[go: up one dir, main page]

JP6287602B2 - Switched reluctance motor control system - Google Patents

Switched reluctance motor control system Download PDF

Info

Publication number
JP6287602B2
JP6287602B2 JP2014117661A JP2014117661A JP6287602B2 JP 6287602 B2 JP6287602 B2 JP 6287602B2 JP 2014117661 A JP2014117661 A JP 2014117661A JP 2014117661 A JP2014117661 A JP 2014117661A JP 6287602 B2 JP6287602 B2 JP 6287602B2
Authority
JP
Japan
Prior art keywords
current
phase
winding
switched reluctance
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014117661A
Other languages
Japanese (ja)
Other versions
JP2015231305A (en
Inventor
拓務 在原
拓務 在原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014117661A priority Critical patent/JP6287602B2/en
Publication of JP2015231305A publication Critical patent/JP2015231305A/en
Application granted granted Critical
Publication of JP6287602B2 publication Critical patent/JP6287602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Description

本発明は、スイッチトリラクタンスモータの制御システムに関する。   The present invention relates to a control system for a switched reluctance motor.

一般的に、スイッチトリラクタンスモータは、ステータの突極に巻線が設けられ、中心軸を挟んで対向する2つの巻線が直列に接続されて、それぞれ相を形成している。このようなスイッチトリラクタンスモータでは、一相を通電している間、他の相は非通電状態とされる。そのため、一相のみへの通電で、トルク発生のための磁束を発生させることになる。よって、巻線には多くの巻回数が必要となり、モータの形状が大きくなる。   Generally, in a switched reluctance motor, a winding is provided on a salient pole of a stator, and two windings facing each other across a central axis are connected in series to form phases. In such a switched reluctance motor, while one phase is energized, the other phase is not energized. Therefore, a magnetic flux for generating torque is generated by energizing only one phase. Therefore, many windings are required for the winding, and the shape of the motor increases.

そこで、特許文献1のスイッチトリラクタンスモータは、ヨーク部分に巻き付けられた複数の突極間巻線を有し、隣接する突極間巻線を直列接続した2つの巻線組を形成し、1つの巻線組で同じ方向の磁束を発生させている。   Therefore, the switched reluctance motor of Patent Document 1 has a plurality of windings between salient poles wound around a yoke portion, and forms two winding sets in which adjacent salient pole windings are connected in series. Two winding sets generate magnetic flux in the same direction.

特開平11−113229号公報Japanese Patent Laid-Open No. 11-113229

特許文献1のスイッチトリラクタンスモータは、各巻線を直列に接続して、同じ電流を通電するため、負トルクに寄与する漏れ磁束が発生して、磁束の飽和領域におけるトルクが低下するおそれがある。   In the switched reluctance motor of Patent Document 1, each winding is connected in series and the same current is applied. Therefore, a leakage magnetic flux that contributes to negative torque is generated, and the torque in the saturation region of the magnetic flux may be reduced. .

また、特許文献1のスイッチトリラクタンスモータでは、全駆動領域において全相同時に通電するため、電流がゼロとなる相が存在しない。そのため、高速駆動領域において励磁を切り替える際に、電流が反転する巻線において電流の応答遅れが生じ、トルクが低下するおそれがある。   Moreover, in the switched reluctance motor of Patent Document 1, since all phases are energized simultaneously in all driving regions, there is no phase where the current becomes zero. For this reason, when switching the excitation in the high-speed drive region, a current response delay occurs in the winding in which the current is reversed, and there is a concern that the torque may be reduced.

本発明は、上記実情に鑑み、小型化と高い制御性の両方を実現可能なスイッチトリラクタンスモータの制御システムを提供することを主たる目的とする。   In view of the above circumstances, it is a primary object of the present invention to provide a switched reluctance motor control system capable of realizing both downsizing and high controllability.

本発明は、上記課題を解決するため、スイッチトリラクタンスモータ、及び前記スイッチトリラクタンスモータを駆動する駆動回路を備えるスイッチトリラクタンスモータの制御システムであって、前記モータは、偶数個の突極を有する固定子と、前記固定子の突極個数と倍数関係にない偶数個の突極を有する回転子と、前記固定子の各突極の間をつなぐヨーク部分にトロイダル状に巻き付けられたトロイダル巻線が、電気角360度離れた位置同士で直列接続されたN(2以上の整数)相の突極間巻線と、を備え、前記駆動回路は、電源に並列に接続されて、前記突極間巻線に正方向及び負方向の両方から電流を通電できる通電経路を相毎に備え、相毎に独立して、前記通電経路から前記突極間巻線へ電流を通電できる。   In order to solve the above-described problems, the present invention is a switched reluctance motor control system including a switched reluctance motor and a drive circuit that drives the switched reluctance motor, wherein the motor has an even number of salient poles. A toroidal winding wound in a toroidal manner on a yoke portion connecting between each of the salient poles of the stator, and a rotor having an even number of salient poles that are not in a multiple relationship with the number of salient poles of the stator. An N (phase integer greater than or equal to 2) phase salient pole winding connected in series at positions separated by an electrical angle of 360 degrees, and the drive circuit is connected in parallel to a power source, An energization path capable of energizing current between both the positive direction and the negative direction is provided for each phase in the inter-pole winding, and current can be energized from the energization path to the salient pole winding independently for each phase.

本発明のスイッチトリラクタンスモータでは、ヨーク部分のトロイダル巻線を電気角360度離れた位置同士で直列接続されたN相の突極間巻線に、電流を通電させることにより磁束が発生する。また、駆動回路は、突極間巻線に正方向及び負方向の両方から電流を通電できる通電経路を相毎に備え、相毎に独立して、通電経路から突極間巻線へ電流を通電できる。   In the switched reluctance motor of the present invention, a magnetic flux is generated by energizing an N-phase salient pole winding in which the toroidal winding of the yoke portion is connected in series at positions separated by an electrical angle of 360 degrees. In addition, the drive circuit has a current-carrying path that allows current to flow from both the positive direction and the negative direction to the inter-saliency windings for each phase, and independently supplies current from the current-carrying path to the salient-pole windings for each phase. Can be energized.

そのため、突極間巻線に流れる電流の方向を適切に設定してN相同時に通電すれば、N個のトロイダル巻線組ごとに同方向の磁束を発生させることができる。よって、個別のトロイダル巻線の巻回数は、1相のみの通電で磁束を発生させる場合の1/Nにできる。これにより、巻線量が減少しモータを小型化できる。また、相毎に突極間巻線に流れる電流の極性及び大きさを変えられるため、モータの制御性を高くすることができる。したがって、小型化と高い制御性の両方を実現できる。   Therefore, if the direction of the current flowing through the salient pole winding is appropriately set and N phases are energized simultaneously, a magnetic flux in the same direction can be generated for each of the N toroidal winding sets. Therefore, the number of turns of the individual toroidal windings can be reduced to 1 / N when the magnetic flux is generated by energizing only one phase. Thereby, the amount of windings can be reduced and the motor can be miniaturized. Further, since the polarity and magnitude of the current flowing through the inter-salient winding can be changed for each phase, the controllability of the motor can be improved. Therefore, both miniaturization and high controllability can be realized.

SRモータの制御システムの構成を示す図。The figure which shows the structure of the control system of SR motor. U相の駆動回路の構成を示す図。The figure which shows the structure of the drive circuit of U phase. 制御モードA〜Cの駆動領域を示す図。The figure which shows the drive area | region of control mode AC. 制御モードAにおける各相の電流波形を示す図。The figure which shows the current waveform of each phase in the control mode A. 回転子が回転する態様を示す図。The figure which shows the aspect which a rotor rotates. 制御モードBにおける各相の電流波形を示す図。The figure which shows the current waveform of each phase in the control mode B. 制御モードBにおける各相の電流波形を示す図。The figure which shows the current waveform of each phase in the control mode B. 制御モードCにおける各相の電流波形を示す図。The figure which shows the current waveform of each phase in the control mode C. 制御モードCにおける各相の電流波形を示す図。The figure which shows the current waveform of each phase in the control mode C. 鎖交磁束分布を示す図。The figure which shows a flux linkage distribution. 電流実行値に対する平均トルクを示す図。The figure which shows the average torque with respect to an electric current execution value. 電気角に対するトルクを示す図。The figure which shows the torque with respect to an electrical angle. 他の実施形態に係るSRモータの構成を示す図。The figure which shows the structure of SR motor which concerns on other embodiment.

以下、スイッチトリラクタンスモータ(以下、SRモータ)の制御システムを具現化した実施形態について、図面を参照しつつ説明する。本実施形態に係るSRモータの制御システムは、図1に示すように、SRモータ10、及びSRモータ10を駆動する駆動回路30を備える。   Hereinafter, an embodiment embodying a control system for a switched reluctance motor (hereinafter referred to as an SR motor) will be described with reference to the drawings. As shown in FIG. 1, the SR motor control system according to the present embodiment includes an SR motor 10 and a drive circuit 30 that drives the SR motor 10.

本実施形態に係るSRモータ10は、6個の突極11a〜fを有する固定子11、4個の突極12a〜dを有する回転子12、及び3相の突極間巻線21〜23を備える。U相の突極間巻線21は、電気角360度離れた位置同士のトロイダル巻線21aと21bとが、直列接続されたものである。同様に、V相の突極間巻線22は、電気角360度離れた位置同士のトロイダル巻線22aと22bとが、直列接続されたものである。また、W相の突極間巻線23は、電気角360度離れた位置同士のトロイダル巻線23aと23bとが、直列接続されたものである。トロイダル巻線21a〜23a,21b〜23bは、固定子11の各突極11a〜fの間をつなぐヨーク部分11gに、トロイダル状に巻き付けられた巻線である。固定子11の周方向において隣り合うトロイダル巻線は、互いに異なる方向に、ヨーク部分11gに巻き付けられている。   The SR motor 10 according to this embodiment includes a stator 11 having six salient poles 11a to 11f, a rotor 12 having four salient poles 12a to 12d, and three-phase salient pole windings 21 to 23. Is provided. The U-phase salient-pole winding 21 is a series connection of toroidal windings 21a and 21b at positions separated by an electrical angle of 360 degrees. Similarly, the interphase salient-pole winding 22 of the V phase is a series connection of toroidal windings 22a and 22b at positions separated by an electrical angle of 360 degrees. Further, the interphase salient pole winding 23 of the W phase is formed by connecting toroidal windings 23a and 23b at positions separated by an electrical angle of 360 degrees in series. The toroidal windings 21a to 23a and 21b to 23b are windings wound in a toroidal shape on a yoke portion 11g that connects between the salient poles 11a to 11f of the stator 11. Toroidal windings adjacent in the circumferential direction of the stator 11 are wound around the yoke portion 11g in different directions.

駆動回路30は、バッテリ37(電源)に並列に接続された通電経路を相毎に備え、バッテリ37から出力された直流電力を3相に変換して、SRモータ10へ供給する。U相の通電経路は、スイッチング素子31a〜dを備え、突極間巻線21に正方向及び負方向の両方向から電流を通電できる。V相の通電経路は、スイッチング素子32a〜dを備え、突極間巻線22に正方向及び負方向の両方向から電流を通電できる。W相の通電経路は、スイッチング素子33a〜dを備え、突極間巻線23に正方向及び負方向の両方向から電流を通電できる。駆動回路30は、相毎に独立して、すなわち、相毎に電流の大きさ及び通電方向を設定して、通電経路から突極間巻線へ電流を通電できる。   The drive circuit 30 includes an energization path connected in parallel to the battery 37 (power supply) for each phase, converts the DC power output from the battery 37 into three phases, and supplies the three-phase power to the SR motor 10. The U-phase energization path includes switching elements 31a to 31d and can energize current between the salient pole winding 21 from both the positive direction and the negative direction. The V-phase energization path includes switching elements 32a to 32d, and can supply current to both the salient pole windings 22 from both the positive and negative directions. The W-phase energization path includes switching elements 33a to 33d, and is capable of energizing current from the salient pole winding 23 from both the positive direction and the negative direction. The drive circuit 30 can energize current from the energization path to the inter-saliency winding by setting the magnitude of the current and energization direction for each phase independently, that is, for each phase.

本実施形態では、スイッチング素子31a〜d,32a〜d,33a〜dとして、IGBT(Insulated Gate Bipolar Transistor)を用いている。スイッチング素子31a〜d,32a〜d,33a〜dは、MOSFETや、バイポーラトランジスタ等でもよい。スイッチング素子31a〜d,32a〜d,33a〜dには、それぞれダイオード41a〜d,42a〜d,43a〜dが、逆並列に接続されている。   In the present embodiment, IGBTs (Insulated Gate Bipolar Transistors) are used as the switching elements 31a to d, 32a to d, and 33a to d. The switching elements 31a to d, 32a to d, and 33a to d may be MOSFETs, bipolar transistors, or the like. Diodes 41a-d, 42a-d, 43a-d are connected in antiparallel to the switching elements 31a-d, 32a-d, 33a-d, respectively.

各相の通電経路は同様の構成をしているため、以下、図2を参照してU相の通電経路についてのみ説明し、V相及びW相の通電経路の説明は省略する。U相の通電経路は、2個のスイッチング素子31aと31bとが直列に接続された直列体と、2個のスイッチング素子31cと31dとが直列に接続された直列体と、を備えるフルブリッジ回路である。スイッチング素子31aのエミッタ端子とスイッチング素子31bのコレクタ端子とが、接続点T1で接続されている。また、スイッチング素子31cのエミッタ端子とスイッチング素子31dのコレクタ端子とが、接続点T2で接続されている。そして、直列体の中点である接続点T1とT2とに、突極間巻線21の両端がそれぞれ接続されている。   Since the energization paths of the respective phases have the same configuration, only the U-phase energization paths will be described below with reference to FIG. 2, and descriptions of the V-phase and W-phase energization paths will be omitted. The U-phase energization path is a full bridge circuit including a series body in which two switching elements 31a and 31b are connected in series and a series body in which two switching elements 31c and 31d are connected in series. It is. The emitter terminal of the switching element 31a and the collector terminal of the switching element 31b are connected at a connection point T1. The emitter terminal of the switching element 31c and the collector terminal of the switching element 31d are connected at a connection point T2. Then, both ends of the salient pole winding 21 are connected to connection points T1 and T2, which are the midpoints of the series body.

また、スイッチング素子31aのコレクタ端子及びダイオード41aのカソードは、平滑用コンデンサ35の第1端及びバッテリ37の正極端子に接続されている。スイッチング素子31bのエミッタ端子及びダイオード41bのアノードは、平滑用コンデンサ35の第2端及びバッテリ37の負極端子に接続されている。また、スイッチング素子31cのコレクタ端子及びダイオード41cのカソードは、平滑用コンデンサ36の第1端及びバッテリ37の正極端子に接続されている。スイッチング素子31dのエミッタ端子及びダイオード41dのアノードは、平滑用コンデンサ36の第2端及びバッテリ37の負極端子に接続されている。   The collector terminal of the switching element 31 a and the cathode of the diode 41 a are connected to the first end of the smoothing capacitor 35 and the positive terminal of the battery 37. The emitter terminal of the switching element 31 b and the anode of the diode 41 b are connected to the second end of the smoothing capacitor 35 and the negative terminal of the battery 37. The collector terminal of the switching element 31 c and the cathode of the diode 41 c are connected to the first end of the smoothing capacitor 36 and the positive terminal of the battery 37. The emitter terminal of the switching element 31 d and the anode of the diode 41 d are connected to the second end of the smoothing capacitor 36 and the negative terminal of the battery 37.

スイッチング素子31a〜dは、それぞれ図示しないコントローラから送信された操作信号により操作される。ここでは、接続点T1からT2への方向を正方向、接続点T2からT1への方向を負方向とする。スイッチング素子31a及び31dをオンにし、スイッチング素子31b及び31cをオフにすると、バッテリ37、スイッチング素子31a、突極間巻線21、及びスイッチング素子31dを含む閉回路が形成される。これにより、突極間巻線21に正方向の電流が流れる。また、スイッチング素子31a及び31dをオフにし、スイッチング素子31b及び31cをオンにすると、バッテリ37、スイッチング素子31c、突極間巻線21及びスイッチング素子31bを含む閉回路が形成される。これにより突極間巻線21に負方向の電流が流れる。   Each of the switching elements 31a to 31d is operated by an operation signal transmitted from a controller (not shown). Here, the direction from the connection point T1 to T2 is the positive direction, and the direction from the connection point T2 to T1 is the negative direction. When the switching elements 31a and 31d are turned on and the switching elements 31b and 31c are turned off, a closed circuit including the battery 37, the switching element 31a, the salient-pole winding 21, and the switching element 31d is formed. As a result, a positive current flows through the inter-saliency winding 21. When the switching elements 31a and 31d are turned off and the switching elements 31b and 31c are turned on, a closed circuit including the battery 37, the switching element 31c, the salient pole winding 21 and the switching element 31b is formed. As a result, a negative current flows through the inter-salient winding 21.

次に、図3を参照して、SRモータ10の制御モードについて説明する。本実施形態では、制御モードはA、B、Cの3種類ある。制御モードAは、所定トルクよりも小さいトルク且つ所定回転速度以下の回転速度の領域、すなわち低トルク低速領域でSRモータ10を駆動させるモードである。制御モードBは、所定トルク以上のトルク且つ所定回転速度以下の回転速度の領域、すなわち高トルク低速領域でSRモータ10を駆動させるモードである。制御モードBは、高トルクを得るために、磁気飽和領域でSRモータ10を駆動させる。制御モードCは、所定トルクよりも小さいトルク且つ所定回転速度よりも速い回転速度の領域、すなわち低トルク高速領域でSRモータ10を駆動させるモードである。以下、各制御モードでSRモータ10を駆動させる実施例について述べる。   Next, the control mode of the SR motor 10 will be described with reference to FIG. In this embodiment, there are three control modes A, B, and C. The control mode A is a mode in which the SR motor 10 is driven in a region of a rotational speed that is smaller than a predetermined torque and less than or equal to a predetermined rotational speed, that is, a low torque low speed region. The control mode B is a mode in which the SR motor 10 is driven in a region where the torque is equal to or higher than the predetermined torque and the rotational speed is equal to or lower than the predetermined rotational speed, that is, a high torque low speed region. In the control mode B, the SR motor 10 is driven in the magnetic saturation region in order to obtain a high torque. The control mode C is a mode in which the SR motor 10 is driven in a region where the torque is smaller than the predetermined torque and the rotational speed is higher than the predetermined rotational speed, that is, the low torque high speed region. Hereinafter, embodiments in which the SR motor 10 is driven in each control mode will be described.

(実施例1)
制御モードAでSRモータ10を駆動させる実施例1について、図4及び図5を参照して説明する。制御モードAでは、磁気飽和しない領域でSRモータ10を駆動させる。図4に示すように、制御モードAにおいて、各相の突極間巻線21〜23に通電させる電流の波形は、電気角1周期のうちの半周期Thで正方向通電となり、残りの半周期Thで負方向通電となる矩形波電流波形である。コントローラにより、各相の電流経路に含まれるスイッチング素子を操作することにより、上記波形の電流を巻線21〜23に通電させる。各相の突極間巻線21〜23に流れる電流の値をU,V,Wとすると、矩形電流波形の振幅|U|,|V|,|W|は互いに等しい。制御モードAでは、3相の突極間巻線のうちの2相には同じ方向の電流が通電し、残りの1相には他の2相と異なる方向の電流が通電する。そして、他の2相と異なる方向の電流が通電する相を中心として、磁束が発生する。
Example 1
A first embodiment in which the SR motor 10 is driven in the control mode A will be described with reference to FIGS. 4 and 5. In the control mode A, the SR motor 10 is driven in a region where no magnetic saturation occurs. As shown in FIG. 4, in the control mode A, the waveform of the current to be passed through the inter-saliency windings 21 to 23 of each phase is energized in the positive direction in the half cycle Th of one electrical angle cycle, and the remaining half It is a rectangular wave current waveform which becomes negative direction energization with period Th. By operating the switching elements included in the current paths of the respective phases by the controller, the currents having the above waveforms are passed through the windings 21 to 23. If the values of the currents flowing through the salient pole windings 21 to 23 of each phase are U, V, and W, the amplitudes | U |, | V |, | W | of the rectangular current waveform are equal to each other. In the control mode A, a current in the same direction is supplied to two phases of the three-phase salient pole windings, and a current in a direction different from that of the other two phases is supplied to the remaining one phase. A magnetic flux is generated around a phase in which a current in a direction different from that of the other two phases is applied.

(a)U,V>0、W<0にすると、図5の矢印で示すように、トロイダル巻線22bから出た磁束は、トロイダル巻線23aでも同方向の磁束が発生しているため、トロイダル巻線23aに向かって吸い込まれる。同様に、トロイダル巻線23aから出た磁束は、トロイダル巻線21bでも同方向の磁束が発生しているため、トロイダル巻線21bに向かって吸い込まれる。そのため、トロイダル巻線22b,23a,21bの巻線組によって、ヨーク部分11gに沿って、W相のトロイダル巻線23aを中心とし、トロイダル巻線22bから21bへ向かう方向の磁束が発生する。同様に、トロイダル巻線21a,23b,22aの巻線組によって、ヨーク部分11gに沿って、W相のトロイダル巻線23bを中心とし、トロイダル巻線21aから22aへ向かう方向の磁束が発生する。   (A) When U, V> 0 and W <0, as indicated by the arrows in FIG. 5, the magnetic flux emitted from the toroidal winding 22b is generated in the same direction in the toroidal winding 23a. It is sucked toward the toroidal winding 23a. Similarly, the magnetic flux emitted from the toroidal winding 23a is sucked toward the toroidal winding 21b because the same direction of magnetic flux is generated in the toroidal winding 21b. Therefore, a magnetic flux in the direction from the toroidal windings 22b to 21b is generated along the yoke portion 11g with the winding set of toroidal windings 22b, 23a, and 21b centering on the W-phase toroidal winding 23a. Similarly, the winding set of toroidal windings 21a, 23b, and 22a generates a magnetic flux in the direction from the toroidal winding 21a to 22a around the W-phase toroidal winding 23b along the yoke portion 11g.

そして、両方向の磁束は、突極11bにおいて対向する。磁束は磁気抵抗の小さい経路へ流れようとするため、両方向の磁束は突極11bにおいて合流して、突極11b→突極12b→突極12d→突極11eのように流れる。これにより、回転子12の突極12b,12dは、それぞれ固定子11の突極11b,11eに引き付けられ、回転子12にR方向(反時計回りの方向)のトルクが発生する。   And the magnetic flux of both directions opposes in the salient pole 11b. Since the magnetic flux tends to flow along a path with a small magnetic resistance, the magnetic fluxes in both directions are merged at the salient pole 11b and flow as salient pole 11b → saliency pole 12b → saliency pole 12d → saliency pole 11e. Thereby, the salient poles 12b and 12d of the rotor 12 are attracted to the salient poles 11b and 11e of the stator 11, respectively, and torque in the R direction (counterclockwise direction) is generated in the rotor 12.

巻線で発生させる磁束は、その巻回数と電流との積で決まる。それゆえ、3つのトロイダル巻線の巻回数の総和が、1つの突極に巻き付けられた巻線の巻回数と同じであれば、3つのトロイダル巻線で磁束を発生させる場合と、1つの突極に巻き付けられた巻線で磁束を発生させる場合とで、同じ磁束となる。よって、各トロイダル巻線の巻数が等しいとすると、3つのトロイダル巻線で磁束を発生させる場合、1つの突極に巻き付けられた巻線で磁束を発生させる場合と比較して、各トロイダル巻線の巻数は3分の1にできる。   The magnetic flux generated by the winding is determined by the product of the number of windings and the current. Therefore, if the total number of turns of the three toroidal windings is the same as the number of turns of the winding wound around one salient pole, the case where magnetic flux is generated by three toroidal windings and one The same magnetic flux is generated when the magnetic flux is generated by the winding wound around the pole. Therefore, assuming that the number of turns of each toroidal winding is the same, when generating magnetic flux with three toroidal windings, each toroidal winding is compared with the case of generating magnetic flux with a winding wound around one salient pole. The number of turns can be reduced to one third.

(b)U>0、V,W<0に励磁を切り替えると、トロイダル巻線23a,21b,22aの巻線組によって、トロイダル巻線23aから22aへ向かう方向の磁束が発生する。また、トロイダル巻線22b,21a,23bの巻線組によって、トロイダル巻線22bから23bへ向かう方向の磁束が発生する。両方向の磁束は突極11cにおいて合流して、突極11c→突極12c→突極12a→突極11fのように流れる。これにより、回転子12の突極12a,12cは、それぞれ固定子の突極11f,11cに引き付けられる。   (B) When the excitation is switched to U> 0, V, W <0, a magnetic flux in the direction from the toroidal winding 23a to 22a is generated by the winding set of the toroidal windings 23a, 21b, 22a. Further, a magnetic flux in the direction from the toroidal winding 22b to 23b is generated by the winding set of the toroidal windings 22b, 21a, and 23b. The magnetic fluxes in both directions are merged at the salient pole 11c and flow in the order of the salient pole 11c → the salient pole 12c → the salient pole 12a → the salient pole 11f. As a result, the salient poles 12a and 12c of the rotor 12 are attracted to the salient poles 11f and 11c of the stator, respectively.

(c)U,W>0、V<0に励磁を切り替えると、トロイダル巻線21b,22a,23bの巻線組によって、トロイダル巻線21bから22bへ向かう方向の磁束が発生する。また、トロイダル巻線23a,22b,21aの巻線組によって、トロイダル巻線23aから21aへ向かう方向の磁束が発生する。両方向の磁束は突極11dにおいて合流して、突極11d→突極12d→突極12b→突極11aのように流れる。これにより、回転子12の突極12b,12dは、それぞれ固定子の突極11a,11dに引き付けられる。   (C) When the excitation is switched to U, W> 0 and V <0, a magnetic flux in the direction from the toroidal winding 21b to 22b is generated by the winding set of the toroidal windings 21b, 22a, and 23b. In addition, a magnetic flux in the direction from the toroidal winding 23a to 21a is generated by the winding set of the toroidal windings 23a, 22b, and 21a. The magnetic fluxes in both directions are merged at the salient pole 11d and flow as salient pole 11d → saliency pole 12d → saliency pole 12b → saliency pole 11a. As a result, the salient poles 12b and 12d of the rotor 12 are attracted to the salient poles 11a and 11d of the stator, respectively.

(d)U,V<0、W>0に励磁を切り替えると、トロイダル巻線22a,23b,21aの巻線組によって、トロイダル巻線22aから21aへ向かう方向の磁束が発生する。また、トロイダル巻線21b,23a,22bの巻線組によって、トロイダル巻線21bから22bへ向かう方向の磁束が発生する。両方向の磁束は突極11eにおいて合流して、突極11e→突極12a→突極12c→突極11bのように流れる。これにより、回転子12の突極12a,12cは、それぞれ固定子の突極11e,11bに引き付けられる。   (D) When the excitation is switched to U, V <0, W> 0, a magnetic flux in the direction from the toroidal winding 22a to 21a is generated by the winding set of the toroidal windings 22a, 23b, 21a. Further, a magnetic flux in the direction from the toroidal winding 21b to 22b is generated by the winding set of the toroidal windings 21b, 23a, and 22b. The magnetic fluxes in both directions are merged at the salient pole 11e and flow in the order of the salient pole 11e → the salient pole 12a → the salient pole 12c → the salient pole 11b. As a result, the salient poles 12a and 12c of the rotor 12 are attracted to the salient poles 11e and 11b of the stator, respectively.

(e)U<0、V,W>0に励磁を切り替えると、トロイダル巻線23b,21a,22bの巻線組によって、トロイダル巻線23bから22bへ向かう方向の磁束が発生する。また、トロイダル巻線22a,21b,23aの巻線組によって、トロイダル巻線22aから23aへ向かう方向の磁束が発生する。両方向の磁束は突極11fにおいて合流して、突極11f→突極12b→突極12d→突極11cのように流れる。これにより、回転子12の突極12b,12dは、それぞれ固定子の突極11f,11cに引き付けられる。   (E) When the excitation is switched to U <0, V, W> 0, a magnetic flux in the direction from the toroidal winding 23b to 22b is generated by the winding set of the toroidal windings 23b, 21a, 22b. Further, a magnetic flux in the direction from the toroidal winding 22a to 23a is generated by the winding set of the toroidal windings 22a, 21b, and 23a. The magnetic fluxes in both directions are merged at the salient pole 11f and flow as follows: salient pole 11f → saliency pole 12b → saliency pole 12d → saliency pole 11c. As a result, the salient poles 12b and 12d of the rotor 12 are attracted to the salient poles 11f and 11c of the stator, respectively.

(f)U,W<0、V>0に励磁を切り替えると、トロイダル巻線21a,22b,23aの巻線組によって、トロイダル巻線21aから23aへ向かう方向の磁束が発生する。また、トロイダル巻線23b,22a,21bの巻線組によって、トロイダル巻線23bから21bへ向かう方向の磁束が発生する。両方向の磁束は突極11aにおいて合流して、突極11a→突極12c→突極12a→突極11dのように流れる。これにより、回転子12の突極12a,12cは、それぞれ固定子の突極11d,11aに引き付けられる。この後(a)に戻る。(a)〜(f)の各パターンで電流を通電させると、回転子12は電気角360度、機械角180度回転する。   (F) When the excitation is switched to U, W <0, V> 0, a magnetic flux in the direction from the toroidal winding 21a to 23a is generated by the winding set of the toroidal windings 21a, 22b, 23a. Further, a magnetic flux in the direction from the toroidal winding 23b to 21b is generated by the winding set of the toroidal windings 23b, 22a, and 21b. The magnetic fluxes in both directions are merged at the salient pole 11a and flow in the order of the salient pole 11a → the salient pole 12c → the salient pole 12a → the salient pole 11d. As a result, the salient poles 12a and 12c of the rotor 12 are attracted to the salient poles 11d and 11a of the stator, respectively. Thereafter, the process returns to (a). When a current is applied in each of the patterns (a) to (f), the rotor 12 rotates by an electrical angle of 360 degrees and a mechanical angle of 180 degrees.

(実施例2)
制御モードBでSRモータ10を駆動させる実施例2について、図6を参照して説明する。制御モードBでは、高トルクを得るため、磁気飽和領域でSRモータ10を駆動させる。制御モードBにおいて、各相の突極間巻線に通電させる電流の波形には、正方向通電となる半周期Th、及び負方向通電となる半周期Thにおいて、他の期間よりも電流の絶対値|U|,|V|,|W|が小さい期間I(所定期間)が存在する。詳しくは、各相の突極間巻線において、他の2相の突極間巻線と異なる方向の電流を通電させる期間における電流の絶対値を、他の期間における電流の絶対値よりも小さくする。本実施例では、各相の突極間巻線において、他の2相の突極間巻線と異なる方向に電流を通電させる期間中、すなわち半周期Thの3分の1の期間中、電流の絶対値を他の期間よりも小さくする。また、本実施例では、期間Iにおける電流の絶対値を実施例1における電流の絶対値よりも小さくし、期間I以外の期間における電流の絶対値を実施例1における電流の絶対値よりも大きくして、半周期Thの平均電流実効値を実施例1と等しくする。
(Example 2)
A second embodiment in which the SR motor 10 is driven in the control mode B will be described with reference to FIG. In the control mode B, the SR motor 10 is driven in the magnetic saturation region in order to obtain a high torque. In the control mode B, the waveform of the current to be passed through the inter-saliency windings of each phase includes the absolute current in the half cycle Th in the positive direction energization and the half cycle Th in the negative direction energization as compared with other periods. There is a period I (predetermined period) in which the values | U |, | V |, and | W | are small. Specifically, in each interphase salient-pole winding, the absolute value of the current in a period in which a current in a direction different from that of the other two-phase inter-salient winding is applied is smaller than the absolute value of the current in the other period. To do. In this embodiment, the current between the salient poles of each phase is applied during a period in which a current is applied in a direction different from that of the other two-phase salient poles, that is, during one third of the half cycle Th. The absolute value of is smaller than other periods. In this embodiment, the absolute value of the current in the period I is smaller than the absolute value of the current in the first embodiment, and the absolute value of the current in the period other than the period I is larger than the absolute value of the current in the first embodiment. Then, the average current effective value of the half cycle Th is made equal to that of the first embodiment.

本実施例では、各相の突極間巻線に流れる電流の方向が、実施例1と同様に順次切り替わるため、図5の(a)〜(f)に示すように順次発生する磁束の向きが変わり、回転子12がR方向に回転する。   In the present embodiment, the direction of the current flowing through the inter-salient windings of each phase is sequentially switched in the same manner as in the first embodiment. Therefore, the direction of the magnetic flux generated sequentially as shown in FIGS. Changes, and the rotor 12 rotates in the R direction.

制御モードBでは、磁気飽和領域でSRモータ10を駆動させる。そのため、実施例1のように、各相の突極間巻線に通電させる電流の絶対値を等しくすると、同じ方向の磁束を発生させる3つのトロイダル巻線からなる巻線組のうち、中央のトロイダル巻線から漏れ磁束が生じる(図10(b)参照)。この漏れ磁束は、回転子12に作用するトルクには寄与せず、負トルクに寄与する。すなわち、漏れ磁束の分、回転子12に作用するトルクが低下する。   In the control mode B, the SR motor 10 is driven in the magnetic saturation region. Therefore, as in the first embodiment, when the absolute values of the currents to be passed through the inter-saliency windings of each phase are made equal, among the winding sets composed of three toroidal windings that generate magnetic flux in the same direction, Leakage magnetic flux is generated from the toroidal winding (see FIG. 10B). This leakage magnetic flux does not contribute to the torque acting on the rotor 12, but contributes to negative torque. That is, the torque acting on the rotor 12 is reduced by the amount of the leakage magnetic flux.

そこで、本実施例では、同じ方向の磁束を発生させる3つのトロイダル巻線からなる巻線組のうち、中央のトロイダル巻線に流れる電流の絶対値を、他の2つのトロイダル巻線に流れる電流の絶対値よりも小さくする。絶対値が小さい電流が流れる突極間巻線に発生する磁束の密度は、絶対値が大きい電流が流れる突極間巻線に発生する磁束の密度よりも小さくなる。そのため、漏れ磁束が抑止され、負トルクの発生が抑制される。   Therefore, in this embodiment, the absolute value of the current flowing through the central toroidal winding in the winding group consisting of three toroidal windings that generate the magnetic flux in the same direction is the current flowing through the other two toroidal windings. Smaller than the absolute value of. The density of the magnetic flux generated in the inter-salient winding through which a current having a small absolute value flows is smaller than the density of the magnetic flux generated in the inter-salient winding through which a current having a large absolute value flows. Therefore, leakage magnetic flux is suppressed and generation of negative torque is suppressed.

制御モードBの領域において、実施例2の通電パターンでSRモータ10を駆動した場合における磁束分布のシミュレーション結果を、図10(a)に示す。また、制御モードBの領域において、実施例1の通電パターンでSRモータ10を駆動した場合における磁束分布のシミュレーション結果を、図10(b)に示す。図10(a),(b)において、矢印は磁束の向きを表し、矢印が太いほど磁束密度が高いことを表す。制御モードBの領域で、実施例1のように各相の電流の絶対値を等しくした場合は、実施例2の通電パターンで通電した場合よりも、漏れ磁束の密度が高くなっている。   FIG. 10A shows a simulation result of the magnetic flux distribution when the SR motor 10 is driven with the energization pattern of the second embodiment in the control mode B region. FIG. 10B shows a simulation result of the magnetic flux distribution when the SR motor 10 is driven with the energization pattern of the first embodiment in the control mode B region. 10A and 10B, the arrow indicates the direction of the magnetic flux, and the thicker the arrow, the higher the magnetic flux density. In the region of the control mode B, when the absolute values of the currents of the respective phases are made equal as in the first embodiment, the density of the leakage magnetic flux is higher than in the case where the energization pattern of the second embodiment is energized.

また、実施例2及び実施例1の通電パターンでSRモータ10を駆動した場合における、電流実効値に対する平均トルクのシミュレーション結果を、図11に実線及び破線でそれぞれ示す。また、制御モードBの領域において実施例2及び実施例1の通電パターンで、SRモータ10を駆動した場合における、電気角に対するトルクのシミュレーション結果を、図12に実線及び破線でそれぞれ示す。図11に示すように、磁気飽和していない低トルク領域では、実施例2の通電パターンと実施例1の通電パターンにおける平均トルクの差は小さい。しかしながら、磁気飽和領域では、トルクが大きくなるほど、実施例2の通電パターンにおけるトルクと、実施例1の通電パターンにおけるトルクとの差が大きくなっている。また、図12に示すように、実施例2の通電パターンにおけるトルクの最大値は、実施例1の通電パターンにおけるトルクの最大値よりも大きくなっている。すなわち、実施例2の通電パターンにおけるトルクと実施例1の通電パターンにおけるトルクとの差の分、実施例2の通電パターンでは負トルクの発生が抑制されている。   Further, the simulation results of the average torque with respect to the effective current value when the SR motor 10 is driven with the energization pattern of the second embodiment and the first embodiment are shown by a solid line and a broken line in FIG. 11, respectively. In addition, the simulation results of the torque with respect to the electrical angle when the SR motor 10 is driven with the energization pattern of the second embodiment and the first embodiment in the region of the control mode B are shown by a solid line and a broken line in FIG. As shown in FIG. 11, in the low torque region where the magnetic saturation is not achieved, the difference in average torque between the energization pattern of Example 2 and the energization pattern of Example 1 is small. However, in the magnetic saturation region, the difference between the torque in the energization pattern of Example 2 and the torque in the energization pattern of Example 1 increases as the torque increases. Also, as shown in FIG. 12, the maximum torque value in the energization pattern of the second embodiment is larger than the maximum torque value in the energization pattern of the first embodiment. That is, the generation of negative torque is suppressed in the energization pattern of the second embodiment by the difference between the torque in the energization pattern of the second embodiment and the torque in the energization pattern of the first embodiment.

(実施例3)
制御モードBでSRモータ10を駆動させる実施例3について、図7を参照して、実施例2と異なる点を説明する。実施例2では、期間Iにおいて一様に突極間巻線に通電させる電流の絶対値を小さくしたが、実施例3では、期間Iにおいて、電流の絶対値を連続的に小さくした後、連得的に大きくする。本実施例のようにしても、実施例2と同様に、漏れ磁束を抑制し、負トルクの発生を抑制できる。
(Example 3)
A third embodiment in which the SR motor 10 is driven in the control mode B will be described with reference to FIG. In the second embodiment, the absolute value of the current applied to the inter-saliency winding is uniformly reduced in the period I. However, in the third embodiment, after the absolute value of the current is continuously reduced in the period I, Make it bigger. Even in the present embodiment, similarly to the second embodiment, the leakage magnetic flux can be suppressed and the generation of negative torque can be suppressed.

期間Iにおける電流の絶対値を他の期間よりも小さくする態様は、種々考えられる。例えば、期間Iにおいて、電流の絶対値を段階的に小さくした後段階的に大きくしてもよい。SRモータ10の駆動状態に応じて、適宜選択すればよい。   Various modes in which the absolute value of the current in the period I is made smaller than those in other periods can be considered. For example, in the period I, the absolute value of the current may be decreased stepwise and then increased stepwise. What is necessary is just to select suitably according to the drive state of SR motor 10. FIG.

また、SRモータ10の駆動状態に応じて、期間Iの長さ及び期間Iにおける電流の絶対値の少なくとも一方を変更してもよい。例えば、制御モードBの領域内で、トルクと回転速度から決まる駆動点を、トルクが小さい駆動点からトルクが大きい駆動点に変更した場合、期間Iにおける電流の絶対値を更に小さくしてもよい。また、制御モードBの領域内で、トルクが大きい駆動点からトルクが小さい駆動点に変更した場合、期間Iの長さを短くしてもよい。すなわち、期間Iを、他の2相の突極間巻線と異なる方向に電流が通電する全期間、すなわち半周期Thの3分の1の期間よりも短い期間にしてもよい。制御モードBの領域内の駆動点におけるトルクが大きいほど電流の絶対値を小さくし、トルクが小さいほど期間Iを短くすると、駆動点に応じて漏れ磁束を抑制できる。   Further, according to the driving state of the SR motor 10, at least one of the length of the period I and the absolute value of the current in the period I may be changed. For example, when the driving point determined from the torque and the rotational speed is changed from the driving point having a small torque to the driving point having a large torque in the region of the control mode B, the absolute value of the current in the period I may be further reduced. . Further, when the driving point having a large torque is changed to the driving point having a small torque in the region of the control mode B, the length of the period I may be shortened. That is, the period I may be shorter than the entire period in which current flows in a direction different from the other two-phase salient-pole windings, that is, the period of one third of the half cycle Th. When the torque at the drive point in the region of the control mode B is larger, the absolute value of the current is smaller, and when the period I is shorter as the torque is smaller, the leakage flux can be suppressed according to the drive point.

(実施例4)
制御モードCでSRモータ10を駆動させる実施例4について、図8を参照して説明する。制御モードCでは、突極間巻線に電流が流れていない相が常に少なくとも1つ存在する。本実施例では、半周期Thの3分の1の期間ずつ、W相、U相、V相の順に順次電流を通電させない相とする。そして、各相において電流を通電させる期間では、電流は正の方向に通電させる。すなわち、本実施例では、各相の突極間巻線に流れる電流は直流となる。突極間巻線に電流が流れていない相が常に1つ存在することにより、励磁を切り替える際に電流が反転する相が存在しない。よって、電流の応答遅れが抑制される。
Example 4
A fourth embodiment in which the SR motor 10 is driven in the control mode C will be described with reference to FIG. In the control mode C, there is always at least one phase in which no current flows in the inter-salient winding. In this embodiment, the phases are set such that the current is not sequentially supplied in the order of the W phase, the U phase, and the V phase for each one-third period of the half cycle Th. In the period in which current is applied in each phase, the current is supplied in the positive direction. That is, in the present embodiment, the current flowing through the inter-saliency windings of each phase is a direct current. Since there is always one phase in which no current flows in the winding between the salient poles, there is no phase in which the current is reversed when switching excitation. Therefore, the response delay of current is suppressed.

U,V>0、W=0にした場合は、図5(a)において、トロイダル巻線23a及び23bで磁束が発生しない状態となる。この場合、トロイダル巻線22bから出た磁束は、トロイダル巻線21bに向かって吸い込まれる。また、トロイダル巻線21aから出た磁束は、トロイダル巻線22aに向かって吸い込まれる。すなわち、本実施例では、実施例1〜4において同じ方向の磁束を発生する巻線組のうち、中央のトロイダル巻線では磁束が発生せず、両端の2つのトロイダル巻線で同じ方向の磁束が発生する。   When U, V> 0, and W = 0, no magnetic flux is generated in the toroidal windings 23a and 23b in FIG. 5A. In this case, the magnetic flux emitted from the toroidal winding 22b is sucked toward the toroidal winding 21b. Further, the magnetic flux emitted from the toroidal winding 21a is sucked toward the toroidal winding 22a. That is, in this embodiment, among the winding sets that generate the magnetic flux in the same direction in the first to fourth embodiments, no magnetic flux is generated in the central toroidal winding, and the magnetic flux in the same direction in the two toroidal windings at both ends. Occurs.

よって、U=0、V,W>0のときは、図5(e)と同様の磁束が発生し、U,W>0、V=0のときは、図5(c)と同様の磁束が発生する。したがって、本実施例の通電パターンで各相の突極間巻線に電流を通電すると、図5の(a)、(e)、(c)を順次繰り返して、回転子12が回転する。また、本実施形態のように2個のトロイダル巻線で磁束を発生させる場合、1つの突極に巻き付けられた巻線で磁束を発生させる場合と比較して、各トロイダル巻線の巻数は2分の1にできる。   Therefore, when U = 0, V, W> 0, the same magnetic flux as in FIG. 5E is generated, and when U, W> 0, V = 0, the magnetic flux as in FIG. 5C. Occurs. Therefore, when a current is passed through the inter-saliency windings of each phase with the energization pattern of the present embodiment, the rotor 12 rotates by sequentially repeating (a), (e), and (c) of FIG. Further, when the magnetic flux is generated by two toroidal windings as in the present embodiment, the number of turns of each toroidal winding is 2 in comparison with the case where the magnetic flux is generated by a winding wound around one salient pole. It can be reduced to one part.

(実施例5)
制御モードCでSRモータ10を駆動させる実施例5について、図9を参照して、実施例6と異なる点について説明する。本実施例では、各相の突極間巻線に、半周期Thの3分の2の期間正の電流を通電させた後、半周期Thの3分の1の期間電流を通電させない。その後、半周期Thの3分の2の期間負の電流を通電させた後、半周期Thの3分の1の期間電流を通電させない。すなわち、本実施例では、各相の突極間巻線に流れる電流は交流となる。また、電流が流れている2つの相では、互いに異なる方向に電流が流れている。本実施例では、実施例4と同様に、突極間巻線に電流を通電させない相が常に1つ存在する。そして、各相の突極間巻線では、電流が通電させない期間を挟んで電流の方向を切り替えている。そのため、励磁を切り替える際に電流が反転する相が存在しないので、電流の応答遅れが抑制される。
(Example 5)
The fifth embodiment in which the SR motor 10 is driven in the control mode C will be described with respect to differences from the sixth embodiment with reference to FIG. In the present embodiment, a positive current is applied to the inter-salient windings of each phase for a period of two-thirds of the half cycle Th, and then a current for a period of one-third of the half cycle Th is not supplied. Thereafter, after a negative current is applied for a period of two-thirds of the half cycle Th, a current is not supplied for a period of one-third of the half cycle Th. That is, in the present embodiment, the current flowing through the inter-saliency windings of each phase is alternating current. Further, in two phases in which current flows, currents flow in different directions. In the present embodiment, as in the fourth embodiment, there is always one phase in which no current is passed through the inter-saliency winding. In each interphase salient-pole winding, the direction of the current is switched with a period during which no current is passed. For this reason, since there is no phase in which the current is reversed when switching the excitation, the response delay of the current is suppressed.

U>0、V<0、W=0にした場合は、図5(b)又は(c)において、トロイダル巻線23a及び23bに磁束が発生しない状態となる。U=0、V<0、W>0にした場合は、図5(c)又は(d)において、トロイダル巻線21a及び21bに磁束が発生しない状態となる。本実施例では、実施例1〜4において同じ方向の磁束を発生する巻線組のうち、一方の端のトロイダル巻線で磁束が発生せず、他方の端及び中央のトロイダル巻線で同じ方向に磁束が発生する。   When U> 0, V <0, and W = 0, no magnetic flux is generated in the toroidal windings 23a and 23b in FIG. 5B or 5C. When U = 0, V <0, W> 0, in FIG. 5C or FIG. 5D, no magnetic flux is generated in the toroidal windings 21a and 21b. In the present embodiment, among the winding sets that generate the magnetic flux in the same direction in the first to fourth embodiments, no magnetic flux is generated in the toroidal winding at one end, and the same direction is generated in the other end and the central toroidal winding. Magnetic flux is generated.

実施例4では、3個のトロイダル巻線からなる巻線組のうち、中央のトロイダル巻線で磁束が発生しないため、巻線組のうちの一方の端のトロイダル巻線で発生した磁束が、他方の端のトロイダル巻線に向かって吸い込まれる力が弱い。それゆえ、回転子12の位置によっては、巻線組のうちの一方の端のトロイダル巻線で発生した磁束が、他方の端のトロイダル巻線に向かって吸い込まれずに、回転子12の突極に流れ、漏れ磁束が生じて負トルクが発生するおそれがある。また、実施例5では、上記一方の端のトロイダル巻線で磁束が発生しないため、回転子12の位置によっては、固定子11の突極とずれた位置にある回転子の突極に磁束が流れず、回転子12に作用するトルクがゼロトルクとなるおそれがある。しかしながら、制御モードCでは、各相の突極間巻線に流れる電流は、実施例4のような直流と実施例5のような交流のどちらでもよいので、直流と交流とを適切に切り替えることにより、負トルク及びゼロトルクの発生を抑制できる。   In Example 4, since the magnetic flux is not generated in the central toroidal winding among the winding set including three toroidal windings, the magnetic flux generated in the toroidal winding at one end of the winding set is The force sucked toward the toroidal winding at the other end is weak. Therefore, depending on the position of the rotor 12, the magnetic flux generated in the toroidal winding at one end of the winding set is not sucked toward the toroidal winding at the other end, and the salient poles of the rotor 12. The leakage flux may be generated and negative torque may be generated. In the fifth embodiment, no magnetic flux is generated in the toroidal winding at the one end. Therefore, depending on the position of the rotor 12, the magnetic flux may be applied to the salient pole of the rotor at a position shifted from the salient pole of the stator 11. The torque that does not flow and acts on the rotor 12 may become zero torque. However, in the control mode C, the current flowing in the inter-salient windings of each phase may be either a direct current as in the fourth embodiment or an alternating current as in the fifth embodiment, so that the direct current and the alternating current are switched appropriately. Thus, generation of negative torque and zero torque can be suppressed.

以上説明した本実施形態によれば、以下の効果を奏する。   According to this embodiment described above, the following effects are obtained.

・複数の相の突極間巻線に通電するため、個別のトロイダル巻線の巻回数を、1相のみの通電で磁束を発生させる場合よりも減らし、SRモータ10を小型化できる。また、相毎に突極間巻線に流れる電流の極性及び大きさを変えられるため、SRモータ10の制御性を高くすることができる。したがって、SRモータ10の小型化と高い制御性の両方を実現できる。   Since the current between the salient pole windings of a plurality of phases is energized, the number of turns of the individual toroidal windings can be reduced as compared with the case where magnetic flux is generated by energizing only one phase, and the SR motor 10 can be downsized. Moreover, since the polarity and magnitude | size of the electric current which flow into a winding between salient poles can be changed for every phase, the controllability of SR motor 10 can be made high. Therefore, both the miniaturization of SR motor 10 and high controllability can be realized.

・制御モードA及びBでSRモータを駆動させる場合は、正方向通電期間と負方向通電期間を等しくすることにより、安定して回転子12を回転させることができる。   When driving the SR motor in the control modes A and B, the rotor 12 can be stably rotated by making the positive energization period equal to the negative energization period.

・制御モードBでSRモータを駆動させる場合は、突極間巻線に流れる電流の波形の半周期Thにおいて、電流値の絶対値が他の期間よりも小さい所定期間が存在する。これにより、絶対値が小さい電流が流れる突極間巻線に発生する磁束の密度が、他の突極間巻線に発生する磁束の密度よりも小さくなる。そのため、漏れ磁束が抑制されて、負トルクの発生を抑制できる。ひいては、磁気飽和領域でSRモータ10を駆動させる場合に、トルク特性を向上させることができる。   When driving the SR motor in the control mode B, there is a predetermined period in which the absolute value of the current value is smaller than the other periods in the half cycle Th of the waveform of the current flowing through the inter-saliency winding. As a result, the density of the magnetic flux generated in the inter-salient winding through which a current having a small absolute value flows becomes smaller than the density of the magnetic flux generated in the other inter-salient winding. Therefore, the leakage magnetic flux is suppressed, and the generation of negative torque can be suppressed. As a result, when the SR motor 10 is driven in the magnetic saturation region, the torque characteristics can be improved.

・SRモータ10を高トルクで駆動させるほど、突極間巻線に発生する磁束の密度が高くなり、漏れ磁束が発生しやすい。よって、SRモータ10の駆動状態に応じて、電流の絶対値を小さくする期間の長さ及び電流値の少なくとも一方を変更することにより、適切に漏れ磁束を抑制して、負トルクの発生を抑制できる。   -The higher the torque of the SR motor 10 is, the higher the density of the magnetic flux generated in the inter-saliency winding becomes, and the more easily the leakage magnetic flux is generated. Therefore, according to the driving state of the SR motor 10, by changing at least one of the length of the period in which the absolute value of the current is reduced and the current value, the leakage flux is appropriately suppressed and the generation of negative torque is suppressed. it can.

・制御モードCでSRモータ10を駆動させる場合は、突極間巻線に電流が流れていない相が少なくとも1つ存在するため、励磁を切り替える際に電流が反転する相が存在しない。よって、電流の応答遅れを抑制して、SRモータ10を高速駆動させることができる。   When driving the SR motor 10 in the control mode C, since there is at least one phase in which no current flows in the inter-saliency winding, there is no phase in which the current is reversed when switching excitation. Therefore, it is possible to drive the SR motor 10 at a high speed while suppressing a delay in response of the current.

・制御モードCでSRモータ10を駆動させる場合は、突極間巻線に流れる電流を直流と交流とで切り替えることにより、ゼロトルク及び負トルクの発生を抑制できる。   When driving the SR motor 10 in the control mode C, the generation of zero torque and negative torque can be suppressed by switching the current flowing in the winding between the salient poles between direct current and alternating current.

・各突極間巻線がそれぞれフルブリッジ回路に接続されていることにより、各突極間巻線に正方向と負方向の両方から電流を通電させることができる。   -Since each salient pole winding is connected to the full bridge circuit, current can be supplied to each salient pole winding from both the positive and negative directions.

・固定子11の周方向において隣り合うトロイダル巻線が、互いに異なる方向に巻かれていることにより、励磁を切り替えても同じトルク特性で回転子12を回転させることができる。   Since the toroidal windings adjacent in the circumferential direction of the stator 11 are wound in different directions, the rotor 12 can be rotated with the same torque characteristics even when the excitation is switched.

(他の実施形態)
・図13に示すように、固定子11’は、内周側及び外周側の両側に突極を有する固定子であってもよい。そして、SRモータ10は、固定子11’の内周側に設置されている回転子12以外にも、固定子11’の外周側に設置されている回転子13(第2回転子)を備えていてもよい。SRモータ10は、固定子11’の各突極の間をつなぐヨーク部分11’gに、トロイダル巻線21a〜23a,21b〜23bが巻き付けられている。そのため、外周側に回転子13を設置すると、ヨーク部分11’gに沿って発生した磁束は、内側の回転子12だけでなく外側の回転子13にも流れ、回転子13に作用するトルクが発生する。よって、外周側に回転子13を設置することにより、トロイダル巻線21a〜23a,21b〜23bに発生する磁束を有効に利用できる。
(Other embodiments)
As shown in FIG. 13, the stator 11 ′ may be a stator having salient poles on both the inner peripheral side and the outer peripheral side. The SR motor 10 includes a rotor 13 (second rotor) installed on the outer peripheral side of the stator 11 ′ in addition to the rotor 12 installed on the inner peripheral side of the stator 11 ′. It may be. In the SR motor 10, toroidal windings 21a to 23a and 21b to 23b are wound around a yoke portion 11'g that connects between the salient poles of the stator 11 '. Therefore, when the rotor 13 is installed on the outer peripheral side, the magnetic flux generated along the yoke portion 11′g flows not only to the inner rotor 12 but also to the outer rotor 13, and torque acting on the rotor 13 is increased. Occur. Therefore, the magnetic flux generated in the toroidal windings 21a to 23a and 21b to 23b can be effectively used by installing the rotor 13 on the outer peripheral side.

・固定子11の突極個数は6個に限らず偶数個であればよい。また、回転子12の突極個数は4個に限らず、固定子11の突極個数と倍数関係にない偶数個であればよい。   -The number of salient poles of the stator 11 is not limited to six and may be an even number. Further, the number of salient poles of the rotor 12 is not limited to four, and may be an even number that does not have a multiple relationship with the number of salient poles of the stator 11.

・SRモータ10は3相モータに限らず、4相以上のN相(Nは整数)のモータであってもよい。また、制御モードCで駆動させない場合は、SRモータ10は2相モータでもよい。   The SR motor 10 is not limited to a three-phase motor, and may be an N-phase (N is an integer) motor having four or more phases. When not driven in the control mode C, the SR motor 10 may be a two-phase motor.

10…SRモータ、11,11’…固定子、11a〜f…突極、11g,11’g…ヨーク部分、12…回転子、12a〜d…突極、21〜23…突極間巻線、21a〜23a,21b〜23b…トロイダル巻線、30…駆動回路。   DESCRIPTION OF SYMBOLS 10 ... SR motor, 11, 11 '... Stator, 11a-f ... Salient pole, 11g, 11'g ... Yoke part, 12 ... Rotor, 12a-d ... Salient pole, 21-23 ... Winding between salient poles , 21a to 23a, 21b to 23b ... toroidal winding, 30 ... drive circuit.

Claims (7)

スイッチトリラクタンスモータ(10)、及び前記スイッチトリラクタンスモータを駆動する駆動回路(30)を備えるスイッチトリラクタンスモータの制御システムであって、
前記モータは、
偶数個の突極(11a〜f)を有する固定子(11)と、
前記固定子の突極個数と倍数関係にない偶数個の突極(12a〜d)を有する回転子(12)と、
前記固定子の各突極の間をつなぐヨーク部分(11g)にトロイダル状に巻き付けられたトロイダル巻線(21a〜23a,21b〜23b)が、電気角360度離れた位置同士で直列接続されたN(2以上の整数)相の突極間巻線(21〜23)と、を備え、
前記駆動回路は、電源に並列に接続されて、前記突極間巻線に正方向及び負方向の両方から電流を通電できる通電経路を相毎に備え、相毎に独立して、前記通電経路から前記突極間巻線へ電流を通電でき、
前記モータの回転速度により定められる駆動状態に応じて、前記通電経路から前記突極間巻線へ電流を同時通電する相数を前記駆動回路に切り替えさせる制御部を備えることを特徴とするスイッチトリラクタンスモータの制御システム。
A switched reluctance motor (10), and a switched reluctance motor control system comprising a drive circuit (30) for driving the switched reluctance motor,
The motor is
A stator (11) having an even number of salient poles (11a-f);
A rotor (12) having an even number of salient poles (12a-d) not in a multiple relationship with the number of salient poles of the stator;
Toroidal windings (21a to 23a, 21b to 23b) wound in a toroidal shape on yoke portions (11g) connecting between the salient poles of the stator were connected in series at positions separated by an electrical angle of 360 degrees. N (integer greater than or equal to 2) phase salient pole windings (21 to 23),
The drive circuit is connected in parallel to a power source, and includes an energization path for each phase that allows current to flow from both the positive direction and the negative direction to the inter-saliency winding, and the energization path independently for each phase. Current from the salient pole winding to
Switches according to a driving state determined by the rotational speed of the motor, characterized Rukoto a control unit to switch the phase number of simultaneous energization current to the stator teeth between the winding from the current path to the drive circuit Control system for trilactance motor.
各相の前記突極間巻線に通電させる前記電流の波形は、電気角1周期のうちの半周期で正方向通電となり、残りの半周期で負方向通電となる矩形波電流波形である請求項1に記載のスイッチトリラクタンスモータの制御システム。   The waveform of the current to be passed through the inter-saliency windings of each phase is a rectangular wave current waveform in which a positive current is supplied in a half cycle of one electrical angle cycle and a negative current is supplied in the remaining half cycle. Item 2. A switched reluctance motor control system according to item 1. 正方向通電となる前記半周期及び負方向通電となる前記半周期において、他の期間よりも前記電流の絶対値が小さい所定期間が存在する請求項2に記載のスイッチトリラクタンスモータの制御システム。   3. The switched reluctance motor control system according to claim 2, wherein there is a predetermined period in which the absolute value of the current is smaller than the other periods in the half cycle in which the energization in the positive direction and the half cycle in which the energization in the negative direction is performed. スイッチトリラクタンスモータ(10)、及び前記スイッチトリラクタンスモータを駆動する駆動回路(30)を備えるスイッチトリラクタンスモータの制御システムであって、A switched reluctance motor (10), and a switched reluctance motor control system comprising a drive circuit (30) for driving the switched reluctance motor,
前記モータは、The motor is
偶数個の突極(11a〜f)を有する固定子(11)と、A stator (11) having an even number of salient poles (11a-f);
前記固定子の突極個数と倍数関係にない偶数個の突極(12a〜d)を有する回転子(12)と、A rotor (12) having an even number of salient poles (12a-d) not in a multiple relationship with the number of salient poles of the stator;
前記固定子の各突極の間をつなぐヨーク部分(11g)にトロイダル状に巻き付けられたトロイダル巻線(21a〜23a,21b〜23b)が、電気角360度離れた位置同士で直列接続されたN(2以上の整数)相の突極間巻線(21〜23)と、を備え、Toroidal windings (21a to 23a and 21b to 23b) wound in a toroidal shape on yoke portions (11g) connecting between the salient poles of the stator were connected in series at positions separated by 360 degrees in electrical angle. N (integer greater than or equal to 2) phase salient pole windings (21 to 23),
前記駆動回路は、電源に並列に接続されて、前記突極間巻線に正方向及び負方向の両方から電流を通電できる通電経路を相毎に備え、相毎に独立して、前記通電経路から前記突極間巻線へ電流を通電でき、The drive circuit is connected in parallel to a power source, and includes an energization path for each phase that allows current to flow from both the positive direction and the negative direction to the inter-saliency winding, and the energization path independently for each phase. Current from the salient pole winding to
各相の前記突極間巻線に通電させる前記電流の波形は、電気角1周期のうちの半周期で正方向通電となり、残りの半周期で負方向通電となる矩形波電流波形であり、The waveform of the current to be passed through the inter-saliency windings of each phase is a rectangular wave current waveform in which positive direction energization is performed in a half cycle of one electrical angle cycle and negative direction energization is performed in the remaining half cycle,
正方向通電となる前記半周期及び負方向通電となる前記半周期において、他の期間よりも前記電流の絶対値が小さい所定期間が存在することを特徴とするスイッチトリラクタンスモータの制御システム。A control system for a switched reluctance motor, wherein there is a predetermined period in which the absolute value of the current is smaller than the other periods in the half cycle that is energized in the positive direction and the half period that is energized in the negative direction.
前記モータの駆動状態に応じて、前記所定期間の長さ及び前記所定期間における前記電流の絶対値の少なくとも一方を変更する請求項3又は4に記載のスイッチトリラクタンスモータの制御システム。 5. The switched reluctance motor control system according to claim 3, wherein at least one of a length of the predetermined period and an absolute value of the current in the predetermined period is changed according to a driving state of the motor. 各相の前記通電経路は、2個のスイッチング素子が直列に接続された直列体を2個備えるブリッジ回路であり、
前記突極間巻線の両端は、2個の前記直列体の中点にそれぞれ接続されている請求項1〜のいずれかに記載のスイッチトリラクタンスモータの制御システム。
The energization path of each phase is a bridge circuit including two series bodies in which two switching elements are connected in series,
The switched reluctance motor control system according to any one of claims 1 to 5 , wherein both ends of the salient-pole winding are respectively connected to the midpoints of the two serial bodies.
前記固定子の周方向において隣り合う前記トロイダル巻線は、互いに異なる方向に巻かれている請求項1〜のいずれかに記載のスイッチトリラクタンスモータの制御システム。 Wherein the toroidal coil adjacent in the circumferential direction of the stator, switched reluctance motor control system according to any one of claims 1 to 6 which is wound in different directions.
JP2014117661A 2014-06-06 2014-06-06 Switched reluctance motor control system Expired - Fee Related JP6287602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014117661A JP6287602B2 (en) 2014-06-06 2014-06-06 Switched reluctance motor control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117661A JP6287602B2 (en) 2014-06-06 2014-06-06 Switched reluctance motor control system

Publications (2)

Publication Number Publication Date
JP2015231305A JP2015231305A (en) 2015-12-21
JP6287602B2 true JP6287602B2 (en) 2018-03-07

Family

ID=54887846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117661A Expired - Fee Related JP6287602B2 (en) 2014-06-06 2014-06-06 Switched reluctance motor control system

Country Status (1)

Country Link
JP (1) JP6287602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519572B2 (en) * 2016-11-25 2019-05-29 トヨタ自動車株式会社 Control device for switched reluctance motor
CN107546946B (en) * 2017-10-17 2023-08-18 河南理工大学 M-phase stator winding switch reluctance motor, driving method and pole changing method
CN109494953A (en) * 2018-12-19 2019-03-19 俞晓光 A kind of multi-coil stacked switch reluctance motor
CN114499001B (en) * 2022-02-28 2023-10-31 上海交通大学 Ring winding reluctance motor, system and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984420B2 (en) * 2005-04-13 2012-07-25 日産自動車株式会社 Reluctance motor driving apparatus and method
JP5349040B2 (en) * 2008-12-26 2013-11-20 ダイハツ工業株式会社 Motor drive device
JP5569749B2 (en) * 2011-04-25 2014-08-13 株式会社デンソー motor

Also Published As

Publication number Publication date
JP2015231305A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
US11967866B2 (en) System and method for controlling a multi-tunnel electric machine
US9231513B2 (en) Electric motor system
US10090742B2 (en) Rotating electric machine
KR101781382B1 (en) Design improvements for flux switching machines
US20130106338A1 (en) Apparatus and method of driving switched reluctance motor
JP6287602B2 (en) Switched reluctance motor control system
JP2012095410A (en) Permanent-magnet synchronous motor and method of operating the same
JP2015509697A (en) Synchronous electrical machine
US5838087A (en) Reluctance machine
JP2010115086A (en) Motor system and energization method of permanent magnet motor
JP2016077052A (en) Magnetless rotating electrical machine and rotating electrical machine control system
JP6018927B2 (en) Motor drive device and motor drive system
JP5885423B2 (en) Permanent magnet rotating electric machine
JP2014039446A (en) Pole change motor device
JP2013233071A (en) Switched reluctance motor device
JP2010239823A (en) Electric motor
JP2002034300A (en) Control circuit of sr generator
JP2005176598A (en) Magnetic flux change arrangement for permanent magnet brush type motor using winding field coil combined with permanent magnet
KR20060022376A (en) Dual rotor electric motor
JP5623346B2 (en) Rotating electric machine drive system
JP2017112819A (en) Phase number switching type electric machine
JP6504850B2 (en) Control device, rotary electric machine using the same, and drive system including the control device and the rotary electric machine
JP6335523B2 (en) Rotating electric machine
JP2017112817A (en) Variable speed ac electrical machine
JP2015070699A (en) Control circuit of switched reluctance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees