[go: up one dir, main page]

JP6244681B2 - Compensation method for accumulated time series data loss - Google Patents

Compensation method for accumulated time series data loss Download PDF

Info

Publication number
JP6244681B2
JP6244681B2 JP2013128430A JP2013128430A JP6244681B2 JP 6244681 B2 JP6244681 B2 JP 6244681B2 JP 2013128430 A JP2013128430 A JP 2013128430A JP 2013128430 A JP2013128430 A JP 2013128430A JP 6244681 B2 JP6244681 B2 JP 6244681B2
Authority
JP
Japan
Prior art keywords
compensation
series data
period
time series
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013128430A
Other languages
Japanese (ja)
Other versions
JP2015005025A (en
Inventor
孝則 林
孝則 林
倫之 蓬田
倫之 蓬田
貴雅 藤澤
貴雅 藤澤
村松 勝
勝 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2013128430A priority Critical patent/JP6244681B2/en
Publication of JP2015005025A publication Critical patent/JP2015005025A/en
Application granted granted Critical
Publication of JP6244681B2 publication Critical patent/JP6244681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、積算型時系列データの欠損補償方法に係わり、電力量計のような積算型の計量機器から数値を収集する監視システム等において、通信異常やシステムの一時停止等の影響で収集している積算型時系列データに欠損が発生した場合に、その欠損データを補填する方法に関するものである。   The present invention relates to a method for compensating loss of accumulated time series data, and is collected in the monitoring system that collects numerical values from accumulated metering devices such as watt hour meters due to the influence of communication abnormality or system suspension. The present invention relates to a method for compensating for missing data when the accumulated time series data is missing.

様々な計量機器のデータを収集する監視システム等では、多くの計測データを時系列データとして蓄えるが、通信異常やシステムの一時停止等の影響で収集している時系列データに欠損が生じることがある。このような欠損データを補填する方法として前回値をそのまま使う、前後の値から線形補填を行うなどの方法があるが、欠損データが連続すると補填値が適当でなくなることから、特許文献1では別の日(特に一週間前)の同時刻データで補填する方法が記載されている。
この方法は監視システム等で計測する時系列データの多くが人の活動に関連して一日周期・一週間周期の変動パターンを持つことから比較的妥当な補填値を得られると考えられる。
In monitoring systems that collect data from various weighing devices, a large amount of measurement data is stored as time-series data. However, time-series data collected due to communication abnormalities or system suspensions may be lost. is there. As a method of compensating for such missing data, there are methods such as using the previous value as it is, or performing linear compensation from previous and subsequent values. However, if missing data continues, the compensation value becomes inappropriate. The method of supplementing with the same time data of the day (especially one week before) is described.
This method is considered to be able to obtain a relatively reasonable compensation value because most of the time-series data measured by a monitoring system or the like has a fluctuation pattern of a daily cycle or a weekly cycle related to human activities.

その他、時系列データの欠損補填方法としては特許文献2に示すように、カオス予測技術を応用して欠損補填できることの記載がある。なおカオス予測方法の一例として特許文献3で示すような局所ファジィ再構成法がある。   In addition, as a method of compensating for a deficiency in time series data, there is a description that a deficiency can be compensated by applying a chaos prediction technique, as shown in Patent Document 2. An example of the chaos prediction method is a local fuzzy reconstruction method as shown in Patent Document 3.

特開2004−13674JP-A-2004-13674 特開平10−222485JP 10-222485 A 特許第3679817Japanese Patent No. 3679817

監視システム等で収集する時系列データの中には、電力量計のように積算量の時系列データになっているものがある。このような積算型時系列データは、計量機器の上限値まで単調に増加して上限に達するとリセットされてゼロに戻るが、このリセットは一般的に一日周期でも一週間周期でもないため、特許文献1の方法をそのまま適用することはできない。   Some time-series data collected by a monitoring system or the like is accumulated time-series data such as a watt-hour meter. Such integrated time series data increases monotonically up to the upper limit of the weighing device and resets to zero when the upper limit is reached, but this reset is generally neither a daily cycle nor a weekly cycle, The method of Patent Document 1 cannot be applied as it is.

図10で示すように、積算型時系列データの差分を取りだして時刻ごとの値に変換し、その差分値に基づいて補填することは可能であるが、積算型時系列データ自体の補填が必要な場合もあり、そのような場合、差分値で補填しても積算型時系列データに問題が発生する可能性がある。すなわち、補填された当日の積算値で示すように、補填期間直後の積算型時系列データ値が、補填期間最後の値よりも小さくなるという積算型時系列データにはありえないはずの逆転が生じる可能性である。このような逆転データを正常値として解釈するとその期間にリセットが発生したと看做すことになり、その時刻の値が非常に大きなことになる。これは明らかに異常でありこのような補填には問題がある。   As shown in FIG. 10, it is possible to take the difference of the integrated time-series data, convert it to a value for each time, and compensate based on the difference value, but it is necessary to compensate the integrated time-series data itself In such a case, there is a possibility that a problem occurs in the integrated time-series data even if the difference value is used for compensation. In other words, as indicated by the integrated value on the day of compensation, there is a possibility of an inversion that is impossible for the integrated time series data in which the integrated time series data value immediately after the compensation period is smaller than the last value of the compensation period. It is sex. If such reverse data is interpreted as a normal value, it will be considered that a reset has occurred during that period, and the value at that time will be very large. This is clearly abnormal and there is a problem with such compensation.

また、一週間前の同時刻データを参照して補填する方法は、人の活動が一日周期・一週間周期の変動パターンを持つことから妥当ではあるが、祝日などの影響で一週間周期が乱れることがあり絶対的ではない。この補填例を、具体的な数値を用いて図11に示す。   In addition, it is reasonable to compensate by referring to the same time data of a week ago, because human activities have a fluctuation pattern of a daily cycle or a weekly cycle, but the weekly cycle is affected by holidays and other factors. It may be disturbed and not absolute. This compensation example is shown in FIG. 11 using specific numerical values.

図11において斜線で示した部分が補填対象日の補填対象期間とし、図11(a)が一週間前の時系列データ、補填対象日の正常値が図11(b)とする。図11(a)で示す補填対象日の前日に該当する一週間前の時系列データは518であり、補填対象日当日では520で一日の増分値(差分値)は2である。次の日の時系列データは522で差分は2、…補填対象日後の時系列データは525である。   In FIG. 11, the hatched portion is the compensation target period of the compensation target date, FIG. 11 (a) is the time series data one week before, and the normal value of the compensation target date is FIG. 11 (b). The time-series data one week before corresponding to the day before the compensation date shown in FIG. 11A is 518, and the daily increment value (difference value) is 520 on the compensation date. The time series data for the next day is 522, the difference is 2,... 525 is the time series data after the compensation date.

図11(c)が一週間前の時系列データに基づいて補填した場合を示したもので、同時刻の前の時間からの差分を補填対象の直前時刻からの差分と同じとして順次補填していくので、補填対象日の時系列データは、290、292,293,294と補填される。この最後の値294は補填期間後の値293より大きく逆転が起きていることが分かる。   FIG. 11 (c) shows a case where compensation is performed based on time-series data of one week before, and the difference from the time before the same time is sequentially compensated as the difference from the previous time to be compensated. Therefore, the time series data of the compensation target date is supplemented with 290, 292, 293, and 294. It can be seen that the last value 294 is larger than the value 293 after the compensation period, and the reverse occurs.

本発明が目的とするとこは、補填対象に逆転現象が生じることのない積算型時系列データの欠損補償方法を提供することにある。   An object of the present invention is to provide a method for compensating for loss of accumulated time series data in which a reverse phenomenon does not occur in a compensation target.

本発明は、積算型計測機器により計測された積算型の時系列データを監視システムに入力し、入力された時系列データに欠損が発生した時、所定期間前の参照期間前後に計測された時系列データを参照し、監視システム内の補填機能部により補填期間当日の時系列データを補填する方法において、
前記参照期間の前後に計測された時系列データから、参照期間における補填期間前後での変動値wを求め、
前記変動値wがゼロのときは、補填期間当日の補填期間直前の値を補填値とし、
前記変動値wが正のときは、前記参照期間直前と参照期間n番目の時刻との変動値sに、補填期間当日の補填期間前後での変動値vと前記変動値wとの比v/wを乗算し、該乗算値と補填期間当日の補填期間直前の値とを加算して補填値とすることを特徴としたものである。
The present invention inputs accumulated time series data measured by an integrating measuring instrument to a monitoring system, and when the input time series data is missing, when measured before and after a reference period before a predetermined period. In the method of referring to the series data and supplementing the time series data on the day of the compensation period by the compensation function unit in the monitoring system,
From the time series data measured before and after the reference period, to obtain the fluctuation value w before and after the compensation period in the reference period ,
When the fluctuation value w is zero , the value immediately before the compensation period on the day of the compensation period is taken as the compensation value,
When the fluctuation value w is positive, the fluctuation value s between the time immediately before the reference period and the nth time of the reference period is the ratio v / The multiplication value is multiplied by w and the value immediately before the compensation period of the compensation period is added to obtain a compensation value.

また、本発明は、積算型計測機器により計測された積算型の時系列データを監視システムに入力し、入力された時系列データに欠損が発生した時、所定期間前の参照期間前後に計測された時系列データを参照し、監視システム内の補填機能部により補填期間当日の時系列データを補填する方法において、
参照期間前後に計測された時系列データを決定的カオスの概念に基づき埋め込み、埋め込み空間での近傍探索による過去の類似データパターンの期間複数個を使い、局所ファジィ再構成法で補填値を作成することを特徴としたものである。
In addition, the present invention inputs integrated time-series data measured by an integrating measuring instrument to a monitoring system, and when a defect occurs in the input time-series data, it is measured before and after a reference period before a predetermined period. In the method of referring to the time-series data and supplementing the time-series data on the day of the compensation period by the compensation function unit in the monitoring system
Time series data measured before and after the reference period are embedded based on the concept of deterministic chaos, and a compensation value is created by local fuzzy reconstruction using multiple periods of past similar data patterns by neighborhood search in the embedded space. It is characterized by that.

以上のとおり、本発明によれば、補填値の上ブレを防ぎ、明らかな異常値となる補填期間後の逆転した補填が防止でき、精度のよい欠損補填が可能となるものである。   As described above, according to the present invention, it is possible to prevent the compensation value from being shaken up, to prevent the reversed compensation after the compensation period in which the abnormal value is apparent, and to perform the accurate defect compensation.

本発明の実施形態を示すフローチャート。The flowchart which shows embodiment of this invention. 積算型時系列データの補填機能を持つ監視システムの構成図。The block diagram of the monitoring system which has a compensation function of integration type time series data. 積算型時系列データの比保全による補填図。Complementary diagram by ratio maintenance of integrated time series data. 補填説明図。Supplementary explanatory diagram. 積算型時系列データのカオス方式による補填図。Complementary diagram of integrated time series data by chaos method. 本発明の他の実施形態を示すフローチャート。The flowchart which shows other embodiment of this invention. 探索法の説明図。Explanatory drawing of a search method. 欠損補填の平均誤差の比較グラフ。Comparison graph of average error of defect filling. 欠損補填の最大誤差の比較グラフ。Comparison graph of the maximum error of defect filling. 積算型時系列データの差分値による補填と逆転図。Compensation and reversal diagram by difference value of integrated time series data. 従来の補填説明図。FIG.

積算型時系列データの補填機能を持つ監視システムの構成例を図2に示す。
監視システム2は、積算型計測器1から定期的に計測データを取得して積算型時系列データ3にデータを追加していく。積算型時系列データ3に欠損が生じた場合は利用者の指示等により補填機能4が補填値を計算して積算型時系列データ3の欠損データを補填する。
FIG. 2 shows a configuration example of a monitoring system having an integration type time series data compensation function.
The monitoring system 2 periodically acquires measurement data from the integrating meter 1 and adds the data to the integrating time series data 3. When the accumulated time series data 3 is missing, the compensation function 4 calculates a compensation value according to a user's instruction or the like to compensate for the missing data of the accumulated time series data 3.

この構成は従来と同様で、本発明は補填機能部4での補填処理方法で、図3で示すように、一週間前の同時刻データをそのまま補填する代わりに、補填期間の直前から補填期間の直後までの変動量と一週間前の対応する時刻間の変動量との比を使い、補填期間直前から各補填時刻までの変動量と一週間前の対応する時刻間の変動量の比が先の比と一致するように補填値を補正するものである。
以下図に基づいて説明する。
This configuration is the same as the conventional one, and the present invention is a compensation processing method in the compensation function unit 4, and as shown in FIG. 3, instead of supplementing the same time data one week ago as it is, the compensation period immediately before the compensation period. Using the ratio of the amount of variation up to immediately after and the amount of variation between the corresponding times one week ago, the ratio of the amount of variation from just before the compensation period to each compensation time and the amount of variation between the corresponding times one week ago is The compensation value is corrected so as to coincide with the previous ratio.
This will be described below with reference to the drawings.

図1は、本発明の第1の実施例を示す補填処理の処理手順をフローチャートである。   FIG. 1 is a flowchart showing the processing procedure of compensation processing according to the first embodiment of the present invention.

ステップS1では、補填機能部4において一週間前の補填時刻前後での変動wと、補填時刻前後の変動vを計算する。ここでdataは積算型時系列データを保持する配列であり、tは補填期間の最初の時刻を指す配列インデックス、cは補填期間の時刻数、weekは一週間分の時刻数を示す。またmodは剰余計算であり、差が負であればRを加算し、結果を0〜(R−1)の範囲にしている。Rは積算量がリセットされる上限値である。   In step S1, the compensation function unit 4 calculates the fluctuation w before and after the compensation time one week ago and the fluctuation v before and after the compensation time. Here, data is an array that holds accumulated time series data, t is an array index indicating the first time of the compensation period, c is the number of times in the compensation period, and week is the number of times for one week. Mod is a remainder calculation. If the difference is negative, R is added, and the result is in the range of 0 to (R-1). R is an upper limit value at which the integrated amount is reset.

次にステップS2,S3〜S7によりnが0〜(c−1)までの反復処理を行う。これにより補填期間の全ての補填値を計算する。反復処理の中では、まずステップS4により一週間前の補填時刻前後での変動wが正の場合とそれ以外で分岐する。wが正のとき、ステップS5で一週間前の補填時刻直前と補填期間のn番目時刻との変動sを計算する。そして、補填時刻直前の積算値に、sをv/wで補正した値を加算してmodにより0〜(R−1)の範囲に調整したものを補填値とする。wが正でないとき、wはゼロで一週間前の補填時刻前後で変動が全くないので、ステップS6で補填期間直前の値をそのまま補填値とする。   Next, iterative processing from n to 0 to (c-1) is performed in steps S2, S3 to S7. As a result, all the compensation values in the compensation period are calculated. In the iterative process, first, in step S4, the process branches depending on whether or not the fluctuation w before and after the compensation time one week ago is positive. When w is positive, in step S5, a change s between immediately before the compensation time one week ago and the nth time of the compensation period is calculated. Then, a value obtained by adding s corrected by v / w to the integrated value immediately before the compensation time and adjusting it to a range of 0 to (R-1) by mod is used as a compensation value. When w is not positive, w is zero and there is no change before and after the compensation time one week before, so the value immediately before the compensation period is used as the compensation value as it is in step S6.

具体的な値を用いた補填例を図4で示す。図4は図11に示す従来の補填説明に対応するもので、図4(c)が実施例1に基づくものである。図4において、一週間前の補填期間直前と同じ時刻から各時刻までの増分(差分)を補填期間前後の増分で調整して補填する。すなわち、図4(b)で示す補填期間直前の時系列データ288と補填期間直後の時系列データ293の増分5と、一週間前の補填期間(参照期間)直前の時系列データ518と補填期間(参照期間)直後の時系列データ525の増分7との比に、補填期間の各日間の増分加算値を乗算することで各日の補填が行われ、結果としての補填値は、289,291,292,292となり、図11(c)で示す補填値より真値に近くなって逆転のない補填となる。 An example of compensation using specific values is shown in FIG. 4 corresponds to the conventional compensation explanation shown in FIG. 11, and FIG. 4C is based on the first embodiment. In FIG. 4, the increase (difference) from the same time to each time immediately before the compensation period one week ago is adjusted by the increments before and after the compensation period to compensate. That is, the increment 5 of the time series data 288 immediately before the compensation period and the time series data 293 immediately after the compensation period shown in FIG. 4B, the time series data 518 immediately before the compensation period (reference period) one week before, and the compensation period Each day's compensation is performed by multiplying the ratio of the time series data 525 immediately after (reference period) with the increment 7 by the incremental addition value for each day of the compensation period, and the resulting compensation values are 289,291. , 292 , 292, which is closer to the true value than the compensation value shown in FIG .

実施例1では一週間前の同時刻データを参照して、その値を補填期間前後の変動量の比で補正して補填したものであるが、実施例2では、参照データの補正方法は実施例1と同様だが、参照データを一週間前の同時刻データでなくカオス方式で探索した過去の類似パターンのデータとしたものである。   In the first embodiment, the same time data of one week ago is referred to, and the value is corrected by the ratio of the fluctuation amount before and after the compensation period. However, in the second embodiment, the reference data correction method is implemented. Although it is the same as that of Example 1, the reference data is not the same time data of one week ago but the data of the past similar pattern searched by the chaos method.

図5で示すように、カオス方式の探索は積算型時系列データそのままではなく、差分値により求めた時刻ごとの値データに対して行う。値データのパターンを遅れ時間座標系による埋め込み空間の点に対応付けし、埋め込み空間の距離での近傍点を近い方から指定個数だけ抽出する。図6は、この補填処理の処理手順を示すフローチャートである。   As shown in FIG. 5, the chaotic search is performed not on the integrated time-series data but on the value data for each time obtained from the difference value. The pattern of the value data is associated with the point of the embedding space by the delay time coordinate system, and a specified number of neighboring points at the distance of the embedding space are extracted. FIG. 6 is a flowchart showing the processing procedure of this compensation processing.

図6で、ステップS10では、先ず差分値の遅れ時間座標系への埋め込みによる距離で近傍探索して近い方からm個を抽出して過去の類似パターンのデータm個の時系列データ内でのインデックス位置と補填対象との距離を得る。
次にステップS11で類似パターンのデータそれぞれについて実施例1と同様に補填値を計算する。この計算は図1のフローチャートでt−weekの部分を類似パターンのインデックス位置で置き換えたものになる。
In FIG. 6, in step S10, first, a neighborhood search is performed using a distance obtained by embedding the difference value in the delay time coordinate system, m is extracted from the closest one, and the past similar pattern data m in the time series data is extracted. Get the distance between the index position and the target.
In step S11, a compensation value is calculated for each similar pattern data in the same manner as in the first embodiment. This calculation is obtained by replacing the t-week portion with the index position of the similar pattern in the flowchart of FIG.

続いてステップS12で類似パターンの補填対象からの近傍距離により特許文献3で示す局所ファジィ再構成法を用いて重みを計算する。
最後にステップS13で近傍ごとの補填値を局所ファジィ再構成法の重みで加重平均を取ることで最終的な補填値を得る。
Subsequently, in step S12, the weight is calculated using the local fuzzy reconstruction method shown in Patent Document 3 based on the neighborhood distance from the similar pattern to be compensated.
Finally, in step S13, a final compensation value is obtained by taking a weighted average of the compensation values for each neighborhood using the weight of the local fuzzy reconstruction method.

図7は、図6のステップ10における類似パターンの探索例を示したものである。類似パターンの探索では、補填対象日直前の期間における各時刻の一つ前の時刻からの差分値を使用する。この差分値を直前時刻から埋め込み次元と遅れ時間で決まるパターンで抽出して埋め込みベクトルを作り、この埋め込みベクトルと過去のデータから同様に作成した埋め込みベクトルの距離を計算し、近い埋め込みベクトルからm個を取得する。この近い埋め込みベクトルに続く期間を過去の類似パターンとすると、続く期間も類似パターンになる。この実施例2ではこのカオス予測技術を欠損補填に応用している。   FIG. 7 shows an example of searching for similar patterns in step 10 of FIG. In the search for similar patterns, the difference value from the time immediately before each time in the period immediately before the compensation target date is used. This difference value is extracted from the previous time with a pattern determined by the embedding dimension and the delay time to create an embedding vector, and the distance between this embedding vector and the embedding vector similarly created from the past data is calculated. To get. If the period following this close embedding vector is a past similar pattern, the subsequent period also becomes a similar pattern. In the second embodiment, this chaos prediction technique is applied to defect compensation.

図7で示す数値は、埋め込み次元48、遅れ時間1、類似パターンm=10個とした事例で、得られた類似パターンと補填対象との距離は近い方から、15,16,18,…22となっている。なお、類似パターンは何れも補填対象と同じ時間帯で、同じ曜日のものが半数を占め、2番目に近いパターンは1週間前のデータそのものである。このことは、図11及び実施例1で使用した1週間前のデータを使用して補填する方法と同様となり、カオス補填方式による類似パターン探索が有効であることを示す。   7 is an example in which the embedding dimension is 48, the delay time is 1, and the number of similar patterns is m = 10, and the distance between the obtained similar pattern and the compensation target is 15, 16, 18,... It has become. Note that all the similar patterns are in the same time zone as the target of compensation, and the same day of the week accounts for half, and the second closest pattern is the data itself one week ago. This is the same as the method of compensation using the data of one week before used in FIG. 11 and Example 1, and shows that the similar pattern search by the chaos compensation method is effective.

また、前述のように、単に1週間まえのデータを取ると、祝日や事故などの場合にはズレが生じるが、カオス補填方式で類似パターン探索する方法では、普通でないデータは探索結果から除外されて間違った補填がしにくくなる。また、類似パターンを複数使って補填値を構成することも、間違って入った異常値の影響を軽減して補填誤差を減らす効果がある。   In addition, as described above, if the data is simply taken one week ago, a deviation occurs in the case of a holiday or an accident. However, in the method of searching for similar patterns using the chaos compensation method, unusual data is excluded from the search results. Makes it difficult to make wrong compensation. In addition, configuring a compensation value by using a plurality of similar patterns also has an effect of reducing the compensation error by reducing the influence of an abnormal value that has been entered incorrectly.

具体的な値での補填例を示したものが図4(d)で、一週間前同時刻を含む複数の過去の類似パターンのデータにより、289,290,291,292となって真値に近い補填となっている。 FIG. 4 (d) shows an example of compensation with specific values, and 289 , 290, 291 and 292 are obtained as a true value based on a plurality of past similar pattern data including the same time one week ago. Close compensation.

図8,9は特許文献1等を用いた従来の手法と、本発明の実施例1と実施例2による欠損補填の誤差評価の比較結果を示したものである。実際に、5つの積算電力量計(A〜E)による30分ごと1年分の時系列データについてランダムに補填対象期間を作って補填値を比較した。積算電力量計は0〜999の範囲で積算され、計測間隔(30分)の間に0〜10程度増加する。補填対象は最初の10日分を除く範囲で1〜24回連続の期間をランダムに作り、その期間の補填値と真値との誤差の平均と最大を計算する。この試行を1000回繰り返して誤差の平均と最大を集計した。その結果が図8、図9のグラフで、従来手法に比べて本発明では平均誤差・最大誤差とも大きく改善していることが分かる。また実施例2の方法は実施例1の方法と比べても改善しており、特に最大誤差の改善が大きくなっている。   FIGS. 8 and 9 show comparison results of error estimation for defect compensation according to the conventional method using Patent Document 1 and the like and Example 1 and Example 2 of the present invention. Actually, a compensation target period was randomly created for time series data for one year every 30 minutes by five integrated watt-hour meters (A to E), and the compensation values were compared. The integrated watt-hour meter is integrated in the range of 0 to 999, and increases by about 0 to 10 during the measurement interval (30 minutes). The compensation target is randomly created a period of 1 to 24 times in a range excluding the first 10 days, and the average and maximum error between the compensation value and the true value for that period are calculated. This trial was repeated 1000 times, and the average and maximum error were counted. The results are shown in the graphs of FIGS. 8 and 9, and it can be seen that both the average error and the maximum error are greatly improved in the present invention as compared with the conventional method. Further, the method of the second embodiment is improved as compared with the method of the first embodiment, and the improvement of the maximum error is particularly great.

1… 積算型計測機器
2… 監視システム
3… 積算型データ
4… 補填機能部
DESCRIPTION OF SYMBOLS 1 ... Integration type measuring device 2 ... Monitoring system 3 ... Integration type data 4 ... Compensation function part

Claims (2)

積算型計測機器により計測された積算型の時系列データを監視システムに入力し、入力された時系列データに欠損が発生した時、所定期間前の参照期間前後に計測された時系列データを参照し、監視システム内の補填機能部により補填期間当日の時系列データを補填する方法において、
前記参照期間の前後に計測された時系列データから、参照期間における補填期間前後での変動値wを求め、
前記変動値wがゼロのときは、補填期間当日の補填期間直前の値を補填値とし、
前記変動値wが正のときは、前記参照期間直前と参照期間n番目の時刻との変動値sに、補填期間当日の補填期間前後での変動値vと前記変動値wとの比v/wを乗算し、該乗算値と補填期間当日の補填期間直前の値とを加算して補填値とすることを特徴とする積算型時系列データの欠損補償方法。
Accumulated time series data measured by an integrating measuring instrument is input to the monitoring system, and when the input time series data is lost, refer to the time series data measured before and after the reference period before the specified period. In the method of supplementing time series data on the compensation period day by the compensation function unit in the monitoring system,
From the time series data measured before and after the reference period, to obtain the fluctuation value w before and after the compensation period in the reference period ,
When the fluctuation value w is zero , the value immediately before the compensation period on the day of the compensation period is taken as the compensation value,
When the fluctuation value w is positive, the fluctuation value s between the time immediately before the reference period and the nth time of the reference period is the ratio v / A deficiency compensation method for accumulated time-series data, characterized by multiplying w and adding the multiplied value and a value immediately before the compensation period on the compensation period to obtain a compensation value.
積算型計測機器により計測された積算型の時系列データを監視システムに入力し、入力された時系列データに欠損が発生した時、所定期間前の参照期間前後に計測された時系列データを参照し、監視システム内の補填機能部により補填期間当日の時系列データを補填する方法において、
参照期間前後に計測された時系列データを決定的カオスの概念に基づき埋め込み、埋め込み空間での近傍探索による過去の類似データパターンの期間複数個を使い、局所ファジィ再構成法で補填値を作成することを特徴とする積算型時系列データの欠損補償方法。
Accumulated time series data measured by an integrating measuring instrument is input to the monitoring system, and when the input time series data is lost, refer to the time series data measured before and after the reference period before the specified period. In the method of supplementing time series data on the compensation period day by the compensation function unit in the monitoring system,
Time series data measured before and after the reference period are embedded based on the concept of deterministic chaos, and a compensation value is created by local fuzzy reconstruction using multiple periods of past similar data patterns by neighborhood search in the embedded space. A deficiency compensation method for accumulated time series data, characterized in that:
JP2013128430A 2013-06-19 2013-06-19 Compensation method for accumulated time series data loss Active JP6244681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128430A JP6244681B2 (en) 2013-06-19 2013-06-19 Compensation method for accumulated time series data loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128430A JP6244681B2 (en) 2013-06-19 2013-06-19 Compensation method for accumulated time series data loss

Publications (2)

Publication Number Publication Date
JP2015005025A JP2015005025A (en) 2015-01-08
JP6244681B2 true JP6244681B2 (en) 2017-12-13

Family

ID=52300907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128430A Active JP6244681B2 (en) 2013-06-19 2013-06-19 Compensation method for accumulated time series data loss

Country Status (1)

Country Link
JP (1) JP6244681B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234485B1 (en) * 2019-04-15 2021-04-01 한국전자통신연구원 Apparatus and method for extracting real time value from comulative measure
KR102408215B1 (en) * 2019-08-28 2022-06-13 주식회사 필드솔루션 Abnormality check system of equipment and facilities
CN114550909A (en) * 2022-01-24 2022-05-27 杭州未名信科科技有限公司 Missing value processing method, device and equipment for medical time series data and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260718A (en) * 1997-03-19 1998-09-29 Fuji Electric Co Ltd Prediction method of water volume in dam
JP4298581B2 (en) * 2004-05-17 2009-07-22 中国電力株式会社 Power demand forecasting device, power demand forecasting system, power demand forecasting program, recording medium, and power demand forecasting method

Also Published As

Publication number Publication date
JP2015005025A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
US9465387B2 (en) Anomaly diagnosis system and anomaly diagnosis method
CN109581856B (en) Time synchronization and time keeping method based on high-performance crystal oscillator frequency calibration
CN111143989B (en) Frequency adjustment amount calculation method, module, system, storage medium, and device
CN107871190A (en) A kind of operational indicator monitoring method and device
JP5227254B2 (en) Real-time calculation method and simulator of state quantity of process model
JP6244681B2 (en) Compensation method for accumulated time series data loss
EP3385796A1 (en) Control device
US9600391B2 (en) Operations management apparatus, operations management method and program
US9523588B2 (en) Method and apparatus for predicting and correcting metering data in non-metered section
CN110263033A (en) Manage object portrait generation method, terminal device and medium
CN102741768B (en) Method for predicting the duration of a future time interval and circuit device therefor
CN111553529B (en) Load prediction method and device, computer readable storage medium and electronic equipment
CN101593151B (en) Method and simulator for real-time calculation of the state variables of a process model
CN109597588B (en) Data storage method, data restoration method and device
CN118709136B (en) Hydrologic water quality on-line monitoring information fusion method
CN110737587A (en) testing method, device, storage medium and server based on testing cases
RU2410750C1 (en) Apparatus for evaluating performance of scientific research and developmental work
CN113588132A (en) Temperature processing method and device
Sobolewski Application of GMDH type neural network for predicting UTC (k) timescales realized on the basis of hydrogen masers
CN116956188A (en) Data anomaly detection method and device, electronic equipment and storage medium
CN110928748A (en) Business system operation monitoring method and device
CN110245844B (en) Abnormal index detection method and device
CN107615205A (en) Clock diagnostic device and clock diagnostic method
Chatterjee et al. Transfer function modelling in software reliability
JP2020047230A (en) Remodeling support device and remodeling support method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6244681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150