晶構造が岩塩型結晶構造から六方晶構造に変化し、硬さが低下することから、A層におけるTi成分との合量に占めるAl成分の含有割合xは、0.45≦a≦0.65と定めた。より好ましい組成範囲としては0.55≦x≦0.65である。
また、上記A層の平均層厚が0.1μm未満であると、クラックの発生および進展を抑制する効果が十分でなく、一方、A層の平均層厚が1.0μmを超えると、結晶粒が粗大化しやすくなり、耐チッピング性向上効果が得られなくなることから、A層の平均層厚は0.1〜1.0μmと定めた。
A layer:
As shown in the schematic diagram of FIG. 1, the A layer satisfies the composition formula: (Ti 1-x Al x ) N (where x is an atomic ratio, 0.45 ≦ x ≦ 0.65). Although it is configured as a (Ti, Al) N layer having an average layer thickness of 1 to 1.0 μm, the content of the Al component in the A layer is 0.45 (provided that the atomic component accounts for the total amount with the Ti component). If the ratio is less than 0.65 (provided that the atomic ratio) exceeds the proportion of the total amount of Ti component, the crystal structure of a part of the structure is derived from the rock salt type crystal structure. Since it changed to a hexagonal crystal structure and the hardness decreased, the content ratio x of the Al component in the total amount with the Ti component in the A layer was determined to be 0.45 ≦ a ≦ 0.65. A more preferable composition range is 0.55 ≦ x ≦ 0.65.
Further, if the average layer thickness of the A layer is less than 0.1 μm, the effect of suppressing the occurrence and development of cracks is not sufficient, while if the average layer thickness of the A layer exceeds 1.0 μm, crystal grains Since it becomes easy to coarsen and the effect of improving chipping resistance cannot be obtained, the average layer thickness of the A layer is determined to be 0.1 to 1.0 μm.

A層は、0.01〜0.1μmの結晶粒の平均幅を有する微細粒状結晶組織として構成するが、A層を構成する(Ti,Al)N結晶粒の平均幅が0.01μm未満では結晶粒界の数が過剰になり、一方、平均幅が0.1μmを超えると結晶粒界が少なくなるため、それぞれクラックの進展経路を分散する効果が十分に、得られなくなることから、A層を構成する(Ti,Al)N結晶粒の平均幅は0.01〜0.1μmの微細粒状結晶粒組織とする。好ましい平均幅は、0.01〜0.05μmである。
なお、本発明でいう結晶粒の「近似幅」、「平均幅」とは、工具基体表面に垂直な縦断面の走査型電子顕微鏡(SEM)を用いた断面観察により得られた縦断面画像について、電子線後方散乱回折法(Electoron BackScatter Diffraction:EBSD)によって層を形成する各粒子の形状を決定し、一つ一つの結晶粒子について、工具基体表面に垂直な方向の最大結晶粒長さLをとり、最大結晶粒長さLを基準として、工具基体表面に垂直な縦断面における断面積が等価になるように粒子の形状を長方形近似し、算出した最大結晶粒長さLに直交する長さを「近似幅」と言い、縦断面画像内の全粒子の「近似幅」を平均した値を「平均幅」という。
ここで、工具基体表面とは、基体の硬質被覆層と接する面の面方向に垂直な断面の観察像における、基体と硬質被覆層の界面粗さの基準線とする。
また、A層の結晶粒のアスペクト比(結晶粒の最大結晶粒長さL/結晶粒の近似幅)について特段の規定はしないが、クラックの進展経路を分散し、異常損傷を低減する観点からは、各粒子の平均のアスペクト比は1.0〜1.5であることが望ましい。
The A layer is configured as a fine granular crystal structure having an average width of 0.01 to 0.1 μm crystal grains, but when the average width of the (Ti, Al) N crystal grains constituting the A layer is less than 0.01 μm The number of crystal grain boundaries becomes excessive. On the other hand, when the average width exceeds 0.1 μm, the crystal grain boundaries decrease, and therefore, the effect of dispersing the crack propagation paths cannot be obtained sufficiently. The average width of (Ti, Al) N crystal grains constituting the fine grain structure is 0.01 to 0.1 μm. A preferable average width is 0.01 to 0.05 μm.
The “approximate width” and “average width” of the crystal grains referred to in the present invention are the longitudinal section images obtained by section observation using a scanning electron microscope (SEM) having a longitudinal section perpendicular to the surface of the tool substrate. The shape of each particle forming the layer is determined by electron backscatter diffraction (EBSD), and the maximum crystal grain length L in the direction perpendicular to the tool substrate surface is determined for each crystal particle. Taking the maximum crystal grain length L as a reference, the shape of the particle is approximated to a rectangle so that the cross-sectional areas in the vertical cross section perpendicular to the tool substrate surface are equivalent, and the length orthogonal to the calculated maximum crystal grain length L Is referred to as “approximate width”, and a value obtained by averaging the “approximate width” of all particles in the longitudinal cross-sectional image is referred to as “average width”.
Here, the surface of the tool base is a reference line of the interface roughness between the base and the hard coating layer in an observation image of a cross section perpendicular to the surface direction of the surface in contact with the hard coating layer of the base.
Further, although there is no special provision for the aspect ratio of the crystal grains of the A layer (maximum crystal grain length L / approximate width of crystal grains), from the viewpoint of dispersing crack propagation paths and reducing abnormal damage The average aspect ratio of each particle is desirably 1.0 to 1.5.

B層:
図1の模式図に示すように、B層は、組成式:(Ti1−yAl)N(但し、yは原子比で、0.4≦y≦0.65)を満足する0.5〜3.0μmの平均層厚を有する柱状結晶粒組織の(Ti,Al)N層として構成するが、B層におけるAl成分の含有量を、Ti成分との合量に占める割合で0.4(但し、原子比)未満にすると十分な耐摩耗性が得られず、一方、Ti成分との合量に占めるAl成分の含有割合が0.65(但し、原子比)を超えると、A層の場合と同様、一部組織の結晶構造が岩塩型結晶構造から六方晶構造に変化し、硬さが低下することから、B層における、Ti成分との合量に占めるAl成分の含有割合yは、0.4≦a≦0.65と定めた。
また、上記B層の平均層厚が0.5μm未満であると、十分な耐摩耗性が得られず、一方、3.0μmを超えると皮膜が自壊しやすくなるので、B層の平均層厚は0.5〜3.0μmと定めた。
なお、A層、B層の平均組成、平均層厚については、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分光法(Energy Dispersive X−ray Spectroscopy:EDS)を用いた断面測定により、測定することができる。ここで、各層の層厚とは工具基体表面に垂直な方向の層の厚みとする。
B layer:
As shown in the schematic diagram of FIG. 1, the B layer satisfies the composition formula: (Ti 1-y Al y ) N (where y is an atomic ratio and 0.4 ≦ y ≦ 0.65). A (Ti, Al) N layer having a columnar grain structure having an average layer thickness of 5 to 3.0 μm is formed, but the content of the Al component in the B layer is 0. 0 in the total amount with the Ti component. If it is less than 4 (however, the atomic ratio), sufficient wear resistance cannot be obtained. On the other hand, if the content ratio of the Al component in the total amount with the Ti component exceeds 0.65 (however, the atomic ratio), A As in the case of the layer, since the crystal structure of a part of the structure changes from a rock salt type crystal structure to a hexagonal crystal structure and the hardness decreases, the content ratio of the Al component in the total amount with the Ti component in the B layer y was determined to be 0.4 ≦ a ≦ 0.65.
Further, if the average layer thickness of the B layer is less than 0.5 μm, sufficient wear resistance cannot be obtained, while if it exceeds 3.0 μm, the film tends to be self-destructed. Was determined to be 0.5 to 3.0 μm.
Note that the average composition and average layer thickness of the A layer and the B layer are as follows: Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Energy Dispersive X-ray Spectroscopy (Energy) It can be measured by cross-sectional measurement using Dispersive X-ray Spectroscopy (EDS). Here, the layer thickness of each layer is the thickness of the layer in the direction perpendicular to the tool base surface.

上記B層を構成する(Ti,Al)N結晶粒は、次のような形状を有する柱状結晶組織からなる。
まず、B層を構成する(Ti,Al)N結晶粒の近似幅が0.1μm未満では十分な耐摩耗性を発揮することができず、一方、近似幅が1.5μmを超えるとB層内の結晶粒界が少なくなり耐チッピング性が低下することから、B層を構成する(Ti,Al)N結晶粒の近似幅は0.1〜1.5μmとする。
また、前記近似幅を備える結晶粒であっても、工具基体表面に垂直な方向の最大結晶粒長さLがB層の平均層厚の60%未満である場合、或いは、結晶粒のアスペクト比(結晶粒の最大結晶粒長さL/結晶粒の近似幅)が1.4未満である場合には、十分な耐摩耗性が得ることができないので、B層を構成する(Ti,Al)N結晶粒の工具基体表面に垂直な方向の最大結晶粒長さLはB層の平均層厚の60%以上とし、また、アスペクト比(結晶粒の最大結晶粒長さL/結晶粒の近似幅)は、1.4以上とする。
また、前記近似幅、最大結晶粒長さL、アスペクト比を備える結晶粒であっても、工具基体表面に垂直な方向の最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置における工具基体表面に平行な方向の柱状結晶粒の幅W0.2、W0.8をそれぞれ測定したとき、測定した柱状結晶粒の幅W0.2、W0.8と柱状結晶粒の近似幅との差が20%を超える場合、あるいは、W0.2、W0.8と柱状結晶粒の近似幅との差が20%以内である柱状結晶粒が、工具基体表面に垂直なB層の縦断面面積の50%未満の面積割合しか存在しない場合には、B層が長期の使用にわたって十分な耐摩耗性を発揮することができない。
したがって、B層を構成する(Ti,Al)N結晶粒は、前記近似幅、最大結晶粒長さL、アスペクト比を備えるとともに、工具基体表面に垂直な方向の最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置において測定した柱状結晶粒のそれぞれの幅W0.2、W0.8と柱状結晶粒の近似幅との差は20%以内である長方形に近い形状を有し、かつ、このような柱状結晶組織の結晶粒は、工具基体表面に垂直なB層の縦断面面積の50%以上の面積割合を占めることが必要である。
なお、A層、B層の組成・平均層厚、A層の結晶粒の平均幅、B層を構成する結晶粒の形状についても、工具基体表面に垂直な硬質被覆層縦断面について、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、電子線後方散乱回折法(Electoron BackScatter Diffraction:EBSD)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分光法(Energy Dispersive X−ray Spectroscopy:EDS)を用いた断面測定により、測定することができる。
The (Ti, Al) N crystal grains constituting the B layer are composed of a columnar crystal structure having the following shape.
First, if the approximate width of the (Ti, Al) N crystal grains constituting the B layer is less than 0.1 μm, sufficient wear resistance cannot be exhibited, whereas if the approximate width exceeds 1.5 μm, the B layer Therefore, the approximate width of the (Ti, Al) N crystal grains constituting the B layer is set to 0.1 to 1.5 μm.
Even if the crystal grains have the approximate width, the maximum crystal grain length L in the direction perpendicular to the tool base surface is less than 60% of the average layer thickness of the B layer, or the aspect ratio of the crystal grains If (the maximum crystal grain length L / approximate width of crystal grains) is less than 1.4, sufficient wear resistance cannot be obtained, so the B layer is formed (Ti, Al). The maximum crystal grain length L in the direction perpendicular to the tool substrate surface of N crystal grains is 60% or more of the average layer thickness of the B layer, and the aspect ratio (maximum crystal grain length L of crystal grains / approximation of crystal grains) The width is set to 1.4 or more.
Further, even for crystal grains having the approximate width, maximum crystal grain length L, and aspect ratio, 0.2 L and 0.8 L from the tool base side of the maximum crystal grain length L in the direction perpendicular to the tool base surface. When the widths W 0.2 and W 0.8 of the columnar crystal grains in the direction parallel to the surface of the tool base at the height positions are measured, the measured widths W 0.2 and W 0.8 of the columnar crystal grains are When the difference from the approximate width of the columnar crystal grains exceeds 20%, or the columnar crystal grains whose difference between the approximate widths of W 0.2 and W 0.8 and the columnar crystal grains is within 20% When there is only an area ratio of less than 50% of the vertical cross-sectional area of the B layer perpendicular to the surface, the B layer cannot exhibit sufficient wear resistance over a long period of use.
Therefore, the (Ti, Al) N crystal grains constituting the B layer have the approximate width, the maximum crystal grain length L, the aspect ratio, and the tool having the maximum crystal grain length L in the direction perpendicular to the tool base surface. A rectangle in which the difference between the widths W 0.2 and W 0.8 of the columnar crystal grains measured at heights of 0.2 L and 0.8 L from the substrate side and the approximate width of the columnar crystal grains is within 20% The crystal grains having such a columnar crystal structure must occupy an area ratio of 50% or more of the longitudinal sectional area of the B layer perpendicular to the surface of the tool base.
Note that the composition and average layer thickness of the A layer, the B layer, the average width of the crystal grains of the A layer, the shape of the crystal grains constituting the B layer, and the longitudinal direction of the hard coating layer perpendicular to the surface of the tool substrate are scanned. Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD), Transmission Electron Microscope (TEM), Energy Dispersive Electron Microscope (TEM), Energy Dispersive Electron Microscopy (TEM) : Can be measured by cross-sectional measurement using EDS).

B層を構成する(Ti,Al)N結晶粒が前記した柱状結晶組織を形成するためには、A層とB層の配向性を揃えることが重要である。
すなわち、本発明では、A層とB層からなる硬質被覆層を、例えば、図2に示すアークイオンプレーティング装置を用いて成膜するが、アークイオンプレーティングに際してのアーク電流値、反応ガスとしての窒素ガス分圧および成膜速度を制御し、岩塩型立方晶構造における(111)面より表面エネルギーが小さい(200)面をゆっくりと成長させることで、A層とB層の配向性を揃え、かつ、A層とB層の界面から結晶粒の幅の広い柱状結晶組織を形成することができる。
そして、A層および硬質被覆層全体についてX線回折を行い、(200)面の回折ピーク強度をI(200)、(111)面の回折ピーク強度をI(111)とした場合、I(200)/I(111)の値が7未満であると、A層とB層との界面から結晶幅の広い柱状結晶を成長させることが困難であり、一方、I(200)/I(111)が20を超えるとB層の柱状結晶粒が粗大化しやすく、結晶粒界が少なくなり、高負荷な切削時の耐チッピング性、耐欠損性が低下するため、ピーク強度比I(200)/I(111)は7〜20とする。
In order for the (Ti, Al) N crystal grains constituting the B layer to form the columnar crystal structure described above, it is important to align the orientation of the A layer and the B layer.
That is, in the present invention, the hard coating layer composed of the A layer and the B layer is formed by using, for example, the arc ion plating apparatus shown in FIG. By controlling the nitrogen gas partial pressure and the film formation rate, and slowly growing the (200) plane with a lower surface energy than the (111) plane in the rock salt cubic structure, the orientation of the A and B layers is aligned. In addition, a columnar crystal structure having a wide crystal grain width can be formed from the interface between the A layer and the B layer.
Then, X-ray diffraction is performed on the entire A layer and the hard coating layer, and when the diffraction peak intensity on the (200) plane is I (200) and the diffraction peak intensity on the (111) plane is I (111), I (200 ) / I (111) is less than 7, it is difficult to grow a columnar crystal having a wide crystal width from the interface between the A layer and the B layer, while I (200) / I (111) When the value exceeds 20, the columnar crystal grains of the B layer are likely to be coarsened, the crystal grain boundaries are reduced, and the chipping resistance and chipping resistance during high-load cutting are reduced. Therefore, the peak intensity ratio I (200) / I (111) is 7-20.

ここで、硬質被覆層全体についてのピーク強度比I(200)/I(111)とは、A層とB層の重なった回折ピークを一つの回折ピークとみなし、(200)面の重なった回折ピーク強度をI(200)、(111)面の重なった回折ピーク強度をI(111)として計算したI(200)/I(111)の値をいう。なお、A層の回折ピーク強度については、例えば、B層を集束イオンビーム(Focused Ion Beam:FIB)法などの手法で加工・除去したのち、前述したX線回折法を用いることで測定することができる。   Here, the peak intensity ratio I (200) / I (111) for the entire hard coating layer is a diffraction peak in which the A layer and the B layer overlap each other as one diffraction peak, and the (200) plane overlap. This is the value of I (200) / I (111) calculated with the peak intensity as I (200) and the diffraction peak intensity with the (111) plane overlapped as I (111). The diffraction peak intensity of the A layer is measured, for example, by processing and removing the B layer by a method such as a focused ion beam (FIB) method and then using the X-ray diffraction method described above. Can do.

本発明の被覆工具は、工具基体表面に、微細粒状結晶組織を有する(Ti,Al)NからなるA層と、柱状結晶組織を有する(Ti,Al)NからなるB層とを積層して硬質被覆層を形成し、特に、B層における柱状結晶組織の(Ti,Al)N結晶粒が、所定の近似幅、最大結晶粒長さL、アスペクト比を備えるとともに、長方形に近い形状を有し、かつ、このような柱状結晶組織の結晶粒が、工具基体表面に垂直なB層の縦断面面積の50%以上の面積割合を占め、さらに、A層と硬質被覆層全体についてのX線回折ピーク強度比I(200)/I(111)を7〜20とすることによって、炭素鋼、合金鋼等の高速切削加工において、チッピング、欠損、剥離等の異常損傷を招くこともなく、長期の使用にわたってすぐれた耐摩耗性を発揮するのである。   The coated tool of the present invention is formed by laminating an A layer made of (Ti, Al) N having a fine granular crystal structure and a B layer made of (Ti, Al) N having a columnar crystal structure on the surface of the tool base. In particular, the (Ti, Al) N crystal grains of the columnar crystal structure in the B layer have a predetermined approximate width, maximum crystal grain length L, aspect ratio, and a shape close to a rectangle. In addition, the crystal grains of such a columnar crystal structure occupy an area ratio of 50% or more of the vertical cross-sectional area of the B layer perpendicular to the tool base surface. Further, the X-rays of the A layer and the entire hard coating layer By setting the diffraction peak intensity ratio I (200) / I (111) to 7 to 20, high-speed cutting of carbon steel, alloy steel, etc. does not cause abnormal damage such as chipping, chipping, peeling, etc. Excellent wear resistance throughout use It is to volatilization.

本発明被覆工具の硬質被覆層の断面概略模式図を示す。なお、図中に示すB層の「特徴的柱状結晶粒」とは、工具基体表面に垂直な方向の最大結晶粒長さLがB層の平均層厚の60%以上であって、かつ、柱状結晶粒の近似幅が0.1〜1.5μmおよび平均アスペクト比が1.4以上であって、かつ、工具基体側から0.2L、0.8Lの高さ位置における柱状結晶粒の幅W0.2、W0.8と柱状結晶粒の近似幅との差がそれぞれ20%以内である柱状結晶粒をいう。The cross-sectional schematic diagram of the hard coating layer of this invention coated tool is shown. In addition, the “characteristic columnar crystal grains” of the B layer shown in the figure means that the maximum crystal grain length L in the direction perpendicular to the surface of the tool base is 60% or more of the average layer thickness of the B layer, and The approximate width of the columnar crystal grains is 0.1 to 1.5 μm, the average aspect ratio is 1.4 or more, and the width of the columnar crystal grains at heights of 0.2 L and 0.8 L from the tool base side. This refers to columnar crystal grains in which the difference between W 0.2 and W 0.8 and the approximate width of the columnar crystal grains is 20% or less, respectively. 硬質被覆層を蒸着形成するためのアークイオンプレーティング装置の概略図であり(a)が正面図、を(b)が側面図を示す。It is the schematic of the arc ion plating apparatus for carrying out vapor deposition formation of a hard coating layer, (a) is a front view, (b) shows a side view.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、具体的な説明としては、cBN基体からなる被覆工具、超硬合金基体からなる被覆工具について説明するが、TiCN基サーメットを工具基体とする被覆工具についても同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples.
As a specific explanation, a coated tool made of a cBN substrate and a coated tool made of a cemented carbide substrate will be described, but the same applies to a coated tool using a TiCN-based cermet as a tool substrate.

工具基体の作製:
原料粉末として、平均粒径が1〜4μmのcBN粒子を硬質相形成用原料粉末として、また、TiN粉末、TiC粉末、TiCN粉末、Al粉末、AlN粉末、Al粉末を結合相形成用原料粉末として用意する。
これら中からいくつかの原料粉末とcBN粉末の合量を100体積%としたときのcBN粒子の含有割合が50容量%となるように表1に示される配合比で配合する。
次いで、この原料粉末をボールミルで72時間湿式混合し、乾燥した後、成形圧100MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:1Pa以下の真空雰囲気中、900〜1300℃の範囲内の所定温度に保持して仮焼結し、その後、超高圧焼結装置に装入して、圧力:5GPa、温度:1200〜1400℃の範囲内の所定の温度で焼結することにより、cBN基焼結体を作製する。
この焼結体をワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg系ろう材を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことによりISO規格CNGA120408のインサート形状をもったcBN工具基体1〜3を製造した。
Tool substrate production:
As raw material powder, cBN particles having an average particle size of 1 to 4 μm are used as raw material powder for forming a hard phase, and TiN powder, TiC powder, TiCN powder, Al powder, AlN powder, and Al 2 O 3 powder are used for forming a binder phase. Prepare as raw powder.
Among these, the blending ratio shown in Table 1 is blended so that the content ratio of cBN particles is 50% by volume when the total amount of some raw material powder and cBN powder is 100% by volume.
Next, the raw material powder was wet-mixed for 72 hours in a ball mill, dried, and then press-molded at a molding pressure of 100 MPa to a size of diameter: 50 mm × thickness: 1.5 mm. In a vacuum atmosphere, it is preliminarily sintered while being held at a predetermined temperature in the range of 900 to 1300 ° C., and then charged into an ultra-high pressure sintering apparatus, pressure: 5 GPa, temperature: in the range of 1200 to 1400 ° C. A cBN-based sintered body is prepared by sintering at a predetermined temperature.
This sintered body is cut into a predetermined size with a wire electric discharge machine, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and insert made of WC-based cemented carbide with ISO standard CNGA120408 insert shape Brazing to the brazing part (corner part) of the main body using an Ag-based brazing material having a composition consisting of Cu: 26%, Ti: 5%, and Ag: the rest, and polishing the upper and lower surfaces and outer periphery, By performing the honing process, cBN tool bases 1 to 3 having an insert shape of ISO standard CNGA120408 were manufactured.


硬質被覆層の成膜:
前記工具基体1〜3に対して、図2に示すアークイオンプレーティング装置を用いて、硬質被覆層を形成した。
なお、図2のTi−Al合金ターゲットとしては、目標とする(Ti,Al)N層に応じて、組成の異なる複数のTi−Al合金ターゲットを装置内に配備する。
(a)工具基体1〜3を、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着する。また、カソード電極(蒸発源)として、所定組成のTi−Al合金ターゲットを配置する。
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、0.5〜2.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に−200〜−1000Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによって5〜30分間ボンバード処理する。
(c)次に、A層の成膜を、次のとおり行う。
装置内に反応ガスとして窒素ガスを導入して表2に示す0.5〜4Paの所定の反応雰囲気とすると共に、同じく表2に示す装置内温度に維持し、前記回転テーブル上で自転しながら回転する工具基体に表2に示す−25〜100Vの所定の直流バイアス電圧を印加し、かつ、前記所定組成のTi−Al合金ターゲットからなるカソード電極(蒸発源)とアノード電極との間に表2に示す110〜200Aの所定の電流を同時に所定時間流してアーク放電を発生させ、前記工具基体の表面に、表4に示される目標組成、目標平均層厚の(Ti,Al)N層からなるA層を蒸着形成した。
(d)次いで、B層の成膜を、次のとおり行う。
まず、装置内に反応ガスとして窒素ガスを導入して表2に示す2〜10Paの範囲内の所定の反応雰囲気とすると共に、同じく表2に示す装置内温度に維持し、前記回転テーブル上で自転しながら回転する工具基体に表2に示す−25〜−75Vの範囲内の所定の直流バイアス電圧を印加し、かつ、前記Ti−Al合金ターゲットからなるカソード電極(蒸発源)とアノード電極との間に表2に示す80〜120Aの範囲内の所定の電流を流してアーク放電を発生させ、前記A層表面に、表4に示される目標組成、目標平均層厚の(Ti,Al)N層からなるB層を蒸着形成した。
上記の(a)〜(d)によって、A層およびB層の積層からなる硬質被覆層を蒸着形成した表4に示す本発明の被覆工具(以下、「本発明工具」という)1〜6を作製した。
Formation of hard coating layer:
A hard coating layer was formed on the tool bases 1 to 3 using an arc ion plating apparatus shown in FIG.
As the Ti—Al alloy target in FIG. 2, a plurality of Ti—Al alloy targets having different compositions are arranged in the apparatus according to the target (Ti, Al) N layer.
(A) The tool bases 1 to 3 are ultrasonically cleaned in acetone and dried. Then, the tool bases 1 to 3 are arranged along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Install. Further, a Ti—Al alloy target having a predetermined composition is disposed as a cathode electrode (evaporation source).
(B) First, the interior of the apparatus was evacuated and kept at a vacuum of 10 −2 Pa or less, and the interior of the apparatus was heated to 500 ° C. with a heater, and then set to an Ar gas atmosphere of 0.5 to 2.0 Pa. A DC bias voltage of −200 to −1000 V is applied to the tool base that rotates while rotating on the rotary table, and the tool base surface is bombarded with argon ions for 5 to 30 minutes.
(C) Next, the A layer is formed as follows.
Nitrogen gas is introduced into the apparatus as a reaction gas to obtain a predetermined reaction atmosphere of 0.5 to 4 Pa shown in Table 2, while maintaining the apparatus internal temperature similarly shown in Table 2, while rotating on the rotary table. A predetermined DC bias voltage of −25 to 100 V shown in Table 2 is applied to the rotating tool base, and a surface between the cathode electrode (evaporation source) and the anode electrode made of the Ti—Al alloy target having the predetermined composition is applied. A predetermined current of 110 to 200 A shown in FIG. 2 is caused to flow simultaneously for a predetermined time to generate an arc discharge, and a (Ti, Al) N layer having a target composition and a target average layer thickness shown in Table 4 is formed on the surface of the tool base. A layer was formed by vapor deposition.
(D) Next, the B layer is formed as follows.
First, nitrogen gas is introduced into the apparatus as a reaction gas so as to obtain a predetermined reaction atmosphere within the range of 2 to 10 Pa shown in Table 2, and the apparatus is also maintained at the apparatus temperature shown in Table 2 on the rotary table. A predetermined DC bias voltage within a range of −25 to −75 V shown in Table 2 is applied to a tool base that rotates while rotating, and a cathode electrode (evaporation source) and an anode electrode made of the Ti—Al alloy target A predetermined current in the range of 80 to 120 A shown in Table 2 is caused to flow to cause arc discharge, and the target composition and target average layer thickness (Ti, Al) shown in Table 4 are formed on the surface of the A layer. A B layer composed of an N layer was formed by vapor deposition.
According to the above (a) to (d), the coated tools of the present invention (hereinafter referred to as “the present invention tool”) 1 to 6 shown in Table 4 in which the hard coating layer composed of the laminate of the A layer and the B layer was formed by vapor deposition were used. Produced.

比較のため、前記工具基体1〜3に対して、表3に示す条件で下部層および上部層を蒸着することにより、表5に示す比較例の被覆工具(以下、「比較例工具」という)1〜6を作製した。
なお、比較例工具の下部層および上部層は、それぞれ、本発明のA層、B層に対応させる層であることから、以下においては、比較例工具の下部層および上部層を、それぞれを便宜的にA層、B層ということとする。
For comparison, by coating the lower layer and the upper layer on the tool bases 1 to 3 under the conditions shown in Table 3, a coated tool of a comparative example shown in Table 5 (hereinafter referred to as “comparative tool”). 1-6 were produced.
In addition, since the lower layer and the upper layer of the comparative example tool are layers corresponding to the A layer and the B layer of the present invention, respectively, in the following, the lower layer and the upper layer of the comparative example tool are respectively referred to for convenience. Specifically, they are referred to as A layer and B layer.



上記で作製した本発明工具1〜6および比較例工具1〜6の工具基体表面に垂直な硬質被覆層の縦断面について、工具基体表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるよう設定された視野について、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、エネルギー分散型X線分光法(EDS)を用いた断面測定により、A層、B層の組成、層厚を複数箇所で測定し、これを平均することにより、平均組成、平均層厚を算出した。   About the longitudinal section of the hard coating layer perpendicular to the tool base surface of the present invention tools 1 to 6 and Comparative Examples tools 1 to 6 produced above, the width in the direction parallel to the tool base surface is 10 μm. For the field of view set to include all the thickness regions, cross-sectional measurement using a scanning electron microscope (SEM), a transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDS) was performed. The composition of the layer and the layer thickness were measured at a plurality of locations and averaged to calculate the average composition and average layer thickness.

また、A層とB層の結晶粒の近似幅、アスペクト比については、走査型電子顕微鏡(SEM)、電子線後方散乱回折法(EBSD)、透過型電子顕微鏡(TEM)を用いた断面観察により、視野内の全結晶粒子の値を測定し、近似幅、アスペクト比を算出した。
具体的には、集束イオンビーム(Focused Ion Beam:FIB)を用いた加工により、工具基体のホーニング面と逃げ面の成す稜線から逃げ面の方向に100μmの位置に硬質被覆層の工具基体表面に垂直な縦断面を作製し、基材表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるよう設定された視野においてステップ間隔0.02μmの条件でEBSDによる測定、解析を実施し、測定点のうち、隣り合う点で結晶方位が2°以上異なる境目を結晶粒界として判断し、A層、B層の結晶の形状を決定した。また、0.02μm以下の結晶粒については透過型電子顕微鏡(TEM)によって結晶粒の形状を直接観察し、画像のコントラストから結晶粒界を定めた。なお、EBSD測定を実施した視野と同じ画像視野において、0.02μm以上の結晶粒形状についても透過型電子顕微鏡(TEM)を用いた測定によって結晶形状を確認し、いずれの手法でも同等の結果が得られることを確認している。工具基体表面については、硬質被覆層の工具基体表面に垂直な縦断面においてEDSを用いた元素マッピングを実施することによってA層と工具基体の界面を定め、こうして得られたA層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体表面とした。
次に、上記手順で決定したA層、B層の各結晶粒形状に対して、工具基体表面に垂直な長さを求め、最大結晶粒長さLを求めた。この最大結晶粒長さLを基準として、断面画像中の結晶粒の面積と等価な面積となるような長方形を定め、長方形の工具基体表面に平行な方向の長さを求め、各結晶粒の近似幅とし、さらに最大結晶粒長さLを近似幅で除して各結晶粒のアスペクト比を求めた。A層については断面画像中の全粒子に上記の操作を行い、それらの近似幅およびアスペクト比を平均し、硬質被覆層をなす結晶粒の平均幅と平均アスペクト比を求めた。 さらに、EBSDから求めたB層の各結晶粒の形状について、工具基体表面に垂直な方向の最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置における工具基体表面に平行な方向の柱状結晶粒の幅W0.2、W0.8を求め、B層の結晶粒のうち、最大結晶粒長さLがB層の平均層厚の60%以上であり、かつ近似幅が0.1〜1.5μmであり、かつアスペクト比が1.4以上であり、かつ最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置における工具基体表面に平行な方向の柱状結晶粒の幅W0.2、W0.8が近似幅に対してそれぞれ20%以内の差である柱状結晶粒を決定した。さらに、観察画像の視野内におけるこのような柱状結晶粒の縦断面面積を合計し、観察画像中のB層の縦断面面積で除することで、本願で規定する特徴的な柱状結晶粒が工具基体表面に垂直なB層の縦断面面積に占める面積割合を算出した。
In addition, the approximate width and aspect ratio of the crystal grains of the A layer and the B layer are determined by cross-sectional observation using a scanning electron microscope (SEM), electron beam backscatter diffraction (EBSD), and transmission electron microscope (TEM). The value of all crystal grains in the field of view was measured, and the approximate width and aspect ratio were calculated.
Specifically, by processing using a focused ion beam (FIB), the tool base surface of the hard coating layer is positioned at a position of 100 μm in the direction of the flank from the ridge line formed by the honing surface and the flank of the tool base. Measurement by EBSD under the condition of a step interval of 0.02 μm in a visual field set so that a vertical longitudinal section is formed, the width in the direction parallel to the substrate surface is 10 μm, and the entire thickness region of the hard coating layer is included. Analysis was performed, and a boundary where crystal orientations differ by 2 ° or more at adjacent points among the measurement points was determined as a crystal grain boundary, and crystal shapes of the A layer and the B layer were determined. For crystal grains of 0.02 μm or less, the crystal grain shape was directly observed with a transmission electron microscope (TEM), and the crystal grain boundaries were determined from the contrast of the image. In addition, in the same image field as the field of view where the EBSD measurement was performed, the crystal shape of the crystal grain shape of 0.02 μm or more was confirmed by measurement using a transmission electron microscope (TEM). It is confirmed that it can be obtained. For the tool substrate surface, element mapping using EDS is performed in a longitudinal section perpendicular to the tool substrate surface of the hard coating layer to define the interface between the A layer and the tool substrate. As for the roughness curve of the interface, an average line was obtained arithmetically and used as the tool base surface.
Next, for each crystal grain shape of the A layer and B layer determined by the above procedure, the length perpendicular to the tool base surface was determined, and the maximum crystal grain length L was determined. Using this maximum crystal grain length L as a reference, a rectangle that has an area equivalent to the area of the crystal grain in the cross-sectional image is determined, and the length in the direction parallel to the rectangular tool base surface is obtained. The approximate width was obtained, and the maximum crystal grain length L was divided by the approximate width to obtain the aspect ratio of each crystal grain. For the A layer, the above operation was performed on all particles in the cross-sectional image, and the approximate width and aspect ratio thereof were averaged to obtain the average width and average aspect ratio of the crystal grains forming the hard coating layer. Further, regarding the shape of each crystal grain of the B layer obtained from EBSD, the tool base surface at a height of 0.2 L and 0.8 L from the tool base side of the maximum crystal grain length L in the direction perpendicular to the tool base surface. The widths W 0.2 and W 0.8 of the columnar crystal grains in the direction parallel to the horizontal axis are obtained, and among the crystal grains of the B layer, the maximum crystal grain length L is 60% or more of the average layer thickness of the B layer, A tool at an approximate width of 0.1 to 1.5 μm, an aspect ratio of 1.4 or more, and a height of 0.2 L and 0.8 L from the tool base side with the maximum crystal grain length L. The columnar crystal grains in which the widths W 0.2 and W 0.8 of the columnar crystal grains in the direction parallel to the substrate surface are within 20% of the approximate width were determined. Further, the columnar crystal grains defined in the present application can be obtained by summing up the vertical cross-sectional areas of such columnar crystal grains in the field of view of the observation image and dividing by the vertical cross-sectional area of the B layer in the observation image. The area ratio in the vertical sectional area of the B layer perpendicular to the substrate surface was calculated.

次に、硬質被覆層全体の回折ピーク強度比I(200)/I(111)は、Cr管球を用いたX線回折によってA層とB層の重なった(200)面の回折ピーク強度をI(200)として測定し、また、A層とB層の重なった(111)面の回折ピーク強度をI(111)として測定し、I(200)/I(111)から求めた。
また、A層の回折ピーク強度については、成膜後に上部層Bを集束イオンビーム(Focused Ion Beam:FIB)法などの手法で加工・除去したのち、前述したX線回折法を用いることで測定し、(200)面の回折ピーク強度I(200)と、(111)面の回折ピーク強度I(111)からI(200)/I(111)を求めた。
Next, the diffraction peak intensity ratio I (200) / I (111) of the entire hard coating layer is the diffraction peak intensity of the (200) plane where the A layer and the B layer overlap by X-ray diffraction using a Cr tube. It was measured as I (200), and the diffraction peak intensity of the (111) plane where the A layer and B layer overlapped was measured as I (111), and obtained from I (200) / I (111).
Further, the diffraction peak intensity of the A layer is measured by processing and removing the upper layer B by a method such as a focused ion beam (FIB) method after film formation, and then using the X-ray diffraction method described above. Then, I (200) / I (111) was determined from the diffraction peak intensity I (200) of the (200) plane and the diffraction peak intensity I (111) of the (111) plane.

表4、表5に、上記で求めた各種の値を示す。   Tables 4 and 5 show the various values obtained above.



次いで、本発明工具1〜6および比較例工具1〜6について、
切削条件A:
被削材:JIS・SCr420の浸炭焼入れ材(HRC60)の丸棒、
切削速度:260 m/min.、
切り込み:0.15 mm、
送り:0.15 mm、
の乾式連続切削条件で切削試験を行い、切削長910mまで切削し、逃げ面摩耗幅を測定した。
表6にその結果を示す。
Then, about this invention tools 1-6 and comparative example tools 1-6,
Cutting condition A:
Work material: JIS / SCr420 carburized quenching material (HRC60) round bar,
Cutting speed: 260 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.15 mm,
A cutting test was performed under the dry continuous cutting conditions, cutting to a cutting length of 910 m, and flank wear width was measured.
Table 6 shows the results.


工具基体の作製::
原料粉末として、Co粉末、VC粉末、Cr粉末、TiC粉末、TaC粉末、NbC粉末、WC粉末を用意し、これら原料粉末を、表7に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFTN1のインサート形状をもったWC基超硬合金工具基体11〜13を
製造した。
Tool substrate production ::
As raw material powder, Co powder, VC powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, WC powder are prepared, and these raw material powders are blended into the blending composition shown in Table 7, and wax is further added. In addition, it is wet-mixed for 72 hours in a ball mill, dried under reduced pressure, press-molded at a pressure of 100 MPa, these green compacts are sintered, processed to a predetermined size, and an ISO standard SEEN1203AFTN1 insert shape. WC-based cemented carbide tool bases 11 to 13 having the above were manufactured.


成膜工程:
前記WC基超硬合金工具基体11〜13に対して、図2に示したようなアークイオンプレーティング装置を用いて、実施例1の場合と同様にして、表8に示す条件で硬質被覆層を蒸着形成することにより、表10に示すA層とB層を有する本発明被覆工具(「本発明工具」という)11〜16を作製した。
Film formation process:
Using the arc ion plating apparatus as shown in FIG. 2 for the WC-base cemented carbide tool bases 11 to 13, the hard coating layer was subjected to the conditions shown in Table 8 in the same manner as in Example 1. The present coated tools (referred to as “the present invention tool”) 11 to 16 having the A layer and the B layer shown in Table 10 were produced.

比較のため、上記工具基体11〜13に対して、比較例工具1〜6と同様に、表9に示す条件で硬質被覆層を蒸着形成することにより、表11に示すA層とB層を有する比較例被覆工具(「比較例工具」という)11〜16を作製した。   For comparison, the A and B layers shown in Table 11 are formed on the tool bases 11 to 13 by vapor-depositing a hard coating layer under the conditions shown in Table 9, similarly to Comparative Tools 1 to 6. Comparative example-coated tools (referred to as “comparative example tools”) 11 to 16 were prepared.





上記で作製した本発明工具11〜16および比較例工具11〜16について、実施例1と同様にして、A層、B層の平均組成、平均層厚を算出した。
また、A層とB層の結晶粒の工具基体表面に垂直な方向の最大結晶粒長さL、近似幅、アスペクト比およびB層の結晶粒の最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置における柱状結晶粒の幅W0.2、W0.8、このような柱状結晶粒が工具基体表面に垂直なB層の縦断面面積に占める面積割合については、走査型電子顕微鏡(SEM)、電子線後方散乱回折法(EBSD)、透過型電子顕微鏡(TEM)を用いた断面観察により、算出した。
さらに、A層および硬質被覆層全体の回折ピーク強度比I(200)/I(111)は、Cr管球を用いたX線回折により求めた。
表10、表11に、上記で求めた各種の値を示す。
About this invention tool 11-16 produced above and the comparative example tools 11-16, it carried out similarly to Example 1, and computed the average composition and average layer thickness of A layer and B layer.
In addition, the maximum crystal grain length L, the approximate width, the aspect ratio, and the maximum crystal grain length L of the B layer crystal grains in the direction perpendicular to the tool base surface of the A layer and B layer crystal grains are 0 from the tool base side. Width of columnar crystal grains W 0.2 and W 0.8 at heights of 2 L and 0.8 L, and the area ratio of such columnar grains to the vertical sectional area of layer B perpendicular to the tool base surface Was calculated by cross-sectional observation using a scanning electron microscope (SEM), electron beam backscatter diffraction (EBSD), and transmission electron microscope (TEM).
Furthermore, the diffraction peak intensity ratio I (200) / I (111) of the entire A layer and the hard coating layer was determined by X-ray diffraction using a Cr tube.
Tables 10 and 11 show the various values obtained above.

次いで、本発明工具11〜16および比較例工具11〜16について、SE445R0506Eのカッタを用いて、以下の切削条件Bで、単刃の高速正面フライス切削試験を実施した。
切削条件B:
被削材:JIS・S45Cのブロック材(幅60mm×長さ250mm)、
切削速度:260 m/min.、
回転速度:662 rev/min、
切り込み:1.5 mm、
送り:0.15 mm/刃、
切削幅:60 mm
の条件で、切削長1300mまで切削し、逃げ面摩耗幅を測定した。
表12にその結果を示す。
Next, for the inventive tools 11 to 16 and the comparative tools 11 to 16, a single-blade high-speed face milling test was carried out under the following cutting conditions B using a cutter of SE445R0506E.
Cutting condition B:
Work material: JIS / S45C block material (width 60 mm x length 250 mm),
Cutting speed: 260 m / min. ,
Rotational speed: 662 rev / min,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / tooth,
Cutting width: 60 mm
Under these conditions, the cutting length was cut to 1300 m, and the flank wear width was measured.
Table 12 shows the results.


表6の結果によれば、本発明工具1〜6の逃げ面摩耗幅の平均は約0.09mm、また、表12の結果によれば、本発明工具11〜16の逃げ面摩耗幅の平均は約0.14mmであるのに対して、比較例工具1〜6、11〜16は逃げ面摩耗が進行し、また、短時間で欠損による寿命となるものも生じた。
この結果から、本発明工具は、比較例工具に比して、耐チッピング性、耐欠損性、耐剥離性等の異常損傷性とともに耐摩耗性のいずれにおいてもすぐれていることが分かる。
According to the results of Table 6, the average flank wear width of the inventive tools 1 to 6 is about 0.09 mm, and according to the results of Table 12, the average flank wear width of the inventive tools 11 to 16 Was about 0.14 mm, but comparative tools 1-6, 11-16 were subject to flank wear, and some of them had a short life due to chipping.
From this result, it can be seen that the tool of the present invention is superior in both wear resistance as well as abnormal damage properties such as chipping resistance, chipping resistance, and peel resistance as compared with the comparative example tool.

本発明の表面被覆切削工具は、各種の鋼などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴うとともに、切刃部に対して大きな負荷がかかる炭素鋼、合金鋼などの高速切削加工においても、すぐれた耐異常損傷性および耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
The surface-coated cutting tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel, but also carbon steel, alloy steel, etc. that particularly involve high heat generation and a heavy load on the cutting edge. Even in high-speed cutting, it exhibits excellent abnormal damage resistance and wear resistance, and exhibits excellent cutting performance over a long period of time. And it can cope with energy saving and cost reduction sufficiently satisfactorily.

Claims (1)

WC超硬合金、TiCN基サーメット、立方晶型窒化硼素焼結体のいずれかからなる工具基体の表面に、A層とB層が積層された硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記A層は、
組成式:(Ti1−xAl)N(但し、xは原子比で、0.45≦x≦0.65)を満足する岩塩型立方晶の結晶構造を有し、0.1〜1.0μmの平均層厚と0.01〜0.1μmの結晶粒の平均幅を有する微細粒状結晶組織のTiとAlの窒化物層からなり、
(b)前記B層は、
組成式:(Ti1−yAl)N(但し、yは原子比で、0.4≦y≦0.65)を満足する岩塩型立方晶の結晶構造を有し、0.5〜3.0μmの平均層厚を有する柱状結晶組織のTiとAlの窒化物層からなり、
(c)前記B層の柱状結晶粒を工具基体表面に垂直な縦断面で観察した場合、工具基体表面に垂直な方向の最大結晶粒長さLがB層の平均層厚の60%以上であって、かつ、柱状結晶粒の近似幅が0.1〜1.5μmおよびアスペクト比が1.4以上であって、かつ、前記最大結晶粒長さLの工具基体側から0.2L、0.8Lの高さ位置においてそれぞれ測定した柱状結晶粒の幅W0.2、W0.8と柱状結晶粒の近似幅との差がそれぞれ20%以内である柱状結晶粒が、工具基体表面に垂直なB層の縦断面面積の50%以上の面積割合を占め、
(d)前記A層と硬質被覆層全体について、X線回折によって(200)面の回折ピーク強度をI(200)、(111)面の回折ピーク強度をI(111)として求めた時、I(200)/I(111)が7〜20であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer in which an A layer and a B layer are laminated is vapor-deposited on the surface of a tool substrate made of any of WC cemented carbide, TiCN-based cermet, and cubic boron nitride sintered body,
(A) The A layer is
Compositional formula: (Ti 1-x Al x ) N (where x is an atomic ratio, 0.45 ≦ x ≦ 0.65), and has a rock salt cubic crystal structure, 0.1 to 1 A fine grained Ti and Al nitride layer having an average layer thickness of 0.0 μm and an average width of 0.01-0.1 μm crystal grains;
(B) The B layer is
Compositional formula: (Ti 1-y Al y ) N (where y is an atomic ratio, 0.4 ≦ y ≦ 0.65) and has a rock salt cubic crystal structure, 0.5-3 A nitride layer of Ti and Al with a columnar crystal structure having an average layer thickness of 0.0 μm;
(C) When the columnar crystal grains of the B layer are observed in a longitudinal section perpendicular to the tool base surface, the maximum crystal grain length L in the direction perpendicular to the tool base surface is 60% or more of the average layer thickness of the B layer. In addition, the approximate width of the columnar crystal grains is 0.1 to 1.5 μm, the aspect ratio is 1.4 or more, and 0.2 L, 0 from the tool base side of the maximum crystal grain length L The columnar crystal grains having a difference between the columnar crystal grain widths W 0.2 and W 0.8 measured at the height of 0.8 L and the approximate width of the columnar crystal grains within 20% respectively are formed on the tool base surface. Occupies an area ratio of 50% or more of the vertical cross-sectional area of the vertical B layer,
(D) When the diffraction peak intensity on the (200) plane was determined as I (200) and the diffraction peak intensity on the (111) plane was determined as I (111) by X-ray diffraction for the A layer and the entire hard coating layer, (200) / I (111) is 7-20, The surface coating cutting tool characterized by the above-mentioned.
JP2014161406A 2014-08-07 2014-08-07 Surface coated cutting tool with excellent wear resistance Active JP6296295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161406A JP6296295B2 (en) 2014-08-07 2014-08-07 Surface coated cutting tool with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161406A JP6296295B2 (en) 2014-08-07 2014-08-07 Surface coated cutting tool with excellent wear resistance

Publications (2)

Publication Number Publication Date
JP2016036873A JP2016036873A (en) 2016-03-22
JP6296295B2 true JP6296295B2 (en) 2018-03-20

Family

ID=55528431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161406A Active JP6296295B2 (en) 2014-08-07 2014-08-07 Surface coated cutting tool with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP6296295B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633691B1 (en) * 2017-04-21 2024-02-05 플란제 콤포지트 마테리얼스 게엠베하 Superalloy sputtering target
JP6624246B2 (en) * 2017-07-18 2019-12-25 Jfeスチール株式会社 Grain-oriented electrical steel sheet and its manufacturing method
KR102064172B1 (en) * 2017-09-01 2020-01-09 한국야금 주식회사 Hard film having excellent wear resistance and toughness
WO2022264198A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool
CN115198229A (en) * 2022-08-01 2022-10-18 西安文理学院 A multilayer ultra-low stress hard film with alternating layer-column microstructure and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129306A (en) * 2000-10-25 2002-05-09 Toshiba Tungaloy Co Ltd Dispersion strengthened composite hard coating and tools coated by the same
JP5231859B2 (en) * 2008-04-30 2013-07-10 住友電気工業株式会社 Surface coated cutting tool
JP5594575B2 (en) * 2010-04-20 2014-09-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Also Published As

Publication number Publication date
JP2016036873A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US10927445B2 (en) Surface-coated cutting tool providing excellent chipping resistance and wear resistance in heavy intermittent cutting
JP6384341B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
JP6634647B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5838769B2 (en) Surface coated cutting tool
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6519795B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance
JP2015160259A (en) Surface-coated cutting tool excellent in abrasion resistance
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP2013223894A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP2017109254A (en) Surface-coated cutting tool excellent in chipping resistance and wear resistance
JP5088469B2 (en) Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP2015066644A (en) Surface-coated cutting tool with hard coating layer showing excellent wear resistance and chipping resistance in high-speed cutting work
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5152690B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP6726403B2 (en) Surface-coated cutting tool with excellent hard coating layer and chipping resistance
JP6493800B2 (en) Surface coated cutting tool with excellent wear resistance in high speed cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2020142312A (en) Surface-coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP6198002B2 (en) A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting.
CN103372764A (en) Surface-coated cutting tool with flaking-poof hard coating layer
JP7054473B2 (en) Surface coating cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6296295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150