JP6247876B2 - Threaded silver powder, silver powder mixture, method for producing the same, and conductive paste - Google Patents
Threaded silver powder, silver powder mixture, method for producing the same, and conductive paste Download PDFInfo
- Publication number
- JP6247876B2 JP6247876B2 JP2013199123A JP2013199123A JP6247876B2 JP 6247876 B2 JP6247876 B2 JP 6247876B2 JP 2013199123 A JP2013199123 A JP 2013199123A JP 2013199123 A JP2013199123 A JP 2013199123A JP 6247876 B2 JP6247876 B2 JP 6247876B2
- Authority
- JP
- Japan
- Prior art keywords
- silver powder
- silver
- viscosity
- conductive paste
- powder mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims description 185
- 239000000203 mixture Substances 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000003638 chemical reducing agent Substances 0.000 claims description 20
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 18
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 18
- 239000002211 L-ascorbic acid Substances 0.000 claims description 9
- 235000000069 L-ascorbic acid Nutrition 0.000 claims description 9
- 229960005070 ascorbic acid Drugs 0.000 claims description 9
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 8
- 239000004094 surface-active agent Substances 0.000 claims description 8
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 7
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 claims description 7
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 241000557876 Centaurea cineraria Species 0.000 claims 1
- 239000000243 solution Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 238000009826 distribution Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 229910052709 silver Inorganic materials 0.000 description 12
- 239000004332 silver Substances 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- -1 alkylbenzene sulfonates Chemical class 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- ZPPSOOVFTBGHBI-UHFFFAOYSA-N lead(2+);oxido(oxo)borane Chemical compound [Pb+2].[O-]B=O.[O-]B=O ZPPSOOVFTBGHBI-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- OGFYIDCVDSATDC-UHFFFAOYSA-N silver silver Chemical compound [Ag].[Ag] OGFYIDCVDSATDC-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- NEUOBESLMIKJSB-UHFFFAOYSA-J tetrasodium;tetraacetate Chemical compound [Na+].[Na+].[Na+].[Na+].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O NEUOBESLMIKJSB-UHFFFAOYSA-J 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- ZFZQOKHLXAVJIF-UHFFFAOYSA-N zinc;boric acid;dihydroxy(dioxido)silane Chemical compound [Zn+2].OB(O)O.O[Si](O)([O-])[O-] ZFZQOKHLXAVJIF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、糸状銀粉、銀粉混合物及びその製造方法、並びに導電性ペーストに関する。 The present invention relates to a filamentous silver powder, a silver powder mixture, a method for producing the same, and a conductive paste.
一般に、導電性ペーストの印刷性と細線化を両立させるには、前記導電性ペーストのチキソ性を向上させることが必要である。例えば、特許文献1では、アトマイズ銀粉と湿式還元銀粉との混合粉を用い、アスペクト比を大きくさせて印刷性と細線化を両立させることが提案されているが、導電性ペーストのチキソ性を向上させる効果は十分ではなかった。
そこで、フレーク化工程を経ずに湿式還元のみによる低コストフローで、ペースト化時に従来の銀粉より更に高チキソ性を図ることができる銀粉及びそれを用いた導電性ペーストの提供が強く望まれている。
Generally, in order to achieve both printability and thinning of the conductive paste, it is necessary to improve the thixotropy of the conductive paste. For example, Patent Document 1 proposes using a mixed powder of atomized silver powder and wet-reduced silver powder to increase the aspect ratio to achieve both printability and thinning, but improves the thixotropy of the conductive paste. The effect to make was not enough.
Therefore, it is highly desired to provide a silver powder capable of achieving a higher thixotropy than conventional silver powder at the time of paste formation and a conductive paste using the same at a low cost flow by only wet reduction without passing through a flaking process. Yes.
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、フレーク化工程を経ずに湿式還元のみによる低コストフローで、ペースト化時に従来の銀粉より更に高チキソ性を図ることができる糸状銀粉、銀粉混合物及びその製造方法、並びに導電性ペーストを提供することを目的とする。 An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention is a thread-like silver powder, a silver powder mixture, a method for producing the same, and a conductive material that can achieve a higher thixotropy than conventional silver powder at the time of paste formation at a low cost flow only by wet reduction without passing through a flaking process. It aims at providing a sex paste.
前記課題を解決するための手段としての本発明の糸状銀粉は、長さ方向に少なくとも1つの曲部を有してなり、平均長軸長さが2μm〜20μmであり、かつ平均短軸長さが50nm〜900nmである。 The filamentous silver powder of the present invention as a means for solving the above problems has at least one curved portion in the length direction, has an average major axis length of 2 μm to 20 μm, and an average minor axis length. Is 50 nm to 900 nm.
本発明によると、従来における前記諸問題を解決することができ、フレーク化工程を経ずに湿式還元のみによる低コストフローで、ペースト化時に従来の銀粉より更に高チキソ性を図ることができる糸状銀粉、銀粉混合物及びその製造方法、並びに導電性ペーストを提供することができる。 According to the present invention, the above conventional problems can be solved, and a low cost flow by only wet reduction without passing through a flaking process, and a filamentous shape capable of achieving higher thixotropy than conventional silver powder at the time of pasting Silver powder, a silver powder mixture, a method for producing the same, and a conductive paste can be provided.
(糸状銀粉、銀粉混合物及びその製造方法)
本発明の糸状銀粉は、長さ方向に少なくとも1つの曲部を有してなり、平均長軸長さが2μm〜20μmであり、かつ平均短軸長さが50nm〜900nmである。
本発明の銀粉混合物は、本発明の前記糸状銀粉と、球状銀粉、フレーク状銀粉、又はその両方とを含む。
本発明の銀粉混合物の製造方法は、硝酸銀水溶液に、L−アスコルビン酸、及びエチレンジアミン四酢酸ナトリウムを含む還元剤溶液を添加する。
(Filed silver powder, silver powder mixture and manufacturing method thereof)
The filamentous silver powder of the present invention has at least one curved portion in the length direction, has an average major axis length of 2 μm to 20 μm, and an average minor axis length of 50 nm to 900 nm.
The silver powder mixture of the present invention contains the filamentous silver powder of the present invention, spherical silver powder, flaky silver powder, or both.
In the method for producing a silver powder mixture of the present invention, a reducing agent solution containing L-ascorbic acid and sodium ethylenediaminetetraacetate is added to an aqueous silver nitrate solution.
本発明においては、フレーク化工程を経ずに湿式還元のみによる低コストフローで、ペースト化時に従来の銀粉より更に高チキソ性の糸状銀粉を得ることができる。得られる糸状銀粉はペースト化時のチキソ性が向上し、印刷性と細線化の両立が図れる。
本発明の糸状銀粉を用いることにより、球状銀粉、フレーク状銀粉、又はその両方の銀粉を用いたペーストよりも、より高いチキソ指数(攪拌の回転数に対する粘度値の比)を有し、焼成後の塗膜のアスペクト比が高い導電性ペーストを得ることができるので、印刷性と細線性の両方を向上させることができる。
In the present invention, a thread-like silver powder having a higher thixotropy than conventional silver powder can be obtained at a low cost flow only by wet reduction without passing through a flaking process. The obtained silver-like silver powder has improved thixotropy when it is made into a paste, so that both printability and thinning can be achieved.
By using the filamentous silver powder of the present invention, it has a higher thixo index (ratio of viscosity value to the number of rotations of stirring) than the paste using silver silver powder, flaky silver powder, or both, and after firing Since a conductive paste having a high aspect ratio of the coating film can be obtained, both printability and fine lineability can be improved.
本発明の銀粉混合物は、本発明の前記糸状銀粉と、球状銀粉、フレーク状銀粉、又はその両方を含む。前記銀粉混合物においては、糸形銀粉と球状やフレーク状などの異なる形状の銀粉が混合された状態であるため、高いチキソ性を持つ導電性ペーストを得ることができる。
本発明の銀粉混合物の製造方法によれば、糸状銀粉と、球状銀粉、フレーク状銀粉、又はその両方などの異なる形状の銀粉が混合された状態で製造されるので、複数の異なる形状の銀粉を混合させることなく、高いチキソ性を持つ導電性ペーストを得ることができる。ただし、任意のチキソ性を得るために他の銀粉を混合して導電性ペーストを得てもよい。
The silver powder mixture of the present invention contains the filamentous silver powder of the present invention, spherical silver powder, flaky silver powder, or both. In the silver powder mixture, since the thread-shaped silver powder and silver powder having different shapes such as a spherical shape and a flake shape are mixed, a conductive paste having high thixotropy can be obtained.
According to the method for producing a silver powder mixture of the present invention, a silver powder having a different shape such as a thread-like silver powder and a spherical silver powder, a flaky silver powder, or both are produced. A conductive paste having high thixotropy can be obtained without mixing. However, in order to obtain arbitrary thixotropy, another silver powder may be mixed to obtain a conductive paste.
<糸状銀粉>
前記糸状銀粉は、長さ方向に少なくとも1つ、好ましくは1つ〜10つの曲部を有する。
前記糸状とは、ロッド状やワイヤー状とは異なり形状の直線性に乏しく、糸のように可曲的であり、応力を掛けない自然状態で長さ方向に少なくとも1つの曲がり(湾曲、波うち等を含み、直線に対して短軸方向に短軸長以上の変位を有するものをいう)を有する形状を言う。そのため、ロッド状やワイヤー状よりも他の形状の銀粉と絡みやすく、形状の異なる銀粉との混合状態での印刷性と細線性の両方を向上させる効果をより引き出すことができる。また、焼成温度が低く点接触のみで導電性が得られる導電性接着剤等の用途においても低抵抗が得られる。
前記糸状銀粉は、2次元の観察において可微分曲線であることが好ましく、前記曲部の平均角度は、5°以上175°以下が好ましく、10°以上170°以下がより好ましく、更に20°以上150°以下がより好ましい。ここで、前記曲部の平均角度は、例えば、糸状銀粉を走査型電子顕微鏡(SEM)で観察することにより測定することができ、例えば、2,000倍のSEM像において観察された糸状銀粉において、最大の曲率を有する可微分な曲部を探し、前記曲部の曲線上の任意の点と、その点から各1μm離れた曲線上の2点(1μm以内に端点や変曲点がある場合はその端点や変曲点)とを結んだ2辺の内角(劣角)が、最小となる点における内角(劣角)を測定することにより求めることができ、前記曲部の平均角度とは、測定された10個の糸状銀粉の曲部の角度の平均である。なお、上記の各点は短軸長の中心をとるものとする。
<Filed silver powder>
The filamentous silver powder has at least one, preferably 1 to 10 curved portions in the length direction.
Unlike the rod-like or wire-like shape, the yarn-like shape is poor in linearity, is bendable like a yarn, and has at least one bend (curved, Etc., which means a shape having a displacement of a minor axis length or more in the minor axis direction with respect to a straight line. Therefore, it is easy to get entangled with other shapes of silver powder than rod-shaped or wire-shaped, and the effect of improving both printability and fine lineability in a mixed state with different shapes of silver powder can be further extracted. Also, low resistance can be obtained in applications such as a conductive adhesive having a low firing temperature and having conductivity only by point contact.
The filamentous silver powder is preferably a differentiable curve in two-dimensional observation, and the average angle of the curved portion is preferably 5 ° or more and 175 ° or less, more preferably 10 ° or more and 170 ° or less, and further 20 ° or more. 150 degrees or less is more preferable. Here, the average angle of the curved portion can be measured, for example, by observing the filamentous silver powder with a scanning electron microscope (SEM). For example, in the filamentous silver powder observed in the SEM image of 2,000 times Search for a differentiable curved portion having the maximum curvature, and an arbitrary point on the curved line of the curved portion and two points on the curved line 1 μm away from the point (when there are end points and inflection points within 1 μm) Can be obtained by measuring the internal angle (subordinate angle) at the point where the internal angle (inferior angle) of the two sides connecting the end point and the inflection point is the smallest, and the average angle of the curved portion is , Is an average of the angles of the measured curved portions of the ten filamentous silver powders. In addition, each said point shall take the center of short-axis length.
前記糸状銀粉の平均長軸長さは、2μm〜20μmであり、5μm〜20μmが好ましい。前記平均長軸長さが、2μm未満であると、糸状にする効果がなくなり、粘度が低くなると共に、抵抗が上がることがあり、20μmを超えると、通常の銀粉と同様の取り扱いをするのが難しいことがある。
前記平均短軸長さは、50nm〜900nmであり、100nm〜500nmが好ましい。前記平均短軸長さが、50nm未満であると、通常の銀粉と同様の取り扱いをするのが難しいことがあり、900nmを超えると、軸比が低下することから、抵抗が悪化しやすくなることがある。
前記平均長軸長さ及び前記平均短軸長さは、例えば、糸状銀粉を透過型電子顕微鏡(TEM)で観察することによりその短軸長さを、走査型電子顕微鏡(SEM)で観察することによりその長軸長さを測定して、算出することができる。
The average major axis length of the filamentous silver powder is 2 μm to 20 μm, preferably 5 μm to 20 μm. When the average major axis length is less than 2 μm, the effect of forming a thread is lost, the viscosity is lowered, and the resistance may be increased. When the average major axis length is more than 20 μm, it is handled in the same manner as ordinary silver powder. It can be difficult.
The average minor axis length is 50 nm to 900 nm, preferably 100 nm to 500 nm. When the average minor axis length is less than 50 nm, it may be difficult to handle in the same manner as ordinary silver powder. When the average minor axis length exceeds 900 nm, the axial ratio is lowered, and resistance is likely to deteriorate. There is.
The average major axis length and the average minor axis length may be observed, for example, by observing the filamentous silver powder with a transmission electron microscope (TEM) and observing the minor axis length with a scanning electron microscope (SEM). The major axis length can be measured and calculated.
前記糸状銀粉は、レーザー回折式粒度分布測定法による体積基準の粉径分布における累積50%粉径(D50)が、0.1μm〜10μmであり、0.5μm〜4μmが好ましい。
前記累積50%粉径(D50)は、例えば、マイクロトラック粒度分布測定装置[ハネウエル(Haneywell)−日機装社製、9320HRA(X−100)]などを用いて測定することができる。
The filamentous silver powder has a cumulative 50% powder diameter (D50) in a volume-based powder diameter distribution measured by a laser diffraction particle size distribution measurement method of 0.1 μm to 10 μm, preferably 0.5 μm to 4 μm.
The cumulative 50% powder diameter (D50) can be measured using, for example, a microtrack particle size distribution measuring apparatus [Honeywell-Nikkiso Co., Ltd., 9320HRA (X-100)].
前記糸状銀粉のBET比表面積は、特に制限はなく、目的に応じて適宜選択することができるが、0.1m2/g〜5m2/gが好ましく、0.7m2/g〜3m2/gがより好ましい。
前記BET比表面積は、例えば、BET比表面積測定装置[モノソーブ(カウンタクローム(Quanta Chrome))社製]などを用いて測定することができる。
BET specific surface area of the thread silver powder is not particularly limited and may be appropriately selected depending on the intended purpose, preferably 0.1m 2 / g~5m 2 / g, 0.7m 2 / g~3m 2 / g is more preferable.
The BET specific surface area can be measured using, for example, a BET specific surface area measuring device [Monosorb (manufactured by Quanta Chrome)].
前記糸状銀粉のタップ密度は、特に制限はなく、目的に応じて適宜選択することができるが、0.5g/cm3〜7.0g/cm3が好ましく、1.0g/cm3〜3.0g/cm3がより好ましい。
前記タップ密度は、例えば、タップ密度測定装置(柴山科学社製カサ比重測定装置SS−DA−2)などを用いて測定することができる。
The tap density of the thread-like silver powder is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5g / cm 3 ~7.0g / cm 3 , 1.0g / cm 3 ~3. 0 g / cm 3 is more preferable.
The tap density can be measured using, for example, a tap density measuring device (Casa specific gravity measuring device SS-DA-2 manufactured by Shibayama Kagaku).
本発明の銀粉混合物は、本発明の前記糸状銀粉と、球状銀粉、フレーク状銀粉又はその両方とを含む。
本発明の前記糸状銀粉としては、上述したものを用いることができる。
前記球状、もしくはフレーク状銀粉としては、特に制限はなく、目的に応じて適宜選択することができる。
本発明の銀粉混合物における、本発明の前記糸状銀粉の含有割合は、特に制限はなく、目的に応じて適宜選択することができるが、25質量%以上が好ましく、50質量%以上がより好ましい。
The silver powder mixture of the present invention contains the thread-shaped silver powder of the present invention, spherical silver powder, flaky silver powder, or both.
As the filamentous silver powder of the present invention, those described above can be used.
The spherical or flaky silver powder is not particularly limited and may be appropriately selected depending on the intended purpose.
The content ratio of the filamentous silver powder of the present invention in the silver powder mixture of the present invention is not particularly limited and can be appropriately selected according to the purpose, but is preferably 25% by mass or more, and more preferably 50% by mass or more.
前記銀粉混合物は、本発明の前記銀粉混合物の製造方法により製造される。
本発明の銀粉混合物の製造方法は、硝酸銀水溶液に、L−アスコルビン酸、及びエチレンジアミン四酢酸ナトリウムを含む還元剤溶液を添加する。
The silver powder mixture is produced by the method for producing the silver powder mixture of the present invention.
In the method for producing a silver powder mixture of the present invention, a reducing agent solution containing L-ascorbic acid and sodium ethylenediaminetetraacetate is added to an aqueous silver nitrate solution.
前記還元剤溶液としては、ステアリン酸ナトリウムを更に含むことが、糸状銀粉を簡便に得ることができる点から好ましい。前記ステアリン酸ナトリウムの含有量は、銀に対して0.5質量%〜10.0質量%が好ましい。 It is preferable that the reducing agent solution further contains sodium stearate from the viewpoint of easily obtaining a filamentous silver powder. As for content of the said sodium stearate, 0.5 mass%-10.0 mass% are preferable with respect to silver.
前記還元剤溶液としては、硝酸銅三水和物を更に含むことが、糸状銀粉を簡便に得ることができる点から好ましい。前記硝酸銅三水和物の含有量は、銀に対して0.2質量%〜5.0質量%が好ましい。 As the reducing agent solution, it is preferable that copper nitrate trihydrate is further contained from the viewpoint that a filamentous silver powder can be easily obtained. The content of the copper nitrate trihydrate is preferably 0.2% by mass to 5.0% by mass with respect to silver.
(導電性ペースト)
本発明の導電性ペーストは、銀粉混合物を少なくとも含み、ガラスフリットと、樹脂と、溶剤と、界面活性剤とを含むことが好ましく、更に必要に応じてその他の成分を含有してなる。
前記銀粉混合物としては、本発明の前記銀粉混合物を用いる。
前記銀粉混合物の含有量は、特に制限はなく、目的に応じて適宜選択することができる。
(Conductive paste)
The conductive paste of the present invention preferably contains at least a silver powder mixture, and preferably contains a glass frit, a resin, a solvent, and a surfactant, and further contains other components as necessary.
As the silver powder mixture, the silver powder mixture of the present invention is used.
The content of the silver powder mixture is not particularly limited and can be appropriately selected depending on the purpose.
<ガラスフリット>
前記ガラスフリットとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホウケイ酸ビスマス系、ホウケイ酸アルカリ金属系、ホウケイ酸アルカリ土類金属系、ホウケイ酸亜鉛系、ホウケイ酸鉛系、ホウ酸鉛系、ケイ酸鉛系、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。なお、環境に与える影響から、鉛を含まないものが好ましい。
<Glass frit>
The glass frit is not particularly limited and may be appropriately selected depending on the intended purpose. For example, bismuth borosilicate, alkali metal borosilicate, alkaline earth metal borosilicate, zinc borosilicate, borosilicate Lead-based, lead borate-based, lead silicate-based, and the like. These may be used individually by 1 type and may use 2 or more types together. In addition, the thing which does not contain lead from the influence on an environment is preferable.
<樹脂>
前記樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル樹脂、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロース、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Resin>
There is no restriction | limiting in particular as said resin, According to the objective, it can select suitably, For example, an acrylic resin, ethylcellulose, ethylhydroxyethylcellulose, nitrocellulose, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
<溶剤>
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、テルピネオール、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ブチルカルビトールアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Solvent>
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, toluene, methyl ethyl ketone, methyl isobutyl ketone, tetradecane, tetralin, propyl alcohol, isopropyl alcohol, terpineol, ethyl carbitol, butyl carbitol , Ethyl carbitol acetate, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and the like. These may be used individually by 1 type and may use 2 or more types together.
<界面活性剤>
前記界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩等の陰イオン界面活性剤、脂肪族4級アンモニウム塩等の陽イオン界面活性剤、イミダゾリウムベタイン等の両性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル等の非イオン界面活性剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Surfactant>
Examples of the surfactant include anionic surfactants such as alkylbenzene sulfonates and polyoxyethylene alkyl ether phosphates, cationic surfactants such as aliphatic quaternary ammonium salts, and amphoteric compounds such as imidazolium betaine. Nonionic surfactants such as surfactants, polyoxyethylene alkyl ethers, polyoxyethylene fatty acid esters and the like can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
<その他の成分>
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、分散剤、粘度調整剤、などが挙げられる。
<Other ingredients>
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a dispersing agent, a viscosity modifier, etc. are mentioned.
前記導電性ペーストの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記銀粉混合物、好ましくは、前記ガラスフリット、前記樹脂、前記溶剤、前記界面活性剤、及び必要に応じてその他の成分を、例えば、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などを用い、混合することにより作製することができる。 The method for producing the conductive paste is not particularly limited and may be appropriately selected depending on the purpose. For example, the silver powder mixture, preferably the glass frit, the resin, the solvent, the surfactant, And other components can be produced by mixing using, for example, an ultrasonic dispersion, a disper, a three-roll mill, a ball mill, a bead mill, a twin-screw kneader, a self-revolving stirrer and the like.
前記導電性ペーストは、25℃における回転数0.5rpmの粘度が500Pa・sより大きく、回転数0.5rpmでの粘度η0.5と、回転数10rpmでの粘度η10との粘度比(η0.5/η10)は、12以上が好ましく、12〜13がより好ましい。前記粘度比(η0.5/η10)が、12未満であると、電極形成時の導電性ペーストの広がりが大きくなりやすくなることがある。 The conductive paste has a viscosity at a rotation speed of 0.5 rpm at 25 ° C. of more than 500 Pa · s, and a viscosity ratio (η0...) Of a viscosity η0.5 at a rotation speed of 0.5 rpm and a viscosity η10 at a rotation speed of 10 rpm. 5 / η10) is preferably 12 or more, more preferably 12-13. When the viscosity ratio (η0.5 / η10) is less than 12, the spread of the conductive paste at the time of electrode formation tends to increase.
本発明の導電性ペーストは、太陽電池用のシリコンウエハー、タッチパネル用フィルム、EL素子用ガラス等の各種基体上に直接、あるいは必要に応じてこれら基体上に更に透明導電膜を設けたその膜上に、塗布または印刷して導電性の塗膜を好適に形成することができる。例えば、太陽電池セルの集電電極、チップ型電子部品の外部電極、RFID、電磁波シールド、振動子接着、メンブレンスイッチ、エレクトロルミネセンス等の電極又は電気配線用途に好適に用いられる。 The conductive paste of the present invention can be applied directly on various substrates such as silicon wafers for solar cells, films for touch panels, and glass for EL elements, or on the films provided with a transparent conductive film on these substrates as necessary. In addition, a conductive coating film can be suitably formed by coating or printing. For example, it is suitably used for a current collecting electrode of a solar battery cell, an external electrode of a chip-type electronic component, an RFID, an electromagnetic wave shield, a vibrator adhesion, a membrane switch, an electroluminescence electrode, or an electrical wiring application.
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
銀として22.2gの銀を含む硝酸銀水溶液(DOWAハイテック株式会社製)を純水で希釈し、250mLとした。この溶液を攪拌しながら、25℃に保持しているビーカー内に、同じく25℃に保持した還元剤溶液(和光純薬工業株式会社製L−アスコルビン酸を18.5g、和光純薬工業株式会社製ステアリン酸ナトリウムを1.1g、硝酸銅三水和物0.24g、及びキレスト社製エチレンジアミン四酢酸ナトリウム0.15gを含む)550mLを添加した。還元剤溶液の添加後3分間引き続き攪拌を行った後、ブフナー漏斗で濾過、水洗を行った。得られたウエットケーキを75℃に設定した真空乾燥機で乾燥させた。コーヒーミルによる解砕を行い、実施例1の銀粉混合物を得た。
得られた実施例1の銀粉混合物について、以下のようにして、粉形状の観察、粒度分布、BET比表面積、タップ密度、及び塗膜評価を行った。結果を表1及び表2に示した。
Example 1
A silver nitrate aqueous solution (made by DOWA Hitech Co., Ltd.) containing 22.2 g of silver as silver was diluted with pure water to make 250 mL. While stirring this solution, in a beaker maintained at 25 ° C., a reducing agent solution also maintained at 25 ° C. (18.5 g of L-ascorbic acid manufactured by Wako Pure Chemical Industries, Ltd., Wako Pure Chemical Industries, Ltd.) 550 mL of sodium stearate 1.1 g, copper nitrate trihydrate 0.24 g, and 0.15 g of sodium ethylenediaminetetraacetate manufactured by Kirest Co.) were added. Stirring was continued for 3 minutes after the addition of the reducing agent solution, followed by filtration with a Buchner funnel and washing with water. The obtained wet cake was dried with a vacuum dryer set at 75 ° C. Crushing with a coffee mill was performed to obtain a silver powder mixture of Example 1.
About the obtained silver powder mixture of Example 1, powder shape observation, particle size distribution, BET specific surface area, tap density, and coating film evaluation were performed as follows. The results are shown in Tables 1 and 2.
<粉形状の観察>
粉形状の観察は、走査型電子顕微鏡(SEM、日本電子工業株式会社製、JSM−6100)を使用し、2,000倍及び10,000倍にて観察を行った。得られたSEM写真を図1A及び図1Bに示した。
<Observation of powder shape>
The powder shape was observed using a scanning electron microscope (SEM, manufactured by JEOL Ltd., JSM-6100) at 2,000 times and 10,000 times. The obtained SEM photographs are shown in FIGS. 1A and 1B.
<糸状銀粉の長軸長さ、短軸長さ、曲がりの程度、糸状銀粉の割合>
銀粉の長軸長さは、2,000倍のSEM写真から選択した10個の長軸長さを測定し、その平均を平均長軸長さとした。
銀粉の短軸長さは、10,000倍のSEM写真から選択した10個の短軸長さを測定し、その平均を平均短軸長さとした。
実施例1の銀粉混合物のうち糸状銀粉の平均長軸長さは17μmであり、平均短軸長さは230nmであった。
また、実施例1の銀粉混合物のうち糸状銀粉は、2,000倍のSEM写真から選択した10個の平均として長さ方向に6つの曲部を有しており、曲部の平均角度は100°であった。
糸状銀粉の割合は、10,000倍のSEM写真から糸状銀粉の個数と、それ以外の形状の銀粉を含む総ての銀粉の個数とを数えることにより求め、糸状銀粉の割合は26%であった。
<Long axis length of filamentous silver powder, minor axis length, degree of bending, ratio of filamentous silver powder>
The major axis length of the silver powder was measured by measuring ten major axis lengths selected from 2,000 times SEM photographs, and the average was taken as the average major axis length.
The minor axis length of the silver powder was measured by measuring ten minor axis lengths selected from 10,000 times SEM photographs, and taking the average as the average minor axis length.
Of the silver powder mixture of Example 1, the average major axis length of the filamentous silver powder was 17 μm, and the average minor axis length was 230 nm.
In addition, the filamentous silver powder in the silver powder mixture of Example 1 has six curved portions in the length direction as an average of 10 selected from the SEM photograph of 2,000 times, and the average angle of the curved portions is 100. °.
The ratio of the thread-like silver powder was determined by counting the number of the thread-like silver powder from the 10,000 times SEM photograph and the number of all the silver powders including the silver powder of other shapes, and the ratio of the thread-like silver powder was 26%. It was.
<粒度分布測定>
湿式レーザー回折式の粒度分布測定は、得られた銀粉0.3gをイソプロピルアルコール30mLに入れ、出力45Wの超音波洗浄器により5分間分散させ、マイクロトラック粒度分布測定装置[ハネウエル(Haneywell)−日機装社製、9320HRA(X−100)]を用いて、累積10%粉径(D10)、累積50%粉径(D50)、及び累積90%粉径(D90)を測定した。
<Particle size distribution measurement>
In the wet laser diffraction type particle size distribution measurement, 0.3 g of the obtained silver powder is put into 30 mL of isopropyl alcohol, and dispersed for 5 minutes by an ultrasonic cleaner with an output of 45 W. A microtrack particle size distribution measuring apparatus [Honeywell-Nikkiso Using a 9320HRA (X-100) manufactured by the company, the cumulative 10% powder diameter (D10), the cumulative 50% powder diameter (D50), and the cumulative 90% powder diameter (D90) were measured.
<BET比表面積>
BET比表面積は、モノソーブ(カウンタクローム(Quanta Chrome)社製を用いて窒素吸着によるBET1点法で測定した。なお、該BET比表面積測定において、測定前の脱気条件は60℃、10分間とした。
<BET specific surface area>
The BET specific surface area was measured by the BET single point method by nitrogen adsorption using Monosorb (manufactured by Quanta Chrome). In the BET specific surface area measurement, the deaeration conditions before the measurement were 60 ° C. and 10 minutes. did.
<タップ密度>
タップ密度は、タップ密度測定装置(柴山科学社製カサ比重測定装置SS−DA−2)を使用し、銀粉試料15gを計量して、容器(20mL試験管)に入れ、落差20mmで1,000回タッピングし、タップ密度=試料重量(15g)/タッピング後の試料体積から算出した。
<Tap density>
Tap density is measured using a tap density measuring device (Casa specific gravity measuring device SS-DA-2 manufactured by Shibayama Kagaku Co., Ltd.), 15 g of a silver powder sample is weighed, put into a container (20 mL test tube), and 1,000 at a drop of 20 mm. The sample was tapped once and calculated from the tap density = sample weight (15 g) / sample volume after tapping.
<導電性ペーストの作製>
銀粉8.3g、鉛フリーのガラスフリット2.0g、ビヒクル(エチルセルロース0.3gと、ブチルカルビトールアセテート1.1gとの混合物)、及びリン酸エステル系界面活性剤0.1gを、3本ロールミルを用い混合して導電性ペーストを作製した。
<Preparation of conductive paste>
Three roll mills containing 8.3 g of silver powder, 2.0 g of lead-free glass frit, vehicle (mixture of 0.3 g of ethyl cellulose and 1.1 g of butyl carbitol acetate), and 0.1 g of phosphate ester surfactant A conductive paste was prepared by mixing the materials.
次に、得られた導電性ペーストについて、以下に示す方法により、配線パターンを形成した。 Next, for the obtained conductive paste, a wiring pattern was formed by the following method.
<配線パターンの形成>
得られた導電性ペーストをスクリーン印刷法により2インチ角のアルミナ基板上に500μm幅×50,000μm全長の設定でパターンを形成し、室温で30分間放置した後、大気乾燥機にて150℃で10分間乾燥した。このアルミナ基板をマッフル炉にて最高温度800℃で60分間の焼成を行い、図9に示す配線パターンを得た。得られた配線パターンについて、以下に示す方法でアスペクト比を測定した。
<Formation of wiring pattern>
The obtained conductive paste was formed on a 2-inch square alumina substrate by a screen printing method with a pattern of 500 μm width × 50,000 μm full length, left standing at room temperature for 30 minutes, and then at 150 ° C. in an air dryer. Dried for 10 minutes. The alumina substrate was baked in a muffle furnace at a maximum temperature of 800 ° C. for 60 minutes to obtain a wiring pattern shown in FIG. About the obtained wiring pattern, the aspect-ratio was measured by the method shown below.
<平均アスペクト比(厚み/配線幅)>
配線パターンの厚みと、配線幅とを接触式表面粗さ計(株式会社小坂研究所製)で3点測定し、厚み/配線幅から平均アスペクト比を算出した。
<Average aspect ratio (thickness / wiring width)>
The thickness of the wiring pattern and the wiring width were measured at three points with a contact-type surface roughness meter (manufactured by Kosaka Laboratory Ltd.), and the average aspect ratio was calculated from the thickness / wiring width.
(比較例1)
銀として35.0gの銀を含む硝酸銀水溶液(DOWAハイテック株式会社製)を純水で希釈し、600mLとした。この溶液を攪拌しながら、25℃に保持しているビーカー内に、同じく25℃に保持した還元剤溶液(無水クエン酸10.4gを含む)50mLを加えた後、同じく25℃に保持した還元剤溶液(和光純薬工業株式会社製L−アスコルビン酸29.6gを含む)150mLを添加した。還元剤溶液を添加後3分間引き続き攪拌を行った後、ブフナー漏斗で濾過し、水洗を行った。得られたウエットケーキを75℃に設定した真空乾燥機で乾燥させた。コーヒーミルによる解砕を行い、比較例1の銀粉を得た。
得られた銀粉について、実施例1と同様にして、粉形状、粒度分布、BET比表面積、及びタップ密度を測定した。結果を表1及び表2に示した。得られた10,000倍のSEM写真を図4に示した。図4の結果から、比較例1の銀粉は突起を有する球状であることがわかった。
(Comparative Example 1)
A silver nitrate aqueous solution (made by DOWA Hitech Co., Ltd.) containing 35.0 g of silver as silver was diluted with pure water to make 600 mL. While stirring this solution, 50 mL of a reducing agent solution (including 10.4 g of anhydrous citric acid) also maintained at 25 ° C. was added to a beaker maintained at 25 ° C., and then the reduction was also maintained at 25 ° C. 150 mL of an agent solution (containing 29.6 g of L-ascorbic acid manufactured by Wako Pure Chemical Industries, Ltd.) was added. Stirring was continued for 3 minutes after addition of the reducing agent solution, followed by filtration with a Buchner funnel and washing with water. The obtained wet cake was dried with a vacuum dryer set at 75 ° C. Crushing with a coffee mill was performed to obtain silver powder of Comparative Example 1.
About the obtained silver powder, it carried out similarly to Example 1, and measured powder shape, particle size distribution, BET specific surface area, and tap density. The results are shown in Tables 1 and 2. The obtained 10,000 times SEM photograph is shown in FIG. From the results of FIG. 4, it was found that the silver powder of Comparative Example 1 was spherical with protrusions.
(比較例2)
表1に示す特性の市販のフレーク銀粉(1)を用い、実施例1と同様にして、粉形状、粒度分布、BET比表面積、タップ密度、及び塗膜評価を行った。結果を表1及び表2に示した。得られた10,000倍のSEM写真を図5に示した。図5の結果から、比較例2の銀粉は、フレーク状であることがわかった。
(Comparative Example 2)
Using the commercially available flake silver powder (1) having the characteristics shown in Table 1, the powder shape, particle size distribution, BET specific surface area, tap density, and coating film evaluation were carried out in the same manner as in Example 1. The results are shown in Tables 1 and 2. The obtained 10,000 times SEM photograph is shown in FIG. From the results of FIG. 5, it was found that the silver powder of Comparative Example 2 was flaky.
(比較例3)
表1に示す特性の市販の球状銀粉(2)を用い、得られた銀粉について、実施例1と同様にして、粉形状、粒度分布、BET比表面積、タップ密度、及び塗膜評価を行った。結果を表1及び表2に示した。得られた10,000倍のSEM写真を図6に示した。図6の結果から、比較例3の銀粉は、球状であることがわかった。
(Comparative Example 3)
Using the commercially available spherical silver powder (2) having the characteristics shown in Table 1, the obtained silver powder was evaluated in the same manner as in Example 1 for powder shape, particle size distribution, BET specific surface area, tap density, and coating film evaluation. . The results are shown in Tables 1 and 2. The obtained 10,000 times SEM photograph is shown in FIG. From the results of FIG. 6, it was found that the silver powder of Comparative Example 3 was spherical.
(比較例4)
表1に示す特性の市販の球状銀粉を用い、得られた銀粉について、実施例1と同様にして、粉形状、粒度分布、BET比表面積、タップ密度、及び塗膜評価を行った。結果を表1及び表2に示した。得られた10,000倍のSEM写真を図7に示した。図7の結果から、比較例4の銀粉は、球状であることがわかった。
(Comparative Example 4)
Using the commercially available spherical silver powder having the characteristics shown in Table 1, the obtained silver powder was evaluated in the same manner as in Example 1 for powder shape, particle size distribution, BET specific surface area, tap density, and coating film evaluation. The results are shown in Tables 1 and 2. The obtained 10,000 times SEM photograph is shown in FIG. From the results of FIG. 7, it was found that the silver powder of Comparative Example 4 was spherical.
実施例1は、表1及び表2、図1A及び図1Bの結果から、糸状銀粉と、球状銀粉、フレーク状銀粉、又はその両方との混合物からなることが確認できた。そして、実施例1の銀粉混合物は同一粘度での粘度比が比較例1〜4に比較して高く、塗膜してから焼成終了までの配線幅の広がりが少ないため、焼成後の塗膜のアスペクト比が高いことが分かった。
From Example 1 and Table 2 and the results of FIGS. 1A and 1B, Example 1 was confirmed to be composed of a mixture of thread-like silver powder and spherical silver powder, flaky silver powder, or both. And the silver powder mixture of Example 1 has a higher viscosity ratio at the same viscosity than Comparative Examples 1 to 4, and since there is little spread of the wiring width from coating to the end of firing, It was found that the aspect ratio was high.
(実施例2)
銀として22.2gの銀を含む硝酸銀水溶液(DOWAハイテック株式会社製)を純水で希釈し、250mLとした。この溶液を攪拌しながら、25℃に保持しているビーカー内に、同じく25℃に保持した還元剤溶液(和光純薬工業株式会社製L−アスコルビン酸を18.5g、和光純薬工業株式会社製ステアリン酸ナトリウムを1.1g、及びキレスト社製エチレンジアミン四酢酸ナトリウム0.15gを含む)550mLを添加した。還元剤溶液の添加後3分間引き続き攪拌を行った後、ブフナー漏斗で濾過、水洗を行った。得られたウエットケーキを75℃に設定した真空乾燥機で乾燥させた。コーヒーミルによる解砕を行い、実施例2の銀粉混合物を得た。
得られた実施例2の銀粉混合物について、実施例1と同様にして、粉形状、粒度分布、BET比表面積、及びタップ密度の測定を行った。結果を表3に示した。得られたSEM写真を図2A及び図2Bに示した。
実施例2の銀粉混合物のうち糸状銀粉の平均長軸長さは12μmであり、平均短軸長さは150nmであった。
また、実施例1と同様の測定方法により、実施例2の銀粉混合物のうち糸状銀粉は、長さ方向に10個の曲部を有しており、曲部の平均角度は140°であった。糸状銀粉の割合は54%であった。
(Example 2)
A silver nitrate aqueous solution (made by DOWA Hitech Co., Ltd.) containing 22.2 g of silver as silver was diluted with pure water to make 250 mL. While stirring this solution, in a beaker maintained at 25 ° C., a reducing agent solution also maintained at 25 ° C. (18.5 g of L-ascorbic acid manufactured by Wako Pure Chemical Industries, Ltd., Wako Pure Chemical Industries, Ltd.) 550 mL) (including 1.1 g sodium stearate and 0.15 g sodium ethylenediaminetetraacetate manufactured by Kyrest) was added. Stirring was continued for 3 minutes after the addition of the reducing agent solution, followed by filtration with a Buchner funnel and washing with water. The obtained wet cake was dried with a vacuum dryer set at 75 ° C. Crushing with a coffee mill was performed to obtain a silver powder mixture of Example 2.
About the obtained silver powder mixture of Example 2, it carried out similarly to Example 1, and measured the powder shape, the particle size distribution, the BET specific surface area, and the tap density. The results are shown in Table 3. The obtained SEM photographs are shown in FIGS. 2A and 2B.
Of the silver powder mixture of Example 2, the average major axis length of the filamentous silver powder was 12 μm and the average minor axis length was 150 nm.
Further, according to the same measurement method as in Example 1, the filamentous silver powder of the silver powder mixture of Example 2 had 10 curved portions in the length direction, and the average angle of the curved portions was 140 °. . The ratio of the thread-like silver powder was 54%.
(実施例3)
銀として22.2gの銀を含む硝酸銀水溶液(DOWAハイテック株式会社製)を純水で希釈し、250mLとした。この溶液を攪拌しながら、25℃に保持しているビーカー内に、同じく25℃に保持した還元剤溶液(和光純薬工業株式会社製、L−アスコルビン酸を18.5g、及びキレスト社製エチレンジアミン四酢酸ナトリウム0.15gを含む)550mLを添加した。還元剤溶液の添加後3分間引き続き攪拌を行った後、ブフナー漏斗で濾過し、水洗を行った。得られたウエットケーキを75℃に設定した真空乾燥機で乾燥させた。コーヒーミルによる解砕を行い、実施例3の銀粉混合物を得た。
得られた実施例3の銀粉混合物について、実施例1と同様にして、粉形状、粒度分布、BET比表面積、及びタップ密度の測定を行った。結果を表3に示した。得られたSEM写真を図3A及び図3Bに示した。
実施例3の銀粉混合物のうち糸状銀粉の平均長軸長さは7μmであり、平均短軸長さは270nmであった。
また、実施例1と同様の測定方法により、実施例3の銀粉混合物のうち糸状銀粉は、長さ方向に2個の曲部を有しており、曲部の平均角度は30°であった。糸状銀粉の割合は50%であった。
(Example 3)
A silver nitrate aqueous solution (made by DOWA Hitech Co., Ltd.) containing 22.2 g of silver as silver was diluted with pure water to make 250 mL. While stirring this solution, in a beaker maintained at 25 ° C., a reducing agent solution also maintained at 25 ° C. (Wako Pure Chemical Industries, 18.5 g of L-ascorbic acid, and ethylenediamine manufactured by Kyrest Co., Ltd.) 550 mL) (containing 0.15 g sodium tetraacetate) was added. Stirring was continued for 3 minutes after the addition of the reducing agent solution, followed by filtration with a Buchner funnel and washing with water. The obtained wet cake was dried with a vacuum dryer set at 75 ° C. Crushing with a coffee mill was performed to obtain a silver powder mixture of Example 3.
About the obtained silver powder mixture of Example 3, it carried out similarly to Example 1, and measured the powder shape, the particle size distribution, the BET specific surface area, and the tap density. The results are shown in Table 3. The obtained SEM photographs are shown in FIGS. 3A and 3B.
Of the silver powder mixture of Example 3, the average major axis length of the filamentous silver powder was 7 μm, and the average minor axis length was 270 nm.
Further, according to the same measurement method as in Example 1, among the silver powder mixture of Example 3, the filamentous silver powder had two curved parts in the length direction, and the average angle of the curved parts was 30 °. . The ratio of the thread-like silver powder was 50%.
また、表3の結果から、還元剤溶液としてステアリン酸ナトリウム及び硝酸銅三水和物を更に含むことにより、糸状銀粉の糸が伸びやすくなり、平均長軸長さが長くなり、タップ密度が上がることが分かった。
Moreover, from the result of Table 3, by further including sodium stearate and copper nitrate trihydrate as the reducing agent solution, the yarn of the filamentous silver powder is easily stretched, the average major axis length is increased, and the tap density is increased. I understood that.
<導電性ペーストの粘度評価>
表1に示す特性の市販のフレーク銀粉(1)と、市販の球状銀粉(2)とを質量比(1:1)で混合し、特開2013−105525号公報に相当する従来例の導電性ペーストを得た。
得られた従来例の導電性ペーストについて、以下のようにして、粘度を測定し、粘度比を求めた。また、銀粉とビヒクルの構成比を変化させて導電性ペーストを作製し、粘度の変化は0.5rpmの粘度を横軸、粘度比を縦軸として図8に表した。
上記作製した実施例1及び比較例1〜4の導電性ペーストについて、同様に粘度を測定し、粘度比を求めた。結果を表4及び図8に示した。
<Viscosity evaluation of conductive paste>
Commercially available flake silver powder (1) having the characteristics shown in Table 1 and commercially available spherical silver powder (2) are mixed at a mass ratio (1: 1), and the conductivity of a conventional example corresponding to JP2013-105525A is disclosed. A paste was obtained.
About the obtained electrically conductive paste of the prior art example, the viscosity was measured as follows and viscosity ratio was calculated | required. Further, the conductive paste was prepared by changing the composition ratio of silver powder and vehicle, and the change in viscosity is shown in FIG. 8 with the viscosity at 0.5 rpm as the horizontal axis and the viscosity ratio as the vertical axis.
About the produced electrically conductive paste of Example 1 and Comparative Examples 1-4, the viscosity was measured similarly and the viscosity ratio was calculated | required. The results are shown in Table 4 and FIG.
<導電性ペーストの粘度測定>
E型粘度計(ブルックフィールド社製、DVIII+、コーンスピンドルCP−52)により、25℃における0.5rpm、1rpm、5rpm、及び10rpmで測定を行った。
前記0.5rpmでの粘度の測定値をη0.5、前記10rpmでの粘度の測定値をη10とし、η0.5/η10の値を粘度比(チキソ指数)とした。
<Measurement of viscosity of conductive paste>
Measurements were made at 0.5 rpm, 1 rpm, 5 rpm, and 10 rpm at 25 ° C. using an E-type viscometer (Brookfield, DVIII +, cone spindle CP-52).
The measured value of the viscosity at 0.5 rpm was η0.5, the measured value of the viscosity at 10 rpm was η10, and the value of η0.5 / η10 was the viscosity ratio (thixo index).
図8の結果から、従来例の導電性ペーストにおいては、球状銀粉とフレーク状銀粉とを混合した銀粉において、銀粉とビヒクルの構成比を変化させて、導電性を保つ範囲で粘度を調整した場合であっても粘度比の最大値は10であり、実施例1の粘度比12.5には及ばないことが分かった。
また、表4及び図8に示すように、従来例の導電性ペーストは直線的に変化するが、実施例1のように糸状銀粉を含む粘度比はその直線に対し大きく離れており、球状銀粉、フレーク銀粉、球状銀粉とフレーク状銀粉の混合をどのように調整しようとも、糸状銀粉を含む実施例1の粘度比の方が高くなることが認められた。
From the result of FIG. 8, in the conductive paste of the conventional example, in the silver powder obtained by mixing the spherical silver powder and the flaky silver powder, the composition ratio of the silver powder and the vehicle is changed, and the viscosity is adjusted within a range that maintains the conductivity. Even so, it was found that the maximum value of the viscosity ratio was 10, which was less than the viscosity ratio of 12.5 in Example 1.
Moreover, as shown in Table 4 and FIG. 8, the conductive paste of the conventional example changes linearly, but the viscosity ratio including the thread-like silver powder as in Example 1 is far away from the straight line, and the spherical silver powder No matter how the mixing of flake silver powder, spherical silver powder and flaky silver powder was adjusted, it was found that the viscosity ratio of Example 1 containing thread-like silver powder was higher.
本発明の態様としては、例えば、以下のものなどが挙げられる。
<1> 長さ方向に少なくとも1つの曲部を有してなり、
平均長軸長さが2μm〜20μmであり、かつ平均短軸長さが50nm〜900nmであることを特徴とする糸状銀粉である。
<2> 曲部の平均角度が、5°以上175°以下である前記<1>に記載の糸状銀粉である。
<3> 前記<1>から<2>のいずれかに記載の糸状銀粉と、球状銀粉、フレーク状銀粉、又はその両方とを含むことを特徴とする銀粉混合物である。
<4> 前記<3>に記載の銀粉混合物を少なくとも含むことを特徴とする導電性ペーストである。
<5> ガラスフリットと、樹脂と、溶剤と、界面活性剤とを更に含み、25℃における回転数0.5rpmの粘度が500Pa・sより大きく、回転数0.5rpmでの粘度η0.5と、回転数10rpmでの粘度η10との粘度比(η0.5/η10)が12以上である前記<4>に記載の導電性ペーストである。
<6> 前記<3>に記載の銀粉混合物の製造方法であって、
硝酸銀水溶液に、L−アスコルビン酸、及びエチレンジアミン四酢酸ナトリウムを含む還元剤溶液を添加することを特徴とする銀粉混合物の製造方法である。
<7> 還元剤溶液が、ステアリン酸ナトリウムを更に含む前記<6>に記載の銀粉混合物の製造方法である。
<8> 還元剤溶液が、硝酸銅三水和物を更に含む前記<6>に記載の銀粉混合物の製造方法である。
Examples of the aspect of the present invention include the following.
<1> It has at least one curved part in the length direction,
A filamentous silver powder having an average major axis length of 2 μm to 20 μm and an average minor axis length of 50 nm to 900 nm.
<2> The filamentous silver powder according to <1>, wherein the average angle of the curved portion is 5 ° or more and 175 ° or less.
<3> A silver powder mixture comprising the filamentous silver powder according to any one of <1> to <2> and a spherical silver powder, a flaky silver powder, or both.
<4> A conductive paste comprising at least the silver powder mixture according to <3>.
<5> A glass frit, a resin, a solvent, and a surfactant are further included. The viscosity at 25 ° C. at a rotation speed of 0.5 rpm is larger than 500 Pa · s, and the viscosity at a rotation speed of 0.5 rpm is η0.5. The conductive paste according to <4>, wherein the viscosity ratio (η0.5 / η10) to the viscosity η10 at a rotation speed of 10 rpm is 12 or more.
<6> The method for producing a silver powder mixture according to <3>,
A method for producing a silver powder mixture comprising adding a reducing agent solution containing L-ascorbic acid and sodium ethylenediaminetetraacetate to an aqueous silver nitrate solution.
<7> The method for producing a silver powder mixture according to <6>, wherein the reducing agent solution further contains sodium stearate.
<8> The method for producing a silver powder mixture according to <6>, wherein the reducing agent solution further contains copper nitrate trihydrate.
Claims (7)
平均長軸長さが2μm〜20μmであり、かつ平均短軸長さが50nm〜900nmであることを特徴とする糸状銀粉。 It has a differentiable curve and a curved shape in the length direction,
A filamentous silver powder having an average major axis length of 2 μm to 20 μm and an average minor axis length of 50 nm to 900 nm.
硝酸銀水溶液に、L−アスコルビン酸、及びエチレンジアミン四酢酸ナトリウムを含む還元剤溶液を添加することを特徴とする銀粉混合物の製造方法。 It is a manufacturing method of the silver dust mixture according to claim 2,
A method for producing a silver powder mixture, comprising adding a reducing agent solution containing L-ascorbic acid and sodium ethylenediaminetetraacetate to an aqueous silver nitrate solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013199123A JP6247876B2 (en) | 2013-09-26 | 2013-09-26 | Threaded silver powder, silver powder mixture, method for producing the same, and conductive paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013199123A JP6247876B2 (en) | 2013-09-26 | 2013-09-26 | Threaded silver powder, silver powder mixture, method for producing the same, and conductive paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015065098A JP2015065098A (en) | 2015-04-09 |
JP6247876B2 true JP6247876B2 (en) | 2017-12-13 |
Family
ID=52832816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013199123A Active JP6247876B2 (en) | 2013-09-26 | 2013-09-26 | Threaded silver powder, silver powder mixture, method for producing the same, and conductive paste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6247876B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3689498A4 (en) * | 2017-09-27 | 2021-03-24 | DOWA Electronics Materials Co., Ltd. | Silver powder mixture, method for producing same, and conductive paste |
JP7123728B2 (en) * | 2018-10-03 | 2022-08-23 | 株式会社東芝 | Conductive resin and superconducting coil using the same |
KR102213023B1 (en) * | 2019-02-12 | 2021-02-09 | 주식회사 잉크테크 | Paste composition for outer electrode of inductor |
CN110465653B (en) * | 2019-09-19 | 2021-11-05 | 安徽工业大学 | A kind of silver wire and preparation method thereof |
CN110899721B (en) * | 2019-11-04 | 2021-11-16 | 广东羚光新材料股份有限公司 | Composite silver powder with silver wires and preparation method and application thereof |
US20240157436A1 (en) * | 2021-03-08 | 2024-05-16 | Dowa Electronics Materials Co., Ltd. | Silver flake powder and production method thereof, and electrically conductive paste |
CN114023486B (en) * | 2021-10-20 | 2024-05-24 | 西安理工大学 | Environment-friendly micro-nano composite water-based conductive silver paste and preparation method thereof |
CN116665949B (en) * | 2023-07-18 | 2025-02-11 | 上海宝银电子材料有限公司 | Conductive silver paste for automotive coated glass and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003045228A (en) * | 2001-08-01 | 2003-02-14 | Hitachi Chem Co Ltd | Conductive paste |
JP2006265714A (en) * | 2005-03-25 | 2006-10-05 | Mitsubishi Chemicals Corp | Method for producing metal acicular body-containing metal particulate |
JP2009108407A (en) * | 2007-10-12 | 2009-05-21 | Fujifilm Corp | Bent rod-shaped metal particle, manufacturing method for the same, composition containing the same, and conductive material |
JP2009215573A (en) * | 2008-03-07 | 2009-09-24 | Fujifilm Corp | Rod-shaped metal particle, manufacturing method therefor, composition containing rod-shaped metal particle, and antistatic material |
JP2010199034A (en) * | 2009-02-27 | 2010-09-09 | Dic Corp | Conductive paste for solar cell and manufacturing method therefor |
JP5560256B2 (en) * | 2011-11-10 | 2014-07-23 | 京都エレックス株式会社 | Conductive paste for solar cell electrode formation and solar cell element |
US9920207B2 (en) * | 2012-06-22 | 2018-03-20 | C3Nano Inc. | Metal nanostructured networks and transparent conductive material |
-
2013
- 2013-09-26 JP JP2013199123A patent/JP6247876B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015065098A (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6247876B2 (en) | Threaded silver powder, silver powder mixture, method for producing the same, and conductive paste | |
US10170213B2 (en) | Silver powder and method for producing same | |
CN106573301B (en) | Silver powder and its conductive paste | |
JP6389091B2 (en) | Silver-coated copper powder, method for producing the same, and conductive paste | |
JP2017150086A (en) | Silver coated copper alloy powder and manufacturing method therefor | |
JP6180769B2 (en) | Flaky microparticles | |
US10381124B2 (en) | Silver powder, manufacturing method therefor, and conductive paste | |
WO2010100893A1 (en) | Electrically conductive paste composition and electrically conductive film formed by using the same | |
JP5853541B2 (en) | Conductive composition for forming solar battery collecting electrode and solar battery cell | |
JP6564920B2 (en) | Silver powder mixture, method for producing the same, and conductive paste | |
JP2010199034A (en) | Conductive paste for solar cell and manufacturing method therefor | |
JP2015010256A (en) | Flake-like silver powder and production method thereof, and conductive paste | |
JP6167060B2 (en) | Flaked copper powder and method for producing the same | |
JP2014150061A (en) | Low burnt silver conductor | |
JP4961601B2 (en) | Silver powder, method for producing the same, paste using the same, electronic circuit component, and electric product | |
JP6727922B2 (en) | Silver powder, method for producing the same, and conductive paste | |
JPWO2011052336A1 (en) | Glass composition and composition for forming conductor using the same | |
JP6194166B2 (en) | Method for producing silver-coated copper alloy powder | |
JP5756694B2 (en) | Flat metal particles | |
Li et al. | Effect of spherical silver powders with different sizes in back electrode paste on the conversion efficiency of silicon solar cells | |
JP2021006661A (en) | Silver powder and method for producing the same | |
JP6151017B2 (en) | Nickel ultrafine powder, conductive paste, and method for producing nickel ultrafine powder | |
JP2014208908A (en) | Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste | |
WO2017033889A1 (en) | Silver powder, manufacturing method therefor, and conductive paste | |
JP2018043895A (en) | Ruthenium dioxide powder and production method thereof, thick film resistor paste, and thick film resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170705 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20171017 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20171102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6247876 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |