[go: up one dir, main page]

JP6281814B2 - Speaker-driven negative feedback amplifier - Google Patents

Speaker-driven negative feedback amplifier Download PDF

Info

Publication number
JP6281814B2
JP6281814B2 JP2014037451A JP2014037451A JP6281814B2 JP 6281814 B2 JP6281814 B2 JP 6281814B2 JP 2014037451 A JP2014037451 A JP 2014037451A JP 2014037451 A JP2014037451 A JP 2014037451A JP 6281814 B2 JP6281814 B2 JP 6281814B2
Authority
JP
Japan
Prior art keywords
resistor
resistance
negative feedback
speaker
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014037451A
Other languages
Japanese (ja)
Other versions
JP2015139214A (en
JP2015139214A5 (en
Inventor
紀元 佐藤
紀元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014037451A priority Critical patent/JP6281814B2/en
Publication of JP2015139214A publication Critical patent/JP2015139214A/en
Publication of JP2015139214A5 publication Critical patent/JP2015139214A5/ja
Application granted granted Critical
Publication of JP6281814B2 publication Critical patent/JP6281814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Amplifiers (AREA)

Description

この発明はスピーカー駆動負帰還増幅器に関するもので、電力負帰還増幅器の負帰還回路と、それを構成する抵抗器も含めて、音質改善をする増幅器についてである。The present invention relates to a speaker-driven negative feedback amplifier, and relates to an amplifier that improves sound quality including a negative feedback circuit of a power negative feedback amplifier and a resistor constituting the negative feedback circuit.

今日、一般的なスピーカー駆動増幅器は電圧駆動負帰還増幅器が用いられている。この方式はスピーカーが負帰還閉ループ外となっており、単なる負荷となっている。Nowadays, a typical speaker-driven amplifier uses a voltage-driven negative feedback amplifier. In this system, the speaker is outside the negative feedback closed loop and is a simple load.

一方電流駆動するスピーカー駆動負帰還増幅器は、スピーカーを流れるのは定電流であり、虚数部分を含まない優れた方式であるが負帰還用抵抗体等で音質上の問題があり普及していない。On the other hand, a speaker-driven negative feedback amplifier driven by current is an excellent system that does not include an imaginary part because a constant current flows through a speaker. However, a negative feedback resistor has a problem in sound quality and is not widespread.

特開平8−32360号公報JP-A-8-32360

スピーカー電流駆動負帰還増幅器において、負帰還回路を構成するスピーカー電流検出抵抗器には、放熱対策をする程の電流が流れ発熱する。それで放熱効果の高いホーロー抵抗やセメント抵抗で構成される。しかし前記抵抗器の発熱作用により、抵抗値が不規則に変化したり、部分的な不均一な熱移動によって熱的歪が発生する。この熱的歪は負帰還網内で発生するので負帰還効果による歪低減効果は得られず音質劣化の原因となる。特に電流検出抵抗が0.1Ωとすれば8オームスピーカー抵抗では8/0.1=80倍もの増幅率となるので音質劣化の問題とならない抵抗器が求められる。In the speaker current drive negative feedback amplifier, a current sufficient to take a heat dissipation flows through the speaker current detection resistor constituting the negative feedback circuit to generate heat. Therefore, it consists of enamel resistance and cement resistance with high heat dissipation effect. However, due to the heating action of the resistor, the resistance value changes irregularly, or thermal distortion occurs due to partial uneven heat transfer. Since this thermal distortion occurs in the negative feedback network, the distortion reduction effect due to the negative feedback effect cannot be obtained, causing deterioration of sound quality. In particular, if the current detection resistance is 0.1Ω, an amplification factor of 8 / 0.1 = 80 times is obtained with an 8 ohm speaker resistance, so a resistor that does not cause a problem of sound quality deterioration is required.

請求項1と同2に関して説明すると負荷電流による発熱によって発生する抵抗器からの熱的歪はその抵抗器が負帰還網を構成しているゆえに低減補正が出来ない。本発明は逆に熱放射だけにより放散熱を出し、保熱効果を高めることで熱的歪を改善し音質劣化を抑えるものである。Regarding the first and second aspects, the thermal distortion from the resistor caused by the heat generated by the load current cannot be reduced and corrected because the resistor forms a negative feedback network. On the contrary, the present invention provides heat dissipation only by heat radiation and improves the heat retention effect, thereby improving thermal distortion and suppressing sound quality deterioration.

請求項3に関して説明すると、抵抗器は流れる信号電流によって発熱量が変化し、それに伴って抵抗値が変わり熱的歪が発生する。真空管のフィラメント抵抗を赤熱することによって、その熱電子の放射によって、抵抗値変化を制御し、フィラメントを信号の経路としての抵抗体として、赤熱することによって熱的歪を改善することを目的とする。With respect to the third aspect of the present invention, the amount of heat generated by the resistor changes due to the flowing signal current, and the resistance value changes accordingly, causing thermal distortion. The purpose is to control the change in resistance value by radiating thermionic electrons by making the filament resistance of the vacuum tube red, and to improve the thermal strain by making the filament red as a resistor as a signal path. .

請求項4に関して説明すると、スピーカー電流駆動負帰還増幅器の負帰還網を構成している抵抗器は、負帰還増幅器の音質を左右するもので、ここで発生する外乱や発熱による抵抗値変化による歪は、負帰還による補正は効果がなく、音質上の問題となる。
この点も含めてスピーカー電流駆動増幅器においては、スピーカーを流れる電流を検出し、負帰還をかける抵抗器に音質上の問題がある。
本発明はこれを解決するための負帰還回路に用いる電流検出抵抗回路に関してである。
The resistor constituting the negative feedback network of the speaker current-driven negative feedback amplifier influences the sound quality of the negative feedback amplifier. Distortion caused by disturbance or heat generated by the resistance change due to heat generation. The correction by negative feedback is ineffective and causes a problem in sound quality.
In consideration of this point, in the speaker current drive amplifier, there is a problem in sound quality in the resistor that detects the current flowing through the speaker and applies negative feedback.
The present invention relates to a current detection resistor circuit used in a negative feedback circuit for solving this problem.

本発明は熱放射による放散熱のみとし、かつ加熱のための±バイアス電圧を加えることで信号の有無にかかわらず、バイアス電圧を一定にすることで、発熱を一定にし、熱的歪改善をはかるものである。In the present invention, only the heat dissipated by heat radiation is applied, and ± bias voltage for heating is applied to make the bias voltage constant regardless of the presence or absence of a signal, thereby making the heat generation constant and improving the thermal distortion. Is.

請求項1について本発明は前記課題の解決のため以下の手段を案出した。単数または複数の抵抗素子を互いに熱的結合が可能な近距離に位置する備えを設け、前記抵抗素子にバイアス電圧を加えこれを赤熱させて、信号処理抵抗体として動作させる機能を有することを特徴とする熱的歪海前抵抗回路である。The present invention devised the following means for solving the above-mentioned problems. A feature is provided in which one or a plurality of resistance elements are provided at a short distance where they can be thermally coupled to each other, and a bias voltage is applied to the resistance elements so that the resistance elements are red-heated to operate as signal processing resistors. It is a thermal distortion pre-sea resistance circuit.

請求項2について前記課題の解決のため以下の手段を案出した。
請求項1の抵抗素子をツイストにし、熱的結合を密にした請求項1の熱的歪改善抵抗器である。
The following means have been devised for solving the above-mentioned problems.
2. The thermal distortion improving resistor according to claim 1, wherein the resistance element of claim 1 is twisted and the thermal coupling is dense.

請求項3について本発明は前記課題の解決のため以下の手段を案出した。真空管増幅回路において、赤熱するフィラメントを信号処理抵抗とし、これに信号を通すことにより生ずる変化を検知し、これをもって前記赤熱するフィラメント素子を、信号を加えるための抵抗体とすることを特徴とする真空管による熱的歪改善回路である。The present invention has devised the following means for solving the above-mentioned problems. In a vacuum tube amplifier circuit, a red-heated filament is used as a signal processing resistor, a change caused by passing a signal therethrough is detected, and the red-heated filament element is used as a resistor for applying a signal. This is a circuit for improving thermal distortion using a vacuum tube.

スピーカー負帰還電流駆動増幅器であって、その出力部からの電流検出のための負帰還抵抗器において、当該抵抗器を真空又は気体の中に封入し、これを赤熱させ、信号電流を流し、負帰還抵抗器としての回路機能を有することを特徴とするスピーカー駆動増幅器である。A negative feedback current drive amplifier for a speaker, which is a negative feedback resistor for detecting a current from the output section thereof, which is sealed in vacuum or gas, is red-heated, a signal current is passed, A speaker drive amplifier having a circuit function as a feedback resistor .

請求項1について図1に基づいて説明すると、本発明により次に上げる効果が得られる。Describing claim 1 with reference to FIG. 1, the present invention provides the following effects.

(イ)抵抗素子6と同7にバイアス電流を流し発熱させ、又は赤熱させることによって、前記抵抗素子6と同7の抵抗値Rは、R=R(1+αt)……(1)に従って増加する。ここでRは0℃での抵抗値、Rはt℃時の抵抗値、αは抵抗の温度係数である。例えば図3に基づいて説明すると、
タングステン抵抗素子とした場合は、20℃時で6.6Ω(36)とすれば、2,700℃の赤熱時では100Ω(35)となり20℃時の抵抗値の約15倍となり、6.6Ω(36)〜(38)まで15ケ直列に接続して100Ωと等価になる。従って、同一素材で高抵抗になり長さが1/15少ない分だけ熱的外乱要因が減り、音質劣化を少なく出来る。S/N向上につながる効果がある。

Figure 0006281814
(A) By causing a bias current to flow through the resistor element 6 and causing it to generate heat or red heat, the resistance value RT of the resistor element 6 and resistor 7 is R T = R 0 (1 + αt) (1) Increase according to. Here, R 0 is a resistance value at 0 ° C., RT is a resistance value at t ° C., and α is a temperature coefficient of resistance. For example, referring to FIG.
In the case of a tungsten resistance element, if it is 6.6Ω (36) at 20 ° C., it becomes 100Ω (35) at 2,700 ° C. red heat, which is about 15 times the resistance value at 20 ° C., and is 6.6Ω. (36) to (38) are connected in series in 15 pieces and are equivalent to 100Ω. Therefore, the same material has high resistance, and the length of the length is reduced by 1/15, so that the factor of thermal disturbance is reduced and sound quality deterioration can be reduced. This has the effect of improving S / N.
Figure 0006281814

(ハ)発熱させることを目的としてバイアス電圧を加えることで端子(13)からの入力信号の大小にかかわらず抵抗素子(6)と同(7)に流れる平均電流は一定となり、したがって発生する熱エネルギーも一定になるのでこの抵抗素子(6)と同(7)の抵抗値は一定となり熱的変化の影響は受けない効果がある。端子(13)からの入力信号が対称波形であれば、図1に示す抵抗素子R(6)に流れ込む前記入力信号による電流は図4に示す+i(39)と−i(40)で、これは両者相等しい。前記抵抗素子R(6)に流れ込む平均電流iAV(41)は変化がなく一定となる。ここでiAV(41)はバイアス電圧E(10)/抵抗素子R(6)である。平均電流に変化がないので入力信号が変化しても前記抵抗素子(6)での平均発熱量は変化がない。
したがって信号入力時も無信号時にも消費電流は同じのため発熱量は変化せず抵抗素子(R6)の抵抗値も変らない効果をもつ。
抵抗素子R(7)についても同じ効果となる。一方バイアス電圧を加えない時は発熱はなく常温のままである。この無バイアス電圧の時に前記入力信号が加わるとこの実効電流iによりQ=KiR(K:定数、R:R(6))カロリーの熱エネルギーが抵抗素子R(6)に発生し、この実効電流iの大小によって発熱温度が変化し、従ってR=βθ(R:抵抗、β:定数 θ:絶対温度)の関係より、抵抗素子R(6)が前記入力信号に応じて抵抗値変化が生じ熱的歪が発生する。
抵抗素子R(7)についても同様である。この効果のためにバイアス電圧を加える。入力信号が変化しても平均抵抗値が変らないので熱的歪改善効果となる。
(C) By applying a bias voltage for the purpose of generating heat, the average current flowing in the resistance element (6) and (7) is constant regardless of the magnitude of the input signal from the terminal (13), and thus the generated heat. Since the energy is also constant, the resistance values of the resistance elements (6) and (7) are constant and are not affected by thermal changes. If the input signal from the terminal (13) has a symmetrical waveform, the current due to the input signal flowing into the resistance element R (6) shown in FIG. 1 is + i (39) and -i (40) shown in FIG. Are the same. The average current i AV (41) flowing into the resistance element R (6) does not change and is constant. Here, i AV (41) is bias voltage E (10) / resistance element R (6). Since there is no change in the average current, even if the input signal changes, the average heat generation amount in the resistance element (6) does not change.
Therefore, the current consumption is the same when no signal is input and when there is no signal, so the amount of heat generation does not change and the resistance value of the resistance element (R6) does not change.
The same effect is obtained for the resistance element R (7). On the other hand, when no bias voltage is applied, there is no heat generation and the room temperature remains unchanged. When the input signal is applied at this non-bias voltage, the effective current i causes Q = Ki 2 R (K: constant, R: R (6)) calorie thermal energy to be generated in the resistance element R (6). The heat generation temperature changes depending on the magnitude of the effective current i. Therefore, the resistance value of the resistance element R (6) changes according to the input signal from the relationship of R = βθ (R: resistance, β: constant θ: absolute temperature). Resulting in thermal distortion.
The same applies to the resistance element R (7). A bias voltage is applied for this effect. Even if the input signal changes, the average resistance value does not change, so that the thermal distortion is improved.

図5に基づいて説明すると
(ニ)抵抗素子R(49)と同R(50)をツイストにして互いに近接させ、熱的結合を密にすることによって、図5に示す前記抵抗素子R(49)、同R(50)にバイアス電圧を加えてこれを赤熱させた時の相互の温度差を少なくなる作用をする。これによって前記抵抗素子R(49)と同R(50)は同じ抵抗値を示し、b点(51)の安定化も含めて熱的歪改善効果がある。
図4よりd点(45)では+R(46)側は+ip(47)増加方向じ−R(44)側は−ip(48)減少方向で発熱レベルが異なるのでこれをツイストにして熱的結合を密にすることで常時熱的に等しくR=Rとなるので、図5のb点(51)は零vを保ち、又、抵抗素子R(49)と同R(50)も安定し、熱的歪改善効果となる。
Referring to FIG. 5, (d) the resistance elements R 1 (49) and R 2 (50) are twisted to be close to each other, and the thermal coupling is made dense, whereby the resistance element R shown in FIG. 1 (49) and R 2 (50) have a function of reducing the mutual temperature difference when a bias voltage is applied and red-heated. As a result, the resistance elements R 1 (49) and R 2 (50) exhibit the same resistance value, and there is an effect of improving thermal distortion including stabilization of the point b (51).
As shown in FIG. 4, at the point d (45), the + R 1 (46) side is in the + ip (47) increasing direction, and the -R 2 (44) side is in the -ip (48) decreasing direction. specifically the coupling becomes thermally equal R 1 = R 2 always by a dense, b point in Fig. 5 (51) keeps the zero v, the resistance element R 1 (49) and the R 2 ( 50) is also stable and has an effect of improving thermal distortion.

(ホ)図5に示すバイアス電圧としてプラス・マイナス極性の異なった同電圧を加えることで、抵抗素子R(49)と同R(50)での入力信号電流による発熱量は変らずしたがって抵抗値変化はなく、熱的歪改善効果となる。
図5に示すバイアス電圧をa(49)−b(51)間に+Evを、c(50)−b(51)間に−Evを加える。入力信号をAsinωt(52)とすれば前記抵抗素子R(49)に加わる電圧は(+Ev+Asinωt)で、同R(50)に加わる電圧は(−Ev+Asinωt)である。従ってa(49)−c(50)間の電圧E=(a−b間電圧)−(c−b間電圧)=(+Ev+Asinωt−(−Ev+Asinωt)=+2Evとなりb点(51)を中心とした±Evのバイアス電圧だけとなり入力信号電圧Asinωt(52)は発熱には無関係となり、熱的歪改善効果となる。
(E) By applying the same voltage with different positive and negative polarities as the bias voltage shown in FIG. 5, the amount of heat generated by the input signal current at the resistance elements R 1 (49) and R 2 (50) does not change, and therefore There is no change in resistance value, which is an effect of improving thermal distortion.
The bias voltage shown in FIG. 5 is applied with + Ev between a (49) and b (51) and -Ev between c (50) and b (51). If the input signal is Asinωt (52), the voltage applied to the resistance element R 1 (49) is (+ Ev + Asinωt), and the voltage applied to the resistor R 2 (50) is (−Ev + Asinωt). Therefore, the voltage E T between a (49) -c (50) = (voltage between a−b) − (voltage between c−b) = (+ Ev + Asinωt − (− Ev + Asinωt) = + 2Ev, and the point b (51) is the center. Therefore, the input signal voltage Asinωt (52) becomes irrelevant to heat generation, and the thermal distortion is improved.

(ヘ)一般に抵抗からの熱は伝導と対流と熱放射により放散熱として失われる。本発明による抵抗素子R(6)と同R(7)(図1)を真空または気体の中に入れることによって、赤熱エネルギーは唯一熱放射のみによって失われる。
伝導や対流による放散熱は熱放射によるそれと比較して大きい。それゆえにこの伝導や対流による不規則で複雑な変動は微少であっても敏感に熱的歪発生の原因となる。ここで抵抗素子R(6)と同R(7)での放散熱は熱放射だけなので、伝導と対流による影響はなく熱的歪改善効果となる。またバイアス電圧を加えて前記抵抗素子R(6)と同R(7)を赤熱させ電磁波として赤外線、光、紫外線や熱電子として熱エネルギーθを放出するがこれはQ=Kθ(θ:絶対温度,K:定数)として示される。一方発熱エネルギー=V/R(V:電圧,R:抵抗)でありこの抵抗R=βθ(β:定数)であり、赤熱エネルギー==放熱エネルギー(平衡時)なので、Q=V/R=Kθ=K(R/β)

Figure 0006281814
(K′,K″:定数)となる。従って定電圧電源をもってバイアス電圧Vを一定とすれば、(3)式より入力信号電圧に無関係に赤熱による絶対温度も一定となるので前記抵抗素子R(6)と同R(7)は一定となり熱的歪改善の効果が得られる。本発明は熱放射による放散熱のみとし、かつ赤熱のためのバイアス電圧を加えることで、入力信号の有無にかかわらず発熱を一定にし、熱的歪改善をはかるものである。(F) Generally, heat from resistance is lost as heat dissipated by conduction, convection, and thermal radiation. By placing the resistance elements R (6) and R (7) (FIG. 1) according to the present invention in a vacuum or gas, the red heat energy is lost solely by thermal radiation.
The heat dissipated by conduction and convection is larger than that by heat radiation. Therefore, even if this irregular and complicated fluctuation due to conduction and convection is very small, it can cause thermal strain sensitively. Here, since the heat dissipated by the resistance elements R (6) and R (7) is only thermal radiation, there is no influence by conduction and convection, and the thermal distortion is improved. The infrared as an electromagnetic wave is red hot the same R (7) and said added bias voltage resistance element R (6), the light, but emit thermal energy theta T as ultraviolet light or heat electrons which Q T =4 : Absolute temperature, K: constant). On the other hand, exothermic energy = V 2 / R (V: voltage, R: resistance), this resistance R = βθ (β: constant), and red heat energy == heat radiation energy (at equilibrium), Q T = V 2 / R = Kθ 4 = K (R / β) 4
Figure 0006281814
Therefore, if the bias voltage V is made constant with a constant voltage power source, the absolute temperature due to red heat becomes constant regardless of the input signal voltage from the equation (3), so that the resistance element R R (7) is the same as (6) and the effect of improving thermal distortion is obtained.In the present invention, only the heat dissipated by thermal radiation is applied, and the bias voltage for red heat is added, so that the presence or absence of the input signal is detected. Regardless, heat generation is kept constant and thermal distortion is improved.

(ト)請求項3に関して、図2に基づいて効果について説明すると、真空管内部の真空で密閉され、赤熱したフィラメントからは伝導と対流による放散熱はなく、唯一熱放射だけによるので保熱効果が高く熱的外乱ノイズの影響は抑えられる。赤熱したフィラメント抵抗素子(21)と同(22)は前記請求項1に示したのと同じ効果がある。(G) With respect to claim 3, the effect will be described with reference to FIG. 2. The filament is sealed in a vacuum inside the vacuum tube, and there is no heat dissipated by conduction and convection from the red hot filament. The effect of high thermal disturbance noise is suppressed. The red-heated filament resistance element (21) and (22) have the same effect as shown in the first aspect.

(チ)前記抵抗素子(21)と同(22)での信号による電圧変化はグリッド(18)とカソード(25)間の電圧変化として直接当該真空管(19)のプレート(20)から信号として検出して、この変化を真空管増幅器として動作させ安定してS/Nの良い、真空管として一体化された真空管フィラメント抵抗回路となり熱的歪改善抵抗回路となる。(ロ)異なる極性の同一バイアス電圧を前記赤熱した抵抗素子に加えることでその中間での抵抗の電圧は0ボルトとなり接続する負荷に電圧の影響を与えない。 (H) A voltage change due to a signal in the resistance element (21) and (22) is detected as a signal directly from the plate (20) of the vacuum tube (19) as a voltage change between the grid (18) and the cathode (25). Then, this change is made to operate as a vacuum tube amplifier, and it becomes a vacuum tube filament resistance circuit integrated as a vacuum tube with a stable and good S / N, and a thermal distortion improving resistance circuit. (B) By applying the same bias voltage of different polarity to the red-heated resistance element, the voltage of the resistance in the middle becomes 0 volts, and the connected load is not affected by the voltage.

(ヌ)請求項4に関して効果について図1に基づいて説明すると、負帰還網を構成している抵抗は音質を決める基準となるものの一つでここで発生する熱的歪や外乱ノイズは負帰還動作によって改善されることはなく、そのまま増幅され出力される。
負帰還用電流検出抵抗として、本発明による熱的歪改善抵抗器(12)又は真空管抵抗回路(34)(図2に示す)を使うことで請求項1又は請求項2、請求項3によって示される効果を特徴とするスピーカー電流駆動増幅器となる。ここで示される熱的歪改善効果は前記(イ),(ロ)(ハ),(ニ),(ホ)(ヘ)(ト)(チ)が含まれる。
この動作によってスピーカーは電流駆動され、電流検出抵抗としての前記抵抗素子(6)と同(7)には常時バイアス電流によって発熱、又は赤熱した状態で使用されるのが特徴である。請求項2の真空管抵抗回路(34)も同様の電流検出抵抗としてスピーカー電流駆動負帰還増幅器の負帰還抵抗としての働きをするものである。
(N) The effect of claim 4 will be described with reference to FIG. 1. The resistance constituting the negative feedback network is one of the criteria for determining the sound quality. Thermal distortion and disturbance noise generated here are negative feedback. It is not improved by the operation, but is amplified and output as it is.
By using a thermal distortion improving resistor (12) or a vacuum tube resistance circuit (34) (shown in FIG. 2) according to the present invention as the current detection resistor for negative feedback, it is shown by claim 1 or claim 2 and claim 3. It becomes a speaker current drive amplifier characterized by the effect. The thermal distortion improving effect shown here includes the above (a), (b) (c), (d), (e) (f) (g) (g).
By this operation, the speaker is driven by current, and the resistor elements (6) and (7) as current detection resistors are always used in a state of being heated or red hot by a bias current. The vacuum tube resistance circuit (34) according to the second aspect also functions as a negative feedback resistor of a speaker current drive negative feedback amplifier as a similar current detection resistor.

は本発明による動作原理図Is an operation principle diagram according to the present invention. は真空管抵抗回路図Is the resistance diagram of the vacuum tube は赤熱抵抗の説明図Is an illustration of red heat resistance はバイアス電圧波形の説明図Is an explanatory diagram of a bias voltage waveform はツイストにした赤熱抵抗回路説明図Is a twisted red heat resistance circuit explanatory diagram は熱的歪改善抵抗器外観図Is an external view of a thermal strain improving resistor

本発明は負帰還回路に用られる抵抗の熱的歪改善に関するものである。従来の抵抗は発熱による歪を抑えるためにそれによる温度上昇を抑えて熱的歪を少なくするものである。本発明は抵抗の発熱に関して熱伝導と対流による放散熱をなくし、高熱を保ち、バイアス電圧を加えることで抵抗中を流れる信号電流による抵抗値変化を少なくし、音質劣化の改善をはかるものである。請求項1と同2について図6に基づいて説明すると、抵抗素子R(53)と同R(54)とを内蔵した抵抗器(55)を示す。図6より真空又はアルゴン等の不活性気体の中に前記抵抗素子R(53)と同R(54)を封入し、抵抗器(55)を銀等で蒸着し赤外線、光、紫外線等の電磁波を反射させ高熱保温し熱移動を抑えている。光と赤外線は外部に洩らさない。
前記抵抗素子R(53)と同R(54)は互いに近接させ熱的結合を密にしている。図1に基づいて請求項1について説明すると、アース点(14)を基準にして極性の異なる電源回路(10)から+Evと同(11)から−Evを抵抗素子R(6)と同R(7)に端子(8)と同(9)を通して直列に接続してこれにバイアス電圧を加えて赤熱させる。
抵抗素子R(6)と同R(7)については、極性の相異なる電源回路(10)と同(11)からの端子(8)と同(9)から見て直列に接続しておりアース点(14)を基準にすると、信号接続端子(13)は、中間に位置しており電位は0vである。これによってスピーカー(4)も含めた増幅器(2)の出力部はバイアス電圧の影響を受けずに抵抗素子(6)と同(7)を発熱させている。これはスピーカー(4)とアース間に抵抗素子R(6)と同R(7)が並列に接続

Figure 0006281814
抵抗として負帰還回路を構成する。これはR=Rとし、この端子(13)と同(14)の間が熱的歪改善抵抗値となる。The present invention relates to improvement of thermal distortion of a resistor used in a negative feedback circuit. In order to suppress the distortion due to heat generation, the conventional resistance suppresses the temperature rise caused thereby and reduces the thermal distortion. The present invention eliminates the heat dissipated by heat conduction and convection with respect to the heat generation of the resistance, maintains high heat, reduces the resistance value change due to the signal current flowing through the resistance by applying a bias voltage, and improves sound quality degradation. . The first and second aspects will be described with reference to FIG. 6. A resistor (55) including resistance elements R 3 (53) and R 4 (54) is shown. As shown in FIG. 6, the resistance elements R 3 (53) and R 4 (54) are sealed in an inert gas such as vacuum or argon, and the resistor (55) is vapor-deposited with silver or the like, and infrared, light, ultraviolet, etc. The heat transfer is suppressed by reflecting the electromagnetic wave and keeping the heat high. Light and infrared do not leak outside.
The resistor elements R 3 (53) and R 4 (54) are close to each other and have a close thermal coupling. Referring to FIG. 1, claim 1 will be described with reference to the ground point (14) as a reference from the power supply circuit (10) having the same polarity as + Ev and (11) to −Ev as the resistance element R (6) and R ( 7) is connected in series through terminals (8) and (9), and a bias voltage is applied to this to make it glow red.
The resistance elements R (6) and R (7) are connected in series as viewed from the terminals (8) and (9) from the power supply circuit (10) and (11) having different polarities. With reference to the point (14), the signal connection terminal (13) is located in the middle and the potential is 0v. As a result, the output section of the amplifier (2) including the speaker (4) is heated by the resistance elements (6) and (7) without being affected by the bias voltage. This is a resistor element R (6) and R (7) connected in parallel between the speaker (4) and ground.
Figure 0006281814
A negative feedback circuit is configured as a resistor. This is R = R, and the resistance value between the terminals (13) and (14) is the thermal distortion improving resistance value.

請求項3に関して図2に基づいて説明すると、(34)の点線で囲った内側に含まれる回路が、本発明の真空管抵抗回路を示している。電源回路(27)と同(28)は極性の異なる出力電圧回路であり、前記真空管のフィラメント(22)と同(21)とには、そこからそれぞれの端子(23)と端子(26)を通してアースに対してプラスEvとマイナスEvを加える。前記フィラメント(22)と同(21)は、端子(23)と端子(26)から見て直列に接続されており、これによる電流で赤熱する。
端子(24)の電圧は、前記フィラメント(22)と同(21)の中間より取り出したもので、両フィラメントの抵抗値は同じなので、この端子(24)の電圧はアースに対して0Vとなる。従って端子(24)から見たアースとの間の抵抗値は端子(23)と端子(24)間の抵抗値と端子(26)と端子(24)間のの並列接続となるので、フィラメント抵抗値は1/2になり負帰還抵抗を構成するものとしている。
なお抵抗値は赤熱時の値である。
Referring to FIG. 2 with respect to claim 3, the circuit included inside (34) surrounded by a dotted line represents the vacuum tube resistance circuit of the present invention. The power supply circuit (27) and (28) are output voltage circuits having different polarities. The filament (22) and (21) of the vacuum tube are connected to the terminals (23) and (26) from there. Add plus Ev and minus Ev to earth. The filament (22) and (21) are connected in series when viewed from the terminal (23) and the terminal (26), and are red-hot by the electric current generated thereby.
The voltage of the terminal (24) is taken from the middle of the filament (22) and (21), and the resistance value of both filaments is the same, so the voltage of the terminal (24) is 0V with respect to the ground. . Accordingly, the resistance value between the terminal (24) and the ground is the resistance value between the terminal (23) and the terminal (24) and the parallel connection between the terminal (26) and the terminal (24). The value is halved to constitute a negative feedback resistor.
The resistance value is a value at the time of red heat.

前記フィラメント(21)と同(22)に電流を流し赤熱させることによって真空管(19)のグリット(18)とカソード(25)間の信号電圧に対応して負荷抵抗(32)より取り出し、信号処理増幅器(31)によりその変化分を処理し出力する。またフィラメント電源回路(28)と同(27)に供給する。ここではオフセット用抵抗(30)により電源回路(28)と同(27)に適切に設定された電圧レベルのものを送る。By applying an electric current to the filament (21) and the (22) to make them red hot, a signal voltage between the grid (18) and the cathode (25) of the vacuum tube (19) is taken out from the load resistor (32), and signal processing is performed. The change is processed and output by the amplifier (31) . Also supplied to the filament power supply circuit (28) (27). In this case, an offset resistor (30) with a voltage level appropriately set in the power supply circuit (28) and (27) is sent.

請求項4に関して、図1に基づいて説明すると、スピーカー駆動負帰還増幅器(2)の出力端子(3)にスピーカー(4)を接続し、他端を請求項1の抵抗器(5)の端子(13)に接続する。他端(13)より抵抗素子R(6)と同R(7)を通してスピーカー電流はアースへ流れる。
負帰還信号は端子(13)よりフィードバックされスピーカー駆動負帰還増幅器(2)の反転入力部に入る。前記抵抗素子R(6)と同(7)とは端子(8)と端子(9)から見て直列に接続されており従って前記抵抗素子R(6)と同R(7)を流れる電流i=2Ev/(R+R)となり、これによって抵抗器(5)は赤熱する。
With reference to FIG. 4, the speaker (4) is connected to the output terminal (3) of the speaker-driven negative feedback amplifier (2), and the other end is the terminal of the resistor (5) of claim 1. Connect to (13). The speaker current flows from the other end (13) to the ground through the resistance elements R 1 (6) and R 2 (7).
The negative feedback signal is fed back from the terminal (13) and enters the inverting input of the speaker drive negative feedback amplifier (2). The resistor elements R (6) and (7) are connected in series when viewed from the terminal (8) and the terminal (9), and therefore flow through the resistor elements R 1 (6) and R 2 (7). The current i = 2Ev / (R + R), which causes the resistor (5) to glow red.

端子(13)はアースに対して0Vなので前記スピーカー(4)には電源回路(10)と同(11)からの電流は流れず、バイアス電圧の影響はない。前記スピーカー(4)とつながる

Figure 0006281814
となり、これが電流検出抵抗となり、負帰還抵抗となる。Since the terminal (13) is 0 V with respect to the ground, the current from the power supply circuit (10) and (11) does not flow through the speaker (4), and there is no influence of the bias voltage. Connect with the speaker (4)
Figure 0006281814
This becomes a current detection resistor and a negative feedback resistor.

1 入力端子 29 増幅器
2 電力増幅器 30 オフセット抵抗
3 出力端子 31 信号処理増幅器
4 スピーカー 32 負荷抵抗
5 抵抗器 33 電源
6 抵抗素子 34 負帰還抵抗
7 抵抗素子 35 100Ω
8 端子 36 6.6Ω
9 端子 37 6.6Ω
10 電源回路 38 6.6Ω
11 電源回路 39 +i
12 熱的歪改善抵抗器 40 −i
13 端子 41 平均電流iAV
14 アース点 42 アース
15 入力端子 43 R
16 アンプ 44 −R
17 スピーカー 45 d点
18 グリッド 46 +R
19 真空管 47 +ip
20 プレート 48 −ip
21 フィラメント抵抗素子 49 抵抗素子R
22 フィラメント抵抗素子 50 抵抗素子R
23 端子 51 b点
24 端子 52 Asinωt
25 端子 53 抵抗素子R
26 端子 54 抵抗素子R
27 電源回路 55 抵抗器
28 電源回路 56 真空
DESCRIPTION OF SYMBOLS 1 Input terminal 29 Amplifier 2 Power amplifier 30 Offset resistance 3 Output terminal 31 Signal processing amplifier 4 Speaker 32 Load resistance 5 Resistor 33 Power supply 6 Resistance element 34 Negative feedback resistance 7 Resistance element 35 100Ω
8 terminals 36 6.6Ω
9 terminals 37 6.6Ω
10 Power supply circuit 38 6.6Ω
11 Power supply circuit 39 + i
12 Thermal strain improving resistor 40-i
13 terminals 41 Average current i AV
14 Ground point 42 Ground 15 Input terminal 43 R 2 side 16 Amplifier 44 -R 2
17 Speaker 45 d point 18 Grid 46 + R 1
19 Vacuum tube 47 + ip
20 plates 48-ip
21 Filament resistance element 49 Resistance element R 1
22 Filament resistance element 50 Resistance element R 2
23 terminal 51 b point 24 terminal 52 Asinωt
25 terminal 53 resistance element R 3
26 terminal 54 resistor element R 4
27 Power supply circuit 55 Resistor 28 Power supply circuit 56 Vacuum

Claims (4)

単数または複数の抵抗素子を、真空又は気体の中に密封し当該抵抗素子を互いに熱的結合が可能な近接距離に位置する備えを設け、前記抵抗素子にバイアス電圧を加えこれを 赤熱させて、信号処理抵抗体として動作させる機能を有することを特徴とする熱的歪改善抵抗回路。One or more resistance elements are sealed in a vacuum or gas, and the resistance elements are provided at a close distance where they can be thermally coupled to each other, and a bias voltage is applied to the resistance elements to make them red hot, A thermal distortion improving resistor circuit characterized by having a function of operating as a signal processing resistor. 請求項1の抵抗素子をツイストにし、熱的結合を密にした請求項1の熱的歪改善抵抗器。2. The thermal distortion improving resistor according to claim 1, wherein the resistance element of claim 1 is twisted and the thermal coupling is made dense. 真空管増幅回路において、赤熱するフィラメントを信号処理抵抗とし、これに信号を通すことにより生ずる変化を検知し、これをもって前記赤熱するフィラメント素子を、信号を加えるための抵抗体とすることを特徴とする真空管による熱的歪改善回路。In a vacuum tube amplifier circuit, a red-heated filament is used as a signal processing resistor, a change caused by passing a signal therethrough is detected, and the red-heated filament element is used as a resistor for applying a signal. Thermal distortion improvement circuit using a vacuum tube. スピーカー負帰還電流駆動増幅器であって、その出力部からの電流検出のための負帰還抵抗器において、当該抵抗器を真空又は気体の中に封入し、これを赤熱させ、信号電流を流し、負帰還抵抗器としての回路機能を有することを特徴とするスピーカー駆動増幅器。A negative feedback current drive amplifier for a speaker, which is a negative feedback resistor for detecting a current from the output section thereof, which is sealed in vacuum or gas, is red-heated, a signal current is passed, A speaker-driven amplifier having a circuit function as a feedback resistor .
JP2014037451A 2014-01-21 2014-01-21 Speaker-driven negative feedback amplifier Expired - Fee Related JP6281814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037451A JP6281814B2 (en) 2014-01-21 2014-01-21 Speaker-driven negative feedback amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037451A JP6281814B2 (en) 2014-01-21 2014-01-21 Speaker-driven negative feedback amplifier

Publications (3)

Publication Number Publication Date
JP2015139214A JP2015139214A (en) 2015-07-30
JP2015139214A5 JP2015139214A5 (en) 2017-03-09
JP6281814B2 true JP6281814B2 (en) 2018-02-21

Family

ID=53769916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037451A Expired - Fee Related JP6281814B2 (en) 2014-01-21 2014-01-21 Speaker-driven negative feedback amplifier

Country Status (1)

Country Link
JP (1) JP6281814B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864624A (en) * 1988-03-30 1989-09-05 Tichy Thomas H Piezoelectric loudspeaker with thermal protection
JP2002247682A (en) * 2001-02-21 2002-08-30 Sony Corp Protective element for speaker
JP2005333601A (en) * 2004-05-20 2005-12-02 Norimoto Sato Negative feedback amplifier driving loudspeaker unit

Also Published As

Publication number Publication date
JP2015139214A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
TWI475799B (en) Circuit for thermal protection in audio power amplifier and method thereof
US10305864B2 (en) Method and system for interest encryption in a content centric network
JP5946304B2 (en) Reference voltage circuit
JP6281814B2 (en) Speaker-driven negative feedback amplifier
TW201526488A (en) Rotational speed adjusting circuit for fan
US2302895A (en) Control circuit for driving forks
CN102468808A (en) Thermal protection circuit and method for audio power amplifying circuit
CN112106296A (en) Amplifier, amplifying circuit and phase shifter
JP6363008B2 (en) Impedance conversion circuit for condenser microphone
TWI680486B (en) Analog amplification vacuum tube and vacuum tube
TWI680641B (en) Vacuum tube
TWI703816B (en) Amplifier and amplifying method
EP2467936B1 (en) Circuit with reference source to control the small signal transconductance of an amplifier transistor
JP2013521689A5 (en)
US10514306B2 (en) Overheat detection circuit, overheat protection circuit, and semiconductor device
CN108777566A (en) amplifying circuit
US2511122A (en) Amplifier compensated for cathode emission change
JP6866637B2 (en) amplifier
JP2015139214A5 (en)
US1675334A (en) Electron device
US2092373A (en) Protective device
TW201626724A (en) Driving circuit, driving apparatus, and method for adjusting output impedance to match transmission line impedance by current adjusting
CN106208996B (en) Variable gain amplifier circuit, controller for main amplifier and related control method
JP2012138860A (en) Amplification circuit
US2621321A (en) Voltage regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161230

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6281814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees