[go: up one dir, main page]

JP6281284B2 - Abrasion-resistant steel plate with excellent formability and method for producing the same - Google Patents

Abrasion-resistant steel plate with excellent formability and method for producing the same Download PDF

Info

Publication number
JP6281284B2
JP6281284B2 JP2014000477A JP2014000477A JP6281284B2 JP 6281284 B2 JP6281284 B2 JP 6281284B2 JP 2014000477 A JP2014000477 A JP 2014000477A JP 2014000477 A JP2014000477 A JP 2014000477A JP 6281284 B2 JP6281284 B2 JP 6281284B2
Authority
JP
Japan
Prior art keywords
hot
rolled steel
formula
formability
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014000477A
Other languages
Japanese (ja)
Other versions
JP2015129320A (en
Inventor
河野 治
治 河野
雄三 ▲高▼橋
雄三 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014000477A priority Critical patent/JP6281284B2/en
Publication of JP2015129320A publication Critical patent/JP2015129320A/en
Application granted granted Critical
Publication of JP6281284B2 publication Critical patent/JP6281284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は成形性に優れた耐摩耗用鋼板およびその製造方法に関するものである。   The present invention relates to a wear-resistant steel sheet having excellent formability and a method for producing the same.

耐摩耗性は産業機械や輸送機器等で使用される鋼材における重要な特性の一つである。耐摩耗性の向上には高硬度化することが有効であり、建設、土木、鉱山等の分野ではパワーショベル、ブルドーザー、バケットにCr、Mo等の合金元素を大量に添加して高硬度化させた材料が使用されてきた。また、歯型を有するトランスミッション部品に代表される自動車用鋼板等の分野では浸炭、窒化等の熱処理により鋼材表面を高硬度化させた材料が使用されてきた。   Abrasion resistance is one of the important characteristics of steel materials used in industrial machinery and transportation equipment. In order to improve wear resistance, it is effective to increase the hardness. In construction, civil engineering, mining, etc., a large amount of alloy elements such as Cr and Mo are added to power shovels, bulldozers, and buckets to increase the hardness. Materials have been used. Further, in the field of automobile steel plates and the like typified by transmission parts having a tooth shape, a material whose surface is made hard by heat treatment such as carburizing and nitriding has been used.

しかしながら、Cr、Mo等の合金元素を大量に添加して高硬度化させた材料では製造コストが極度に上昇し、更には鋼板を曲げ等により部材へ加工する際の成形性が不十分である。一方、浸炭、窒化等の熱処理により鋼材表面を高硬度化させた材料では熱処理コストが高く、熱処理による寸法変化や表層部以外の熱処理による軟化等が問題となることがある。   However, a material obtained by adding a large amount of alloy elements such as Cr and Mo to increase the hardness extremely increases the manufacturing cost, and further, the formability when the steel sheet is processed into a member by bending or the like is insufficient. . On the other hand, a material whose surface is made hard by heat treatment such as carburizing and nitriding has a high heat treatment cost, and there may be a problem of dimensional change due to heat treatment or softening due to heat treatment other than the surface layer portion.

特許文献1には、加工性に優れた耐摩耗用熱延鋼板として、Nb、V、Cu、Ni、Cr、Mo、W等の合金元素を多量に添加したTS829〜922MPaの高強度鋼板が開示されているが、合金元素コスト増大という課題を有しており、加工性という観点でもTS829〜922MPaクラスではプレス成形が困難であり、部品形状が限定されたものとなる。   Patent Document 1 discloses a TS829-922 MPa high-strength steel sheet to which a large amount of alloying elements such as Nb, V, Cu, Ni, Cr, Mo, and W are added as a wear-resistant hot-rolled steel sheet having excellent workability. However, it has a problem of increasing the cost of alloying elements, and from the viewpoint of workability, it is difficult to press-mold in the TS829 to 922 MPa class, and the part shape is limited.

特許文献2には、成形性の1形態である伸びフランジ性に優れた耐摩耗用熱延鋼板として、Cr等を添加したTS516〜585MPaの高強度鋼板が開示されている。上記特許文献1に対して、合金添加量が低減され、成形性も改善されているが、耐摩耗性という観点では成形後の熱処理による表面硬化に頼っており、熱処理コスト、熱処理による寸法変化等の観点では課題を解決するにいたっていない。   Patent Document 2 discloses a TS516 to 585 MPa high-strength steel sheet to which Cr or the like is added as a wear-resistant hot-rolled steel sheet having excellent stretch flangeability, which is one form of formability. Compared to Patent Document 1, the alloy addition amount is reduced and the formability is improved, but in terms of wear resistance, it relies on surface hardening by heat treatment after forming, heat treatment cost, dimensional change by heat treatment, etc. From the point of view, the problem is not solved.

特開2008−214736号公報JP 2008-214736 A 特開平9−49065号公報JP 9-49065 A

そこで、本発明は、合金コストの増大や熱処理コストの付加に代表されるコストアップを伴わず、複雑な部品形状に成形可能で、かつ、成形後に熱処理を施さないで耐摩耗性に優れた熱延鋼板とその製造方法を提供することを課題とする。なお、複雑な部品形状に成形可能であるかを判断する指標として、後述する試験方法による一様伸び、穴広げ比を用いた。一様伸びは張り出し性(例えば、平板を円筒状もしくは球頭状に成形する場合の性能)の指標であり、穴広げ比は伸びフランジ性(例えば、打ち抜き端面の周長を拡大成形する場合の性能)の指標である。特にトランスミッション部品のような自動車用鋼板等の分野では、一様伸び≧12%(好ましくは14%、より好ましくは16%)、穴広げ比≧1.25を達成することが切望されている。また、プレス機械能力の上限から、引張強さは810MPa以下、好ましくは690MPaクラス、より好ましくは590MPaクラスとすることが望まれている。   Therefore, the present invention can be formed into a complicated part shape without increasing the cost represented by the increase in alloy cost or the addition of heat treatment cost, and is excellent in wear resistance without being subjected to heat treatment after forming. It is an object to provide a rolled steel sheet and a manufacturing method thereof. In addition, as an index for determining whether or not it can be formed into a complicated part shape, uniform elongation and hole expansion ratio by a test method described later were used. Uniform elongation is an indicator of stretchability (for example, the performance when a flat plate is formed into a cylindrical shape or a spherical head shape), and the hole expansion ratio is the stretch flangeability (for example, when the peripheral length of a punched end face is enlarged and molded. Performance). In particular, in the field of steel plates for automobiles such as transmission parts, it is anxious to achieve uniform elongation ≧ 12% (preferably 14%, more preferably 16%) and hole expansion ratio ≧ 1.25. From the upper limit of the press machine capacity, it is desired that the tensile strength is 810 MPa or less, preferably 690 MPa class, more preferably 590 MPa class.

本発明者らは上記課題に対して詳細な検討を行った結果、熱延鋼板の添加元素、組織等を制御することにより、コストアップを伴わずに複雑な部品形状に成形可能で、かつ、成形まま(熱処理レス)で優れた耐摩耗性を発現する技術を知見するに至った。   As a result of conducting detailed studies on the above problems, the present inventors can control the additive elements, structure, and the like of the hot-rolled steel sheet, and can be molded into a complicated part shape without increasing costs, and As a result, they have come to know a technology that exhibits excellent wear resistance as it is (without heat treatment).

本発明は上記知見に基づいてなしたもので、その発明の要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist of the invention is as follows.

(1)質量%で、
C:0.01〜0.20%、
Si:2.2〜5%、
Al:0.001〜2%、
P:0.1%以下、
S:0.01%以下、
N:0.010%以下
を含有し、さらにMn、Cu、Ni、Cr、Moの1種または2種以上を下記式(1)〜(3)を満たすように含有し、残部がFeおよび不可避的不純物から成る熱延鋼板であって、該熱延鋼板の組織がフェライト分率Vf=0.65〜0.98、第2相分率V2=0.02〜0.35、フェライト分率Vf+第2相分率V2=1、第2相のマイクロビッカース硬さH2≦400、更に、該熱延鋼板の1/4厚部で板面に平行な{211}面、{111}面、{100}面、{110}面の反射X線強度比がいずれも1.9未満であることを特徴とする成形性に優れた耐摩耗用熱延鋼板。
Mn+Cu/2+Ni/2+Cr/2+Mo/2 : 0.3〜5%
・ ・ ・ 式(1)
Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.48
・ ・ ・ 式(2)
Si+0.525×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≦5.31
・ ・ ・ 式(3)
上記式中に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
(1) In mass%,
C: 0.01-0.20%
Si: 2.2 ~5%,
Al: 0.001-2%,
P: 0.1% or less,
S: 0.01% or less,
N: not more than 0.010%, further containing one or more of Mn, Cu, Ni, Cr, Mo so as to satisfy the following formulas (1) to (3), the balance being Fe and inevitable A hot-rolled steel plate made of mechanical impurities, the structure of the hot-rolled steel plate having a ferrite fraction Vf = 0.65 to 0.98, a second phase fraction V2 = 0.02 to 0.35, and a ferrite fraction Vf + Second phase fraction V2 = 1, second phase micro Vickers hardness H2 ≦ 400, and {211} plane, {111} plane parallel to the plate surface at 1/4 thickness part of the hot-rolled steel plate, { A hot-rolled steel sheet for wear resistance excellent in formability, characterized in that the reflection X-ray intensity ratios of the 100} plane and the {110} plane are both less than 1.9.
Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2: 0.3 to 5%
・ ・ ・ Formula (1)
Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.48
・ ・ ・ Formula (2)
Si + 0.525 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≦ 5.31
・ ・ ・ Formula (3)
The component element shown in the above formula is the mass% of the element contained in the steel, and the element not contained is 0%.

(2)更に、質量%で、下記式(4)を満たすことを特徴とする上記(1)に記載の成形性に優れた耐摩耗用熱延鋼板。
Si/(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.0
・ ・ ・ 式(4)
上記式中に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
(2) The wear-resistant hot-rolled steel sheet having excellent formability as described in (1) above, further satisfying the following formula (4) by mass%.
Si / (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.0
Formula (4)
The component element shown in the above formula is the mass% of the element contained in the steel, and the element not contained is 0%.

(3)更に、質量%で、
Nb:0.001〜0.3%、
V :0.001〜0.3%、
Ti:0.001〜0.3%、
B :0.0001〜0.005%
のいずれか1種または2種以上を含有することを特徴とする上記(1)または(2)に記載の成形性に優れた耐摩耗用熱延鋼板。
(3) Furthermore, in mass%,
Nb: 0.001 to 0.3%,
V: 0.001-0.3%
Ti: 0.001 to 0.3%,
B: 0.0001 to 0.005%
The wear-resistant hot-rolled steel sheet having excellent formability as described in (1) or (2) above, comprising one or more of the above.

(4)更に、質量%で、
Ca :0.0001〜0.01%、
REM:0.0003〜0.03%
のいずれか1種または2種を含有することを特徴とする上記(1)〜(3)のいずれか1つに記載の成形性に優れた耐摩耗用熱延鋼板。
(4) Furthermore, in mass%,
Ca: 0.0001 to 0.01%,
REM: 0.0003 to 0.03%
Any one or two of the above, (1) to (3), the wear-resistant hot-rolled steel sheet excellent in formability according to any one of the above.

(5)上記(1)〜(4)のいずれか1つに記載の成分を有する鋼を加熱し、粗圧延、仕上げ圧延、冷却、巻取を行う(1)〜(4)のいずれか1つに記載の熱延鋼板の製造方法であって、仕上げ圧延終了温度をT1+50℃以上とし、仕上げ圧延終了温度〜T1の平均冷却速度を60℃/秒以上、T1〜650℃における滞在時間tを5秒以上、巻取温度をT2超かつ300℃超とすることを特徴とする成形性に優れた耐摩耗用熱延鋼板の製造方法。
ここで、T1(℃)は下記式(5)、T2(℃)は下記式(6)に示す温度である。
T1(℃)=905−320×C+30×(Si+Al)−85×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)−17000×B ・ ・ ・ 式(5)
T2(℃)=600−240×C×t−35×(Mn+Cu/2+Ni/2+Cr/2+Mo/2) ・ ・ ・ 式(6)
上記式中に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
(5) above (1) heating a steel having a component according to any one of to (4), rough rolling, finish rolling, cooling, either performing the winding of (1) to (4) 1 The finish rolling end temperature is set to T1 + 50 ° C. or higher, the average cooling rate of the finish rolling end temperature to T1 is set to 60 ° C./second or more, and the residence time t at T1 to 650 ° C. A method for producing a hot-rolled steel sheet for wear resistance having excellent formability, characterized in that the coiling temperature is T2 and 300 ° C for 5 seconds or more.
Here, T1 (° C.) is the temperature shown in the following formula (5), and T2 (° C.) is the temperature shown in the following formula (6).
T1 (° C.) = 905−320 × C + 30 × (Si + Al) −85 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) −17000 × B Formula (5)
T2 (° C.) = 600−240 × C × t−35 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) Equation (6)
The component element shown in the above formula is the mass% of the element contained in the steel, and the element not contained is 0%.

本発明によれば、コストアップを伴わずに成形後に熱処理を施さずに耐摩耗性に優れる自動車部品の製造が可能で、複雑な部品形状に成形可能なため、その用途も広く、産業上有用な著しい効果を奏する。   According to the present invention, it is possible to manufacture automobile parts with excellent wear resistance without performing heat treatment after molding without increasing the cost, and because it can be molded into a complicated part shape, its application is wide and useful industrially. There is a remarkable effect.

(2)式と摩耗試験による耐久回数の関係を示すグラフである。It is a graph which shows the relationship between (2) Formula and the frequency | count of durability by a wear test. (3)式と一様伸びの関係を示すグラフである。It is a graph which shows the relationship between (3) Formula and uniform elongation.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明者らは、成形性を維持しつつ耐摩耗性を向上させる方法について鋭意検討を行い、添加元素では特にSiの増大により耐摩耗性が顕著に向上すること、ミクロ組織では第2相分率の増大や第2相硬さの増大により耐摩耗性が劣化することを見出し、更にそれら(添加元素、ミクロ組織)に加えて、集合組織をも特定範囲に制御することで優れた成形性を維持できることを見出した。以下にその範囲と限定理由を詳述する。なお、Siの増大により耐摩耗性が顕著に向上するのは、摩耗時の塑性変形に対してSiが高い流動抵抗を有するとともに塑性変形による材料ダメ−ジを局在化させないためと考えられ、Siによるすべり系や転位の引きずり効果への影響が他の元素とは異なることに起因すると推定される。第2相分率の増大や第2相硬さの増大により耐摩耗性が劣化するのはそれらがフェライトの摩耗を促進する効果、いわば砥粒のような役割を果たすためと推定される。   The present inventors have intensively studied a method for improving the wear resistance while maintaining the formability, and that the wear resistance is remarkably improved especially by increasing Si in the additive element, and the second phase component in the microstructure. We found that the wear resistance deteriorates due to an increase in the rate and hardness of the second phase, and in addition to these (added elements, microstructure), excellent formability by controlling the texture to a specific range It was found that can be maintained. The range and reasons for limitation will be described in detail below. The reason why the wear resistance is remarkably improved by the increase of Si is considered to be that Si has a high flow resistance against plastic deformation during wear and does not localize material damage due to plastic deformation. It is presumed that the influence of Si on the slip system and dislocation drag effect is different from other elements. The reason why the wear resistance deteriorates due to the increase in the second phase fraction and the increase in the second phase hardness is presumed to be the effect of promoting the wear of ferrite, that is, the role of abrasive grains.

まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。ここで記載の「%」は質量%を意味する。   First, the reason why the composition of steel is limited to the above range in the present invention will be described. Here, “%” means mass%.

(C:0.01〜0.20%)
Cは、廉価な強化成分であり、そのための最低量として0.01%含有させる。しかしながら、その添加量が0.20%を超えると、第2相分率や第2相硬さが増大し、耐摩耗性や成形性を劣化させるともに、溶接性が悪化するため、その添加上限を0.20%とする。好ましくは0.15%、より好ましくは0.10%をその添加上限とする。また、脱炭コストや他合金コストの過度の増大を避け、Cによる粒界の強化機能を十分に発揮させ優れた低温靭性を得るためには、好ましくは0.04%をその添加下限とする。
(C: 0.01-0.20%)
C is an inexpensive reinforcing component, and 0.01% is contained as the minimum amount for that purpose. However, if the addition amount exceeds 0.20%, the second phase fraction and the second phase hardness increase, which deteriorates wear resistance and formability and deteriorates weldability. Is 0.20%. The upper limit of addition is preferably 0.15%, more preferably 0.10%. Further, in order to avoid an excessive increase in decarburization costs and other alloy costs, and to sufficiently exhibit the grain boundary strengthening function by C and to obtain excellent low temperature toughness, preferably 0.04% is set as the lower limit of addition. .

(Si:1.4〜5%)
Siは脱酸作用と強化作用を有する元素で、更にフェライト分率を高める作用がある。さらに耐摩耗性に対して非常に効果を有する元素である。その作用を発揮させるためには、1.4%が最低量として必要であり、好ましくは2.0%以上とする。しかしながら、5%を超えると、上記作用が飽和するとともに溶接性が劣化するため、その上限を5%とする。
(Si: 1.4-5%)
Si is an element having a deoxidizing action and a strengthening action, and further has an action of increasing the ferrite fraction. Furthermore, it is an element that has a great effect on wear resistance. In order to exert the effect, 1.4% is necessary as a minimum amount, and preferably 2.0% or more. However, if it exceeds 5%, the above action is saturated and weldability deteriorates, so the upper limit is made 5%.

(Al:0.001〜2%)
Alは脱酸作用と強化作用を有する元素で、更にフェライト分率を高める作用がある。その作用を発揮させるためには、0.001%が最低量として必要である。しかしながら、2%を超えると、上記作用が飽和するとともに溶接性が劣化するため、その上限を2%とする。
(Al: 0.001-2%)
Al is an element having a deoxidizing action and a strengthening action, and further has an action of increasing the ferrite fraction. In order to exert the effect, 0.001% is necessary as a minimum amount. However, if it exceeds 2%, the above action is saturated and weldability deteriorates, so the upper limit is made 2%.

Mn、Cu、Ni、Cr、Moは、強化成分であり、その作用を発揮させるためには、Mn、Cu、Ni、Cr、Moの合算量が各元素の作用の寄与割合に応じた下記式(1)を満たすように、0.3%が最低量として必要である。しかしながら、その添加量が5.0%を超えると、第2相分率や第2相硬さが増大し、耐摩耗性や成形性を劣化させるともに、溶接性が悪化するため、その添加上限を5.0%とする。その添加上限は好ましくは3.0%、さらに好ましくは2.5%とする。なお、Mn以外の元素を1/2とするのは単位添加量当たりの強化能がMnに対して1/2であるためである。
Mn+Cu/2+Ni/2+Cr/2+Mo/2 : 0.3〜5%
・ ・ ・ 式(1)
Mn, Cu, Ni, Cr, Mo are strengthening components, and in order to exert their effects, the total amount of Mn, Cu, Ni, Cr, Mo depends on the contribution ratio of the action of each element. To satisfy (1), 0.3% is necessary as the minimum amount. However, if the addition amount exceeds 5.0%, the second phase fraction and the second phase hardness increase, which deteriorates the wear resistance and formability and deteriorates the weldability. Is 5.0%. The upper limit of the addition is preferably 3.0%, more preferably 2.5%. The reason why elements other than Mn are halved is because the strengthening ability per unit addition amount is ½ with respect to Mn.
Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2: 0.3 to 5%
・ ・ ・ Formula (1)

更に耐摩耗性に及ぼすSi、Mn、Cu、Ni、Cr、Moの影響を詳細に検討した結果、Siの耐摩耗性向上効果が顕著に大きく、下記式(2)を満たすように1.48以上(好ましくは2.04以上)とすることにより、実用的な耐摩耗性を発現しうることを見出した。
Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.48
・ ・ ・ 式(2)
Furthermore, as a result of examining in detail the influence of Si, Mn, Cu, Ni, Cr, and Mo on the wear resistance, the effect of improving the wear resistance of Si is remarkably large and 1.48 so as to satisfy the following formula (2). It has been found that practical wear resistance can be expressed by setting it as above (preferably 2.04 or more).
Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.48
・ ・ ・ Formula (2)

図1に当該数式(2)と摩耗試験(方法等は後述)における耐久回数の関係を示す。耐久回数が400万回以上(好ましくは500万回以上)で実車走行での実用的な耐摩耗性を発現できるが、当該数式(2)の増大により耐久回数は向上し(すなわち耐摩耗性が改善され)、当該数式(2)を1.48以上とすることで顕著に耐久回数が向上し、400万回以上を達成できる。更に当該数式(2)を2.04以上とすることで耐久回数はさらに向上し、500万回以上を達成できる。   FIG. 1 shows the relationship between the mathematical formula (2) and the number of times of durability in the wear test (method and the like will be described later). Practical wear resistance in actual vehicle running can be expressed when the number of endurance is 4 million times or more (preferably 5 million times or more), but the increase in the number of times (2) improves the number of endurance (that is, wear resistance is reduced). Improvement), the number of endurances can be remarkably improved by setting the numerical formula (2) to 1.48 or more, and 4 million times or more can be achieved. Furthermore, by setting the numerical formula (2) to 2.04 or more, the number of durability can be further improved and 5 million times or more can be achieved.

また、Siの耐摩耗性に及ぼす効果は下記式(4)を満たすように1.0以上とすることで一層向上することを併せて見出した。
Si/(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.0
・ ・ ・ 式(4)
It was also found that the effect of Si on wear resistance was further improved by setting it to 1.0 or more so as to satisfy the following formula (4).
Si / (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.0
Formula (4)

図1の中に示すように(2)式の値がほぼ同じであっても式(4)に示すSi/(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.0とすることで420万回に対して445万回、648万回に対して783万回と向上している。Siによる耐摩耗性向上効果は固溶元素としての作用であると考えられるが、Si以外の固溶元素であるMn、Cu、Ni、Cr、Moに対してSiがより多量に存在している場合により一層効果的であるためと推定される。   As shown in FIG. 1, even if the value of the formula (2) is substantially the same, 4.2 million can be obtained by setting Si / (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.0 shown in the formula (4). This is an improvement of 44.5 million times for the number of times and 7.83 million times for the number of 6.48 million times. The effect of improving wear resistance by Si is considered to be a function as a solid solution element, but a larger amount of Si is present with respect to Mn, Cu, Ni, Cr, and Mo, which are solid solution elements other than Si. This is presumed to be more effective in some cases.

また、Si以外の元素であっても大量に添加すれば耐摩耗性は向上するものの、鋼の降伏強度、引張強度が過度に増大し、成形性を低下させ、部品成形時の割れ、金型とのかじり、寸法外れ等の問題が発生するため、耐摩耗性、成形性を両立させるためには、Siの耐摩耗性改善効果を最大限活用しつつ、成形性の劣化を回避するために、下記式(3)を満たすことが必要であることを見出した。
Si+0.525×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≦5.31
・ ・ ・ 式(3)
なお、上記式(1)〜(4) 示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
In addition, even if elements other than Si are added in large quantities, the wear resistance is improved, but the yield strength and tensile strength of the steel are excessively increased, the formability is lowered, cracks during molding of the part, mold In order to achieve both wear resistance and formability, in order to avoid the deterioration of formability while making maximum use of the effect of improving the wear resistance of Si. The inventors have found that it is necessary to satisfy the following formula (3).
Si + 0.525 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≦ 5.31
・ ・ ・ Formula (3)
In addition, the component element shown to said Formula (1)-(4) is the mass% of the element contained in steel, Comprising: The element which is not contained shall be 0%.

本発明のようにフェライトを主たる組織とし(フェライト分率=0.65〜0.98)、第2相硬さ≦400の鋼板では、単位添加量当たりの強化作用に関して、Siを1とすると、Mnはその0.525倍、Cu、Ni、Cr、Moは更にその1/2であり、所望の一様伸び12%以上、穴広げ比1.25以上を確保しつつ、絞り試験でのカジリを回避して、有効に強化を図るためには上記数式(3)の値を5.31以下(好ましくは4.38以下、より好ましくは3.29以下)とすることが必要である。その一例として図2に当該数式と一様伸びの関係を記す。(3)式の値を5.31以下とすることで一様伸びが12%未満となることを回避でき、(3)式の値を4.38以下とすることで一様伸び14%以上、(3)式の値を3.29以下とすることで一様伸び16%以上が確保できる。   In the steel having the main structure as in the present invention (ferrite fraction = 0.65 to 0.98) and the second phase hardness ≦ 400, with respect to the strengthening action per unit addition amount, when Si is 1, Mn is 0.525 times that of Cu, Ni, Cr, and Mo. Further, it is 1/2 of that. In order to effectively strengthen the value, it is necessary to set the value of Equation (3) to 5.31 or less (preferably 4.38 or less, more preferably 3.29 or less). As an example, FIG. 2 shows the relationship between the formula and the uniform elongation. By setting the value of equation (3) to 5.31 or less, it is possible to avoid the uniform elongation from being less than 12%, and by setting the value of equation (3) to 4.38 or less, the uniform elongation is 14% or more. The uniform elongation of 16% or more can be secured by setting the value of the expression (3) to 3.29 or less.

(P:0.1%以下)
Pは、不純物として含有され、安価な強化成分ではあるが、脆化や溶接性の低下の原因となるため、その上限を0.1%とする。好ましくは0.03%以下とする。
(P: 0.1% or less)
Although P is contained as an impurity and is an inexpensive reinforcing component, it causes embrittlement and weldability deterioration, so its upper limit is made 0.1%. Preferably it is 0.03% or less.

(S:0.01%以下)
Sは、Pと同様に不純物として含有され、鋼中のMnと反応して延伸介在物を生成することが知られており、成形性(特に穴広げ比)や疲労強度を低下させる有害な元素であり、その上限を0.01%とする。好ましくは0.005%以下とする。
(S: 0.01% or less)
S is contained as an impurity in the same manner as P, and is known to react with Mn in steel to produce stretched inclusions, and is a harmful element that lowers formability (particularly the hole expansion ratio) and fatigue strength. The upper limit is made 0.01%. Preferably it is 0.005% or less.

(N:0.010%以下)
Nは不可避的に混入する元素であるが、Al等と窒化物を生成するため、必要以上のAl添加を余儀なくしたり、成形性等に有害な作用をもたらすことがあるため、その上限を0.010%とする。好ましくは0.005%以下とする。
(N: 0.010% or less)
N is an element that is inevitably mixed, but since it forms nitrides with Al and the like, it may be necessary to add more Al than necessary, and may have a harmful effect on formability, so the upper limit is 0. .010%. Preferably it is 0.005% or less.

以上が、本発明に係る熱延鋼板の基本成分の限定理由であり、この基本成分の他の残部はFe及び不可避的不純物からなる。不可避的不純物としては、O、Zn、Pb、As、Sb等が挙げられ、これらをそれぞれ0.02%以下の範囲で含んでいても、本発明の効果を失するものではない。   The above is the reason for limiting the basic components of the hot-rolled steel sheet according to the present invention, and the remaining balance of the basic components is composed of Fe and inevitable impurities. Inevitable impurities include O, Zn, Pb, As, Sb, etc. Even if these are included in the range of 0.02% or less, the effects of the present invention are not lost.

また、本発明に係る熱延鋼板は、必要に応じて、Nb、V、Ti、Bの何れか1種又は2種以上を下記のような含有量で含有していてもよい。   Moreover, the hot-rolled steel sheet according to the present invention may contain one or more of Nb, V, Ti, and B in the following contents as necessary.

(Nb:0.001〜0.3%、V:0.001〜0.3%、Ti:0.001〜0.3%)
Nb、V、Tiは炭化物を生成し、フェライト等のミクロ組織の微細化効果や析出強化効果を有しており、その効果を発揮させるためには夫々0.001%以上の添加が必要である。しかしながら、0.3%を超えるとその効果が飽和するとともにコストが過大となるため、その上限は夫々0.3%とする。また、鋼板の機械的性質の異方性の観点からは少量の添加とすることが望ましい。
(Nb: 0.001-0.3%, V: 0.001-0.3%, Ti: 0.001-0.3%)
Nb, V, and Ti generate carbides and have the effect of refining the microstructure such as ferrite and the effect of precipitation strengthening, and 0.001% or more of each is necessary to exert the effect. . However, if it exceeds 0.3%, the effect becomes saturated and the cost becomes excessive, so the upper limit is made 0.3% respectively. Moreover, it is desirable to add a small amount from the viewpoint of the anisotropy of the mechanical properties of the steel sheet.

(B:0.0001〜0.005%)
Bは微量で強化に有効に作用する元素である。その効果を発揮するために0.0001%以上添加する。しかしながら、多量に添加すると第2相分率や第2相硬さが増大し、耐摩耗性を劣化させるともに、溶接性に悪影響をもたらすため、0.005%を上限とする。
(B: 0.0001 to 0.005%)
B is an element that effectively acts for strengthening in a small amount. In order to exert the effect, 0.0001% or more is added. However, if added in a large amount, the second phase fraction and the second phase hardness increase, which deteriorates wear resistance and adversely affects weldability. Therefore, the upper limit is made 0.005%.

また、本発明に係る熱延鋼板は、Ca又はREMの何れか1種又は2種を下記のような含有量で含有していてもよい。   Moreover, the hot-rolled steel sheet according to the present invention may contain one or two of Ca and REM in the following content.

(Ca:0.0001〜0.01%)
Caは介在物の形態制御効果を有しており、成形性(特に穴広げ比)に有害な延伸介在物を球状化して有害度を低減する効果を有する。その効果を発揮させるためには0.0001%以上の添加が必要である。ただし、0.01%を超えると、その効果が飽和し、かえって悪影響を生じる懸念があるとともに、溶接性劣化の観点からも、0.01%を添加上限とする。
(Ca: 0.0001 to 0.01%)
Ca has an effect of controlling the form of inclusions, and has the effect of reducing the degree of harm by spheroidizing the inclusions that are harmful to the formability (particularly the hole expansion ratio). In order to exert the effect, addition of 0.0001% or more is necessary. However, if it exceeds 0.01%, the effect is saturated, and there is a concern that it may adversely affect, and from the viewpoint of weldability deterioration, 0.01% is made the upper limit of addition.

(REM:0.0003〜0.03%)
REMは介在物の形態制御効果を有しており、成形性(特に穴広げ比)に有害な延伸介在物を微細球状化して有害度を低減する効果を有する。その効果を発揮させるためには0.0003%以上の添加が必要である。ただし、0.03%を超えると、その効果が飽和し、かえって悪影響を生じる懸念があるととともに、溶接性劣化の観点からも、0.03%を添加上限とする。
(REM: 0.0003-0.03%)
REM has an effect of controlling the shape of inclusions, and has the effect of reducing the degree of harm by making the elongated inclusions harmful to formability (particularly the hole expansion ratio) into a fine sphere. In order to exert the effect, 0.0003% or more must be added. However, if it exceeds 0.03%, the effect is saturated and there is a concern that adverse effects may be caused, and 0.03% is made the upper limit of addition from the viewpoint of weldability deterioration.

次に、本発明において熱延鋼板の組織を限定した理由について説明する。   Next, the reason why the structure of the hot rolled steel sheet is limited in the present invention will be described.

フェライト分率Vfは0.65〜0.98とする(フェライト分率Vf+第2相分率V2=1であるため、第2相分率=0.02〜0,35)。フェライト分率Vfが0.65未満となると、フェライトより硬い第2相分率が増大し、それが砥粒のような役割を果たすことでフェライトの摩耗が促進されると推定され、その結果、耐摩耗性が悪化し、鋼板変形時の歪を主に受け持つフェライトの減少により成形性も劣化するため、フェライト分率Vfの下限は0.65以上(好ましくは0.75以上、より好ましくは0.85以上)とする。また、フェライト分率を0.98超とするためには、T1(後記する式5で規定する温度)〜650℃における滞在時間が増大することになり、生産性の観点から好ましくなく、また、フェライトは第2相に対して軟らかいため、フェライト分率が0.98〜1.00の場合はその強化低減代を補うためにより多量の合金を添加する必要が生じるため鋼を強化するための合金コストも増大するので、フェライト分率の上限は0.98とする。   The ferrite fraction Vf is set to 0.65 to 0.98 (ferrite fraction Vf + second phase fraction V2 = 1, so that the second phase fraction = 0.02 to 0.35). When the ferrite fraction Vf is less than 0.65, the second phase fraction harder than ferrite is increased, and it is estimated that the wear of ferrite is promoted by acting as an abrasive, Since the wear resistance is deteriorated and the formability is also deteriorated due to the decrease in ferrite mainly responsible for the strain at the time of deformation of the steel sheet, the lower limit of the ferrite fraction Vf is 0.65 or more (preferably 0.75 or more, more preferably 0). .85 or more). Further, in order to make the ferrite fraction more than 0.98, the residence time at T1 (temperature defined by Formula 5 described later) to 650 ° C. is increased, which is not preferable from the viewpoint of productivity. Since the ferrite is soft with respect to the second phase, when the ferrite fraction is 0.98 to 1.00, it is necessary to add a larger amount of alloy to compensate for the reduction in strengthening, so the alloy for strengthening the steel Since the cost also increases, the upper limit of the ferrite fraction is set to 0.98.

本発明で意図する第2相はベイナイト、パ−ライト、セメンタイトであり、硬質なマルテンサイトや残留オ−ステナイトは除外する。また、ベイナイトであってもその硬度には上限を設ける必要があり、第2相硬さH2はH2≦400とする。H2>400となると、それが第2相の砥粒のような役割を強めることになり、フェライトの摩耗を促進すると推定され、その結果、耐摩耗性が劣化し、成形性(穴広げ比)も劣化するため、第2相硬さH2の上限は400とする。   The second phase intended in the present invention is bainite, pearlite, and cementite, and excludes hard martensite and retained austenite. Moreover, even if it is bainite, it is necessary to provide an upper limit to the hardness, and the second phase hardness H2 is set to H2 ≦ 400. When H2> 400, it is assumed that it strengthens the role of the second phase abrasive grains and promotes the wear of the ferrite. As a result, the wear resistance deteriorates, and the formability (hole expansion ratio). Therefore, the upper limit of the second phase hardness H2 is set to 400.

1/4厚部板面に平行な{211}面、{111}面、{100}面、{110面}の反射X線強度比はいずれも1.9未満とする。該反射X線強度比が1.9以上では機械的性質の異方性が増し、カップ状に絞り成形した際に円周方向で板厚が変動し、板厚が増大した部分で鋼板と金型の面圧が高まり、カジリが発生し、成形が困難となったり、成形できた場合でも部品寸法精度が悪化したりするため、該反射X線強度比の上限は1.9未満(好ましくは1.8以下、より好ましくは1.6以下)とする。   The reflected X-ray intensity ratios of {211} plane, {111} plane, {100} plane, and {110 plane} parallel to the ¼ thick plate surface are all less than 1.9. When the reflection X-ray intensity ratio is 1.9 or more, the anisotropy of mechanical properties increases, and when drawing into a cup shape, the plate thickness fluctuates in the circumferential direction. The surface pressure of the mold increases, galling occurs, and molding becomes difficult, or even if molding can be performed, the dimensional accuracy of the parts deteriorates. 1.8 or less, more preferably 1.6 or less).

なお、フェライト分率、第2相分率は熱延鋼板をナイタ−ルエッチングして1/4厚部のL断面(熱延鋼板の幅方向に垂直な断面)を400倍で走査電子顕微鏡で観察して求め、第2相硬さH2はマイクロビッカ−ス試験により求めた。1/4厚部板面に平行な{211}面、{111}面、{100}面、{110面}の反射X線強度比はX線回折装置により当該熱延鋼板とランダムサンプルの比として求めた。なお、1/4厚部としたのは、成形性を判断するに最適な部位であるからである。   The ferrite fraction and the second phase fraction are obtained by performing a night etching of the hot-rolled steel sheet, and the 1/4 section L-section (cross section perpendicular to the width direction of the hot-rolled steel sheet) is 400 times with a scanning electron microscope. The second phase hardness H2 was determined by observation through a micro Vickers test. The reflected X-ray intensity ratio of {211} plane, {111} plane, {100} plane, {110 plane} parallel to the ¼ thick section plane is determined by the ratio of the hot-rolled steel sheet to the random sample using an X-ray diffractometer. As sought. The reason why the ¼ thickness part is selected is that it is an optimal part for determining the formability.

次に、本発明の製造条件について説明する。本発明は上記記載の成分を有する鋼を加熱し、粗圧延、仕上げ圧延、冷却、巻取を行う熱延鋼板の製造方法である。   Next, the manufacturing conditions of the present invention will be described. The present invention is a method for producing a hot-rolled steel sheet in which steel having the above-described components is heated and subjected to rough rolling, finish rolling, cooling, and winding.

加熱、粗圧延の条件は常用されている方法でよく、格段の特徴は有しない。   The heating and rough rolling conditions may be a commonly used method and have no particular characteristics.

仕上げ圧延においては、仕上げ圧延終了温度をT1+50℃以上とする。T1+50℃未満では1/4厚部板面に平行な{211}面、{111}面、{100}面、{110面}の反射X線強度比が1.9以上となり、上述のように成形時に不具合が生じるとともに、フェライトの延性が劣化し伸びを低下させるため、T1+50℃を下限とする。また、仕上げ圧延終了温度が1000℃を越えると熱延鋼板の表面に形成されるスケ−ルの厚みが極度に厚くなり、スケ−ル疵の発生や酸洗性の劣化といった弊害が発生しやすくなるため、仕上げ圧延終了温度の上限は好ましくは1000℃、より好ましくは950℃とする。   In finish rolling, the finish rolling end temperature is set to T1 + 50 ° C. or higher. Below T1 + 50 ° C., the reflected X-ray intensity ratio of {211} plane, {111} plane, {100} plane, {110 plane} parallel to the ¼ thick plate surface is 1.9 or more, as described above. In addition to problems occurring during molding, the ductility of ferrite deteriorates and elongation decreases, so T1 + 50 ° C. is set as the lower limit. Also, if the finish rolling finish temperature exceeds 1000 ° C, the thickness of the scale formed on the surface of the hot-rolled steel sheet becomes extremely thick, and adverse effects such as generation of scale wrinkles and deterioration of pickling properties are likely to occur. Therefore, the upper limit of the finish rolling finish temperature is preferably 1000 ° C., more preferably 950 ° C.

仕上げ圧延終了後は、まず、仕上げ圧延終了温度〜T1の平均冷却速度を60℃/秒以上、T1〜650℃における滞在時間tを5秒以上とする冷却を行う。T1は以下で定義される温度であり、フェライトが生成しはじめる温度に相当する。T1は下記式(5)で定義される温度である。
T1(℃)=905−320×C+30×(Si+Al)−85×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)−17000×B ・ ・ ・ 式(5)
After the finish rolling is finished, first, cooling is performed such that the average cooling rate from the finish rolling finish temperature to T1 is 60 ° C./second or more, and the stay time t at T1 to 650 ° C. is 5 seconds or more. T1 is a temperature defined below, and corresponds to a temperature at which ferrite starts to be generated. T1 is a temperature defined by the following formula (5).
T1 (° C.) = 905−320 × C + 30 × (Si + Al) −85 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) −17000 × B Formula (5)

仕上げ圧延終了温度〜T1の平均冷却速度が60℃/秒未満だと、γからαへの変態時に特定の結晶方位の選択性が強まると推定され、その結果、1/4厚部板面に平行な{211}面、{111}面、{100}面、{110面}の反射X線強度比が1.9以上となり、前述のように成形時に不具合が生じるため、仕上げ圧延終了温度〜T1の平均冷却速度は60℃/秒を下限とする。一方、冷却速度が過大となると、鋼板長手方向幅方向で温度が変動しやすくなるため、仕上げ圧延終了温度〜T1の平均冷却速度の上限は、好ましくは300℃/秒、より好ましくは150℃/秒とする。   When the average cooling rate of the finish rolling finish temperature to T1 is less than 60 ° C./second, it is estimated that the selectivity of a specific crystal orientation is strengthened during the transformation from γ to α, and as a result, on the 1/4 thick part plate surface The reflected X-ray intensity ratio of the parallel {211} plane, {111} plane, {100} plane, and {110 plane} is 1.9 or more, and as described above, problems occur during molding. The average cooling rate of T1 has a lower limit of 60 ° C./second. On the other hand, if the cooling rate is excessive, the temperature tends to fluctuate in the width direction in the longitudinal direction of the steel sheet. Therefore, the upper limit of the average cooling rate of the finish rolling finish temperature to T1 is preferably 300 ° C / second, more preferably 150 ° C / second. Seconds.

また、T1〜650℃における滞在時間tが5秒未満であると、フェライト分率Vfが0.65未満となり、上述のように耐摩耗性や成形性(特に一様伸び)が悪化するため、5秒を下限とする。なお、650℃未満ではフェライト変態の速度が極度に遅くなるため、滞在時間を規定する温度域としては650℃を下限とした。一方、T1〜650℃における滞在時間tの上限は冷却テーブルの長さによって決まる他、滞在時間tが長すぎると、スケ−ルの厚みが厚くなり、スケ−ル疵の発生や酸洗性の劣化につながるため、T1〜650℃における滞在時間tの上限は好ましくは20秒以下とする。   Further, if the stay time t at T1 to 650 ° C. is less than 5 seconds, the ferrite fraction Vf becomes less than 0.65, and the wear resistance and formability (particularly uniform elongation) deteriorate as described above. The lower limit is 5 seconds. In addition, since the speed | rate of a ferrite transformation will become extremely slow if it is less than 650 degreeC, 650 degreeC was made into the minimum as a temperature range which prescribes | stays residence time. On the other hand, the upper limit of the staying time t at T1 to 650 ° C. is determined by the length of the cooling table. If the staying time t is too long, the thickness of the scale increases, and the occurrence of scale wrinkles and pickling properties Since it leads to deterioration, the upper limit of the stay time t at T1 to 650 ° C. is preferably 20 seconds or less.

上記の冷却後は、T2超かつ300℃超の温度で巻取を行う。T2は下記式(6)で定義される温度であり、耐摩耗性に悪影響を及ぼす硬い第2相が生成しはじめる温度に相当する。
T2(℃)=600−240×C×t−35×(Mn+Cu/2+Ni/2+Cr/2+Mo/2) ・ ・ ・ 式(6)
なお、上記式(5)および(6)に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
After the above cooling, winding is performed at a temperature exceeding T2 and exceeding 300 ° C. T2 is a temperature defined by the following formula (6), and corresponds to a temperature at which a hard second phase that adversely affects wear resistance starts to be generated.
T2 (° C.) = 600−240 × C × t−35 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) Equation (6)
In addition, the component element shown to said Formula (5) and (6) is the mass% of the element contained in steel, and the element which is not contained shall be 0%.

巻取温度がT2以下であると、第2相が硬くなり、耐摩耗性や成形性(特に穴広げ比)が劣化する。また、添加元素や滞在時間tによらず、300℃以下になると第2相が極度に硬くなり、耐摩耗性や成形性(特に穴広げ比)が劣化する。そのため、巻取温度はT2超かつ300℃超とする。好ましくは、T2+100℃、より好ましくはT2+150℃を巻取温度の下限とする。一方、650℃を越えると、スケ−ルの厚みが厚くなり、スケ−ル疵の発生や酸洗性の劣化につながるため、好ましくは巻取温度の上限は650℃以下とする。   When the coiling temperature is T2 or less, the second phase becomes hard, and the wear resistance and formability (particularly the hole expansion ratio) deteriorate. In addition, regardless of the additive element and the residence time t, when the temperature is 300 ° C. or lower, the second phase becomes extremely hard, and wear resistance and formability (particularly, hole expansion ratio) deteriorate. For this reason, the coiling temperature is over T2 and over 300 ° C. Preferably, T2 + 100 ° C., more preferably T2 + 150 ° C. is set as the lower limit of the coiling temperature. On the other hand, if the temperature exceeds 650 ° C., the thickness of the scale increases, leading to generation of scale wrinkles and deterioration of pickling properties. Therefore, the upper limit of the coiling temperature is preferably set to 650 ° C. or less.

表1−1、表1−2に示す成分組成を有する鋼スラブを、表2に示す種々の条件で処理し、3.40mm厚の熱延鋼板とした。得られた熱延鋼板の組織、耐摩耗性、成形性を評価した結果を表3−1、表3−2に示す。   Steel slabs having the component compositions shown in Table 1-1 and Table 1-2 were processed under various conditions shown in Table 2 to obtain hot rolled steel sheets having a thickness of 3.40 mm. The results of evaluating the structure, wear resistance, and formability of the obtained hot-rolled steel sheet are shown in Tables 3-1 and 3-2.

Figure 0006281284
Figure 0006281284

Figure 0006281284
Figure 0006281284

Figure 0006281284
Figure 0006281284

Figure 0006281284
Figure 0006281284

Figure 0006281284
Figure 0006281284

組織の評価は前述の段落0041〜0044に記載の方法による。   The tissue is evaluated by the method described in paragraphs 0041 to 0044 above.

耐摩耗性は次に述べる摩耗試験で評価した。熱延鋼板にSCr420浸炭材(HRC≧58)を面圧150MPaで接触させ(接触面積2mm×10mm)、±1mmのストロ−クで接触面積の長手方向(10mmの方向)に所謂ATF(オートマチックトランスミッションフル−ド:自動変速機油)中で摺動させることで摩耗を発生させ、0.4mmまで摩耗する耐久回数で評価した。実車走行での実用的な耐摩耗性を発現するためには上記方法による耐久回数で400万回以上、好ましくは500万回以上が必要である。   The wear resistance was evaluated by the wear test described below. An SCr420 carburized material (HRC ≧ 58) is brought into contact with the hot-rolled steel sheet at a contact pressure of 150 MPa (contact area 2 mm × 10 mm), and a so-called ATF (automatic transmission) is formed in the longitudinal direction (10 mm direction) of the contact area with a ± 1 mm stroke. In the fluid: automatic transmission oil), wear was generated by sliding, and the durability was evaluated to the wear number of 0.4 mm. In order to express practical wear resistance in actual vehicle running, the number of durability times by the above method is 4 million times or more, preferably 5 million times or more.

成形性は熱間圧延方向に直交する方向(C方向)から採取したJIS−5引張試験、打ち抜き穴広げ試験、絞り試験により評価した。   Formability was evaluated by a JIS-5 tensile test, a punched hole expansion test, and a drawing test taken from a direction (C direction) orthogonal to the hot rolling direction.

JIS−5引張試験ではTS、一様伸びを指標とした。前述のように一様伸びは12%以上が必要である。   In the JIS-5 tensile test, TS and uniform elongation were used as indices. As described above, the uniform elongation needs to be 12% or more.

打ち抜き穴広げ試験は初期穴d0=20mmφをクリアランス12.5%で打ち抜き、頂角30度の円錐ポンチで拡径し、端面に生じた亀裂が板厚を貫通した時点の穴径dとの比であるd/d0(穴広げ比)を指標とした。前述のようにd/d0(穴広げ比)は1.25以上が必要である。   In the punching hole expansion test, the initial hole d0 = 20 mmφ is punched with a clearance of 12.5%, the diameter is expanded with a conical punch with a vertex angle of 30 degrees, and the ratio to the hole diameter d when a crack generated in the end surface penetrates the plate thickness. D / d0 (hole expansion ratio) as an index. As described above, d / d0 (hole expansion ratio) needs to be 1.25 or more.

絞り試験はブランク(厚さ3.40mm、φ238)を肩R40mmの円筒ポンチ(円筒径146.5mm)を用いて、カップ状にクリアランス3.67mmで絞り抜いた際のカジリ有無を指標とした。カジリにより剥離した鉄粉を目視確認できる場合をカジリ有とした。   In the drawing test, the presence or absence of galling was used as an index when a blank (thickness 3.40 mm, φ238) was drawn out with a clearance of 3.67 mm using a cylindrical punch (cylindrical diameter 146.5 mm) with a shoulder R40 mm. The case where the iron powder peeled off by galling can be visually confirmed was regarded as galling.

本発明に従い得られた発明例、および参考例(A鋼、B鋼、C鋼、D鋼−1、E鋼−1、F鋼、G鋼、H鋼、I鋼、J鋼−1、K鋼、Q鋼、S鋼、T鋼、U鋼、V鋼、W鋼、X鋼、Y鋼、Z鋼、AA鋼、AB鋼、AC鋼)は優れた耐摩耗性(耐久回数≧400万回)と成形性(一様伸び≧12%、穴広げ比≧1.25、絞り試験でのカジリ無し)を両立している。 Invention examples obtained according to the present invention, and reference examples (A steel, B steel, C steel, D steel-1, E steel-1, F steel, G steel, H steel, I steel, J steel-1, K Steel, Q steel, S steel, T steel, U steel, V steel, W steel, X steel, Y steel, Z steel, AA steel, AB steel, AC steel) have excellent wear resistance (durability times ≧ 4 million) Times) and formability (uniform elongation ≧ 12%, hole expansion ratio ≧ 1.25, no galling in the drawing test).

一方、比較例(D鋼−2、E鋼−2、E鋼−3、J鋼−2、L鋼、M鋼、N鋼、O鋼、P鋼、R鋼)はいずれも、本発明の適正範囲を外れているため、耐摩耗性と成形性が劣化している。   On the other hand, the comparative examples (D steel-2, E steel-2, E steel-3, J steel-2, L steel, M steel, N steel, O steel, P steel, R steel) are all of the present invention. Since it is out of the proper range, wear resistance and formability are deteriorated.

D鋼−2は本発明の添加元素の要件を満たすものの、T1〜650℃における滞在時間tが5秒未満であるため、フェライト分率Vfが0.65未満となり、耐摩耗性、成形性(一様伸び、穴広げ比)のいずれも劣化しており、その影響はD鋼−1と対比して明らかである。   Although D steel-2 satisfies the requirements of the additive element of the present invention, since the residence time t at T1 to 650 ° C. is less than 5 seconds, the ferrite fraction Vf is less than 0.65, and wear resistance and formability ( Both the uniform elongation and the hole expansion ratio) are deteriorated, and the influence is obvious in comparison with D steel-1.

E鋼−2は本発明の添加元素の要件を満たすものの、仕上げ圧延終了温度がT1+50℃未満のため1/4厚部板面に平行な{211}面、{111}面、{100}面、{110面}の反射X線強度比が1.9以上となり、成形時にカジリが発生し、成形性が劣化しており、その影響はE鋼−1と対比して明らかである。   Although Steel E-2 satisfies the requirements for the additive element of the present invention, since the finish rolling finish temperature is less than T1 + 50 ° C., the {211} plane, {111} plane, {100} plane parallel to the 1/4 thick plate surface , {110 plane} has a reflection X-ray intensity ratio of 1.9 or more, galling occurs at the time of molding, and the formability is deteriorated, and the influence is obvious in comparison with E steel-1.

E鋼−3は本発明の添加元素の要件を満たすものの、仕上げ圧延終了温度〜T1の平均冷却速度が60℃/秒未満のため1/4厚部板面に平行な{211}面、{111}面、{100}面、{110面}の反射X線強度比が1.9以上となり、成形時にカジリが発生し、成形性が劣化しており、その影響はE鋼−1と対比して明らかである。   Although steel E-3 satisfies the requirements of the additive element of the present invention, the {211} plane parallel to the ¼ thick plate surface because the average cooling rate from the finish rolling finish temperature to T1 is less than 60 ° C./second, { 111} face, {100} face, and {110 face} have a reflection X-ray intensity ratio of 1.9 or more, galling occurs during forming, and formability deteriorates. It is clear.

J鋼−2は本発明の添加元素の要件を満たすものの、巻取温度がT2未満のため、第2相が硬くなりすぎ、耐摩耗性と成形性(穴広げ比)が劣化しており、その影響はJ鋼−1と対比して明らかである。   Although Steel J-2 satisfies the requirements for the additive element of the present invention, because the coiling temperature is less than T2, the second phase becomes too hard, and wear resistance and formability (hole expansion ratio) are deteriorated. The effect is clear in comparison with J Steel-1.

L鋼はC、Si、P、S、N、Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)、第2相分率および第2相硬さが本発明の要件を満たしていないため、耐摩耗性、成形性(一様伸び、穴広げ比)のいずれも劣化している。   L steel is C, Si, P, S, N, Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2), second phase fraction and second phase hardness do not meet the requirements of the present invention Both wear resistance and formability (uniform elongation, hole expansion ratio) are deteriorated.

M鋼はSi、Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)が本発明の要件を満たしていないため、耐摩耗性が劣化している。   In M steel, since Si, Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) does not satisfy the requirements of the present invention, the wear resistance is deteriorated.

N鋼はSi+0.525×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)が本発明の要件を満たしていないため、成形性において、一様伸び、穴広げ比、絞り試験でのカジリ性が劣化している。   In N steel, Si + 0.525 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) does not satisfy the requirements of the present invention, so in the formability, uniform elongation, hole expansion ratio, and squeezing property in the drawing test deteriorate. ing.

O鋼はSi、Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)が本発明の要件を満たしていないため、耐摩耗性が劣化している。   Since O, Si, Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) does not satisfy the requirements of the present invention, the wear resistance is deteriorated.

P鋼はSi、Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)が本発明の要件を満たしていないため、耐摩耗性が劣化している。   P steel has deteriorated wear resistance because Si, Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) does not satisfy the requirements of the present invention.

R鋼はSi+0.525×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)が本発明の要件を満たしていないため、成形性において、一様伸び、穴広げ比、絞り試験でのカジリ性が劣化している。   As for R steel, Si + 0.525 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) does not satisfy the requirements of the present invention, so in the formability, uniform elongation, hole expansion ratio, and caulking property in the drawing test deteriorate. ing.

以上の実施例により、本発明の効果(優れた耐摩耗性と成形性の両立)が確認された。   From the above examples, the effect of the present invention (excellent wear resistance and moldability) was confirmed.

本発明は成形性と耐摩耗性に優れた熱延鋼板を低コストで安定的に供給でき、コストアップを伴わずに耐摩耗性に優れる複雑な部品形状を有する自動車部品の製造に利用できる。   INDUSTRIAL APPLICABILITY The present invention can stably supply hot rolled steel sheets having excellent formability and wear resistance at a low cost, and can be used for manufacturing automobile parts having a complicated part shape with excellent wear resistance without increasing costs.

Claims (5)

質量%で、
C:0.01〜0.20%、
Si:2.2〜5%、
Al:0.001〜2%、
P:0.1%以下、
S:0.01%以下、
N:0.010%以下
を含有し、さらにMn、Cu、Ni、Cr、Moの1種または2種以上を下記式(1)〜(3)を満たすように含有し、残部がFeおよび不可避的不純物から成る熱延鋼板であって、該熱延鋼板の組織がフェライト分率Vf=0.65〜0.98、第2相分率V2=0.02〜0.35、フェライト分率Vf+第2相分率V2=1、第2相のマイクロビッカース硬さH2≦400、更に、該熱延鋼板の1/4厚部で板面に平行な{211}面、{111}面、{100}面、{110}面の反射X線強度比がいずれも1.9未満であることを特徴とする成形性に優れた耐摩耗用熱延鋼板。
Mn+Cu/2+Ni/2+Cr/2+Mo/2 : 0.3〜5%
・ ・ ・ 式(1)
Si+0.024×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.48
・ ・ ・ 式(2)
Si+0.525×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≦5.31
・ ・ ・ 式(3)
上記式中に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
% By mass
C: 0.01-0.20%
Si: 2.2 ~5%,
Al: 0.001-2%,
P: 0.1% or less,
S: 0.01% or less,
N: not more than 0.010%, further containing one or more of Mn, Cu, Ni, Cr, Mo so as to satisfy the following formulas (1) to (3), the balance being Fe and inevitable A hot-rolled steel plate made of mechanical impurities, the structure of the hot-rolled steel plate having a ferrite fraction Vf = 0.65 to 0.98, a second phase fraction V2 = 0.02 to 0.35, and a ferrite fraction Vf + Second phase fraction V2 = 1, second phase micro Vickers hardness H2 ≦ 400, and {211} plane, {111} plane parallel to the plate surface at 1/4 thickness part of the hot-rolled steel plate, { A hot-rolled steel sheet for wear resistance excellent in formability, characterized in that the reflection X-ray intensity ratios of the 100} plane and the {110} plane are both less than 1.9.
Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2: 0.3 to 5%
・ ・ ・ Formula (1)
Si + 0.024 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.48
・ ・ ・ Formula (2)
Si + 0.525 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≦ 5.31
・ ・ ・ Formula (3)
The component element shown in the above formula is the mass% of the element contained in the steel, and the element not contained is 0%.
更に、質量%で、下記式(4)を満たすことを特徴とする請求項1に記載の成形性に優れた耐摩耗用熱延鋼板。
Si/(Mn+Cu/2+Ni/2+Cr/2+Mo/2)≧1.0
・ ・ ・ 式(4)
上記式中に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
Furthermore, the hot-rolled steel sheet for wear resistance having excellent formability according to claim 1, wherein the following formula (4) is satisfied by mass%.
Si / (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) ≧ 1.0
Formula (4)
The component element shown in the above formula is the mass% of the element contained in the steel, and the element not contained is 0%.
更に、質量%で、
Nb:0.001〜0.3%、
V :0.001〜0.3%、
Ti:0.001〜0.3%、
B :0.0001〜0.005%
のいずれか1種または2種以上を含有することを特徴とする請求項1または2に記載の成形性に優れた耐摩耗用熱延鋼板。
Furthermore, in mass%,
Nb: 0.001 to 0.3%,
V: 0.001-0.3%
Ti: 0.001 to 0.3%,
B: 0.0001 to 0.005%
The hot-rolled steel sheet for wear resistance having excellent formability according to claim 1, wherein the hot-rolled steel sheet is excellent in formability.
更に、質量%で、
Ca :0.0001〜0.01%、
REM:0.0003〜0.03%
のいずれか1種または2種を含有することを特徴とする請求項1〜3のいずれか1項に記載の成形性に優れた耐摩耗用熱延鋼板。
Furthermore, in mass%,
Ca: 0.0001 to 0.01%,
REM: 0.0003 to 0.03%
Any one or hot-rolled steel sheet for wear excellent in formability according to any one of claims 1 to 3, characterized in that it contains two.
請求項1〜4のいずれか1項に記載の成分を有する鋼を加熱し、粗圧延、仕上げ圧延、冷却、巻取を行う請求項1〜4のいずれか1項に記載の熱延鋼板の製造方法であって、仕上げ圧延終了温度をT1+50℃以上とし、仕上げ圧延終了温度〜T1の平均冷却速度を60℃/秒以上、T1〜650℃における滞在時間tを5秒以上、巻取温度をT2超かつ300℃超とすることを特徴とする成形性に優れた耐摩耗用熱延鋼板の製造方法。
ここで、T1(℃)は下記式(5)、T2(℃)は下記式(6)に示す温度である。
T1(℃)=905−320×C+30×(Si+Al)−85×(Mn+Cu/2+Ni/2+Cr/2+Mo/2)−17000×B ・ ・ ・ 式(5)
T2(℃)=600−240×C×t−35×(Mn+Cu/2+Ni/2+Cr/2+Mo/2) ・ ・ ・ 式(6)
上記式中に示す成分元素は鋼中に含有されている元素の質量%であって、含有されていない元素は0%とする。
Heating the steel having the component according to any one of claims 1 to 4, rough rolling, finish rolling, cooling, hot-rolled steel sheet according to claim 1 for performing winding In the manufacturing method, the finish rolling end temperature is set to T1 + 50 ° C. or more, the average cooling rate of finish rolling end temperature to T1 is 60 ° C./second or more, the residence time t at T1 to 650 ° C. is 5 seconds or more, and the winding temperature is A method for producing a wear-resistant hot-rolled steel sheet having excellent formability, characterized by being over T2 and over 300 ° C.
Here, T1 (° C.) is the temperature shown in the following formula (5), and T2 (° C.) is the temperature shown in the following formula (6).
T1 (° C.) = 905−320 × C + 30 × (Si + Al) −85 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) −17000 × B Formula (5)
T2 (° C.) = 600−240 × C × t−35 × (Mn + Cu / 2 + Ni / 2 + Cr / 2 + Mo / 2) Equation (6)
The component element shown in the above formula is the mass% of the element contained in the steel, and the element not contained is 0%.
JP2014000477A 2014-01-06 2014-01-06 Abrasion-resistant steel plate with excellent formability and method for producing the same Active JP6281284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000477A JP6281284B2 (en) 2014-01-06 2014-01-06 Abrasion-resistant steel plate with excellent formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000477A JP6281284B2 (en) 2014-01-06 2014-01-06 Abrasion-resistant steel plate with excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015129320A JP2015129320A (en) 2015-07-16
JP6281284B2 true JP6281284B2 (en) 2018-02-21

Family

ID=53760249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000477A Active JP6281284B2 (en) 2014-01-06 2014-01-06 Abrasion-resistant steel plate with excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP6281284B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151758A4 (en) * 2020-05-13 2023-10-18 Nippon Steel Corporation HOT STAMPED STEEL SHEET AND HOT STAMPED MOLDING
US12129534B2 (en) 2020-05-13 2024-10-29 Nippon Steel Corporation Hot-stamping formed body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161330A (en) * 1997-06-09 1999-03-05 Kawasaki Steel Corp High-strength high-workability steel plate superior in impact resistance and slidableness in machining
JP3546266B2 (en) * 1999-07-26 2004-07-21 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in workability and method for producing the same
JP5017751B2 (en) * 2001-06-06 2012-09-05 Jfeスチール株式会社 Highly ductile hot-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP4692015B2 (en) * 2004-03-30 2011-06-01 Jfeスチール株式会社 High ductility hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the same
JP4736441B2 (en) * 2004-03-31 2011-07-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151758A4 (en) * 2020-05-13 2023-10-18 Nippon Steel Corporation HOT STAMPED STEEL SHEET AND HOT STAMPED MOLDING
US12129534B2 (en) 2020-05-13 2024-10-29 Nippon Steel Corporation Hot-stamping formed body
US12134810B2 (en) 2020-05-13 2024-11-05 Nippon Steel Corporation Steel sheet for hot stamping and hot-stamping formed body

Also Published As

Publication number Publication date
JP2015129320A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
TWI429759B (en) High strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
JP5206244B2 (en) Cold rolled steel sheet
JP6829265B2 (en) High-strength alloyed galvanized steel sheet and its manufacturing method
JP6816738B2 (en) Steel wire manufacturing method
CN109642264A (en) High-strength thin-walled hollow stabilizer electric welded steel pipe and its manufacturing method
KR20180132890A (en) Steel plates, coated steel sheets and their manufacturing methods
JPWO2008044356A1 (en) High strength steel wire with excellent ductility and method for producing the same
JP2011184758A (en) High strength pressed member and method for producing the same
CN102712979B (en) High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same
KR20150105476A (en) High-strength cold-rolled steel sheet having excellent bendability
CN104114731A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
EP3396000A1 (en) Austenitic stainless steel pipe exhibiting excellent wrinkle resistance
US20160060723A1 (en) High strength hot-rolled steel sheet and method of producing the same
JP6265108B2 (en) Hot-rolled steel sheet for cold-rolled steel sheet or hot-dip galvanized steel sheet and method for producing the same
CN114438418A (en) Hot-formed member and method for manufacturing same
TWI493056B (en) A hot rolled steel sheet for nitriding with excellent fatigue strength, a cold rolled steel sheet for nitriding and the like, and an automobile part having excellent fatigue strength
WO2020039697A1 (en) High-strength steel sheet and production method therefor
KR20220060552A (en) Cold rolled steel sheet and its manufacturing method
JP6620431B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2017002333A (en) High strength steel sheet excellent in shape freezing property and manufacturing method therefor
WO2020039696A1 (en) High strength steel sheet and production method therefor
CN108779530A (en) martensitic stainless steel plate
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP2007154283A (en) High strength steel sheet having excellent formability and shape fixability
US20160032431A1 (en) Steel sheet for nitriding and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R151 Written notification of patent or utility model registration

Ref document number: 6281284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350