[go: up one dir, main page]

JP6286837B2 - Thermoacoustic refrigeration equipment - Google Patents

Thermoacoustic refrigeration equipment Download PDF

Info

Publication number
JP6286837B2
JP6286837B2 JP2013042986A JP2013042986A JP6286837B2 JP 6286837 B2 JP6286837 B2 JP 6286837B2 JP 2013042986 A JP2013042986 A JP 2013042986A JP 2013042986 A JP2013042986 A JP 2013042986A JP 6286837 B2 JP6286837 B2 JP 6286837B2
Authority
JP
Japan
Prior art keywords
heat exchanger
regenerator
air column
refrigerator
column tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013042986A
Other languages
Japanese (ja)
Other versions
JP2014169841A (en
Inventor
阿部 誠
阿部  誠
博文 黒澤
博文 黒澤
山本 康
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013042986A priority Critical patent/JP6286837B2/en
Publication of JP2014169841A publication Critical patent/JP2014169841A/en
Application granted granted Critical
Publication of JP6286837B2 publication Critical patent/JP6286837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、熱音響冷凍装置に関し、特に、気柱管内に封入された気体に熱音響効果による圧力振動を発生させ、この圧力振動を利用して冷凍処理を行う熱音響冷凍装置に関する。   The present invention relates to a thermoacoustic refrigeration apparatus, and more particularly to a thermoacoustic refrigeration apparatus that generates pressure vibration due to a thermoacoustic effect in a gas sealed in an air column tube and performs a refrigeration process using the pressure vibration.

図5に示すように、一般的な熱音響冷凍装置50は、気体が封入された気柱管51に原動機60及び冷凍機70を配設して構成されている。熱音響冷凍装置50では、原動機60に外部からの熱が加えられると音波が発生し、この音波の音響エネルギが気柱管51を介して冷凍機70に流れ込むと、冷凍機70の温度を低下させることで、対象物の冷凍(冷却)に寄与するように構成されている。   As shown in FIG. 5, a general thermoacoustic refrigeration apparatus 50 is configured by arranging a prime mover 60 and a refrigerator 70 in an air column tube 51 in which a gas is sealed. In the thermoacoustic refrigeration apparatus 50, when external heat is applied to the prime mover 60, sound waves are generated. When the acoustic energy of the sound waves flows into the refrigerator 70 via the air column tube 51, the temperature of the refrigerator 70 is lowered. It is comprised so that it may contribute to freezing (cooling) of a target object.

原動機60は、気柱管51の軸方向に、常温の熱源と熱交換を行う冷却側熱交換器61と、常温よりも高温状態の熱源と熱交換を行う加熱側熱交換器62と、これら冷却側・加熱側熱交換器61,62間で温度勾配を保持する再生器63とを配置して構成されている。この原動機60では、気柱管51内の気体が冷却側熱交換器61で常温となると共に、加熱側熱交換器62で常温よりも高温となることで、再生器63に温度勾配が形成される。そして、この時に発生する熱エネルギの一部が力学的エネルギである音響エネルギに変換され、気柱管51内の気体が自励的な圧力振動を起こすことで、気柱管51内に音波を発生させる。   The prime mover 60 includes, in the axial direction of the air column tube 51, a cooling side heat exchanger 61 that performs heat exchange with a normal temperature heat source, a heating side heat exchanger 62 that performs heat exchange with a heat source at a temperature higher than normal temperature, A regenerator 63 that maintains a temperature gradient between the cooling-side and heating-side heat exchangers 61 and 62 is arranged. In the prime mover 60, the gas in the air column pipe 51 is brought to room temperature in the cooling side heat exchanger 61, and becomes a temperature higher than room temperature in the heating side heat exchanger 62, so that a temperature gradient is formed in the regenerator 63. The A part of the heat energy generated at this time is converted into acoustic energy, which is mechanical energy, and the gas in the air column tube 51 causes self-excited pressure vibration, so that sound waves are generated in the air column tube 51. generate.

冷凍機70は、気柱管51の軸方向に、常温の熱源と熱交換を行う冷却側熱交換器71と、常温よりも低温の熱が取り出される冷凍側熱交換器72と、これら冷却側・冷凍側熱交換器71,72間で温度勾配を保持する再生器73とを配置して構成されている。この冷凍機70では、逆スターリングサイクルが行われて、冷凍側熱交換器72の気体は常温よりも低温となる。そして、この低温と外部の媒体との間で熱交換を行うことで、対象物を冷凍(冷却)するように構成されている。   The refrigerator 70 includes, in the axial direction of the air column tube 51, a cooling side heat exchanger 71 that exchanges heat with a normal temperature heat source, a freezing side heat exchanger 72 that extracts heat lower than normal temperature, and these cooling sides. A regenerator 73 that maintains a temperature gradient between the refrigeration side heat exchangers 71 and 72 is arranged. In this refrigerator 70, a reverse Stirling cycle is performed, and the gas of the freezing side heat exchanger 72 becomes cooler than normal temperature. And it is comprised so that a target object may be frozen (cooled) by performing heat exchange between this low temperature and an external medium.

特開2011−2153号公報JP 2011-2153 A 特開2006−214406号公報JP 2006-214406 A

ところで、上述した従来の熱音響冷凍装置50では、スターリングサイクルと逆スターリングサイクルとの組み合わせになるため、原動機60及び冷凍機70は対称位置に離間して配置される。   By the way, in the above-mentioned conventional thermoacoustic refrigeration apparatus 50, since it is a combination of a Stirling cycle and a reverse Stirling cycle, the prime mover 60 and the refrigerator 70 are spaced apart at symmetrical positions.

気柱管51がループ状の場合、原動機60及び冷凍機70は、ループ中心LCを挟んで対向配置される(図5(a)参照)。また、気柱管51が直線状の場合、原動機60及び冷凍機70は、気柱管51の中間位置MCを中心に離間して対向配置される(図5(b)参照)。   When the air column pipe 51 is in a loop shape, the prime mover 60 and the refrigerator 70 are disposed to face each other with the loop center LC interposed therebetween (see FIG. 5A). Further, when the air column pipe 51 is linear, the prime mover 60 and the refrigerator 70 are disposed opposite to each other with the intermediate position MC of the air column pipe 51 as a center (see FIG. 5B).

すなわち、何れの場合も原動機60と冷凍機70との離間距離は長く確保される。その理由は、音波の作動周波数が気柱管51の長さで決定されるため、原動機60と冷凍機70との距離をある程度長く確保する必要があるためである。このように、原動機60と冷凍機70との離間距離が長くなると、原動機60で発生した音波は冷凍機70に達するまでに減衰されることになり、冷凍機70の出力を低下させるといった課題がある。   That is, in any case, the separation distance between the prime mover 60 and the refrigerator 70 is secured long. The reason is that since the operating frequency of the sound wave is determined by the length of the air column tube 51, it is necessary to ensure a certain distance between the prime mover 60 and the refrigerator 70. As described above, when the distance between the prime mover 60 and the refrigerator 70 is increased, the sound wave generated by the prime mover 60 is attenuated before reaching the refrigerator 70, and there is a problem that the output of the refrigerator 70 is reduced. is there.

本発明は、このような点に鑑みてなされたもので、その目的は、原動機で発生して冷凍機に達する音波の減衰を効果的に抑制して、冷凍機の出力を向上させることにある。   The present invention has been made in view of these points, and an object thereof is to effectively suppress the attenuation of sound waves generated in the prime mover and reaching the refrigerator, thereby improving the output of the refrigerator. .

上記目的を達成するため、本発明の熱音響冷凍装置は、気体が封入される気柱管と、前記気柱管の軸方向に、低温の熱源と熱交換を行う第1熱交換器、温度勾配を保持する第1再生器、高温の熱源と熱交換を行う第2熱交換器を順に配置した原動機と、前記気柱管の軸方向に、前記第2熱交換器から所定間隔を隔てて設けられて常温の熱源と熱交換を行う第3熱交換器、温度勾配を保持する第2再生器、常温よりも低温の熱が取り出される第4熱交換器を順に配置した冷凍機と、を備え、前記第2熱交換機と前記第3熱交換機との離間距離は、前記第2熱交換機と前記第3熱交換機との間の気柱管内の空間体積を前記第1再生器又は前記第2再生器の少なくとも一方の空間体積と等しくする距離を最短距離とし、当該最短距離から2倍の範囲内に設定されることを特徴とする。   In order to achieve the above object, a thermoacoustic refrigeration apparatus of the present invention includes an air column tube in which a gas is enclosed, a first heat exchanger that performs heat exchange with a low-temperature heat source in the axial direction of the air column tube, and a temperature. A first regenerator that maintains a gradient, a prime mover in which a second heat exchanger that exchanges heat with a high-temperature heat source is disposed in order, and a predetermined interval from the second heat exchanger in the axial direction of the air column tube. A third heat exchanger that is provided and exchanges heat with a normal temperature heat source, a second regenerator that maintains a temperature gradient, and a refrigerator that sequentially arranges a fourth heat exchanger that extracts heat lower than normal temperature, And the separation distance between the second heat exchanger and the third heat exchanger is such that the space volume in the air column tube between the second heat exchanger and the third heat exchanger is the first regenerator or the second heat exchanger. The distance equal to the space volume of at least one of the regenerators is the shortest distance, and the range is twice the shortest distance Characterized in that it is set to.

本発明の熱音響冷凍装置によれば、原動機で発生して冷凍機に達する音波の減衰を効果的に抑制して、冷凍機の出力を向上させることができる。   According to the thermoacoustic refrigeration apparatus of the present invention, it is possible to effectively suppress attenuation of sound waves generated in the prime mover and reaching the refrigerator, thereby improving the output of the refrigerator.

本発明の一実施形態に係る熱音響冷凍装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the thermoacoustic refrigeration apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱音響冷凍装置の要部を示す模式的な拡大図である。It is a typical enlarged view which shows the principal part of the thermoacoustic refrigeration apparatus which concerns on one Embodiment of this invention. 他の実施形態に係る熱音響冷凍装置を示す模式的な構成図である。It is a typical block diagram which shows the thermoacoustic refrigeration apparatus which concerns on other embodiment. 他の実施形態に係る熱音響冷凍装置を示す模式的な構成図である。It is a typical block diagram which shows the thermoacoustic refrigeration apparatus which concerns on other embodiment. 従来の熱音響冷凍装置を示す模式的な構成図である。It is a typical block diagram which shows the conventional thermoacoustic refrigeration apparatus.

以下、図1,2に基づいて、本発明の一実施形態に係る熱音響冷凍装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a thermoacoustic refrigeration apparatus according to an embodiment of the present invention will be described with reference to FIGS. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、本実施形態の熱音響冷凍装置10は、気体が封入されるループ状の気柱管11と、気柱管11に配置された原動機20及び、冷凍機30とを備え構成されている。   As shown in FIG. 1, the thermoacoustic refrigeration apparatus 10 of the present embodiment includes a loop-shaped air column tube 11 in which gas is enclosed, a prime mover 20 disposed in the air column tube 11, and a refrigerator 30. It is configured.

原動機20は、気柱管11の長手方向(以下、軸方向という)に、低温の熱源と熱交換を行う冷却側熱交換器21と、温度勾配を保持する高温側再生器22と、高温の熱源と熱交換を行う加熱側熱交換器23とを順に配置して構成されている。なお、冷却側熱交換器21は本発明の第1熱交換器、高温側再生器22は本発明の第1再生器、加熱側熱交換器23は本発明の第2熱交換器に相当する。   The prime mover 20 includes a cooling side heat exchanger 21 that exchanges heat with a low-temperature heat source, a high-temperature side regenerator 22 that maintains a temperature gradient, and a high-temperature side regenerator 22 in the longitudinal direction of the air column tube 11 (hereinafter referred to as the axial direction). The heating side heat exchanger 23 that performs heat exchange with the heat source is sequentially arranged. The cooling side heat exchanger 21 corresponds to the first heat exchanger of the present invention, the high temperature side regenerator 22 corresponds to the first regenerator of the present invention, and the heating side heat exchanger 23 corresponds to the second heat exchanger of the present invention. .

冷凍機30は、気柱管11の軸方向に、常温の熱源と熱交換を行う冷却側熱交換器31と、温度勾配を保持する低温側再生器32と、常温よりも低温の熱が取り出される冷凍側熱交換器33とを順に配置して構成されている。なお、冷却側熱交換器31は本発明の第3熱交換器、低温側再生器32は本発明の第2再生器、冷凍側熱交換器33は本発明の第4熱交換器に相当する。   In the refrigerator 30, a cooling side heat exchanger 31 that exchanges heat with a normal temperature heat source, a low temperature side regenerator 32 that maintains a temperature gradient, and heat lower than normal temperature are extracted in the axial direction of the air column tube 11. The refrigeration side heat exchanger 33 is arranged in order. The cooling side heat exchanger 31 corresponds to the third heat exchanger of the present invention, the low temperature side regenerator 32 corresponds to the second regenerator of the present invention, and the refrigeration side heat exchanger 33 corresponds to the fourth heat exchanger of the present invention. .

本実施形態において、原動機20及び冷凍機30は、加熱側熱交換器23と冷却側熱交換器31との間に所定の離間距離D(図2参照)を確保して配置されている。以下の、この離間距離Dの詳細な設定について説明する。   In the present embodiment, the prime mover 20 and the refrigerator 30 are arranged with a predetermined separation distance D (see FIG. 2) between the heating side heat exchanger 23 and the cooling side heat exchanger 31. The detailed setting of the separation distance D will be described below.

高温側再生器22及び低温側再生器32は、図示しない薄板や細管を束ねた構造を備えており、両端に設けられた熱交換機の間の温度勾配を保持することで、自励的な圧力振動を起こして音波を生じさせる。原動機20から冷凍機30に達する音波の減衰を抑止するためには、離間距離Dを可能な限り短く設定することが好ましいが、高温側再生器22及び低温側再生器32で発生する圧力振動が互いに影響を及ぼさない距離は確保する必要がある。   The high temperature side regenerator 22 and the low temperature side regenerator 32 have a structure in which thin plates and thin tubes (not shown) are bundled, and maintain a temperature gradient between the heat exchangers provided at both ends, so that self-excited pressure can be obtained. Generates sound waves by vibrating. In order to suppress the attenuation of sound waves reaching the refrigerator 30 from the prime mover 20, it is preferable to set the separation distance D as short as possible. However, pressure vibrations generated in the high temperature side regenerator 22 and the low temperature side regenerator 32 are reduced. It is necessary to secure a distance that does not affect each other.

本実施形態では、この圧力振動の影響を回避させるために、離間距離Dは、加熱側熱交換器23と冷却側熱交換器31との間の気柱管11内の空間体積VTを、高温側再生器22又は低温側再生器32の薄板や細管を除いた空間体積VRと等しくする最短距離に設定される。これにより、圧力振動が互いに影響することを回避しつつ、音波の減衰を効果的に抑制することができる。なお、圧力振動の影響をより確実に回避するためには、離間距離Dを高温側再生器22又は低温側再生器32の幅Wと同等に設定してもよい。また、離間距離Dの上限は、上述の最短距離の2倍以下に設定することが好ましい。 In the present embodiment, in order to avoid the influence of this pressure vibration, the separation distance D is the spatial volume V T in the air column tube 11 between the heating side heat exchanger 23 and the cooling side heat exchanger 31, The shortest distance is set equal to the spatial volume V R excluding the thin plate and the thin tube of the high temperature side regenerator 22 or the low temperature side regenerator 32. Thereby, sound wave attenuation can be effectively suppressed while avoiding pressure vibrations from affecting each other. In order to more reliably avoid the influence of pressure vibration, the separation distance D may be set equal to the width W of the high temperature side regenerator 22 or the low temperature side regenerator 32. Moreover, it is preferable to set the upper limit of the separation distance D to not more than twice the shortest distance described above.

次に、本実施形態に係る熱音響冷凍装置10による作用効果について説明する。   Next, the effect by the thermoacoustic refrigeration apparatus 10 which concerns on this embodiment is demonstrated.

従来の熱音響冷凍装置では、原動機と冷凍機との離間距離を長く確保している。そのため、原動機で発生した音波は冷凍機に達するまでに減衰され、冷凍機の出力低下を招くといった課題がある。   In a conventional thermoacoustic refrigeration apparatus, a long separation distance is ensured between the prime mover and the refrigerator. Therefore, the sound wave generated by the prime mover is attenuated before reaching the refrigerator, and there is a problem that the output of the refrigerator is reduced.

これに対し、本実施形態の熱音響冷凍装置10では、離間距離Dは、加熱側熱交換器23と冷却側熱交換器31との間の気柱管11内の空間体積VTを高温側再生器22又は低温側再生器32の空間体積VRと等しくする距離に設定されている。すなわち、離間距離Dは、再生器22,32で発生する圧力振動が互いに影響を与えることを回避しつつ、原動機20から冷凍機30に達する音波の減衰を効果的に抑制できる最適な距離に設定されている。 On the other hand, in the thermoacoustic refrigeration apparatus 10 of the present embodiment, the separation distance D is equal to the space volume V T in the air column tube 11 between the heating side heat exchanger 23 and the cooling side heat exchanger 31 on the high temperature side. It is set to a distance equal to the spatial volume V R of the regenerator 22 or the low temperature side regenerator 32. That is, the separation distance D is set to an optimum distance that can effectively suppress the attenuation of the sound wave reaching the refrigerator 30 from the prime mover 20 while avoiding the pressure vibrations generated in the regenerators 22 and 32 from affecting each other. Has been.

したがって、本実施形態の熱音響冷凍装置10によれば、原動機20から冷凍機30に達する音波の減衰を抑制することが可能となり、冷凍機30の出力を効果的に向上することができる。結果として、原動機20に入力されるエネルギに対して、冷凍機30から出力されるエネルギが大きくなり、エネルギ変換効率の向上が図られる。   Therefore, according to the thermoacoustic refrigeration apparatus 10 of the present embodiment, attenuation of sound waves reaching the refrigerator 30 from the prime mover 20 can be suppressed, and the output of the refrigerator 30 can be effectively improved. As a result, the energy output from the refrigerator 30 becomes larger than the energy input to the prime mover 20, and the energy conversion efficiency is improved.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、気柱管11はループ状に限定されず、図3に示すように、気柱管11を直線状に形成してもよい。また、図4に示すように、気柱管11をループ状と直線状との組み合わせで形成してもよい。これら何れの場合も上述の実施形態と同様の作用効果を奏することができる。   For example, the air column tube 11 is not limited to a loop shape, and the air column tube 11 may be formed linearly as shown in FIG. Further, as shown in FIG. 4, the air column tube 11 may be formed of a combination of a loop shape and a linear shape. In either case, the same operational effects as those of the above-described embodiment can be obtained.

10 熱音響冷凍装置
11 気柱管
20 原動機
21 冷却側熱交換器(第1熱交換器)
22 高温側再生器(第1再生器)
23 加熱側熱交換器(第2熱交換器)
30 冷凍機
31 冷却側熱交換器(第3熱交換器)
32 低温側再生器(第2再生器)
33 冷凍側熱交換器(第4熱交換器)
DESCRIPTION OF SYMBOLS 10 Thermoacoustic refrigeration apparatus 11 Air column pipe 20 Motor | power_engine 21 Cooling side heat exchanger (1st heat exchanger)
22 High temperature side regenerator (first regenerator)
23 Heating side heat exchanger (second heat exchanger)
30 Refrigerator 31 Cooling side heat exchanger (third heat exchanger)
32 Low temperature side regenerator (second regenerator)
33 Refrigeration side heat exchanger (4th heat exchanger)

Claims (1)

気体が封入される気柱管と、
前記気柱管の軸方向に、低温の熱源と熱交換を行う第1熱交換器、温度勾配を保持する第1再生器、高温の熱源と熱交換を行う第2熱交換器を順に配置した原動機と、
前記気柱管の軸方向に、前記第2熱交換器から所定間隔を隔てて設けられて常温の熱源と熱交換を行う第3熱交換器、温度勾配を保持する第2再生器、常温よりも低温の熱が取り出される第4熱交換器を順に配置した冷凍機と、を備え
前記第2熱交換機と前記第3熱交換機との離間距離は、前記第2熱交換機と前記第3熱交換機との間の気柱管内の空間体積を前記第1再生器又は前記第2再生器の空間体積と等しくする距離に設定される
ことを特徴とする熱音響冷凍装置。
An air column tube filled with gas,
A first heat exchanger that performs heat exchange with a low-temperature heat source, a first regenerator that maintains a temperature gradient, and a second heat exchanger that performs heat exchange with a high-temperature heat source are arranged in this order in the axial direction of the air column tube. Prime mover,
A third heat exchanger provided in the axial direction of the air column tube at a predetermined interval from the second heat exchanger for exchanging heat with a normal temperature heat source; a second regenerator for maintaining a temperature gradient; A refrigerator in which a fourth heat exchanger from which low temperature heat is taken out is arranged in order ,
The separation distance between the second heat exchanger and the third heat exchanger is the space volume in the air column tube between the second heat exchanger and the third heat exchanger, the first regenerator or the second regenerator. The thermoacoustic refrigeration apparatus is set to a distance equal to the space volume of
JP2013042986A 2013-03-05 2013-03-05 Thermoacoustic refrigeration equipment Expired - Fee Related JP6286837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042986A JP6286837B2 (en) 2013-03-05 2013-03-05 Thermoacoustic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042986A JP6286837B2 (en) 2013-03-05 2013-03-05 Thermoacoustic refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2014169841A JP2014169841A (en) 2014-09-18
JP6286837B2 true JP6286837B2 (en) 2018-03-07

Family

ID=51692343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042986A Expired - Fee Related JP6286837B2 (en) 2013-03-05 2013-03-05 Thermoacoustic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP6286837B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10001460A1 (en) * 2000-01-15 2001-08-02 Karlsruhe Forschzent Pulse tube power amplifier and method for operating the same
JP2003139426A (en) * 2001-11-05 2003-05-14 Fuji Electric Co Ltd Pulse tube refrigerator
JP2006118728A (en) * 2004-10-19 2006-05-11 Daikin Ind Ltd Thermoacoustic refrigerator
JP2007237020A (en) * 2006-03-06 2007-09-20 Denso Corp Thermoacoustic device
JP4852757B2 (en) * 2006-12-28 2012-01-11 大学共同利用機関法人自然科学研究機構 Thermoacoustic generator
JP2010261687A (en) * 2009-05-11 2010-11-18 Isuzu Motors Ltd Thermoacoustic engine
JP5655299B2 (en) * 2009-12-21 2015-01-21 いすゞ自動車株式会社 Thermoacoustic engine

Also Published As

Publication number Publication date
JP2014169841A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP4652822B2 (en) Thermoacoustic device
US6560970B1 (en) Oscillating side-branch enhancements of thermoacoustic heat exchangers
WO2015199139A1 (en) Magnetic refrigerating device
JP5423531B2 (en) Thermoacoustic engine
JP6781899B2 (en) Thermoacoustic device
CN102331109B (en) Low-temperature thermoacoustic refrigerator
CN103670788A (en) Acoustic resonance type multistage traveling wave thermoacoustic engine system simultaneously utilizing cold and heat sources
JP2013234820A (en) Thermoacoustic engine
JP5453950B2 (en) Thermoacoustic engine
JP5768688B2 (en) Thermoacoustic refrigeration equipment
JP4443971B2 (en) Acoustic heating device and acoustic heating system
JP6286837B2 (en) Thermoacoustic refrigeration equipment
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP5310287B2 (en) Thermoacoustic engine
JP5799515B2 (en) Thermoacoustic refrigeration equipment
JP6205936B2 (en) Heat accumulator
JP5768687B2 (en) Thermoacoustic refrigeration equipment
CN105299951A (en) Loop multistage acoustic power recovery type heat-driven traveling wave thermoacoustic refrigeration system
JP5799780B2 (en) Thermoacoustic refrigeration equipment
JP5463745B2 (en) Thermoacoustic engine
JP6299186B2 (en) Heat exchange module for thermoacoustic engine and thermoacoustic engine
JP2006145176A (en) Thermoacoustic engine
Swift Thermoacoustics
JP6266477B2 (en) refrigerator
CN102095278B (en) Electrically driven thermoacoustic refrigerator based on moving standing wave orthogonal superposition sound field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6286837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees