[go: up one dir, main page]

JP6288783B2 - Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground - Google Patents

Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground Download PDF

Info

Publication number
JP6288783B2
JP6288783B2 JP2016009776A JP2016009776A JP6288783B2 JP 6288783 B2 JP6288783 B2 JP 6288783B2 JP 2016009776 A JP2016009776 A JP 2016009776A JP 2016009776 A JP2016009776 A JP 2016009776A JP 6288783 B2 JP6288783 B2 JP 6288783B2
Authority
JP
Japan
Prior art keywords
gas
water
mixed fluid
liquid separation
separation container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016009776A
Other languages
Japanese (ja)
Other versions
JP2017129485A (en
Inventor
秀実 田中
秀実 田中
Original Assignee
秀実 田中
秀実 田中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秀実 田中, 秀実 田中 filed Critical 秀実 田中
Priority to JP2016009776A priority Critical patent/JP6288783B2/en
Publication of JP2017129485A publication Critical patent/JP2017129485A/en
Application granted granted Critical
Publication of JP6288783B2 publication Critical patent/JP6288783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、地下水及び地下ガスの状況を継続的に監視することを可能にする、地中の気液混合流体の観測装置に用いるのに好適なガス抽出・分離ユニットに関する。   The present invention relates to a gas extraction / separation unit suitable for use in an underground gas-liquid mixed fluid observation device that enables continuous monitoring of groundwater and underground gas conditions.

従来から、地殻変動特に地震予知に関する研究は各方面において盛んに行われているが、地震予知の難しさは未だ克服されていないのが実情である。   Conventionally, research on crustal deformation, especially earthquake prediction, has been actively conducted in various fields, but the difficulty of earthquake prediction has not yet been overcome.

ところで、これらの研究成果の一つとして、観測井から採取した各種のガス及びイオン(水素ガス,ヘリウムガス,一酸化炭素,二酸化炭素,水素イオン及び炭酸水素イオンなど)の観測値が震源の浅い地震に対して応答した場合、それらの発生量が地震性破壊に伴う破壊表面積および破壊に伴う間隙率の増加に関係あることが分っている。また、近年、温泉水等の化学組成及びガス組成の変動も地震との関連が明らかにされてきた。   By the way, as one of these research results, the observed values of various gases and ions (hydrogen gas, helium gas, carbon monoxide, carbon dioxide, hydrogen ion, hydrogen carbonate ion, etc.) collected from the observation well are shallow in the epicenter When responding to earthquakes, it has been found that their generation is related to the increase in fracture surface area associated with seismic failure and the porosity associated with failure. In recent years, changes in the chemical composition and gas composition of hot spring water and the like have also been revealed to be related to earthquakes.

本件出願人は、この研究成果に基づいて、地震予知等のために、地下水及び地下ガスの継続的な監視を行うことを可能にする装置として、次の特許文献1に記載の地中の気液混合流体の観測装置を提案している。   Based on the results of this research, the applicant of the present application is a device that enables continuous monitoring of groundwater and gas for earthquake prediction and the like. An observation device for liquid-mixed fluid is proposed.

図2は特許文献1に記載の地中の気液混合流体観測装置の全体構成例を示す概略図である。
特許文献1に記載の地中の気液混合流体観測装置は、水とガスとの混合流体を汲み上げる揚水手段(採取管P1及びチュービングポンプCP)と、汲み上げられた水とガスとを分離する気液分離手段と、気液分離手段により分離された水の量と水質を測定する水量及び水質測定手段(流量計FM及び水質測定機WM)と、気液分離手段により分離されたガスの分析測定手段(質量分析計QMS)と、水量及び水質測定手段と分析測定手段による測定データを記録する記録手段(記録装置RC1、RC2、RC3)とを備えている。
気液分離手段は、揚水手段の吐出側に接続されていて赤外線透過材料よりなる分離筒本体Bと、分離筒本体Bに接続されていて分離した水を水量及び水質測定手段に輸送するための水輸送管P2と、分離筒本体Bに接続されていて分離したガスを分析測定手段に輸送するためのガス輸送管P3と、ガス輸送管P3に設けられた電磁弁EVと、所定位置で分離筒本体Bを横切るように赤外光を射出する赤外光射出装置Eと、赤外光射出装置Eから射出された赤外光を受光する赤外光受光装置Rとを有するガス水分離筒CYとを含み、分離筒本体B内の水位が所定位置よりも上がり、赤外光が遮断されたときに電磁弁EVを閉弁し、所定位置よりも水位が下がり赤外光の遮断が解除されたときに電磁弁を開弁させるように構成されている。図2中、Hは掘削孔内に打ち込まれたスリット管、PDMは差圧計、CTはコールドトラップ、PMは差圧計である。
FIG. 2 is a schematic diagram showing an example of the overall configuration of the underground gas-liquid mixed fluid observation apparatus described in Patent Document 1. As shown in FIG.
The underground gas-liquid mixed fluid observation apparatus disclosed in Patent Document 1 is a gas separation unit that separates pumped water and gas from pumping means (sampling pipe P1 and tubing pump CP) that pumps up a mixed fluid of water and gas. Liquid separation means, water quantity and water quality measurement means (flow meter FM and water quality measuring machine WM) for measuring the amount and quality of water separated by gas-liquid separation means, and analytical measurement of gas separated by gas-liquid separation means Means (mass spectrometer QMS), water quantity and water quality measuring means, and recording means (recording devices RC1, RC2, RC3) for recording measurement data by the analytical measuring means.
The gas-liquid separation means is connected to the discharge side of the pumping means and is made of a separation cylinder body B made of an infrared transmitting material, and is connected to the separation cylinder body B for transporting the separated water to the water quantity and water quality measurement means. Separated at a predetermined position by a water transport pipe P2, a gas transport pipe P3 connected to the separation cylinder body B for transporting the separated gas to the analytical measurement means, and an electromagnetic valve EV provided in the gas transport pipe P3. Gas water separation cylinder having an infrared light emitting device E for emitting infrared light so as to cross the tube main body B, and an infrared light receiving device R for receiving infrared light emitted from the infrared light emitting device E When the water level in the separation cylinder body B rises above a predetermined position and the infrared light is shut off, the solenoid valve EV is closed, and the water level falls below the predetermined position to release the infrared light shut-off. The solenoid valve is configured to open when the operation is performed. In FIG. 2, H is a slit tube driven into the borehole, PDM is a differential pressure gauge, CT is a cold trap, and PM is a differential pressure gauge.

そして、特許文献1に記載の地中の気液混合流体観測装置では、装置の作動開始により、採取管P1を介してチュービングポンプCPにより汲み上げられたスリット管H内の水とガスの混合流体は、ガス水分離筒CY内部でガスと水とに分離しながら、水位が上昇する。ガス水分離筒CY内部の水位が所定水位に達すると、赤外光射出装置Eから赤外光受光装置Rへ達していた赤外光が遮断されて、電磁弁EVが閉弁する。そして、水は水輸送管P2により流量計FMを経て水質測定機WMへ、ガスはガス水分離筒CY上部と電磁弁EVに至るまでのガス輸送管P3内に溜まって行く。ガス水分離筒CY上部のガス圧が上昇し、その差圧が差圧計PDMで計測され、予め設定されている所定圧に達すると、差圧計PDMから信号が出力され、その出力信号に基づいて電磁弁EVが開弁する。ガス水分離筒CY上部に貯留されていたガスは、ガス輸送管P3によりコールドトラップCTを経て質量分析計QMSへ送られ、周知の方法で組成が分析されて、その結果は記録装置RC3に記録される。また、流量計FMで計測された水量は記録装置RC1に、水質測定機WMにより計測された値は周知の方法で記録装置RC2にそれぞれ記録される。
また、電磁弁EVが開弁すると、ガス水分離筒CY上部のガス圧が徐々に減少し、ガス水分離筒CY内部の水位が徐々に上昇する。ガス水分離筒CY内部の水位が所定水位に達すると、赤外光射出装置Eから赤外光受光装置Rへ達していた赤外光が遮断されて、電磁弁EVが閉弁する。
このようにして作動の一サイクルが終了し、再び上記の作動が開始されて、このサイクルが繰り返される。
Then, in the underground gas-liquid mixed fluid observation device described in Patent Document 1, the mixed fluid of water and gas in the slit tube H pumped up by the tubing pump CP through the sampling tube P1 by the start of operation of the device is The water level rises while separating into gas and water inside the gas water separation cylinder CY. When the water level inside the gas water separation cylinder CY reaches a predetermined water level, the infrared light reaching the infrared light receiving device R from the infrared light emitting device E is blocked, and the electromagnetic valve EV is closed. Then, water accumulates in the gas transport pipe P3 from the water transport pipe P2 through the flow meter FM to the water quality measuring machine WM, and the gas reaches the upper part of the gas water separation cylinder CY and the electromagnetic valve EV. When the gas pressure in the upper part of the gas water separation cylinder CY rises and the differential pressure is measured by the differential pressure gauge PDM and reaches a predetermined pressure set in advance, a signal is output from the differential pressure gauge PDM and based on the output signal The solenoid valve EV opens. The gas stored in the upper part of the gas water separation cylinder CY is sent to the mass spectrometer QMS through the cold trap CT through the gas transport pipe P3, the composition is analyzed by a well-known method, and the result is recorded in the recording device RC3. Is done. Further, the amount of water measured by the flow meter FM is recorded in the recording device RC1, and the value measured by the water quality measuring machine WM is recorded in the recording device RC2 by a known method.
Further, when the electromagnetic valve EV is opened, the gas pressure in the upper part of the gas water separation cylinder CY gradually decreases, and the water level inside the gas water separation cylinder CY gradually increases. When the water level inside the gas water separation cylinder CY reaches a predetermined water level, the infrared light reaching the infrared light receiving device R from the infrared light emitting device E is blocked, and the electromagnetic valve EV is closed.
In this way, one cycle of operation is completed, the above operation is started again, and this cycle is repeated.

このため、特許文献1に記載の装置によれば、長期に亘る地下ガス成分及び地下水の水質の監視が可能となり、得られた記録データから、研究成果を参照しながら、地震等の地殻変動を予知したり、温泉の変化等を適確に把握したりすることができる。   For this reason, according to the apparatus described in Patent Document 1, it is possible to monitor the underground gas components and groundwater quality over a long period of time. From the obtained record data, crustal deformation such as earthquakes can be performed while referring to the research results. It is possible to predict and accurately grasp changes in hot springs.

特開2007−183160号公報JP 2007-183160 A

しかるに、本件出願人は、更なる研究の結果、特許文献1に記載の装置においては、揚水手段で混合流体を汲み上げ、汲み上げられた混合流体を気液分離手段で水とガスとに分離させたときの、地下ガスの抽出量の計測精度を向上させる余地があることがわかった。また、特許文献1に記載の装置においては、揚水手段で混合流体を汲み上げ、汲み上げられた混合流体を気液分離手段で水とガスとに分離させているときの地下水を継続的に計測できる余地があることがわかった。さらに、特許文献1に記載の装置においては、揚水手段と気液分離手段の構成をよりコンパクト化できる余地があることがわかった。   However, as a result of further research, the applicant of the present invention pumped up the mixed fluid by the pumping means in the apparatus described in Patent Document 1, and separated the pumped mixed fluid into water and gas by the gas-liquid separation means. It was found that there is room to improve the measurement accuracy of the extracted amount of underground gas. Moreover, in the apparatus described in Patent Document 1, there is room for continuously measuring groundwater when pumping the mixed fluid by the pumping means and separating the pumped mixed fluid into water and gas by the gas-liquid separation means. I found out that Furthermore, in the apparatus of patent document 1, it turned out that there exists room which can make the structure of a pumping means and a gas-liquid separation means more compact.

本発明は、上記従来の課題を解決するために提案されたものであり、汲み上げた地下水及び地下ガスを継続的かつ高精度に定量可能であり、しかもコンパクト化可能な地中の気液混合流体観測装置用ガス抽出・分離ユニットを提供することを目的としている。   The present invention has been proposed in order to solve the above-mentioned conventional problems, and it is possible to quantitatively quantitate the pumped-up groundwater and underground gas continuously and with high accuracy, and it is possible to downsize the gas-liquid mixed fluid in the ground. The object is to provide a gas extraction / separation unit for observation equipment.

上記目的を達成するため、本発明による地中の気液混合流体観測装置用ガス抽出・分離ユニットは、水とガスとの混合流体を汲み上げ、汲み上げた混合流体を所定気圧下で気液平衡状態の水とガスとに分離させ、分離した水の量と水質を測定するとともに、分離したガスの分析測定を行い、これらの測定データを記録する地中の気液混合流体観測装置に用いるガス抽出・分離ユニットであって、内部が気密性を保持し、且つ、減圧されていて、該内部に導入された前記混合流体を水とガスとに分離させる気液分離容器と、前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部に前記混合流体を導入する混合流体導入バルブ機構と、前記気液分離容器内部に導入された前記水の水位を連続的に計測する水位センサと、前記気液分離容器内部に導入された前記ガスの気圧を計測する気圧センサと、前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部から前記水を排出する水排出ポンプバルブ機構と、前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部から前記ガスを抽出するガス抽出バルブ機構と、前記混合流体導入バルブ機構、前記水排出ポンプバルブ機構及び前記ガス抽出バルブ機構の作動を制御するポンプバルブ制御手段と、前記水位センサが計測した水位と前記気圧センサが計測した気圧に基づき、地下から汲み上げた水量と抽出ガス量を算出する定量手段とを備えたことを特徴としている。   In order to achieve the above object, the gas extraction / separation unit for an underground gas-liquid mixed fluid observation device according to the present invention pumps up a mixed fluid of water and gas, and the pumped-up mixed fluid is in a gas-liquid equilibrium state at a predetermined atmospheric pressure. Gas separation to measure the amount and quality of the separated water and analyze the separated gas, and record the measurement data in the underground gas-liquid mixed fluid observation device A gas-liquid separation container which is a separation unit, the inside of which maintains airtightness and is decompressed, and separates the mixed fluid introduced into the inside into water and gas, and the gas-liquid separation container A mixed fluid introduction valve mechanism that introduces the mixed fluid into the gas-liquid separation container while maintaining internal airtightness, and a water level that continuously measures the water level of the water introduced into the gas-liquid separation container Sensor and said gas-liquid component A pressure sensor that measures the pressure of the gas introduced into the container; a water discharge pump valve mechanism that discharges the water from the gas-liquid separation container while maintaining airtightness inside the gas-liquid separation container; A gas extraction valve mechanism for extracting the gas from the gas-liquid separation container while maintaining the gas tightness inside the gas-liquid separation container, the mixed fluid introduction valve mechanism, the water discharge pump valve mechanism, and the gas extraction valve A pump valve control means for controlling the operation of the mechanism, and a quantitative means for calculating the amount of water pumped from the underground and the amount of extracted gas based on the water level measured by the water level sensor and the atmospheric pressure measured by the atmospheric pressure sensor. It is a feature.

また、本発明の地中の気液混合流体観測装置用ガス抽出・分離ユニットにおいては、前記水位センサと、前記気圧センサが、前記気液分離容器と一体に設けられているのが好ましい。   In the gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus according to the present invention, it is preferable that the water level sensor and the atmospheric pressure sensor are provided integrally with the gas-liquid separation container.

また、本発明の地中の気液混合流体観測装置用ガス抽出・分離ユニットにおいては、さらに、前記気液分離容器内部に導入された前記混合流体における水とガスとの分離を促進させる超音波発生装置を備えるのが好ましい。   In the gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus according to the present invention, the ultrasonic wave further promotes separation of water and gas in the mixed fluid introduced into the gas-liquid separation container. A generator is preferably provided.

本発明によれば、汲み上げた地下水及び地下ガスを継続的かつ高精度に定量可能であり、しかも構造を簡素化可能な地中の気液混合流体観測装置用ガス抽出・分離ユニットが得られる。   According to the present invention, it is possible to obtain a gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus that can quantitate the pumped groundwater and underground gas continuously and with high accuracy and that can simplify the structure.

本発明の一実施形態にかかる地中の気液混合流体観測装置用ガス抽出・分離ユニットの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the gas extraction / separation unit for underground gas-liquid mixed fluid observation apparatuses concerning one Embodiment of this invention. 特許文献1に記載の地中の気液混合流体観測装置の全体構成の一例を示す概略図である。It is the schematic which shows an example of the whole structure of the underground gas-liquid mixed fluid observation apparatus described in patent document 1. FIG.

実施例の説明に先立ち、本発明を想到するに至った経緯及び本発明の作用効果について説明する。
本件出願人は、特許文献1に記載の地中の気液混合流体観測装置を製作し、現場での試験作動を繰り返した。その結果、揚水手段で混合流体を汲み上げ、汲み上げられた混合流体を気液分離手段で水とガスとに分離させる構成に関し、次のような改善すべき課題があることが判明した。
Prior to the description of the embodiments, the background of the present invention and the effects of the present invention will be described.
The present applicant manufactured the underground gas-liquid mixed fluid observation device described in Patent Document 1 and repeated the on-site test operation. As a result, it has been found that there is the following problem to be improved regarding the configuration in which the mixed fluid is pumped by the pumping means and the pumped mixed fluid is separated into water and gas by the gas-liquid separation means.

特許文献1に記載の装置では、揚水手段としてチュービングポンプCPを用いて混合流体を地下から汲み上げて、正圧の状態のガス水分離筒CY内部に導入する構成となっている。
このような構成においては、チュービングポンプCPで地下の混合流体を汲み上げる際に空気が含まれる。このため、ガス水分離筒CY内部で、水と分離したガスには、地中に含まれるガスの他にチュービングポンプCPで汲み上げた際に混入した空気が混在する。その結果、気液分離手段におけるガス水分離筒CY内部で分離したガスを計測しても、空気がノイズとなるため地中ガスの絶対量を高精度に計測することができない。
しかるに、混合流体が分離したときのガスを計測することで、地中ガスの絶対量を高精度に計測できるようにするためには、地中から汲み上げる混合流体に空気を混入させないことが望まれる。
In the apparatus described in Patent Document 1, the mixed fluid is pumped up from the underground using a tubing pump CP as a pumping means and introduced into the gas water separation cylinder CY in a positive pressure state.
In such a configuration, air is contained when the underground mixed fluid is pumped up by the tubing pump CP. For this reason, in the gas water separation cylinder CY, the gas separated from the water is mixed with the air mixed when pumped by the tubing pump CP in addition to the gas contained in the ground. As a result, even if the gas separated in the gas / water separation cylinder CY in the gas-liquid separation means is measured, the air becomes noise, so the absolute amount of underground gas cannot be measured with high accuracy.
However, in order to be able to measure the absolute amount of underground gas with high accuracy by measuring the gas when the mixed fluid is separated, it is desirable not to mix air into the mixed fluid pumped from the ground. .

また、特許文献1に記載の装置では、ガス水分離筒CY内部において水位が所定位置よりも上がって赤外光が遮断されたときに電磁弁EVを閉弁し、所定位置よりも水位が下がり赤外光の遮断が解除されたときに電磁弁EVを開弁している。そして、電磁弁EVが閉弁から開弁までの間に、ガス水分離筒CY内部に溜まったガス圧で、ガス水分離筒CY内部の水を、水輸送管P1を経由して流量計FM、水質測定機WMへと送り込み、流量計FMを通る水の量を計測する構成となっている。
しかし、このような赤外光を用いた電磁弁EVの開閉により、ガス水分離CY内部の水を水輸送管P1に流すタイミングを切り換える構成では、ガス水分離CY内部において水位が低い位置から所定位置に水位が上がってくるまでの間の水の量を継続的に定量することができない。
Further, in the apparatus described in Patent Document 1, the electromagnetic valve EV is closed when the water level rises above a predetermined position and the infrared light is blocked inside the gas water separation cylinder CY, and the water level falls below the predetermined position. The electromagnetic valve EV is opened when the blocking of the infrared light is released. Then, between the time when the solenoid valve EV is closed and the time when the valve is opened, the gas pressure accumulated in the gas water separation cylinder CY causes the water inside the gas water separation cylinder CY to flow through the water transport pipe P1 and the flow meter FM. The water quality measuring machine WM is sent to the flow meter FM and the amount of water passing through the flow meter FM is measured.
However, in the configuration in which the timing of flowing the water in the gas water separation CY to the water transport pipe P1 is switched by opening and closing the electromagnetic valve EV using such infrared light, a predetermined level is selected from a position where the water level is low in the gas water separation CY. The amount of water until the water level rises to the position cannot be quantified continuously.

また、特許文献1に記載の装置では、分離筒本体Bに差圧計PDMや流量計FMなどの計測機器が水輸送管P2やガス輸送管P3を介して接続されているが、このような構成の場合、計測機器の配置が分散し、揚水手段及び気液分離手段が全体として大型化し易い。このため、特許文献1に記載の装置では、一旦、所定の場所に設置すると場所を変えることが難しい。しかし、地中の気液混合流体の観測が必要とされる場所は多数存在する。必要に応じて随時設置場所を変えた観測を可能とするためにも、極力コンパクト化して携帯可能なユニットを構成することが望まれる。   Moreover, in the apparatus described in Patent Document 1, measuring devices such as a differential pressure gauge PDM and a flow meter FM are connected to the separation cylinder main body B via a water transport pipe P2 and a gas transport pipe P3. In this case, the arrangement of measuring devices is dispersed, and the pumping means and the gas-liquid separation means are easy to increase in size as a whole. For this reason, in the apparatus described in Patent Document 1, once installed in a predetermined place, it is difficult to change the place. However, there are many places where observation of gas-liquid mixed fluid in the ground is required. In order to enable observation with the installation location changed as needed, it is desirable to make the portable unit as compact as possible.

本件出願人は、上記課題を解消すべく、試行錯誤を重ねた結果、本発明の地中の気液混合流体観測装置用ガス抽出・分離ユニットを想到するに至った。
本発明の地中の気液混合流体観測装置用ガス抽出・分離ユニットは、水とガスとの混合流体を汲み上げ、汲み上げた混合流体を所定気圧下で気液平衡状態の水とガスとに分離させ、分離した水の量と水質を測定するとともに、分離したガスの分析測定を行い、これらの測定データを記録する地中の気液混合流体観測装置に用いるガス抽出・分離ユニットであって、内部が気密性を保持し、且つ、減圧されていて、該内部に導入された前記混合流体を水とガスとに分離させる気液分離容器と、前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部に前記混合流体を導入する混合流体導入バルブ機構と、前記気液分離容器内部に導入された前記水の水位を連続的に計測する水位センサと、前記気液分離容器内部に導入された前記ガスの気圧を計測する気圧センサと、前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部から前記水を排出する水排出ポンプバルブ機構と、前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部から前記ガスを抽出するガス抽出バルブ機構と、前記混合流体導入バルブ機構、前記水排出ポンプバルブ機構及び前記ガス抽出バルブ機構の作動を制御するポンプバルブ制御手段と、前記水位センサが計測した水位と前記気圧センサが計測した気圧に基づき、地下から汲み上げた水量と抽出ガス量を算出する定量手段とを備える。
As a result of repeated trial and error in order to solve the above-mentioned problems, the present applicant has come up with a gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus according to the present invention.
The gas extraction / separation unit for underground gas-liquid mixed fluid observation device of the present invention pumps up a mixed fluid of water and gas, and separates the pumped-up mixed fluid into water and gas in a gas-liquid equilibrium state at a predetermined pressure. A gas extraction / separation unit used for an underground gas-liquid mixed fluid observation device that measures the amount and quality of the separated water, analyzes the separated gas, and records these measurement data, The inside of the gas-liquid separation container that maintains airtightness and is depressurized and separates the mixed fluid introduced into the inside into water and gas, and maintains the airtightness inside the gas-liquid separation container. However, a mixed fluid introduction valve mechanism for introducing the mixed fluid into the gas-liquid separation container, a water level sensor for continuously measuring the water level of the water introduced into the gas-liquid separation container, and the gas-liquid separation The gas introduced into the container A pressure sensor for measuring the air pressure of the gas, a water discharge pump valve mechanism for discharging the water from the gas-liquid separation container while maintaining air-tightness inside the gas-liquid separation container, and an air-tightness inside the gas-liquid separation container A gas extraction valve mechanism for extracting the gas from the gas-liquid separation container, and a pump valve for controlling the operation of the mixed fluid introduction valve mechanism, the water discharge pump valve mechanism, and the gas extraction valve mechanism Control means, and a quantification means for calculating the amount of water pumped from underground and the amount of extracted gas based on the water level measured by the water level sensor and the atmospheric pressure measured by the barometric pressure sensor.

本発明のガス抽出・分離ユニットのように、内部が気密性を保持し、且つ、減圧された気液分離容器を用いて、混合流体導入バルブ機構が気液分離容器内部の気密性を保持しながら、気液分離容器内部に混合流体を導入するようにするとともに、水排出ポンプバルブ機構が気液分離容器内部の気密性を保持しながら、気液分離容器内部から水を排出するようにすれば、気液分離容器内部への混合流体を導入する際には、混合流体導入バルブ機構のバルブを開弁するだけで足り、導入側にポンプを設けて混合流体を汲み上げずに済む。このため、気液分離容器内部に導入される混合流体にはポンプの作動を起因とする空気が混在しないので、気液分離容器内部で減圧下での気液平衡状態に分離したガス量を計測することで、地中ガスの量を高精度に計測することが可能となる。   As in the gas extraction / separation unit of the present invention, the inside of the gas-liquid separation container is maintained and the mixed fluid introduction valve mechanism maintains the air-tightness inside the gas-liquid separation container using a decompressed gas-liquid separation container. However, the mixed fluid is introduced into the gas-liquid separation container, and the water discharge pump valve mechanism is configured to discharge water from the gas-liquid separation container while maintaining the airtightness inside the gas-liquid separation container. For example, when the mixed fluid is introduced into the gas-liquid separation container, it is only necessary to open the valve of the mixed fluid introduction valve mechanism, and it is not necessary to provide a pump on the introduction side to pump up the mixed fluid. For this reason, since the mixed fluid introduced into the gas-liquid separation container does not contain air due to pump operation, the amount of gas separated into a gas-liquid equilibrium state under reduced pressure is measured inside the gas-liquid separation container. By doing so, it becomes possible to measure the amount of underground gas with high accuracy.

また、本発明のガス抽出・分離ユニットのように、気液分離容器内部に導入された水の水位を連続的に計測する水位センサを備えれば、定量手段で水位センサが計測した水位に基づき演算することにより、気液分離容器内部に導入される水の量を継続的に定量することができる。   Moreover, if a water level sensor that continuously measures the water level of the water introduced into the gas-liquid separation container as in the gas extraction / separation unit of the present invention is provided, it is based on the water level measured by the water level sensor by the quantitative means. By calculating, the amount of water introduced into the gas-liquid separation container can be continuously quantified.

また、本発明のガス抽出・分離ユニットのように、気液分離容器内部に導入された水の水位を計測する水位センサと、気液分離容器内部に導入されたガスの気圧を計測する気圧センサを備えれば、水位センサと気圧センサとを気液分離容器と一体化させることで、ユニット全体を簡素化、コンパクト化できる。   Further, as in the gas extraction / separation unit of the present invention, a water level sensor that measures the water level of the water introduced into the gas-liquid separation container, and an atmospheric pressure sensor that measures the pressure of the gas introduced into the gas-liquid separation container If the water level sensor and the atmospheric pressure sensor are integrated with the gas-liquid separation container, the entire unit can be simplified and made compact.

また、本発明のガス抽出・分離ユニットにおいては、さらに、気液分離容器内部に導入された前記混合流体における水とガスとの分離を促進させる超音波発生装置を備えれば、気液分離容器内部で分離する水とガスとが気液平衡状態になるまでの時間を短縮することができる。   Further, in the gas extraction / separation unit of the present invention, the gas-liquid separation container further includes an ultrasonic generator that promotes separation of water and gas in the mixed fluid introduced into the gas-liquid separation container. It is possible to shorten the time until the water and gas separated inside reach a gas-liquid equilibrium state.

以下、本発明の実施形態について、図面を参照して説明する。なお、以下の実施の形態は特許請求の範囲に係る本発明を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments do not limit the present invention according to the claims.

実施形態
図1は本発明の一実施形態にかかる地中の気液混合流体観測装置用ガス抽出・分離ユニットの構成を示す説明図である。
図1のガス抽出・分離ユニットは、気液分離容器1と、混合流体導入バルブ機構2と、水位センサ3と、気圧センサ4と、水排出ポンプバルブ機構5と、ガス抽出バルブ機構6と、ポンプバルブ制御手段7と、定量手段8と、超音波発生装置13を備えている。図1中、9は地中の混合流体を採取するための混合流体採取管、10は気液分離容器1内部で分離した水を排出するための水排出管、11は気液分離容器1内部で分離したガスを図示しないガスの分析・測定手段に向けて輸送するためのガス輸送管、12は地中に打ち込まれたスリット管である。
Embodiment FIG. 1 is an explanatory diagram showing the configuration of a gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus according to an embodiment of the present invention.
The gas extraction / separation unit in FIG. 1 includes a gas-liquid separation container 1, a mixed fluid introduction valve mechanism 2, a water level sensor 3, an atmospheric pressure sensor 4, a water discharge pump valve mechanism 5, a gas extraction valve mechanism 6, A pump valve control means 7, a quantitative means 8, and an ultrasonic generator 13 are provided. In FIG. 1, 9 is a mixed fluid sampling tube for collecting ground mixed fluid, 10 is a water discharge tube for discharging water separated in the gas-liquid separation container 1, and 11 is the inside of the gas-liquid separation container 1. A gas transport pipe 12 for transporting the gas separated in step (1) toward a gas analysis / measurement means (not shown) is a slit pipe driven into the ground.

気液分離容器1は、内部が気密性を保持するように構成され、さらに、所定の気圧に減圧されている。
混合流体導入バルブ機構2は、混合流体採取管9に接続された電磁バルブからなる。そして、混合流体導入バルブ機構2の電磁バルブが開弁することにより、気液分離容器1内部の気密性を保持しながら、気液分離容器1内部に混合流体を導入するように構成されている。
水位センサ3は、気液分離容器1に一体的に設けられ、気液分離容器1内部に導入された水の水位を連続的に計測するように構成されている。なお、図1の例では、水位センサ3を静電容量式の水位センサで構成したが、水位センサ3は、気液分離容器1内部に導入された水の水位を連続的に計測するように構成されたものであれば、どのようなタイプの水位センサでもよい。
気圧センサ4は、気液分離容器1に一体的に設けられていて、気液分離容器1内部に導入されたガスの気圧を計測するように構成されている。
水排出ポンプバルブ機構5は、水排出管10に接続された電磁バルブ5aと、例えばチュービングポンプ等のポンプ5bとからなる。そして、電磁バルブ5aが開弁し、ポンプ5bが作動することにより、気液分離容器1内部の気密性を保持しながら、気液分離容器1内部から水を排出するように構成されている。
ガス抽出バルブ機構6は、ガス輸送管11に接続された電磁バルブからなる。そして、ガス抽出バルブ機構6の電磁バルブが開弁することにより、気液分離容器1内部の気密性を保持しながら、気液分離容器1内部からガスを抽出するように構成されている。
ポンプバルブ制御手段7は、混合流体導入バルブ機構2、水位センサ3、気圧センサ4、水排出ポンプバルブ機構5(電磁バルブ5a、ポンプ5b)、ガス抽出バルブ機構6と接続されている。そして、水位センサ3、気圧センサ4で計測された計測値に基づき、混合流体導入バルブ機構2、水排出ポンプバルブ機構5及びガス抽出バルブ機構6の作動を制御するソフトウェアを備えた演算処理装置で構成されている。
定量手段8は、水位センサ3が計測した水位と気圧センサ4が計測した気圧に基づき、地下から汲み上げた水量と抽出ガス量を算出するソフトウェアを備えた演算処理装置で構成されている。
超音波発生装置13は、気液分離容器1に取り付けられており、気液分離容器1内部に導入された混合流体を超音波で振動し液中に溶存しているガスを脱気することで、分離容器1内部に導入された混合流体における水とガスとの分離を促進させるように構成されている。
The gas-liquid separation container 1 is configured so that the inside thereof is kept airtight, and further depressurized to a predetermined pressure.
The mixed fluid introduction valve mechanism 2 includes an electromagnetic valve connected to the mixed fluid collection tube 9. Then, the mixed fluid is introduced into the gas-liquid separation container 1 while the gas-liquid separation container 1 is kept airtight by opening the electromagnetic valve of the mixed fluid introduction valve mechanism 2. .
The water level sensor 3 is provided integrally with the gas-liquid separation container 1 and is configured to continuously measure the water level of the water introduced into the gas-liquid separation container 1. In the example of FIG. 1, the water level sensor 3 is configured by a capacitance type water level sensor, but the water level sensor 3 continuously measures the water level of the water introduced into the gas-liquid separation container 1. Any type of water level sensor may be used as long as it is configured.
The atmospheric pressure sensor 4 is provided integrally with the gas-liquid separation container 1 and is configured to measure the atmospheric pressure of the gas introduced into the gas-liquid separation container 1.
The water discharge pump valve mechanism 5 includes an electromagnetic valve 5a connected to the water discharge pipe 10 and a pump 5b such as a tubing pump. Then, the electromagnetic valve 5a is opened and the pump 5b is operated to discharge water from the gas-liquid separation container 1 while maintaining the gas tightness inside the gas-liquid separation container 1.
The gas extraction valve mechanism 6 includes an electromagnetic valve connected to the gas transport pipe 11. And it is comprised so that gas may be extracted from the gas-liquid separation container 1 inside, maintaining the airtightness inside the gas-liquid separation container 1 by opening the electromagnetic valve of the gas extraction valve mechanism 6. FIG.
The pump valve control means 7 is connected to the mixed fluid introduction valve mechanism 2, the water level sensor 3, the atmospheric pressure sensor 4, the water discharge pump valve mechanism 5 (electromagnetic valve 5 a, pump 5 b), and the gas extraction valve mechanism 6. An arithmetic processing unit having software for controlling the operation of the mixed fluid introduction valve mechanism 2, the water discharge pump valve mechanism 5, and the gas extraction valve mechanism 6 based on the measurement values measured by the water level sensor 3 and the atmospheric pressure sensor 4. It is configured.
The quantification means 8 is composed of an arithmetic processing unit having software for calculating the amount of water pumped from the underground and the amount of extracted gas based on the water level measured by the water level sensor 3 and the atmospheric pressure measured by the atmospheric pressure sensor 4.
The ultrasonic generator 13 is attached to the gas-liquid separation container 1, and vibrates the mixed fluid introduced into the gas-liquid separation container 1 with ultrasonic waves to degas the gas dissolved in the liquid. The separation of water and gas in the mixed fluid introduced into the separation container 1 is promoted.

このように構成された本実施形態のガス抽出・分離ユニットでは、ポンプバルブ制御手段7の制御により混合流体導入バルブ機構2の電磁バルブが開弁すると、混合流体採取管9を介してスリット管12内の水とガスの混合流体が、減圧された状態で密閉されている気液分離容器1内部に入り込む。気液分離容器1内部に入り込んだ混合流体は、気液分離容器1内部でガスと水とに分離する。分離した水の水位が気液分離容器1内部において上昇し、ガスは気液分離容器1の上部に溜まっていく。なお、このとき超音波発生装置13が、気液分離容器1内部に導入された混合流体を超音波で振動し液中の溶存ガスを脱気することで、気液分離容器1内部でガスと水との分離が促進させられる。また、気液分離容器1内部で分離したガスと水は、気液平衡状態に近づいていく。また、水位センサ3は、気液分離容器1内部に導入された水の水位を連続的に計測している。   In the gas extraction / separation unit of the present embodiment configured as described above, when the electromagnetic valve of the mixed fluid introduction valve mechanism 2 is opened under the control of the pump valve control means 7, the slit tube 12 is connected via the mixed fluid sampling tube 9. The mixed fluid of water and gas enters the inside of the gas-liquid separation container 1 that is sealed in a decompressed state. The mixed fluid that has entered the gas-liquid separation container 1 is separated into gas and water inside the gas-liquid separation container 1. The water level of the separated water rises inside the gas-liquid separation container 1, and the gas accumulates in the upper part of the gas-liquid separation container 1. At this time, the ultrasonic generator 13 vibrates the mixed fluid introduced into the gas-liquid separation container 1 with ultrasonic waves and degass the dissolved gas in the liquid. Separation from water is promoted. In addition, the gas and water separated in the gas-liquid separation container 1 approach the gas-liquid equilibrium state. The water level sensor 3 continuously measures the water level of the water introduced into the gas-liquid separation container 1.

気液分離容器1内部の水が気液分離容器1内部における上方の所定位置である第1水位に到達したことを、水位センサ3が計測したとき、ポンプバルブ制御手段7の制御により混合流体導入バルブ機構2の電磁バルブが閉弁し、水排出ポンプバルブ機構5の電磁バルブ5aが開弁するとともに、ポンプ5bが作動して、気液分離容器1内部の気密性を保持しながら、気液分離容器1内部から水を吸い込み、気液分離容器1内部の水が気液分離容器1内部における上方に位置し且つ水排出管10の上方の所定位置である第2水位に下がるまで、水排出管10を経由して外部に排出する。そして、気液分離容器1内部の水が第2水位に下がったことを、水位センサ3が計測したときに、ポンプバルブ制御手段7の制御により水排出ポンプバルブ機構5の電磁バルブ5aが閉弁する。次いで、ガス抽出バルブ機構6の電磁バルブが開弁し、気液分離容器1内部の気密性を保持しながら、気液分離容器1内部のガスを、ガス輸送管11を経由して図示しないガスの分析・測定手段側へ向けて抽出する。そして、気液分離容器1内部の気圧が混合流体を導入する前の気圧に下がったことを、気圧センサ4が計測したときに、ポンプバルブ制御手段7の制御によりガス抽出バルブ機構6の電磁バルブが閉弁する。
この間、定量手段8は、水位センサ3が計測した水位に基づき、地下から汲み上げた水量を算出するとともに、気圧センサ4が計測した気圧に基づき、地下から汲み上げたガス量を算出する。より詳しくは、定量手段8は、現時点で水位センサ3が計測した水位と、上記第2水位で水位センサ3が計測する水位との差分を用いて、地下から汲み上げた水量を算出する。また、定量手段8は、現時点で気圧センサ4が計測した気圧と、混合流体を導入する前の気圧との差圧を用いて、地下から汲み上げたガス量を算出する。算出した水量及びガス量は、夫々図示しない記録装置に記録される。
その後に、混合流体導入バルブ機構2の電磁バルブが開弁し、気液分離容器1内部へ混合流体が導入されて、同様の処理が繰り返される。
When the water level sensor 3 measures that the water in the gas-liquid separation container 1 has reached the first water level, which is a predetermined upper position in the gas-liquid separation container 1, the mixed fluid is introduced by the control of the pump valve control means 7 The electromagnetic valve of the valve mechanism 2 is closed, the electromagnetic valve 5a of the water discharge pump valve mechanism 5 is opened, and the pump 5b is operated to maintain the gas tightness inside the gas-liquid separation container 1 while Water is sucked in from the inside of the separation container 1, and the water is discharged until the water in the gas-liquid separation container 1 falls to the second water level that is located above the gas-liquid separation container 1 and above the water discharge pipe 10. It is discharged to the outside through the pipe 10. When the water level sensor 3 measures that the water in the gas-liquid separation container 1 has dropped to the second water level, the electromagnetic valve 5a of the water discharge pump valve mechanism 5 is closed under the control of the pump valve control means 7. To do. Next, the electromagnetic valve of the gas extraction valve mechanism 6 is opened, and the gas inside the gas-liquid separation container 1 is not shown via the gas transport pipe 11 while maintaining the gas tightness inside the gas-liquid separation container 1. Extract toward the analysis and measurement means side. Then, when the atmospheric pressure sensor 4 measures that the pressure inside the gas-liquid separation container 1 has dropped to the pressure before introducing the mixed fluid, the electromagnetic valve of the gas extraction valve mechanism 6 is controlled by the pump valve control means 7. Closes.
During this time, the quantification means 8 calculates the amount of water pumped from the basement based on the water level measured by the water level sensor 3 and calculates the amount of gas pumped from the basement based on the atmospheric pressure measured by the pressure sensor 4. More specifically, the quantification means 8 calculates the amount of water pumped from the ground using the difference between the water level measured by the water level sensor 3 at the present time and the water level measured by the water level sensor 3 at the second water level. Further, the quantification means 8 calculates the amount of gas pumped up from the underground using a differential pressure between the atmospheric pressure measured by the atmospheric pressure sensor 4 at the present time and the atmospheric pressure before the mixed fluid is introduced. The calculated water amount and gas amount are recorded in a recording device (not shown).
Thereafter, the electromagnetic valve of the mixed fluid introduction valve mechanism 2 is opened, the mixed fluid is introduced into the gas-liquid separation container 1, and the same processing is repeated.

本実施形態のガス抽出・分離ユニットによれば、内部が気密性を保持し、且つ、減圧された気液分離容器1を用いて、混合流体導入バルブ機構2が気液分離容器1内部の気密性を保持しながら、気液分離容器1内部に混合流体を導入するようにするとともに、水排出ポンプバルブ機構5が気液分離容器1内部の気密性を保持しながら、気液分離容器1内部から水を排出するようにしたので、気液分離容器1内部への混合流体を導入する際には、混合流体導入バルブ機構2の電磁バルブを開弁するだけで足り、導入側にポンプを設けて混合流体を汲み上げずに済む。このため、気液分離容器1内部に導入される混合流体にはポンプの作動を起因とする空気が混在しないので、気液分離容器1内部で分離したガス量を計測することで、地中ガスの量を高精度に計測することが可能となる。   According to the gas extraction / separation unit of the present embodiment, the mixed fluid introduction valve mechanism 2 uses the gas-liquid separation container 1 whose inside is kept airtight and decompressed, and the gas-liquid separation container 1 has an airtightness. The mixed fluid is introduced into the gas-liquid separation container 1 while maintaining the properties, and the water discharge pump valve mechanism 5 maintains the gas-tightness inside the gas-liquid separation container 1 while maintaining the gas-liquid separation container 1 inside. Since water is discharged from the gas-liquid separation container 1, it is only necessary to open the electromagnetic valve of the mixed fluid introduction valve mechanism 2 when introducing the mixed fluid into the gas-liquid separation container 1, and a pump is provided on the introduction side. Therefore, it is not necessary to pump up the mixed fluid. For this reason, since the mixed fluid introduced into the gas-liquid separation container 1 does not include air due to the operation of the pump, by measuring the amount of gas separated in the gas-liquid separation container 1, the underground gas Can be measured with high accuracy.

また、本実施形態のガス抽出・分離ユニットによれば、気液分離容器1内部に導入された水の水位を連続的に計測する水位センサを備えたので、定量手段8で水位センサ3が計測した水位に基づき演算することにより、気液分離容器1内部に導入される水の量を継続的に定量することができる。   Further, according to the gas extraction / separation unit of the present embodiment, the water level sensor 3 that continuously measures the water level of the water introduced into the gas-liquid separation container 1 is provided. By calculating based on the water level, the amount of water introduced into the gas-liquid separation container 1 can be quantified continuously.

また、本実施形態のガス抽出・分離ユニットによれば、気液分離容器1内部に導入された水の水位を計測する水位センサ3と、気液分離容器1内部に導入されたガスの気圧を計測する気圧センサ4を一体的に備えたのでユニット全体を簡素化、コンパクト化できる。   Further, according to the gas extraction / separation unit of the present embodiment, the water level sensor 3 that measures the water level of the water introduced into the gas-liquid separation container 1 and the pressure of the gas introduced into the gas-liquid separation container 1 are determined. Since the pressure sensor 4 for measurement is integrally provided, the entire unit can be simplified and made compact.

また、本実施形態のガス抽出・分離ユニットによれば、さらに、気液分離容器1内部に導入された混合流体における水とガスとの分離を促進させる超音波発生装置13を備えたので、気液分離容器1内部で分離する水とガスとが気液平衡状態になるまでの時間を短縮することができる。   Further, according to the gas extraction / separation unit of the present embodiment, since the ultrasonic generator 13 for promoting the separation of water and gas in the mixed fluid introduced into the gas-liquid separation container 1 is further provided, The time until the water and gas separated in the liquid separation container 1 are in a gas-liquid equilibrium state can be shortened.

なお、本実施形態のガス抽出・分離ユニットにおけるポンプバルブ制御手段7による、混合流体導入バルブ機構2、水排出ポンプバルブ機構5及びガス抽出バルブ機構6の作動制御は、上述した制御に限られるものではなく、混合流体導入バルブ機構2が気液分離容器1内部の気密性を保持しながら、気液分離容器1内部に混合流体を導入することができ、水排出ポンプバルブ機構5が気液分離容器1内部の気密性を保持しながら、気液分離容器1内部から水を排出することができ、且つガス抽出バルブ機構6が気液分離容器1内部の気密性を保持しながら、気液分離容器1内部からガスを抽出することができれば、どのような制御であってもよい。   The operation control of the mixed fluid introduction valve mechanism 2, the water discharge pump valve mechanism 5, and the gas extraction valve mechanism 6 by the pump valve control means 7 in the gas extraction / separation unit of this embodiment is limited to the above-described control. Instead, the mixed fluid introduction valve mechanism 2 can introduce the mixed fluid into the gas-liquid separation container 1 while maintaining the gas-tightness inside the gas-liquid separation container 1, and the water discharge pump valve mechanism 5 can perform the gas-liquid separation. While maintaining the airtightness inside the container 1, water can be discharged from the inside of the gas-liquid separation container 1, and the gas extraction valve mechanism 6 maintains the airtightness inside the gas-liquid separation container 1, while separating the gas and liquid. Any control may be used as long as the gas can be extracted from the inside of the container 1.

本発明の地中の気液混合流体観測装置用ガス抽出・分離ユニットは、地下水及び地下ガスの状況を継続的に監視することが求められる分野に有用である。   The gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus of the present invention is useful in a field where it is required to continuously monitor the status of groundwater and underground gas.

1 気液分離容器
2 混合流体導入バルブ機構
3 水位センサ
4 気圧センサ
5 水排出ポンプバルブ機構
5a 電磁バルブ
5b ポンプ
6 ガス抽出バルブ機構
7 ポンプバルブ制御手段
8 定量手段
9 混合流体採取管
10 水排出管
11 ガス輸送管
12 スリット管
13 超音波発生装置
H スリット管
P1 採取管
CP チュービングポンプ
CY ガス水分離筒
FM 流量計
RC1,RC2,RC3 記録装置
P2 水輸送管
WM 水質測定機
PDM 差圧計
EV 電磁弁
P3 ガス輸送管
CT コールドトラップ
PM 圧力計
QMS 質量分析計
B ガス水分離筒の本体
E 赤外光射出装置
F フロート
R 赤外光受光装置
DESCRIPTION OF SYMBOLS 1 Gas-liquid separation container 2 Mixed fluid introduction | transduction valve mechanism 3 Water level sensor 4 Atmospheric pressure sensor 5 Water discharge pump valve mechanism 5a Electromagnetic valve 5b Pump 6 Gas extraction valve mechanism 7 Pump valve control means 8 Determination means 9 Mixed fluid sampling pipe 10 Water discharge pipe 11 Gas transport pipe 12 Slit pipe 13 Ultrasonic generator H Slit pipe P1 Sampling pipe CP Tubing pump CY Gas water separation cylinder FM Flow meter RC1, RC2, RC3 Recording device P2 Water transport pipe WM Water quality measuring instrument PDM Differential pressure gauge EV Electromagnetic valve P3 Gas transport tube CT Cold trap PM Pressure gauge QMS Mass spectrometer B Main body of gas water separation cylinder E Infrared light emitting device F Float R Infrared light receiving device

Claims (3)

水とガスとの混合流体を汲み上げ、汲み上げた混合流体を所定気圧下で気液平衡状態の水とガスとに分離させ、分離した水の量と水質を測定するとともに、分離したガスの分析測定を行い、これらの測定データを記録する地中の気液混合流体観測装置に用いるガス抽出・分離ユニットであって、
内部が気密性を保持し、且つ、減圧されていて、該内部に導入された前記混合流体を水とガスとに分離させる気液分離容器と、
前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部に前記混合流体を導入する混合流体導入バルブ機構と、
前記気液分離容器内部に導入された前記水の水位を連続的に計測する水位センサと、
前記気液分離容器内部に導入された前記ガスの気圧を計測する気圧センサと、
前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部から前記水を排出する水排出ポンプバルブ機構と、
前記気液分離容器内部の気密性を保持しながら、該気液分離容器内部から前記ガスを抽出するガス抽出バルブ機構と、
前記混合流体導入バルブ機構、前記水排出ポンプバルブ機構及び前記ガス抽出バルブ機構の作動を制御するポンプバルブ制御手段と、
前記水位センサが計測した水位と前記気圧センサが計測した気圧に基づき、地下から汲み上げた水量と抽出ガス量を算出する定量手段とを備えたことを特徴とする地中の気液混合流体観測装置用ガス抽出・分離ユニット。
Pumping up a mixed fluid of water and gas, separating the pumped mixed fluid into water and gas in a gas-liquid equilibrium state at a predetermined pressure, measuring the amount and quality of the separated water, and analyzing the separated gas A gas extraction / separation unit used in an underground gas-liquid mixed fluid observation device that records these measurement data,
A gas-liquid separation container that maintains airtightness inside and is decompressed, and separates the mixed fluid introduced into the interior into water and gas;
A mixed fluid introduction valve mechanism for introducing the mixed fluid into the gas-liquid separation container while maintaining the gas tightness inside the gas-liquid separation container;
A water level sensor that continuously measures the water level of the water introduced into the gas-liquid separation container;
A pressure sensor for measuring the pressure of the gas introduced into the gas-liquid separation container;
A water discharge pump valve mechanism for discharging the water from the gas-liquid separation container while maintaining the airtightness inside the gas-liquid separation container;
A gas extraction valve mechanism for extracting the gas from the gas-liquid separation container while maintaining the gas tightness inside the gas-liquid separation container;
A pump valve control means for controlling operations of the mixed fluid introduction valve mechanism, the water discharge pump valve mechanism and the gas extraction valve mechanism;
An underground gas-liquid mixed fluid observation apparatus comprising: a water level measured by the water level sensor and an air pressure measured by the pressure sensor; and a quantitative means for calculating the amount of water pumped from the underground and the amount of extracted gas. Gas extraction / separation unit.
前記水位センサと、前記気圧センサが、前記気液分離容器と一体に設けられていることを特徴とする請求項1に記載の地中の気液混合流体観測装置用ガス抽出・分離ユニット。 2. The gas extraction / separation unit for an underground gas-liquid mixed fluid observation apparatus according to claim 1, wherein the water level sensor and the atmospheric pressure sensor are provided integrally with the gas-liquid separation container. さらに、前記気液分離容器内部に導入された前記混合流体における水とガスとの分離を促進させる超音波発生装置を備えたことを特徴とする請求項1又は2に記載の地中の気液混合流体観測装置用ガス抽出・分離ユニット。 The ground gas-liquid according to claim 1 or 2, further comprising an ultrasonic generator for promoting separation of water and gas in the mixed fluid introduced into the gas-liquid separation container. Gas extraction / separation unit for mixed fluid observation equipment.
JP2016009776A 2016-01-21 2016-01-21 Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground Active JP6288783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009776A JP6288783B2 (en) 2016-01-21 2016-01-21 Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009776A JP6288783B2 (en) 2016-01-21 2016-01-21 Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground

Publications (2)

Publication Number Publication Date
JP2017129485A JP2017129485A (en) 2017-07-27
JP6288783B2 true JP6288783B2 (en) 2018-03-07

Family

ID=59396135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009776A Active JP6288783B2 (en) 2016-01-21 2016-01-21 Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground

Country Status (1)

Country Link
JP (1) JP6288783B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108979632B (en) * 2018-09-06 2023-07-18 中国电建集团华东勘测设计研究院有限公司 A simple gas sample collection device and method in an exploration hole in a shallow gas-bearing formation
CN114152481B (en) * 2020-09-08 2024-02-06 中国地质调查局水文地质环境地质调查中心 Intelligent collection system and method for gas in deep geothermal water
WO2023277913A1 (en) * 2021-06-30 2023-01-05 Halliburton Energy Services, Inc. Gas detection integration into a gas extractor
CN115753263B (en) * 2022-11-22 2024-02-02 张家口地震监测中心站 Gas collecting device for continuous measurement of chemical quantity of non-self-flowing well
CN116067715B (en) * 2023-02-27 2024-01-26 中国地质大学(北京) Gas-liquid collecting device for field hot spring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805680B2 (en) * 2006-01-06 2011-11-02 田中 秀実 Gas-liquid mixed fluid observation device in the ground
JP5250240B2 (en) * 2007-11-06 2013-07-31 株式会社演算工房 Formation gas concentration measuring apparatus and formation gas concentration measuring method
JP5433523B2 (en) * 2010-07-30 2014-03-05 三菱マテリアルテクノ株式会社 Geochemical sampler
WO2012083068A2 (en) * 2010-12-16 2012-06-21 Bp Corporation North America Inc. Method of determining reservoir pressure

Also Published As

Publication number Publication date
JP2017129485A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6288783B2 (en) Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground
US9939361B2 (en) Automated calcimeter systems
JP4870579B2 (en) Pumping test method and pumping test equipment
US8186211B2 (en) In-borehole gas monitor apparatus and method
CN109632557B (en) Gas-liquid two-phase saturated coal rock sample experimental device and saturation testing method
WO2014123973A1 (en) Apparatus and methodology for measuring properties of microporous material at multiple scales
CN105814429B (en) sub-sampling device and method
MXPA06004693A (en) Methods and apparatus of downhole fluid analysis.
KR101920922B1 (en) Apparatus for diagnosing pneumatic control valve and method thereof
RU2526962C1 (en) Method of determining gas kinetic characteristics of coal-bed
JP4805680B2 (en) Gas-liquid mixed fluid observation device in the ground
JP2004012136A (en) Permeability measuring method and permeability measuring instrument for base rock, etc
JP4374241B2 (en) System and method for measuring the sealability of an object
CN104007041B (en) Coal seam hydrogen sulfide content determinator
WO2024007578A1 (en) Testing device and method for measuring oil, gas and water contents in rock
CN103196785A (en) Gas rapid measuring analysis mete and measuring method thereof
CN104614201A (en) Method for measuring raw CO gas content of coal seam
Freifeld et al. Real‐time quadrupole mass spectrometer analysis of gas in borehole fluid samples acquired using the U‐tube sampling methodology
KR101646988B1 (en) Headspace methane extraction residue system
CN115791565B (en) Experimental Method for Measuring Core Permeability of Tight Gas Reservoirs
US20220074906A1 (en) Device and method for measuring radon release amount during rock shearing damage process
CN1853095B (en) Apparatus for monitoring the concentration of a gas
JP6694320B2 (en) Leakage inspection device and inspection method for underground tank
CN211648128U (en) Experimental device for simulating fracture of two interfaces of well cementation
CN110241803A (en) Dual chamber hole pressure touching methods vacuum is saturated machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6288783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250