JP6287359B2 - Embankment reinforcement structure - Google Patents
Embankment reinforcement structure Download PDFInfo
- Publication number
- JP6287359B2 JP6287359B2 JP2014043502A JP2014043502A JP6287359B2 JP 6287359 B2 JP6287359 B2 JP 6287359B2 JP 2014043502 A JP2014043502 A JP 2014043502A JP 2014043502 A JP2014043502 A JP 2014043502A JP 6287359 B2 JP6287359 B2 JP 6287359B2
- Authority
- JP
- Japan
- Prior art keywords
- embankment
- sheet pile
- steel sheet
- closing member
- foundation ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002787 reinforcement Effects 0.000 title claims description 33
- 229910000831 Steel Inorganic materials 0.000 claims description 191
- 239000010959 steel Substances 0.000 claims description 191
- 230000003014 reinforcing effect Effects 0.000 claims description 36
- 239000004576 sand Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 230000001629 suppression Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000006424 Flood reaction Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000135309 Processus Species 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Revetment (AREA)
Description
本発明は、おもに地震時において、盛土を崩壊させようとする外力に対して盛土を補強する盛土補強構造に関する。 The present invention relates to an embankment reinforcement structure that reinforces an embankment against an external force that tends to collapse the embankment mainly during an earthquake.
従来、河川等の堤防の盛土(堤体)に対する補強として、盛土の法面に透水性の低い材料や不透水性の材料を被覆することや、盛土の法面の下端側になる法尻部分に、盛土の延長方向(連続方向)に沿って地中に鋼矢板壁を構築することが知られていた。 Conventionally, as a reinforcement for embankments (bank bodies) of embankments such as rivers, the slope of the embankment is covered with a material with low water permeability or imperviousness, or the bottom edge on the bottom of the slope of the embankment In addition, it was known to construct a steel sheet pile wall in the ground along the extending direction (continuous direction) of the embankment.
しかし、法面の被覆では、盛土自体の強度の補強にならず、地震や洪水の際に、大きな外力が盛土に作用した場合の盛土の破壊を防止することができない。また、地震時に対して盛土基礎地盤の安定化を図るため、上述のように法尻部分に鋼矢板壁を配置するのは有効であるが、洪水時に越水した場合には、法尻部分の鋼矢板壁では、盛土が崩壊するのを防止することができない。 However, the slope covering does not reinforce the strength of the embankment itself, and cannot prevent the embankment from being destroyed when a large external force acts on the embankment during an earthquake or flood. In order to stabilize the embankment foundation ground against an earthquake, it is effective to place a steel sheet pile wall at the butt as described above. The steel sheet pile wall cannot prevent the embankment from collapsing.
そこで、例えば、特許文献1には、法尻以外の盛土の内部に少なくとも1列の矢板壁を盛土の長さ方向に沿って構築する盛土の補強構造が提案されている。より具体的には、盛土の天端の範囲内または片側の法肩付近に1列の矢板壁を構築する構造や、両方の法肩付近に位置し連結材(タイロッド)で互いに連結された2列の鋼矢板壁を構築する構造が記載されている。
Therefore, for example,
このように盛土の法肩から天端部分に2列に鋼矢板壁を構築することによって、盛土内に二重鋼矢板締切り部が構成され、構造的に堅固な芯を形成し、盛土を補強することができる。これにより、洪水時や地震時の様々な外力条件に対応可能になる。例えば、洪水時の浸透、洗屈、越水や、地震時の慣性力や基礎地盤の液状化に対応可能になる。洪水や地震の際に、2列の鋼矢板壁により盛土の天端高さを維持することができるので、河川の氾濫を防止し、河川の氾濫により盛土が崩壊するのを防止することができる。 By constructing steel sheet pile walls in two rows from the shoulder of the embankment to the top edge in this way, double steel sheet pile cut-off parts are constructed in the embankment, forming a structurally solid core and reinforcing the embankment can do. This makes it possible to cope with various external force conditions during floods and earthquakes. For example, it becomes possible to deal with infiltration, washing, overtopping during floods, and inertial forces and liquefaction of foundation ground during earthquakes. In the event of a flood or earthquake, the top height of the embankment can be maintained by two rows of steel sheet pile walls, preventing river flooding and preventing the bank from collapsing due to river flooding. .
ところで、本発明者等は、従来の2列の鋼製矢板壁を有する盛土補強構造と、鋼矢板壁のない無対策のものとを比較するために、これらの構造のモデルを製作して加振実験を行った。
その結果、従来の2列の鋼矢板壁を有する盛土補強構造では、鋼矢板壁のない無対策のものに比べて盛土上面の沈下量を半分程度抑制できるが、まだ不十分であることが判明した。
そこで、2列の鋼矢板壁間に、当該2列の鋼矢板壁を繋ぐ隔壁を盛土の連続方向に所定間隔で設けることによって、鋼矢板壁を補強し、地震時の鋼矢板の変形を抑えることで、盛土上面の沈下量を抑制できるのではないかと考え、この構造のモデルを製作して加振実験を行った。
その結果、前記2列の鋼製矢板壁を有する補強構造に比して、盛土上面の沈下量を十分に抑制できることが判明した。
しかしながら、このような盛土補強構造を実際に施工した場合、隔壁を多数用いる必要があるため、施工に手間がかかるとともに、コストアップとなるという問題がある。
また、前記加振実験の結果、モデルとなった盛土の傾斜面(法面)が鋼矢板壁に沿って大きく沈下する現象が見られた。
By the way, in order to compare the conventional embankment reinforcement structure having two rows of steel sheet pile walls and the non-measured structure without the steel sheet pile walls, the present inventors have produced models of these structures and added them. A shaking experiment was conducted.
As a result, in the conventional embankment reinforcement structure with two rows of steel sheet pile walls, the amount of settlement on the upper surface of the embankment can be reduced by about half compared to the countermeasureless measures without the steel sheet pile walls, but it is still unsatisfactory. did.
Therefore, by providing partition walls connecting the two rows of steel sheet pile walls at predetermined intervals in the continuous direction of the embankment between the two rows of steel sheet pile walls, the steel sheet pile walls are reinforced, and the deformation of the steel sheet pile during an earthquake is suppressed. Therefore, we thought that the amount of settlement on the upper surface of the embankment could be suppressed, and produced a model of this structure and conducted an excitation experiment.
As a result, it was found that the amount of settlement on the upper surface of the embankment can be sufficiently suppressed as compared with the reinforcing structure having the two rows of steel sheet pile walls.
However, when such an embankment reinforcement structure is actually constructed, it is necessary to use a large number of partition walls, so that there is a problem that the construction takes time and costs are increased.
In addition, as a result of the excitation experiment, a phenomenon was observed in which the slope (slope) of the embankment that became the model largely sinks along the steel sheet pile wall.
本発明は、前記事情に鑑みてなされたもので、鋼矢板壁を構成する鋼矢板を低コストで効果的に補強することができる盛土補強構造を提供することを目的としている。 This invention is made | formed in view of the said situation, and it aims at providing the embankment reinforcement structure which can reinforce effectively the steel sheet pile which comprises a steel sheet pile wall at low cost.
前記目的を達成するために、本発明の盛土補強構造は、液状化層とその下側の支持層とで構成された盛土基礎地盤上に設けられた連続する盛土に、下端が前記盛土基礎地盤の前記液状化層内にあるか、前記支持層の上面まで達しているか、または前記支持層中に達している鋼矢板からなる鋼矢板壁が前記盛土の連続方向に沿って設けられた盛土の補強構造において、
前記鋼矢板に、矢板補強部材が前記盛土と前記盛土基礎地盤との境界面位置を含む範囲において設けられ、
前記鋼矢板は、ウェブ部と、このウェブ部の両側に連続して形成された一対のフランジ部と、これら一対のフランジ部の先端側に形成された継手部とを備え、
前記矢板補強部材は、前記鋼矢板の一対のフランジ部の先端間に渡って接合され、前記鋼矢板の開断面を閉じる閉合部材であることを特徴とする。
In order to achieve the above object, the embankment reinforcing structure of the present invention is a continuous embankment provided on an embankment foundation ground composed of a liquefied layer and a support layer below the liquefied layer, and a lower end of the embankment foundation ground. A steel sheet pile wall made of a steel sheet pile that is in the liquefied layer, reaches the upper surface of the support layer, or reaches the support layer, is provided along the continuous direction of the embankment. In the reinforcement structure,
In the steel sheet pile, a sheet pile reinforcing member is provided in a range including a boundary surface position between the embankment and the embankment foundation ground,
The steel sheet pile includes a web portion, a pair of flange portions formed continuously on both sides of the web portion, and a joint portion formed on the tip side of the pair of flange portions,
The sheet pile reinforcing member is a closing member that is joined across the ends of a pair of flange portions of the steel sheet pile and closes an open cross section of the steel sheet pile .
このような範囲に、矢板補強部材を設けたのは、実験の結果から、地震時等の際に、鋼矢板のひずみが大きくなる部位、つまり鋼矢板が大きく変形する部位は、盛土と盛土基礎地盤との境界面付近、または、境界面を含むその下方であることが判明したからである。 In such a range, the sheet pile reinforcing member was provided based on the results of the experiment. The part where the distortion of the steel sheet pile increases during an earthquake, etc. This is because it has been found that it is near the boundary surface with the ground or below that including the boundary surface.
本発明においては、地震時に鋼矢板が大きく変形する部分は、盛土と盛土基礎地盤との境界面付近、または、境界面を含むその下方であるため、この境界面位置を含む範囲において、鋼矢板を矢板補強部材によって補強することによって、当該鋼矢板を低コストで効果的に補強できる。
したがって、従来の隔壁を有する補強構造に比して、低コストで盛土全体の沈下を抑えることができる。
また、加工度を抑えながら鋼矢板を効率的に補強でき、矢板補強部材の設置に伴うコストアップを抑えることができる。
In the present invention, the portion where the steel sheet pile is greatly deformed at the time of an earthquake is near the boundary surface between the embankment and the embankment foundation ground, or below that including the boundary surface. By reinforcing the sheet pile with the sheet pile reinforcing member, the steel sheet pile can be effectively reinforced at low cost.
Therefore, the settlement of the whole embankment can be suppressed at a low cost as compared with a reinforcing structure having a conventional partition wall.
In addition, the steel sheet pile can be efficiently reinforced while suppressing the degree of processing, and the cost increase associated with the installation of the sheet pile reinforcing member can be suppressed.
本発明の前記構成において、前記矢板補強部材は、前記盛土と前記盛土基礎地盤との境界面位置付近から前記盛土基礎地盤側に、少なくとも前記盛土高さの2/5の範囲に配置されているのが好ましい。
このように、矢板補強部材の配置の範囲を限定したのは、鋼矢板の下端が盛土基礎地盤中の下層を構成する支持層に達している場合、地震時に鋼矢板が大きく変形する部分が、盛土と盛土基礎地盤との境界面位置付近から盛土基礎地盤側に、盛土高さの2/5の範囲付近にあるからである。
In the configuration of the present invention, the sheet pile reinforcing member is disposed in the range of at least 2/5 of the embankment height from the vicinity of the boundary surface position between the embankment and the embankment foundation ground to the embankment foundation ground side. Is preferred.
Thus, the range of the arrangement of the sheet pile reinforcing member is limited, when the lower end of the steel sheet pile reaches the support layer constituting the lower layer in the embankment foundation ground, the part where the steel sheet pile greatly deforms during an earthquake, It is because it exists in the 2/5 range of embankment height from the boundary surface position vicinity of embankment and embankment foundation ground to the embankment foundation ground side.
このような構成によれば、効率的に鋼矢板の変形を抑えて、盛土の沈下を抑えることができる。 According to such a configuration, deformation of the steel sheet pile can be efficiently suppressed, and settlement of the embankment can be suppressed.
また、本発明の前記構成において、前記閉合部材は、前記鋼矢板のウェブ部およびフランジ部と面対称な略コ字形断面であることが好ましい。 Moreover, the said structure of this invention WHEREIN: It is preferable that the said closing member is a substantially U-shaped cross section symmetrical to the web part and flange part of the said steel sheet pile.
前記閉合部材としては、鋼板を溶接により加工して製作してもよいが、鋼矢板と同一断面を有した部材を用い、この部材を鋼矢板と面対称に接合することが好ましい。 The closing member may be manufactured by processing a steel plate by welding, but it is preferable to use a member having the same cross section as the steel sheet pile and to join the member symmetrically with the steel sheet pile.
このような構成によれば、閉合部材が鋼矢板と面対称な略コ字形断面を有しており、閉合部材と鋼矢板とで形成される閉合断面が鋼矢板打設時に閉塞されることで、地震時の盛土沈下を、この閉塞部で支持することができ、その結果、盛土の沈下を抑えることができる。 According to such a configuration, the closing member has a substantially U-shaped cross section symmetrical to the steel sheet pile, and the closing cross section formed by the closing member and the steel sheet pile is closed when the steel sheet pile is placed. In addition, the settlement of the embankment at the time of the earthquake can be supported by this closed portion, and as a result, the settlement of the embankment can be suppressed.
また、本発明の前記構成において、前記盛土に、その両のり肩付近にそれぞれ前記鋼矢板を設置することによって、2列の前記鋼矢板壁が設けられ、前記閉合部材が前記盛土の法面側に向けられていてもよい。 Moreover, in the said structure of this invention, the said steel sheet pile wall is provided in the said embankment by installing the said steel sheet pile in the vicinity of the both shoulders, respectively, and the said closing member is provided on the slope side of the said embankment May be directed to.
このような構成によれば、鋼矢板の打設時に、閉合部材と鋼矢板とによる閉合断面内で土砂が閉塞し、その後の地震で盛土の法面(斜面)が沈下しようとすることに対して、その沈下を閉合断面内の閉塞部で支持し、当該沈下を抑えることができる。 According to such a configuration, when the steel sheet pile is placed, the earth and sand closes in the closed section by the closing member and the steel sheet pile, and the slope (slope) of the embankment tends to sink due to the subsequent earthquake. Thus, the subsidence can be supported by the closed portion in the closed section, and the subsidence can be suppressed.
また、発明の前記構成において、前記盛土に、その両のり肩付近にそれぞれ前記鋼矢板を設置することによって、2列の前記鋼矢板壁が設けられ、
前記閉合部材が2列の前記鋼矢板壁間に向けられていてもよい。
Moreover, in the said structure of invention, the said steel sheet pile wall is provided in the said embankment by installing the said steel sheet pile in the vicinity of the both shoulders, respectively.
The closing member may be directed between two rows of the steel sheet pile walls.
このような構成によれば、鋼矢板の打設時に、閉合部材と鋼矢板とによる閉合断面内で土砂が閉塞するとともに、2列の鋼矢板壁間の盛土の土砂の移動が拘束されるので、その後の地震で盛土全体が沈下しようとすることに対して、その沈下を閉合断面内の閉塞部で支持するとともに、盛土の2列の鋼矢板壁間の土砂の移動を拘束することによって、当該沈下を抑えることができる。 According to such a configuration, when the steel sheet pile is placed, the earth and sand are blocked in the closed section by the closing member and the steel sheet pile, and the movement of the earth and sand between the two rows of steel sheet pile walls is restricted. In addition to supporting the subsidence in the closed section in the closed section against the fact that the entire embankment is going to subside in the subsequent earthquake, by restraining the movement of the sand between the two rows of steel sheet pile walls of the embankment, The subsidence can be suppressed.
また、本発明の前記構成において、前記閉合部材における前記鋼矢板に面した側の表面に突起が形成されているのが好ましい。 Moreover, the said structure of this invention WHEREIN: It is preferable that the processus | protrusion is formed in the surface of the side facing the said steel sheet pile in the said closure member.
このような構成によれば、閉合部材の鋼矢板側の表面の突起によって、閉断面部分に入り込んだ土塊と閉合部材との摩擦が大きくなり、当該閉塞部の閉塞効果を高めることができる。 According to such a configuration, the projection between the surface of the closing member on the side of the steel sheet pile increases the friction between the clod that has entered the closed section and the closing member, and the closing effect of the closing portion can be enhanced.
また、本発明の前記構成において、前記盛土基礎地盤が液状化層とその下側の支持層とで構成され、
前記鋼矢板の下端が前記液状化層内にあるか、前記支持層の上面まで達しているか、または前記支持層中に達していることを特徴とする。
Further, in the configuration of the present invention, the embankment foundation ground is composed of a liquefied layer and a support layer below it,
The lower end of the steel sheet pile is in the liquefied layer, reaches the upper surface of the support layer, or reaches the support layer.
このような構成によれば以下のような効果を得ることができる。
鋼矢板の下端が液状化層内にある場合、鋼矢板の下端が固定されないので、地震時に鋼矢板に生じる変形が抑えられ、鋼矢板の断面を小さくできるほか、鋼矢板の長さも短くなるので、コスト的に最も有利である。
また、鋼矢板の下端が支持層の上面まで達している場合、鋼矢板の下端が支持層の上面に当接しているので、当該鋼矢板の沈下を抑えることができる。
また、鋼矢板の下端が支持層中まで達している場合、支持層としての硬質な地盤に鋼矢板の下端が確実に打設されるので、鋼矢板の沈下を確実に抑えることができる。
According to such a configuration, the following effects can be obtained.
When the lower end of the steel sheet pile is in the liquefied layer, the lower end of the steel sheet pile is not fixed, so deformation that occurs in the steel sheet pile during an earthquake can be suppressed, the cross section of the steel sheet pile can be reduced, and the length of the steel sheet pile can also be shortened. The most advantageous in terms of cost.
Moreover, when the lower end of the steel sheet pile reaches the upper surface of the support layer, the lower end of the steel sheet pile is in contact with the upper surface of the support layer, so that the settlement of the steel sheet pile can be suppressed.
Further, when the lower end of the steel sheet pile reaches the support layer, the lower end of the steel sheet pile is reliably driven on the hard ground as the support layer, so that the settlement of the steel sheet pile can be reliably suppressed.
本発明によれば、地震時に鋼矢板が大きく変形する部分は、盛土と盛土基礎地盤との境界面付近、または、境界面を含むその下方であるため、この境界面位置を含む範囲において、鋼矢板を矢板補強部材によって補強することによって、当該鋼矢板を低コストで効果的に補強できる。
したがって、従来の隔壁を有する補強構造に比して、低コストで盛土全体の沈下を抑えることができる。
According to the present invention, the portion where the steel sheet pile is greatly deformed at the time of an earthquake is near the boundary surface between the embankment and the embankment foundation ground, or below that including the boundary surface. By reinforcing the sheet pile with a sheet pile reinforcing member, the steel sheet pile can be effectively reinforced at low cost.
Therefore, the settlement of the whole embankment can be suppressed at a low cost as compared with a reinforcing structure having a conventional partition wall.
以下、図面を参照しながら本発明の実施の形態について説明する。
(第1の実施の形態)
図1に示すように、第1の実施形態の盛土補強構造は、海や河川5等の堤防となる盛土1を補強するためのものである。
盛土1は、中央の最も高い部分が水平な上面を有する天端1aとなっている。天端1aの左右には傾斜した法面1bがそれぞれ形成され、法面1bの上端部側が法肩1cで、下端部側が法尻1dとされている。
この堤防としての盛土1の図中左側には河川5が堤防に沿って延在している。盛土1の河川側が堤防の外側で、河川の反対側が堤防の内側となる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the embankment reinforcement structure of 1st Embodiment is for reinforcing the
The
A
この盛土補強構造においては、盛土基礎地盤2の上に設けられた連続する盛土1に、盛土基礎地盤2まで達する鋼矢板3からなる鋼矢板壁4が盛土1の連続方向(図1において紙面と直交する方向)に沿って設けられている。
鋼矢板3は、盛土1の天端1aの両法肩1c,1cの近傍から盛土1を上下に貫通するように打設され、盛土基礎地盤2を構成する支持層2a中に達し、当該支持層2aに根入れされている。これによって、盛土1中には互いに対向し、かつ盛土1の連続方向に沿って延在する鋼矢板壁4,4が施工されている。
なお、盛土基礎地盤2は、液状化層2bとその下側の支持層2aとで構成され、前記盛土1は液状化層2b上に施工され、鋼矢板3は液状化層2bを貫通して、支持層2a中に達している。
In this embankment reinforcement structure, the steel
The
The
前記鋼矢板壁4,4の頭部(上端部)は、盛土1の天端1aの高さ付近となる高さに位置している。そして、盛土1中に、2列に設けられた鋼矢板壁4,4で締め切られた盛土地盤からなる構造骨格部7が形成されている。
鋼矢板壁4,4は、止水壁として、河川から浸透した水の流れである浸透流を遮り、盛土1に浸透破壊が生じるのを抑制するだけではなく、盛土1に前記構造骨格部7を形成することで強固な構造とするとともに、盛土1の略天端1aまで鋼矢板壁4,4を配置することで、盛土1の上部が崩壊するのを抑制し、地震や洪水等により外力が作用しても、河川が決壊するのを抑えている。
The heads (upper end portions) of the steel
The steel
なお、2列の鋼矢板壁4,4は、例えば、タイロッド等の連結部材8が盛土1の連続方向に沿って所定間隔毎に設けられているものとしてもよい。連結部材8は、2列の鋼矢板壁4,4間に架け渡されてこれらを連結している。これにより、洪水や地震等により大きな外力が作用した場合に、2列の鋼矢板壁4,4の上部が異なる方向に変形するのを防止している。なお、連結部材8を設けないものとしてもよい。
Note that the two rows of steel
前記鋼矢板3には、矢板補強部材10が盛土1と盛土基礎地盤2との境界面位置を含む範囲において設けられている。具体的には、矢板補強部材10は、盛土1と前記盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5の範囲に配置されている。
The
鋼矢板3は、図7および図8に示すように、熱間圧延で製造され、断面中央に位置するウェブ部31と、このウェブ部31の両端に連続して形成された一対のフランジ部32,32と、これら一対のフランジ部32,32の先端側に形成された継手部33,33とを有して形成されている。
そして、図7に示す鋼矢板3(3A)は、所謂U形鋼矢板と呼ばれるもので、一対のフランジ部32,32の先端同士が略平行に設けられた略U字形の断面形状を有したものである。一方、図8に示す鋼矢板3(3B)は、所謂ハット形鋼矢板と呼ばれるもので、一対のフランジ部32,32の先端同士がハ字形に開くとともに、継手部33,33が側方に延びて設けられたハット形の断面形状を有したものである。
As shown in FIGS. 7 and 8, the
And the steel sheet pile 3 (3A) shown in FIG. 7 is what is called a U-shaped steel sheet pile, and had the substantially U-shaped cross-sectional shape in which the front-end | tips of a pair of
前記矢板補強部材10は、鋼矢板3の長手方向中間部における一対のフランジ部32,32の先端間に渡り、鋼矢板3の開断面を閉じて閉断面を形成するように接合されてなる閉合部材10である。
そして、図7に示す閉合部材10(10A)は、U形鋼矢板である鋼矢板3Aを所定の長さ寸法に切断して形成されたものである。
一方、図8に示す閉合部材10(10B)は、ハット形鋼矢板である鋼矢板3Bを所定の長さ寸法に切断するとともに、その継手部33,33を切断して断面略コ字形に形成されたものである。
このような閉合部材10は、鋼矢板3のウェブ部31およびフランジ部32,32と面対称になるように、鋼矢板3の継手部33,33に溶接接合されている。
The sheet
And the closing member 10 (10A) shown in FIG. 7 is formed by cutting the
On the other hand, the closing member 10 (10B) shown in FIG. 8 cuts the
Such a closing
このような閉合部材10(10A,10B)は、盛土1の法面1b側に向けられている。つまり、閉合部材10(10A,10B)は、鋼矢板3から外側(法面1b側)に向けて突出するようにして設けられている。
この閉合部材10の鋼矢板3から突出量(長さ)tは、例えば、法面1bの水平方向における長さをLとすると、0.01L≦t≦0.08Lに設定されている。tが0.08Lより大きいと、鋼矢板3を打設する際の抵抗が大きくなり過ぎるからであり、また、tが0.01Lより小さいと、後述するような盛土1の法面1bの沈下抑制効果が小さいからである。
Such a closing member 10 (10A, 10B) is directed to the
The protruding amount (length) t of the closing
なお、本実施の形態では、矢板補強部材10を、前記閉合部材10A,10Bによって構成したが、閉合部材は平板状のものであってもよい。
In addition, in this Embodiment, although the sheet
本実施の形態によれば、地震時に鋼矢板3が大きく変形する部分は、盛土1と盛土基礎地盤2との境界面付近、または、境界面を含むその下方であるため、この境界面位置を含む範囲において、鋼矢板3を矢板補強部材10によって補強したので、当該鋼矢板3を低コストで効果的に補強できる。
したがって、従来の隔壁を有する補強構造に比して、低コストで盛土全体の沈下を抑えることができる。
According to the present embodiment, the portion where the
Therefore, the settlement of the whole embankment can be suppressed at a low cost as compared with a reinforcing structure having a conventional partition wall.
また、鋼矢板3の下端が盛土基礎地盤2の支持層2aに達している場合、地震時に鋼矢板3が大きく変形する部分は、盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、盛土高さの2/5の範囲にあり、この範囲に矢板補強部材10を配置しているので、効率的に鋼矢板3の変形を抑えて、盛土1の沈下を抑えることができる。
In addition, when the lower end of the
さらに、盛土1に、その両のり肩1c,1c付近にそれぞれ鋼矢板3,3を設置することによって、2列の鋼矢板壁4,4が設けられ、閉合部材10が盛土1の法面1b,1b側に向けられているので、鋼矢板3の打設時に、閉合部材10と鋼矢板3とによる閉合断面内で土砂が閉塞することで、図1に矢印で示すように、その後の地震で盛土2の法面(斜面)1b,1bが鋼矢板壁4,4に沿って沈下しようとすることに対して、その沈下を閉合部材10の閉合断面内の閉塞部で支持し、当該沈下を抑えることができる。
Furthermore, two rows of steel
また、鋼矢板3がウェブ部31と、このウェブ部31の両側に連続して形成された一対のフランジ部32,32を備え、矢板補強部材10が、鋼矢板3の一対のフランジ部32,32の先端間に渡って接合され、鋼矢板3の開断面を閉じる閉合部材10であるので、加工度を抑えながら鋼矢板3を効率的に補剛でき、矢板補強部材(閉合部材)10の設置に伴うコストアップを抑えることができる。
さらに、閉合部材10と鋼矢板3とで形成される閉合断面が鋼矢板打設時に閉塞される。したがって、地震時の盛土沈下を、この閉塞部で支持することができ、その結果、盛土の沈下を抑えることができる。
Further, the
Furthermore, the closed cross section formed by the closing
(第2の実施の形態)
図2は、本発明の第2の実施の形態を示す断面図である。
この第2の実施の形態が第1の実施の形態と異なる点は、鋼矢板3の下端が盛土基礎地盤2の支持層2aに達しておらず、液状化層2b内で留まっている点である。
その他の構成は第1の実施の形態と同様であるので、共通構成部分には同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention.
This second embodiment is different from the first embodiment in that the lower end of the
Since other configurations are the same as those of the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted or simplified.
第2の実施の形態では、図2に示すように、鋼矢板3の下端は液状化層2bまでしか達していない。そして、閉合部材10が、盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5の範囲に配置されている。
本実施の形態では、矢板補強部材10によって、鋼矢板3を低コストで効果的に補強できるとともに、鋼矢板3の下端が固定されないので、地震時に鋼矢板3に生じる変形が抑えられるため、鋼矢板の断面を小さくできる。
さらに、鋼矢板3の長さを、第1の実施の形態の鋼矢板3に比して短くできるので、その分、鋼材費を軽減でき、コスト低減を図ることができる。
In the second embodiment, as shown in FIG. 2, the lower end of the
In the present embodiment, the sheet
Furthermore, since the length of the
(第3の実施の形態)
図3は、本発明の第3の実施の形態を示す断面図である。
この第3の実施の形態が第1および第2の実施の形態と異なる点は、鋼矢板3の下端が盛土基礎地盤2の支持層2a中まで達しておらず、支持層2aの上面まで達し、この上面に当接している点である。
その他の構成は第1および第2の実施の形態と同様であるので、共通構成部分には同一符号を付してその説明を省略ないし簡略化する。
(Third embodiment)
FIG. 3 is a cross-sectional view showing a third embodiment of the present invention.
The third embodiment is different from the first and second embodiments in that the lower end of the
Since other configurations are the same as those of the first and second embodiments, common components are denoted by the same reference numerals, and description thereof is omitted or simplified.
第3の実施の形態では、図3に示すように、鋼矢板2の下端は液状化層2bを貫通して、支持層2aの上面に当接している。
そのため、地震で液状化層が液状化した場合に、鋼矢板が沈下しようとすることに対して、鋼矢板3の下端が支持層2aの上面に当接しているので、当該鋼矢板3の沈下を抑えることができる。
In 3rd Embodiment, as shown in FIG. 3, the lower end of the
Therefore, when the liquefied layer is liquefied by an earthquake, the
また、鋼矢板3の下端を拡径することにより、より効果的に鋼矢板3の沈下を抑えることができる。鋼矢板3の下端を拡径するには、例えば、前記鋼矢板3A,3Bを所定の長さ寸法に切断して形成した補助部材を、鋼矢板3のウェブ部31およびフランジ部32,32と面対称になるように、鋼矢板3A,3Bの継手部33,33に溶接接合してもよい。
Moreover, by expanding the diameter of the lower end of the
また、鋼矢板3の長さは、第2の実施の形態の鋼矢板3に比して長くなるが、第1の実施の形態の鋼矢板3に比して短くできるので、その分、鋼材費を軽減でき、コスト低減を図ることができる。
なお、本実施の形態において、第1の実施の形態と同様の効果を得ることができるのは言うまでもない。
Moreover, although the length of the
Needless to say, this embodiment can achieve the same effects as those of the first embodiment.
(第4の実施の形態)
図4は、本発明の第4の実施の形態を示す断面図である。
この第4の実施の形態が第1の実施の形態と異なる点は、閉合部材10,10が2列の鋼矢板壁4,4間に向けられている点である。
その他の構成は第1の実施の形態と同様であるので、共通構成部分には同一符号を付してその説明を省略ないし簡略化する。
(Fourth embodiment)
FIG. 4 is a sectional view showing a fourth embodiment of the present invention.
The fourth embodiment differs from the first embodiment in that the closing
Since other configurations are the same as those of the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted or simplified.
第4の実施の形態では、図4に示すように、閉合部材10,10は、鋼矢板3,3から内側に向けて突出している。この閉合部材10は、第1の実施の形態と同様に、盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5の範囲に配置されている。
In 4th Embodiment, as shown in FIG. 4, the closing
本実施の形態では、閉合部材10が盛土1の法面1b側に向いていないので、地震時に、盛土2の法面(斜面)1b,1bが沈下しようとすることに対して、その沈下を閉合部材10の閉合断面内の閉塞部で支持することはできない。
しかし、鋼矢板3の打設時に、閉合部材10と鋼矢板3とによる閉合断面内で土砂が閉塞するとともに、2列の鋼矢板壁4,4間の盛土の土砂の移動が拘束されるので、その後の地震で盛土全体が沈下しようとすることに対して、その沈下を閉合断面内の閉塞部で支持するとともに、盛土1の鋼矢板壁4,4間の土砂の移動を拘束することによって、当該沈下を抑えることができる。
なお、本実施の形態においても、盛土2の法面(斜面)1b,1bの沈下抑制以外については第1の実施の形態と同様の効果を得ることができるのは言うまでもない。
In the present embodiment, since the closing
However, when the
In the present embodiment, it is needless to say that the same effects as those of the first embodiment can be obtained except for the suppression of settlement of the slopes (slopes) 1b, 1b of the
(第5の実施の形態)
図5は、本発明の第5の実施の形態を示す断面図である。
この第5の実施の形態が第2の実施の形態と異なる点は、閉合部材10,10が2列の鋼矢板壁4,4間に向けられている点である。
その他の構成は第2の実施の形態と同様であるので、共通構成部分には同一符号を付してその説明を省略ないし簡略化する。
(Fifth embodiment)
FIG. 5 is a cross-sectional view showing a fifth embodiment of the present invention.
The fifth embodiment is different from the second embodiment in that the closing
Since other configurations are the same as those of the second embodiment, common components are denoted by the same reference numerals, and description thereof is omitted or simplified.
第5の実施の形態では、図5に示すように、閉合部材10,10は、鋼矢板3,3から内側に向けて突出している。この閉合部材10は、第1の実施の形態と同様に、盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5の範囲に配置されている。
In 5th Embodiment, as shown in FIG. 5, the closing
本実施の形態では、閉合部材10が盛土1の法面1b側に向いていないので、地震で盛土2の法面(斜面)1b,1bが沈下しようとすることに対して、その沈下を閉合部材10の閉合断面内の閉塞部で支持することはできない。
しかし、鋼矢板3の打設時に、閉合部材10と鋼矢板3とによる閉合断面内で土砂が閉塞するとともに、2列の鋼矢板壁4,4間の盛土の土砂の移動が拘束されるので、その後の地震で盛土全体が沈下しようとすることに対して、その沈下を閉合断面内の閉塞部で支持するとともに、盛土1の鋼矢板壁4,4間の土砂の移動を拘束することによって、当該沈下を抑えることができる。
なお、本実施の形態においても、盛土2の法面(斜面)1b,1bの沈下抑制以外については第2の実施の形態と同様の効果を得ることができるのは言うまでもない。
In this embodiment, since the closing
However, when the
In the present embodiment, it goes without saying that the same effects as those of the second embodiment can be obtained except for the suppression of settlement of the slopes (slopes) 1b, 1b of the
(第6の実施の形態)
図6は、本発明の第6の実施の形態を示す断面図である。
この第5の実施の形態が第3の実施の形態と異なる点は、閉合部材10,10が2列の鋼矢板壁4,4間に向けられている点である。
その他の構成は第3の実施の形態と同様であるので、共通構成部分には同一符号を付してその説明を省略ないし簡略化する。
(Sixth embodiment)
FIG. 6 is a cross-sectional view showing a sixth embodiment of the present invention.
The fifth embodiment is different from the third embodiment in that the closing
Since other configurations are the same as those of the third embodiment, common components are denoted by the same reference numerals, and description thereof is omitted or simplified.
第6の実施の形態では、図6に示すように、閉合部材10,10は、鋼矢板3,3から内側に向けて突出している。この閉合部材10は、第1の実施の形態と同様に、盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5の範囲に配置されている。
In the sixth embodiment, as shown in FIG. 6, the closing
本実施の形態では、閉合部材10が盛土1の法面1b側に向いていないので、地震で盛土2の法面(斜面)1b,1bが沈下しようとすることに対して、その沈下を閉合部材10の閉合断面内の閉塞部で支持することはできない。
しかし、鋼矢板3の打設時に、閉合部材10と鋼矢板3とによる閉合断面内で土砂が閉塞するとともに、2列の鋼矢板壁4,4間の盛土の土砂の移動が拘束されるので、その後の地震で盛土全体が沈下しようとすることに対して、その沈下を閉合断面内の閉塞部で支持するとともに、盛土1の鋼矢板壁4,4間の土砂の移動を拘束することによって、当該沈下を抑えることができる。
なお、本実施の形態においても、盛土2の法面(斜面)1b,1bの沈下抑制以外については第3の実施の形態と同様の効果を得ることができるのは言うまでもない。
In this embodiment, since the closing
However, when the
In the present embodiment, it goes without saying that the same effects as those of the third embodiment can be obtained except for the suppression of the settlement of the slopes (slopes) 1b, 1b of the
また、前記第1〜第6の実施の形態において、鋼矢板3および閉合部材10に、図9および図10に示すような突起11a,11b,11cが形成されていることが好ましい。
ここで、図9は、前記第1〜第6の実施の形態における鋼矢板3を示す正面図、図10は、第1〜第6の実施の形態における閉合部材10を示す正面図である。
図9において、鋼矢板3の上下方向の中間部におけるウェブ部31の内面、つまり閉合部材10と対向する側の面には、複数の棒状鋼材を溶接固定した突起11aが形成されている。これらの突起11aは、閉合部材10の長さ寸法Lの範囲内、つまり鋼矢板1を地盤に打設した際に閉塞部分となる位置に設けられ、鋼矢板3の長手方向に直交して形成されている。
In the first to sixth embodiments, the
Here, FIG. 9 is a front view showing the
In FIG. 9,
一方、図10において、閉合部材10の内面、つまり鋼矢板3のウェブ部31と対向する側の面には、転造により形成した複数の平行線状の突起11b(図10(a))、あるいは転造により形成した複数のチェッカー状突起11c(図10(b))が形成されている。なお、図10(a)に示す閉合部材10の平行線状の突起11bとしては、棒状鋼材を溶接固定したものでもよい。
以上のような突起11a,11b,11cが形成されていれば、閉合部材10の閉断面部分に入り込んだ土塊と閉合部材10および鋼矢板3との摩擦が大きくなり、当該閉塞部の閉塞効果を高めることができる。
On the other hand, in FIG. 10, on the inner surface of the closing
If the
次に、前記第1〜第6の実施の形態において、鋼矢板3に、矢板補強部材(閉合部材)10を、盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5の範囲において設けたことについての理由について説明する。
まず、本発明に係る盛土補強構造のモデルとして、図11に示すように、盛土基礎地盤として、2層の地盤を製作し、下層を支持層(締固め層)、上層を液状化層とした。また、この液状化層上に盛土を設けた。支持層、液状化層の層厚および盛土の高さはいずれも250mmとした。
Next, in the first to sixth embodiments, the sheet pile reinforcing member (closing member) 10 is applied to the
First, as a model of the embankment reinforcement structure according to the present invention, as shown in FIG. 11, a two-layer ground is manufactured as a foundation foundation ground, a lower layer is a support layer (consolidation layer), and an upper layer is a liquefied layer. . Moreover, embankment was provided on this liquefied layer. The thickness of the support layer, the liquefied layer, and the height of the embankment were all 250 mm.
そして、盛土の両法肩から鋼矢板(厚さ1.6mm)を打ち込み、その下端が支持層中まで達するように設置した場合(ケースC)、その下端が液状化層まで達するように設置した場合(ケースD)とで、加振実験を行い、加振後のそれぞれ鋼矢板の変形を測定した。この測定では、矢板に上下方向に所定間隔で複数の歪ゲージを取り付け、この歪ゲージによって矢板の変形によって生じる歪を測定した。なお、盛土の両法肩に打ち込んだ鋼矢板の上端どうしはタイロッドによって繋いだ。 And when steel piles (thickness 1.6 mm) were driven in from both shoulders of the embankment and installed so that the lower end reached the inside of the support layer (case C), it was installed so that the lower end reached the liquefied layer. In the case (Case D), a vibration experiment was performed, and the deformation of each steel sheet pile after vibration was measured. In this measurement, a plurality of strain gauges were attached to the sheet pile at predetermined intervals in the vertical direction, and the strain caused by the deformation of the sheet pile was measured by this strain gauge. In addition, the upper ends of the steel sheet piles driven into both shoulders of the embankment were connected by tie rods.
図11の右側に示すグラフに示すように、ケースCの場合、最も歪が大きい部分、すなわち変形が大きい部分は、矢板天端(盛土上面)から約300mm〜350mmの位置であり、ケースDの場合、最も歪が大きい部分、すなわち変形が大きい部分は、矢板天端(盛土上面)から約250mmの位置であることが分かった。
つまり、ケースCの場合、鋼矢板の変形が最も大きい部位は、盛土と盛土基礎地盤との境界面付近から盛土基礎地盤側に50mm〜100mmの位置であることが分かった。
また、ケースDの場合、盛土と盛土基礎地盤との境界面付近の位置であることが分かった。
したがって、盛土の高さは250mmであるので、盛土と盛土基礎地盤との境界面位置付近から盛土基礎地盤側に、少なくとも盛土高さの2/5(100/250)の範囲において、矢板補強部材(閉合部材)設けることにした。
As shown in the graph shown on the right side of FIG. In this case, it was found that the portion with the largest strain, that is, the portion with the largest deformation, is located at a position of about 250 mm from the top of the sheet pile (the upper surface of the embankment).
That is, in the case C, it was found that the portion where the deformation of the steel sheet pile was the largest was a position of 50 mm to 100 mm from the vicinity of the boundary surface between the embankment and the embankment foundation ground to the embankment foundation ground side.
Moreover, in case D, it turned out that it is a position of the boundary surface vicinity of embankment and embankment foundation ground.
Therefore, since the height of the embankment is 250 mm, the sheet pile reinforcing member is at least 2/5 (100/250) of the embankment height from the vicinity of the boundary surface position between the embankment and the embankment foundation ground to the embankment foundation ground side. (Closed member) decided to provide.
また、図12に示すように、前記盛土補強構造のモデルにおいて、鋼矢板3に、矢板補強部材(閉合部材)10を盛土1と盛土基礎地盤2との境界面位置付近から盛土基礎地盤2側に、少なくとも盛土高さの2/5(100/250)の範囲において設けた場合と、矢板補強部材(閉合部材)を設けない場合とで加振実験を行って、盛土1の法面(斜面)1b,1bの沈下量について調べたところ、図12(a)に示すように、矢板補強部材(閉合部材)10を設けた場合が、図12(b)に示すように設けない場合に比して、法面1b,1bの沈下量が少ないことがわかった。
In addition, as shown in FIG. 12, in the embankment reinforcement structure model, a sheet pile reinforcement member (closing member) 10 is attached to the
1 盛土
2 盛土基礎地盤
2a 支持層
2b 液状化層
3 鋼矢板
4 鋼矢板壁
10 矢板補強部材(閉合部材)
11a,11b,11c 突起
31 ウェブ部
32 フランジ部
33 継手部
DESCRIPTION OF
11a, 11b,
Claims (6)
前記鋼矢板に、矢板補強部材が前記盛土と前記盛土基礎地盤との境界面位置を含む範囲において設けられ、
前記鋼矢板は、ウェブ部と、このウェブ部の両側に連続して形成された一対のフランジ部と、これら一対のフランジ部の先端側に形成された継手部とを備え、
前記矢板補強部材は、前記鋼矢板の一対のフランジ部の先端間に渡って接合され、前記鋼矢板の開断面を閉じる閉合部材であることを特徴とする盛土補強構造。 In the continuous embankment provided on the embankment foundation ground composed of the liquefaction layer and the lower support layer , the lower end is in the liquefaction layer of the embankment foundation ground or up to the upper surface of the support layer In the reinforcement structure of the embankment in which a steel sheet pile wall made of a steel sheet pile reaching or in the support layer is provided along the continuous direction of the embankment,
In the steel sheet pile, a sheet pile reinforcing member is provided in a range including a boundary surface position between the embankment and the embankment foundation ground,
The steel sheet pile includes a web portion, a pair of flange portions formed continuously on both sides of the web portion, and a joint portion formed on the tip side of the pair of flange portions,
The embankment reinforcing structure , wherein the sheet pile reinforcing member is a closing member that is joined between the ends of a pair of flange portions of the steel sheet pile and closes an open section of the steel sheet pile .
前記閉合部材が前記盛土の法面側に向けられていることを特徴とする請求項3に記載の盛土補強構造。 By installing the steel sheet piles near the two shoulders on the embankment, two rows of the steel sheet pile walls are provided,
4. The embankment reinforcing structure according to claim 3 , wherein the closing member is directed to a slope side of the embankment.
前記閉合部材が2列の前記鋼矢板壁間に向けられていることを特徴とする請求項3に記載の盛土補強構造。 By installing the steel sheet piles near the two shoulders on the embankment, two rows of the steel sheet pile walls are provided,
4. The embankment reinforcing structure according to claim 3 , wherein the closing member is directed between two rows of the steel sheet pile walls.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043502A JP6287359B2 (en) | 2014-03-06 | 2014-03-06 | Embankment reinforcement structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043502A JP6287359B2 (en) | 2014-03-06 | 2014-03-06 | Embankment reinforcement structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015168954A JP2015168954A (en) | 2015-09-28 |
JP6287359B2 true JP6287359B2 (en) | 2018-03-07 |
Family
ID=54201953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014043502A Active JP6287359B2 (en) | 2014-03-06 | 2014-03-06 | Embankment reinforcement structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6287359B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7037124B2 (en) * | 2019-03-18 | 2022-03-16 | Jfeスチール株式会社 | Embankment reinforcement structure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49103409A (en) * | 1973-02-05 | 1974-09-30 | ||
JPS58140233U (en) * | 1982-03-12 | 1983-09-21 | 住友金属工業株式会社 | steel sheet pile |
JPH06280251A (en) * | 1993-03-29 | 1994-10-04 | Sumitomo Metal Ind Ltd | Steel member for underground continuous wall |
JP2002356851A (en) * | 2001-05-31 | 2002-12-13 | Nkk Corp | Structure and method for reinforcing fill |
JP2003013451A (en) * | 2001-07-02 | 2003-01-15 | Sumitomo Metal Ind Ltd | Embankment reinforcement structure |
JP5114726B2 (en) * | 2006-09-05 | 2013-01-09 | 新日鐵住金株式会社 | Steel material for underground continuous wall and design method for steel material for underground continuous wall |
JP4916932B2 (en) * | 2007-03-29 | 2012-04-18 | 新日本製鐵株式会社 | Steel sheet pile and steel sheet pile foundation structure |
JP4262292B1 (en) * | 2008-04-11 | 2009-05-13 | エターナルプレザーブ株式会社 | Deformation control method for embankment |
JP5421191B2 (en) * | 2010-06-09 | 2014-02-19 | 大成建設株式会社 | Design method for embankment reinforcement structure |
JP5445351B2 (en) * | 2010-06-25 | 2014-03-19 | 新日鐵住金株式会社 | Filling reinforcement structure |
-
2014
- 2014-03-06 JP JP2014043502A patent/JP6287359B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015168954A (en) | 2015-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5445351B2 (en) | Filling reinforcement structure | |
JP5464370B2 (en) | Filling reinforcement structure | |
JP6171569B2 (en) | Embankment reinforcement structure | |
JP5471797B2 (en) | Seismic reinforcement structure of revetment structure and existing revetment structure | |
JP5158249B2 (en) | Steel sheet pile and steel sheet pile foundation structure | |
KR101253410B1 (en) | Connection structure of wall steel pipe pile | |
JP5407995B2 (en) | Filling reinforcement structure | |
JP6287359B2 (en) | Embankment reinforcement structure | |
JP2018044337A (en) | Embankment reinforcement structure and embankment reinforcement method | |
JP4987652B2 (en) | Reinforcement structure and method of embankment and linear embankment | |
JP6287358B2 (en) | Embankment reinforcement structure | |
JP5348054B2 (en) | Filling reinforcement structure | |
JP5348053B2 (en) | Filling reinforcement structure | |
JP6292028B2 (en) | Embankment reinforcement structure | |
JP7320362B2 (en) | Design method for reinforcement structure of cut-off wall | |
JP6347120B2 (en) | Embankment reinforcement structure | |
JP7183816B2 (en) | Embankment reinforcement structure | |
JP5282963B2 (en) | Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method | |
JP2017057701A (en) | Concrete wall structure and construction method for reinforced embankment integrated bridge | |
JP6696822B2 (en) | Foundation structure | |
JP5206723B2 (en) | Filling reinforcement structure | |
JP4183137B2 (en) | Seismic structure | |
KR101732133B1 (en) | Reinforcement structure for pile and construction method of reinforcement structure for pile using the same | |
JP2020117962A (en) | Levee body seepage destruction suppression structure | |
JP7037124B2 (en) | Embankment reinforcement structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170926 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180122 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6287359 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |