[go: up one dir, main page]

JP6248850B2 - Fluid sample measuring device - Google Patents

Fluid sample measuring device Download PDF

Info

Publication number
JP6248850B2
JP6248850B2 JP2014151541A JP2014151541A JP6248850B2 JP 6248850 B2 JP6248850 B2 JP 6248850B2 JP 2014151541 A JP2014151541 A JP 2014151541A JP 2014151541 A JP2014151541 A JP 2014151541A JP 6248850 B2 JP6248850 B2 JP 6248850B2
Authority
JP
Japan
Prior art keywords
fluid sample
excitation light
light
optical axis
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014151541A
Other languages
Japanese (ja)
Other versions
JP2016029342A5 (en
JP2016029342A (en
Inventor
貴秀 畠堀
貴秀 畠堀
田窪 健二
健二 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014151541A priority Critical patent/JP6248850B2/en
Publication of JP2016029342A publication Critical patent/JP2016029342A/en
Publication of JP2016029342A5 publication Critical patent/JP2016029342A5/ja
Application granted granted Critical
Publication of JP6248850B2 publication Critical patent/JP6248850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)

Description

本発明は、流体試料に励起光を照射し、該流体試料からの散乱光や発光を測定する流体試料測定装置に関する。   The present invention relates to a fluid sample measurement device that irradiates a fluid sample with excitation light and measures scattered light and luminescence from the fluid sample.

気体試料や液体試料といった流体試料に含まれる成分の特定や定量のために用いられる装置の一つにラマン分光分析装置がある。
ラマン分光測定では、試料に励起光を照射し、試料によりラマン散乱された光(ラマン散乱光)を測定してラマンスペクトルを作成する。ラマンスペクトルでは、励起光の波長よりも長波長側にストークス線、短波長側に反ストークス線が現れる。励起光の波長と、ストークス線(あるいは反ストークス線)の波長の差に対応するエネルギーは、分子の固有振動のエネルギーを反映する。そのため、このエネルギーの大きさから試料に含まれる物質を特定することができる。また、ラマン散乱スペクトルに現れるストークス線や反ストークス線の強度から、該ストークス線あるいは反ストークス線に対応する物質を定量することができる。
One of the apparatuses used for specifying and quantifying components contained in a fluid sample such as a gas sample and a liquid sample is a Raman spectroscopic analyzer.
In the Raman spectroscopic measurement, a sample is irradiated with excitation light, and the Raman spectrum is created by measuring the Raman scattered light (Raman scattered light) by the sample. In the Raman spectrum, a Stokes line appears on the longer wavelength side than the wavelength of the excitation light, and an anti-Stokes line appears on the shorter wavelength side. The energy corresponding to the difference between the wavelength of the excitation light and the wavelength of the Stokes line (or anti-Stokes line) reflects the energy of the natural vibration of the molecule. Therefore, the substance contained in the sample can be specified from the magnitude of this energy. Further, the substance corresponding to the Stokes line or the anti-Stokes line can be quantified from the intensity of the Stokes line or the anti-Stokes line appearing in the Raman scattering spectrum.

特許文献1には、発電用ガスタービンに供給される燃料ガスが流れる配管(本管)の途中に設けられた分岐管内を流れる燃料ガス(被測定ガス)に励起光を照射し、被測定ガスからのラマン散乱光を測定して燃料ガス中の各成分の濃度を測定する装置が記載されている。この装置では、分岐管の壁面に設けられた窓部を通じて被測定ガスの流れに直交する方向に励起光を入射し、被測定ガスによって散乱されたラマン散乱光を測定する。このとき、被測定ガスを透過して分岐管の壁面で反射した光を検出してしまうとラマンスペクトルのノイズになってしまう。そこで、レーザ光の光路上に位置する分岐管の壁面に、内部に凹凸が形成された空間を有するレーザ光封じ込め手段を配置し、被測定ガスを透過した励起光をその内部で拡散及び吸収することによってノイズを低減している。   In Patent Document 1, the gas to be measured is irradiated with excitation light on the fuel gas (measured gas) flowing in the branch pipe provided in the middle of the pipe (main pipe) through which the fuel gas supplied to the power generation gas turbine flows. Describes an apparatus for measuring the concentration of each component in a fuel gas by measuring the Raman scattered light from the fuel gas. In this apparatus, excitation light is incident in a direction orthogonal to the flow of the gas to be measured through a window provided on the wall surface of the branch pipe, and Raman scattered light scattered by the gas to be measured is measured. At this time, if light that passes through the gas to be measured and is reflected by the wall surface of the branch pipe is detected, noise in the Raman spectrum is generated. Therefore, laser light containment means having a space with irregularities formed inside is arranged on the wall surface of the branch pipe located on the optical path of the laser light, and the excitation light transmitted through the gas to be measured is diffused and absorbed therein. This reduces noise.

特許第4160866号公報Japanese Patent No. 4160866

本管から分岐管に取り込んだガスを測定する装置では、分岐管の径が大きくなるほど、本管から分岐管に取り込まれた被測定ガスが測定位置に到達するまでに時間がかかり、測定のリアルタイム性が悪くなる。そのため、通常は分岐管の径を、測定光学系を配置可能な範囲でできるだけ小さくして測定のリアルタイム性を高めている。しかし、上述のように分岐管の壁面にレーザ光を内部に封じ込めるために十分な容積を持った空間を設けると、分岐管内部のガス流通空間の大きさに対してレーザ光封じ込め手段の内部空間の割合が大きくなり、分岐管を流れる被測定ガスが散乱防止手段の内部に滞留しやすくなる。すると、本管から分岐管に取り込まれてすぐに測定位置に到達したガスと、本管から分岐管に取り込まれた後に散乱防止手段の内部で滞留したガスが測定位置に混在して測定の正確性が失われてしまう。
ここでは本管から分岐管に取り込んだ気体試料からのラマン散乱光を測定する場合を例に挙げて説明したが、本管を流れる気体試料をそのまま測定する装置において本管の壁面に散乱防止手段を設けた場合にも、同様の問題が生じる。また、試料が液体である場合や、試料からの発光を測定する場合などにも同様の問題が生じる。
In a device that measures gas taken from the main pipe into the branch pipe, the larger the branch pipe diameter, the longer it takes for the gas to be measured taken from the main pipe to reach the branch pipe. Sexuality gets worse. For this reason, the diameter of the branch pipe is usually made as small as possible within the range in which the measurement optical system can be arranged to improve the real-time property of the measurement. However, if a space having a sufficient volume for confining the laser beam inside is provided on the wall surface of the branch pipe as described above, the internal space of the laser beam containment means with respect to the size of the gas circulation space inside the branch pipe And the gas to be measured flowing through the branch pipe tends to stay inside the scattering preventing means. As a result, the gas that reaches the measurement position immediately after being taken into the branch pipe from the main pipe and the gas that stays inside the anti-scattering means after being taken into the branch pipe from the main pipe are mixed in the measurement position and the measurement accuracy is increased. Sex is lost.
Here, the case of measuring Raman scattered light from a gas sample taken from a main pipe into a branch pipe has been described as an example, but in an apparatus for measuring a gas sample flowing through the main pipe as it is, scattering prevention means is provided on the wall surface of the main pipe. The same problem arises when the is provided. The same problem occurs when the sample is a liquid or when light emission from the sample is measured.

本発明が解決しようとする課題は、流体試料に励起光を照射して該流体試料からの散乱光や発光を測定する流体試料測定装置において、測定の正確性を損なうことなくノイズ光を低減することである。   The problem to be solved by the present invention is to reduce noise light without impairing the accuracy of measurement in a fluid sample measurement device that irradiates a fluid sample with excitation light and measures scattered light and luminescence from the fluid sample. That is.

上記課題を解決するために成された本発明に係る流体試料測定装置は、
a) 内部を流体試料が流通する筒状部と、
b) 前記筒状部の側壁面に設けられた窓部と、
c) 前記窓部を通じて前記筒状部内部の測定点に励起光を照射する励起光学系と、
d) 前記測定点における流体試料からの測定光を前記窓部を通じて検出する検出光学系と、
e) 前記筒状部の側壁面の、前記励起光の光軸上の位置を含む領域に設けられた、該励起光の光軸と非平行な法線を持つ反射面を有する反射部と、
を備えることを特徴とする。
In order to solve the above problems, a fluid sample measuring device according to the present invention comprises:
a) a cylindrical part through which a fluid sample flows;
b) a window portion provided on the side wall surface of the cylindrical portion;
c) an excitation optical system that irradiates the measurement point inside the cylindrical portion with excitation light through the window;
d) a detection optical system for detecting measurement light from the fluid sample at the measurement point through the window;
e) a reflecting portion having a reflecting surface having a normal line that is non-parallel to the optical axis of the excitation light, provided in a region including a position on the optical axis of the excitation light on the side wall surface of the cylindrical portion;
It is characterized by providing.

上記筒状部は、内部を流体試料が流通可能な形状であればよく、円筒状や角筒状のものを用いることができる。
本発明に係る流体試料測定装置は、例えば、励起光の光軸を筒状部の側壁面に垂直な方向からずらすように、筒状部と励起光学系の相対的な位置関係を設定することにより構成することができる。この場合には、筒状部の側壁そのものが反射面となる。
また、励起光の光軸を筒状部の側壁面に対して垂直な方向とし、励起光が照射される側壁面の位置に、励起光の光軸と非平行な法線を持つ反射面を有する部材を取り付けることによって構成することもできる。
The cylindrical portion may have any shape as long as the fluid sample can flow therethrough, and a cylindrical or rectangular tube can be used.
In the fluid sample measuring device according to the present invention, for example, the relative positional relationship between the cylindrical portion and the excitation optical system is set so that the optical axis of the excitation light is shifted from the direction perpendicular to the side wall surface of the cylindrical portion. Can be configured. In this case, the side wall of the cylindrical portion itself becomes the reflecting surface.
In addition, the optical axis of the excitation light is set in a direction perpendicular to the side wall surface of the cylindrical portion, and a reflection surface having a normal line non-parallel to the optical axis of the excitation light is provided at the position of the side wall surface irradiated with the excitation light. It can also comprise by attaching the member which has.

本発明に係る流体試料測定装置では、励起光の光路上に位置する筒状部の側壁面の法線と励起光の光軸とが非平行であるため、流体試料を透過して筒状部の側壁面で鏡面反射した光は筒状部の窓部に向かわない。そのため、この反射光が窓部を通って検出光学系に導入されることがない。また、本発明に係る流体試料測定装置では、流体試料の流通空間が筒状部の内部のみであり流体試料が滞留することがないため、正確な測定を行うことができる。   In the fluid sample measuring device according to the present invention, the normal of the side wall surface of the cylindrical portion located on the optical path of the excitation light and the optical axis of the excitation light are non-parallel, so that the cylindrical portion is transmitted through the fluid sample. The light that is specularly reflected by the side wall surface of the tube does not go to the window portion of the cylindrical portion. Therefore, this reflected light is not introduced into the detection optical system through the window. Moreover, in the fluid sample measuring device according to the present invention, the flow space of the fluid sample is only inside the cylindrical portion and the fluid sample does not stay, so that accurate measurement can be performed.

本発明に係る流体試料測定装置では、筒状部の壁面で鏡面反射した励起光が検出光学系に導入されることを防ぐことができる。しかし、筒状部の壁面で拡散反射する励起光の割合が高い場合には、拡散反射した励起光の一部が窓部を通って検出光学系に導入されてしまう。   In the fluid sample measurement device according to the present invention, it is possible to prevent the excitation light that is specularly reflected by the wall surface of the cylindrical portion from being introduced into the detection optical system. However, when the ratio of the excitation light diffusely reflected by the wall surface of the cylindrical portion is high, a part of the excitation light diffused and reflected is introduced into the detection optical system through the window portion.

そこで、前記反射面には黒色めっき処理が施されていることが好ましい。これにより、光吸収率を高め、拡散反射する励起光の光量を抑えることができる。
あるいは、前記反射面には平滑化処理が施されていることが好ましい。これにより、窓部が位置しない方向に励起光をより多く鏡面反射させてノイズ光を抑えることができる。平滑化処理された反射面とは、例えば、機械加工によって実現可能であるRa(算術平均粗さ)≦3.2μmの反射面である。
Therefore, it is preferable that the reflective surface is black-plated. Thereby, a light absorptivity can be raised and the light quantity of the excitation light which diffusely reflects can be suppressed.
Or it is preferable that the said reflective surface is smoothed. Thereby, more excitation light can be specularly reflected in a direction in which the window portion is not positioned, and noise light can be suppressed. The smoothing processed reflecting surface, for example, a reflecting surface of which it can be realized by machining Ra (arithmetic mean roughness) ≦ 3.2μ m.

また、機械加工等によって反射面に平滑化処理を施すと、通常、直線状や円弧状の加工痕が形成される。本発明に係る流体試料測定装置では、このような加工痕の方向が、反射面に入射する励起光の光軸及び反射面で鏡面反射する励起光の光軸を含む面(励起光の入射面)と平行であることが好ましい。加工痕が延びる方向と直交する方向には微細な凹凸が存在し、この凹凸が並ぶ方向に拡散反射した励起光が拡がる。上記のように、加工痕の方向と励起光の入射面を平行にすると、拡散反射した励起光が拡がる方向が励起光の入射面に垂直な方向になり、窓部には入射しない。そのため、窓部に向かう励起光の光量をより一層抑えることができる。なお、加工痕が円弧状である場合には、励起光の照射位置における該円弧の接線を上記の入射面と平行にする。   Further, when the reflecting surface is subjected to a smoothing process by machining or the like, a linear or arcuate processing mark is usually formed. In the fluid sample measurement device according to the present invention, the direction of such a processing mark includes the optical axis of the excitation light incident on the reflection surface and the surface including the optical axis of the excitation light specularly reflected by the reflection surface (excitation surface of the excitation light). ) In parallel. There are fine irregularities in the direction perpendicular to the direction in which the processing marks extend, and the excitation light diffused and reflected spreads in the direction in which the irregularities are arranged. As described above, when the direction of the processing mark and the incident surface of the excitation light are made parallel, the direction in which the diffused and reflected excitation light spreads becomes the direction perpendicular to the incident surface of the excitation light and does not enter the window portion. Therefore, the amount of excitation light directed toward the window can be further suppressed. When the processing mark is arcuate, the arc tangent at the excitation light irradiation position is made parallel to the incident surface.

本発明に係る流体試料測定装置では、流体試料を透過して筒状部の側壁面で鏡面反射した光は筒状部の窓部には向かわないため、この反射光が検出光学系に導入されることがない。また、本発明に係る流体試料測定装置では、流体試料が滞留することがないため正確に流体試料を測定することができる。   In the fluid sample measuring device according to the present invention, the light that passes through the fluid sample and is specularly reflected by the side wall surface of the cylindrical portion does not go to the window portion of the cylindrical portion, so this reflected light is introduced into the detection optical system. There is nothing to do. Moreover, in the fluid sample measuring device according to the present invention, the fluid sample does not stay, so that the fluid sample can be measured accurately.

本発明に係る流体試料測定装置の一実施例であるガス成分測定装置の構成を説明する図。The figure explaining the structure of the gas component measuring device which is one Example of the fluid sample measuring device which concerns on this invention. 反射面における励起光の拡散反射の方向を説明する図。The figure explaining the direction of the diffuse reflection of the excitation light in a reflective surface. 別の実施例であるガス成分測定装置の構成を説明する図。The figure explaining the structure of the gas component measuring apparatus which is another Example. さらに別の実施例であるガス成分測定装置の構成を説明する図。The figure explaining the structure of the gas component measuring apparatus which is another Example.

以下、本発明に係る流体試料測定装置の実施例を説明する。
本実施例の流体試料測定装置は、図1に示すように、被測定ガスが流通する本管11に接続された分岐管12に設けられ、該分岐管12を流れる被測定ガスを測定するガス成分測定装置である。図1では、ガス成分測定装置の構成各部を図示するために、本管11の内径と分岐管12の内径を同程度で記載しているが、実際には、分岐管12の内径は本管11の内径よりも十分に小さく設定されており、本管11を流れる被測定ガスのごく一部がサンプリングされて分岐管12に導入される。
Hereinafter, embodiments of the fluid sample measuring device according to the present invention will be described.
As shown in FIG. 1, the fluid sample measuring device of this embodiment is provided in a branch pipe 12 connected to a main pipe 11 through which a gas to be measured flows, and a gas for measuring the gas to be measured flowing through the branch pipe 12. It is a component measuring device. In FIG. 1, the inner diameter of the main pipe 11 and the inner diameter of the branch pipe 12 are shown to be approximately the same in order to illustrate the constituent parts of the gas component measuring apparatus. 11 is set to be sufficiently smaller than the inner diameter of 11, and a very small part of the gas to be measured flowing through the main pipe 11 is sampled and introduced into the branch pipe 12.

本実施例のガス成分測定装置は、被測定ガスに照射する励起光を発するレーザ光源13、レーザ光源13から発せられた光を分岐管12の側壁面に設けられた窓部15の方向に反射するミラー14、分岐管12の側壁面の、励起光の光軸上の位置を含む領域に配置された反射部材16、分岐管12内部の測定点Mにおける試料からのラマン散乱光のうち、窓部15から出射した光を集光するレンズを含む受光光学系17、及び受光光学系17により集光された光を検出する検出器18を備えている。また、レーザ光源13から発せられた光を測定点Mに集光させるためのレンズ等を含む照射光学系(図示なし)が適宜に用いられる。レーザ光源13及び照射光学系は本発明の励起光学系に相当し、受光光学系17及び検出器18が本発明の検出光学系に相当する。   The gas component measuring apparatus according to the present embodiment reflects a laser light source 13 that emits excitation light to irradiate a gas to be measured, and light emitted from the laser light source 13 in the direction of the window 15 provided on the side wall surface of the branch pipe 12. Of the Raman scattered light from the sample at the measurement point M inside the reflecting member 16 and the branch tube 12 disposed in the region including the position on the optical axis of the excitation light on the side wall surface of the mirror 14 and the branch tube 12, the window A light receiving optical system 17 including a lens that collects light emitted from the unit 15 and a detector 18 that detects light collected by the light receiving optical system 17 are provided. In addition, an irradiation optical system (not shown) including a lens or the like for condensing the light emitted from the laser light source 13 at the measurement point M is appropriately used. The laser light source 13 and the irradiation optical system correspond to the excitation optical system of the present invention, and the light receiving optical system 17 and the detector 18 correspond to the detection optical system of the present invention.

反射部材16の反射面は、励起光の光軸と非平行な法線を持つ向きに設定されている。これにより、被測定ガスを透過して分岐管2の側壁面に達した光(透過光)が窓部15以外の方向に鏡面反射され、窓部15及び受光光学系17を通って検出器18に入射することを防いでいる。   The reflecting surface of the reflecting member 16 is set in a direction having a normal line that is not parallel to the optical axis of the excitation light. Thereby, the light (transmitted light) that has passed through the gas to be measured and reached the side wall surface of the branch pipe 2 is specularly reflected in the direction other than the window portion 15, passes through the window portion 15 and the light receiving optical system 17, and is detected by the detector 18. Is prevented from entering.

本実施例の反射部材16の反射面は、透過光を被測定ガスが流れる下流側に鏡面反射するような方向に設定されている。反射面は、透過光を窓部15以外の方向に鏡面反射させる向きであればこれ以外の向きであってもよいが、反射面が上流側を向いているとガスに含まれるダストによって反射面の汚染や損傷が起き、ノイズ光が増加してしまう可能性がある。従って、反射面が励起光を被測定ガスが流通する下流側に反射するように設定することが望ましい。   The reflecting surface of the reflecting member 16 of the present embodiment is set in such a direction that the transmitted light is specularly reflected to the downstream side where the gas to be measured flows. The reflection surface may be in any other direction as long as the transmitted light is specularly reflected in a direction other than the window portion 15, but if the reflection surface faces the upstream side, the reflection surface is caused by dust contained in the gas. Contamination and damage may occur and noise light may increase. Therefore, it is desirable that the reflecting surface be set so that the excitation light reflects the downstream side where the gas to be measured flows.

上記構成を採ることにより、反射面で鏡面反射した透過光が検出器に入射することを防ぐことができる。しかし、反射面で拡散反射する光は様々な方向に向かうため、拡散反射光の光量が多くなると、拡散反射光の一部が窓部15及び受光光学系17を通じて検出器18に入射してしまう。そこで、本実施例では、反射面を機械加工により平滑化している
。これにより、透過光をより多く鏡面反射させ拡散反射光の光量を抑えている。また、反射面に黒色めっき処理を施して光吸収率を高め、拡散反射光の光量を抑えている。
By adopting the above configuration, it is possible to prevent the transmitted light specularly reflected by the reflecting surface from entering the detector. However, since the light diffusely reflected on the reflecting surface travels in various directions, when the amount of diffuse reflected light increases, a part of the diffuse reflected light enters the detector 18 through the window 15 and the light receiving optical system 17. . Therefore, in this embodiment, the reflecting surface is smoothed by machining. Thereby, more transmitted light is specularly reflected to suppress the amount of diffusely reflected light. In addition, the reflective surface is subjected to black plating treatment to increase the light absorption rate and suppress the amount of diffuse reflected light.

反射面に機械加工を施して平滑化すると、通常、反射面に直線状や円弧状の加工痕が形成される。本実施例の反射面には直線状の加工痕が形成されている。
図2(a)に示すように、加工痕が延びる方向(以下、「加工痕の方向」という。)と、反射面に入射する励起光の光軸及び反射面で鏡面反射する励起光の光軸を含む面(以下、「励起光の入射面」という。)が平行である場合、加工痕間の微細な凹凸が存在する方向が励起光の入射面に垂直な方向になる。拡散反射した励起光はこの凹凸が存在する方向に拡がるが、この光は窓部15に向かわない。一方、図2(b)に示すように、加工痕の方向と励起光の入射面が垂直である場合、反射面で拡散反射した励起光は該励起光の入射面の面内方向に拡がり、その一部が窓部15に到達してしまう。そのため、本実施例では、反射面に形成された加工痕の方向が励起光の入射面と平行になるように反射部材16に配置している。なお、加工痕が円弧状である場合には、励起光の照射位置における該円弧の接線が上記の入射面と平行になるように反射部材を配置すればよい。
When the reflecting surface is smoothed by machining, usually, a linear or arcuate processing mark is formed on the reflecting surface. A linear processing mark is formed on the reflecting surface of the present embodiment.
As shown in FIG. 2 (a), the direction in which the processing mark extends (hereinafter referred to as "the direction of the processing mark"), the optical axis of the excitation light incident on the reflection surface, and the excitation light light that is specularly reflected by the reflection surface. When the plane including the axis (hereinafter, referred to as “excitation light incident surface”) is parallel, the direction in which fine irregularities exist between the processing marks is the direction perpendicular to the excitation light incident surface. Although the diffusely reflected excitation light spreads in the direction in which the unevenness exists, this light does not go to the window portion 15. On the other hand, as shown in FIG. 2B, when the direction of the processing mark and the incident surface of the excitation light are perpendicular, the excitation light diffusely reflected by the reflecting surface spreads in the in-plane direction of the incident surface of the excitation light, A part of it reaches the window 15. Therefore, in this embodiment, the processing member formed on the reflecting surface is arranged on the reflecting member 16 so that the direction of the processing mark is parallel to the incident surface of the excitation light. In the case where the processing mark has an arc shape, the reflecting member may be arranged so that the arc tangent at the excitation light irradiation position is parallel to the incident surface.

なお、面精度やめっき処理の程度は、求められる測定精度に応じて適宜に設定することができる。従って、それほど高い測定精度が求められない場合には、例えば、機械加工のみを施して面精度をRa≦3.2μmに抑えた低コストの反射面を用いることもできる。一方、極めて高い測定精度が求められる場合には、分岐管12の測定点M近傍の領域では、内壁面にも黒色めっき処理等の拡散反射防止処理を施すことが好ましい。これにより、透過光が分岐管12の壁面で拡散反射して検出部18に入射する可能性を更に低減することができる。 The surface accuracy and the degree of plating treatment can be appropriately set according to the required measurement accuracy. Therefore, when not required so much high measurement accuracy, for example, may be used a reflecting surface of the low-cost surface accuracy by performing only machining is suppressed to Ra ≦ 3.2μ m. On the other hand, when extremely high measurement accuracy is required, in the region near the measurement point M of the branch pipe 12, it is preferable to subject the inner wall surface to a diffuse antireflection treatment such as a black plating treatment. Thereby, the possibility that the transmitted light is diffusely reflected by the wall surface of the branch pipe 12 and enters the detection unit 18 can be further reduced.

図3に、本発明に係る流体試料測定装置の別の実施例であるガス成分測定装置の要部構成を示す。このガス成分測定装置も、上記同様に、光源23、ミラー24、窓部25、反射部材26、受光光学系27、及び検出器28を備えている。図1の実施例では、分岐管12の側壁面に配置した反射部材16の反射面を傾けることによって被測定ガスを透過した光(透過光)をガスの下流側に鏡面反射させていたが、この実施例では、光源23とミラー24を含む励起光学系、及び受光光学系27と検出器28を含む検出光学系に対して分岐管22を傾けることによって透過光をガスの下流側に鏡面反射させている。   FIG. 3 shows a main configuration of a gas component measuring apparatus which is another embodiment of the fluid sample measuring apparatus according to the present invention. Similarly to the above, this gas component measuring device also includes a light source 23, a mirror 24, a window 25, a reflecting member 26, a light receiving optical system 27, and a detector 28. In the embodiment of FIG. 1, the light (transmitted light) transmitted through the measurement gas is specularly reflected downstream of the gas by tilting the reflection surface of the reflection member 16 disposed on the side wall surface of the branch pipe 12. In this embodiment, the transmitted light is specularly reflected downstream of the gas by tilting the branch tube 22 with respect to the excitation optical system including the light source 23 and the mirror 24 and the detection optical system including the light receiving optical system 27 and the detector 28. I am letting.

この構成では、反射部材26の反射面を、分岐管22の側壁面に対して平行にすることができる。反射面は、透過光を窓部25以外の方向に鏡面反射するように設けられていればよいが、分岐管22の側壁面に対して平行に設定すると反射部材26の作製が容易になる。なお、本実施例の構成においても、反射部材26の反射面に適宜の表面加工処理と黒色めっき処理を施して透過光の拡散反射を抑えることが望ましい。   In this configuration, the reflecting surface of the reflecting member 26 can be parallel to the side wall surface of the branch pipe 22. The reflecting surface only needs to be provided so that the transmitted light is specularly reflected in a direction other than the window portion 25. However, if the reflecting surface is set parallel to the side wall surface of the branch tube 22, the reflecting member 26 can be easily manufactured. Also in the configuration of the present embodiment, it is desirable to suppress the diffuse reflection of transmitted light by subjecting the reflective surface of the reflective member 26 to appropriate surface processing and black plating.

図4に、本発明に係る流体試料測定装置のさらに別の実施例であるガス成分測定装置の要部構成を示す。このガス成分測定装置も、上述した2つの実施例と同様に、光源33、ミラー34、窓部35、反射部材36、受光光学系37、及び検出器38を備えている。この実施例は、反射部材36が配置される領域で分岐管32の内径が大きくなっており、反射部材36を配置しても側壁面に段差が生じないように構成されている点で上述の実施例の構成と異なる。図1及び図3により説明した実施例の構成では反射部材16、26を配置することによって分岐管12、22の側壁面に段差が生じるため、その段差となる面(流通する被測定ガスが衝突する面)に被測定ガスに含まれるダストが付着する可能性がある。ダストが付着すると、付着したダストが集まって塊が作られ、この塊が徐々に大きくなって反射面に覆い被さってしまう恐れがある。反射面に覆い被さったダストの塊に励起光が照射されると、ノイズ光が発生する。もし、ガスの測定中に、このノイズ光が取り込まれると測定に誤差が生じてしまう。これに対し、図4に示す構成では、反射部材36の位置に段差が存在しないため、被測定ガスのダストが付着することがなく、ダストに由来するノイズ光によって測定に誤差が生じる恐れがない。   FIG. 4 shows the configuration of the main part of a gas component measuring apparatus which is still another embodiment of the fluid sample measuring apparatus according to the present invention. This gas component measuring apparatus also includes a light source 33, a mirror 34, a window 35, a reflecting member 36, a light receiving optical system 37, and a detector 38, as in the two embodiments described above. In this embodiment, the inner diameter of the branch pipe 32 is increased in the region where the reflecting member 36 is disposed, and the above-described configuration is such that no step is generated on the side wall surface even when the reflecting member 36 is disposed. Different from the configuration of the embodiment. In the configuration of the embodiment described with reference to FIGS. 1 and 3, a step is generated on the side wall surfaces of the branch pipes 12 and 22 by disposing the reflecting members 16 and 26. Dust contained in the gas to be measured may adhere to the surface to be measured. When dust adheres, the adhered dust collects and a lump is formed, and this lump may gradually become large and cover the reflective surface. When excitation light is applied to a lump of dust that covers the reflective surface, noise light is generated. If this noise light is taken in during gas measurement, an error will occur in the measurement. On the other hand, in the configuration shown in FIG. 4, since there is no step at the position of the reflecting member 36, dust of the gas to be measured does not adhere, and there is no risk of errors in measurement due to noise light derived from the dust. .

上記の各実施例はいずれも一例であって、本発明の趣旨に沿って適宜に変更することができる。上記実施例は、本管11を流れる被測定ガスの一部を分岐管12に導入し、分岐管12において被測定ガスを測定するものであったが、本管11を流れる被測定ガスそのものを測定する場合にも同様の構成を採ることができる。
また、上記実施例はいずれも被測定ガスからのラマン散乱光を測定する装置としたが、測定対象試料は液体であってもよく、また、試料からの発光を測定する装置であってもよい。
さらに、上記の各実施例ではいずれも、分岐管の側壁面に、分岐管とは別の反射部材を配置したが、例えば図3に示した構成では、分岐管の側壁面そのものを反射面とすることができる。この場合には、分岐管の側壁面のうちの、反射面として使用する領域に平坦化処理やめっき加工を施すことが好ましい。
Each of the above-described embodiments is an example, and can be appropriately changed in accordance with the gist of the present invention. In the above embodiment, a part of the gas to be measured flowing through the main pipe 11 is introduced into the branch pipe 12 and the gas to be measured is measured in the branch pipe 12. The same configuration can be adopted when measuring.
Moreover, although all the above-mentioned embodiments are apparatuses for measuring Raman scattered light from the gas to be measured, the sample to be measured may be a liquid, or may be an apparatus for measuring light emission from the sample. .
Further, in each of the above embodiments, a reflecting member different from the branch pipe is disposed on the side wall surface of the branch pipe. However, for example, in the configuration shown in FIG. can do. In this case, it is preferable to perform a flattening process or a plating process on the region used as the reflecting surface in the side wall surface of the branch pipe.

11…本管
12、22、32…分岐管
13、23、33…レーザ光源
14、24、34…ミラー
15、25、35…窓部
16、26、36…反射部材
17、27、37…受光光学系
18、28、38…検出器
M…測定点
11 ... Main pipes 12, 22, 32 ... Branch pipes 13, 23, 33 ... Laser light sources 14, 24, 34 ... Mirrors 15, 25, 35 ... Window portions 16, 26, 36 ... Reflective members 17, 27, 37 ... Light reception Optical system 18, 28, 38 ... Detector M ... Measuring point

Claims (5)

a) 内部を流体試料が流通する筒状部と、
b) 前記筒状部の側壁面に設けられた窓部と、
c) 前記窓部を通じて前記筒状部内部の測定点に励起光を照射する励起光学系と、
d) 前記測定点における流体試料からの測定光を前記窓部を通じて検出する検出光学系と、
e) 前記筒状部の側壁面の、前記励起光の光軸上の位置を含む領域に設けられた、該励起光の光軸と非平行な法線を持つ反射面を有する反射部と、
を備え
前記反射面に黒色めっき処理が施されている
ことを特徴とする流体試料測定装置。
a) a cylindrical part through which a fluid sample flows;
b) a window portion provided on the side wall surface of the cylindrical portion;
c) an excitation optical system that irradiates the measurement point inside the cylindrical portion with excitation light through the window;
d) a detection optical system for detecting measurement light from the fluid sample at the measurement point through the window;
e) a reflecting portion having a reflecting surface having a normal line that is non-parallel to the optical axis of the excitation light, provided in a region including a position on the optical axis of the excitation light on the side wall surface of the cylindrical portion;
Equipped with a,
A fluid sample measuring device, wherein the reflective surface is black-plated .
前記反射面に平滑化処理が施されており、該処理により形成された加工痕の方向が、該反射面に入射する励起光の光軸及び該反射面で鏡面反射した励起光の光軸を含む面と平行であることを特徴とする請求項1に記載の流体試料測定装置。 The reflection surface is smoothed, and the direction of the processing mark formed by the processing is such that the optical axis of the excitation light incident on the reflection surface and the optical axis of the excitation light specularly reflected by the reflection surface The fluid sample measuring device according to claim 1, wherein the fluid sample measuring device is parallel to a plane containing the fluid sample. a) 内部を流体試料が流通する筒状部と、  a) a cylindrical part through which a fluid sample flows;
b) 前記筒状部の側壁面に設けられた窓部と、  b) a window portion provided on the side wall surface of the cylindrical portion;
c) 前記窓部を通じて前記筒状部内部の測定点に励起光を照射する励起光学系と、  c) an excitation optical system that irradiates the measurement point inside the cylindrical portion with excitation light through the window;
d) 前記測定点における流体試料からの測定光を前記窓部を通じて検出する検出光学系と、  d) a detection optical system for detecting measurement light from the fluid sample at the measurement point through the window;
e) 前記筒状部の側壁面の、前記励起光の光軸上の位置を含む領域に設けられた、該励起光の光軸と非平行な法線を持つ反射面を有する反射部と、  e) a reflecting portion having a reflecting surface having a normal line that is non-parallel to the optical axis of the excitation light, provided in a region including a position on the optical axis of the excitation light on the side wall surface of the cylindrical portion;
を備え、With
前記反射面に平滑化処理が施されており、該処理により形成された加工痕の方向が、該反射面に入射する励起光の光軸及び該反射面で鏡面反射した励起光の光軸を含む面と平行である  The reflection surface is smoothed, and the direction of the processing mark formed by the processing is such that the optical axis of the excitation light incident on the reflection surface and the optical axis of the excitation light specularly reflected by the reflection surface Parallel to the containing plane
ことを特徴とする流体試料測定装置。  A fluid sample measuring device.
前記反射面の面精度の算術平均粗さRaがRa≦3.2μmであることを特徴とする請求項1〜3のいずれかに記載の流体試料測定装置。 Fluid sample measuring device according to any one of claims 1 to 3 in which the arithmetic mean roughness Ra of the surface accuracy of the reflecting surface is characterized by a Ra ≦ 3.2 .mu.m. 前記反射面が、前記流体試料を透過した励起光を、該流体試料が流通する下流側に反射することを特徴とする請求項1〜4のいずれかに記載の流体試料測定装置。   The fluid sample measurement device according to claim 1, wherein the reflection surface reflects excitation light transmitted through the fluid sample to a downstream side through which the fluid sample flows.
JP2014151541A 2014-07-25 2014-07-25 Fluid sample measuring device Expired - Fee Related JP6248850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151541A JP6248850B2 (en) 2014-07-25 2014-07-25 Fluid sample measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151541A JP6248850B2 (en) 2014-07-25 2014-07-25 Fluid sample measuring device

Publications (3)

Publication Number Publication Date
JP2016029342A JP2016029342A (en) 2016-03-03
JP2016029342A5 JP2016029342A5 (en) 2016-12-01
JP6248850B2 true JP6248850B2 (en) 2017-12-20

Family

ID=55435286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151541A Expired - Fee Related JP6248850B2 (en) 2014-07-25 2014-07-25 Fluid sample measuring device

Country Status (1)

Country Link
JP (1) JP6248850B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436465A (en) * 1993-05-13 1995-07-25 High Yield Technology, Inc. Modular particle monitor for vacuum process equipment
US20040142484A1 (en) * 2002-09-30 2004-07-22 Intel Corporation Spectroscopic analysis system and method
JP2005156527A (en) * 2003-11-07 2005-06-16 Sekisui Chem Co Ltd Optical measurement device and optical measurement method of specific binder using it
JP2014029478A (en) * 2012-07-03 2014-02-13 Canon Inc Terahertz wave generation element, terahertz wave detection element, and terahertz time domain spectral device

Also Published As

Publication number Publication date
JP2016029342A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP5959509B2 (en) Measuring unit and gas analyzer
JP5870497B2 (en) Measuring apparatus and measuring method
JP5975175B2 (en) Raman spectrometer
WO2016170681A1 (en) Optical measurement device
JP2014182106A5 (en)
EP3264065B1 (en) Particulate matter detector
CN110470631B (en) Laser type gas analyzer
JP6248850B2 (en) Fluid sample measuring device
JP7158004B2 (en) Gas concentration measuring device and continuous gas concentration measuring method
EP3088125A1 (en) High-output-light attenuator, measuring device, and three-dimensional modeling device
JP2018084523A5 (en)
JP2013213724A (en) Infrared gas analyzer
US6953933B1 (en) Method for measuring size of multilayer structured container
CN108885168B (en) Detection system and signal enhancement device
JP2012215467A (en) Biological substance analyzer and biological substance analysis method
JP2015175708A (en) Raman spectroscopic analyzer and raman spectroscopic analysis method
JP6858875B2 (en) Measuring equipment, measuring methods, computer programs and storage media
JP2009068854A (en) Measuring system
JP4906477B2 (en) Gas analyzer and gas analysis method
FR3103897B1 (en) DEVICE AND METHOD FOR MEASURING ORIENTATION ANGLES OF AN X-RAY IMAGING SYSTEM
JP6176327B2 (en) Raman spectrometer
JP2018044771A (en) Clearance sensor
JP2015025771A (en) Inner shape measuring device
WO2022254852A1 (en) Optical analysis device
US20250093269A1 (en) Method for enhancing a raman contribution in a spectrum, spectroscopy system, computer program and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees