[go: up one dir, main page]

JP6236292B2 - Method for producing film-clad battery - Google Patents

Method for producing film-clad battery Download PDF

Info

Publication number
JP6236292B2
JP6236292B2 JP2013234502A JP2013234502A JP6236292B2 JP 6236292 B2 JP6236292 B2 JP 6236292B2 JP 2013234502 A JP2013234502 A JP 2013234502A JP 2013234502 A JP2013234502 A JP 2013234502A JP 6236292 B2 JP6236292 B2 JP 6236292B2
Authority
JP
Japan
Prior art keywords
pressure
predetermined
value
environment
exterior body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013234502A
Other languages
Japanese (ja)
Other versions
JP2015095375A (en
Inventor
伸明 阿久津
伸明 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Automotive Energy Supply Corp
Original Assignee
Nissan Motor Co Ltd
Automotive Energy Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Automotive Energy Supply Corp filed Critical Nissan Motor Co Ltd
Priority to JP2013234502A priority Critical patent/JP6236292B2/en
Publication of JP2015095375A publication Critical patent/JP2015095375A/en
Application granted granted Critical
Publication of JP6236292B2 publication Critical patent/JP6236292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

この発明は、ラミネートフィルム等を外装体とした偏平なフィルム外装電池の製造方法に関する。   The present invention relates to a method for producing a flat film-clad battery having a laminate film or the like as an exterior body.

特許文献1に記載されているように、正極板および負極板をセパレータを介して積層してなる発電要素が、偏平な矩形状をなす外装体の内部に電解液とともに収容され、その一辺より端子を導出した状態で、上記外装体の四方が密封されたフィルム外装電池が知られている。この種のフィルム外装電池の製造工程においては、二枚のシート材を重ね合わせた状態で一辺を除く三辺を封止して袋状体を形成するとともに、内部に発電要素を収納し、開口する一辺より袋状体の内部に電解液を注入した後、開口する一辺を熱融着により封止する。次に、エイジングや初期充電工程を経た後、真空環境下で外装体に開口を設けて内部のガスを排出するガス抜き工程を経て、再度開口を熱融着により封止して、フィルム外装電池が得られる。   As described in Patent Document 1, a power generation element formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed between them is housed together with an electrolyte in a flat rectangular outer casing, and is connected to a terminal from one side thereof. A film-clad battery in which four sides of the outer package are sealed is known. In the manufacturing process of this type of film-clad battery, two sheets of material are overlapped, and the three sides except one side are sealed to form a bag-like body, and the power generation element is housed inside the opening. After injecting the electrolyte into the bag-like body from one side, the side to be opened is sealed by thermal fusion. Next, after passing through an aging and initial charging process, an opening is provided in the exterior body in a vacuum environment, and a gas venting process for discharging the internal gas is performed. Is obtained.

上記のガス抜き工程においては、一般的に、真空度が高い(減圧度が大きい、圧力が低い)ほど、内部のガスを確実に排出できるとされており、一般的には、高真空(JIS規格 0.1〜10−5Pa)の環境下が好ましいとされている。例えば、上記の特許文献1の段落[0028]には1×10−3Pa以下の高真空の雰囲気下でガス抜き工程を行うことが好ましいと記載されている。 In the above degassing step, it is generally said that the higher the degree of vacuum (the greater the degree of vacuum, the lower the pressure), the more reliable the internal gas can be discharged. It is said that the environment of standard 0.1-10 <-5> Pa) is preferable. For example, paragraph [0028] of Patent Document 1 describes that the degassing step is preferably performed in a high vacuum atmosphere of 1 × 10 −3 Pa or less.

特開2001−93508号公報 段落[0028]JP 2001-93508 A paragraph [0028]

しかしながら、ガス抜き工程において、単に真空度を高くするだけでは、外装体の内部のガスを十分に排出することができない。つまり、開口から遠い位置で発生したガスは、開口まで移動するのに時間を要するために、仮に真空度が十分に高くても短時間では排出され難い。   However, in the degassing process, simply increasing the degree of vacuum cannot sufficiently exhaust the gas inside the exterior body. That is, the gas generated at a position far from the opening requires time to move to the opening, so that even if the degree of vacuum is sufficiently high, it is difficult to exhaust in a short time.

また、真空度が高すぎると、電解液が沸騰して揮発するために、電解液の減少量が増大する、という新たな問題が発生する。   In addition, when the degree of vacuum is too high, the electrolyte solution boils and volatilizes, which causes a new problem that the amount of decrease in the electrolyte solution increases.

本発明は、このような事情に鑑みてなされたものであり、ガス抜き工程における電解液の揮発を抑制しつつ、内部のガスを良好に排出することを目的とする。   This invention is made | formed in view of such a situation, and it aims at discharging | emitting internal gas favorably, suppressing volatilization of the electrolyte solution in a degassing process.

本発明による製造の対象となるフィルム外装電池は、正極板および負極板をセパレータを介して積層してなる発電要素が、偏平な外装体の内部に電解液とともに収容され、端子を導出した状態で上記外装体が密封されている。   In a film-clad battery to be manufactured according to the present invention, a power generation element formed by laminating a positive electrode plate and a negative electrode plate via a separator is housed together with an electrolyte in a flat exterior body, and a terminal is led out. The exterior body is sealed.

そして本発明に係るフィルム外装電池の製造方法は、大気圧よりも圧力が低い所定の環境下で、上記発電要素が電解液とともに内部に密封された外装体の一部に、この外装体の内部と外部とを連通する開口を形成し、この開口より外装体の内部のガスを排出するガス抜き工程を有し、このガス抜き工程は、上記外装体が配置された環境の圧力を、低真空の所定の圧力範囲内に所定期間以上保持するとともに、上記環境内の圧力が所定値まで上昇すると、減圧を実施する動作を繰り返すことにより、上記環境内の圧力を所定の圧力範囲に保持し、上記低真空の所定の圧力範囲は、それ以上圧力が高くなると上記外装体の内部のガスの排出が良好に行われなくなる値を上限値とし、それ以上圧力が低くなると上記電解液の沸騰を生じる虞のある値を下限値とするよう設定され、上記所定値は、上記低真空の所定の圧力範囲内の値であって、所定圧力範囲の上限値付近の値であり、上記所定期間が、上記減圧の実施に伴う環境内の圧力の上昇速度が所定の判定値以下となるまでの期間であることを特徴としている。 And the manufacturing method of the film-clad battery according to the present invention includes the inside of the exterior body in a part of the exterior body in which the power generating element is sealed together with the electrolytic solution in a predetermined environment whose pressure is lower than the atmospheric pressure. Forming an opening that communicates with the outside, and a gas venting process that exhausts the gas inside the exterior body from the opening. This gas venting process reduces the pressure of the environment in which the exterior body is disposed to a low vacuum The pressure in the environment is kept in the predetermined pressure range by repeating the operation of reducing the pressure when the pressure in the environment rises to a predetermined value within a predetermined pressure range of The predetermined pressure range of the low vacuum is set to a value that prevents the gas inside the outer casing from being discharged well when the pressure is further increased, and the electrolyte is boiled when the pressure is further decreased. Possible value The lower limit value is set, and the predetermined value is a value within a predetermined pressure range of the low vacuum, and is a value near the upper limit value of the predetermined pressure range. It is a period until the pressure increase rate in the environment becomes a predetermined determination value or less .

本発明によれば、真空度の低い低真空の所定の圧力範囲内でガス抜きを行うために、電解液の揮発を抑制することができるとともに、真空状態を所定期間以上保持することによって、開口から遠い部分のガスであっても開口まで移動することが可能となり、外装体の内部のガスを良好に排出することができる。   According to the present invention, in order to perform degassing within a predetermined pressure range of low vacuum with a low degree of vacuum, it is possible to suppress the volatilization of the electrolytic solution and to maintain the vacuum state for a predetermined period or longer. Even a portion of the gas far from the gas can move to the opening, and the gas inside the exterior body can be discharged well.

本発明に係る製造の対象となるフィルム外装電池の一例を示す斜視図。The perspective view which shows an example of the film-clad battery used as the object of manufacture which concerns on this invention. 同じくフィルム外装電池の断面図。Sectional drawing of a film exterior battery similarly. フィルム外装電池の製造工程の一部を簡略的に示す説明図。Explanatory drawing which shows a part of manufacturing process of a film-clad battery simply. フィルム外装電池の製造工程を説明するための平面図。The top view for demonstrating the manufacturing process of a film-clad battery. ガス抜き工程における真空度の変化を示す説明図。Explanatory drawing which shows the change of the vacuum degree in a degassing process.

以下、この発明の好ましい実施の形態について、図面に基づいて詳細に説明する。初めに図1および図2に基づいて、この発明による製造の対象となるフィルム外装電池1の一例を説明する。フィルム外装電池1は、例えばリチウムイオン二次電池であり、図1に示すように、偏平な長方形の外観形状を有し、長手方向の一方の端縁に、導電性金属箔からなる一対の正負極の端子2,3を備えている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. First, based on FIG. 1 and FIG. 2, an example of the film-clad battery 1 to be manufactured according to the present invention will be described. The film-clad battery 1 is, for example, a lithium ion secondary battery, and has a flat rectangular external shape as shown in FIG. 1, and a pair of positive electrodes made of conductive metal foil at one end in the longitudinal direction. Negative terminals 2 and 3 are provided.

図2に示すように、フィルム外装電池1は、長方形をなす発電要素4を電解液とともにラミネートフィルムからなる外装体5の内部に収容したものである。上記発電要素4は、セパレータ43を介して交互に積層された複数の正極板41および負極板42からなり、例えば、3枚の負極板42と、2枚の正極板41と、これらの間の4枚のセパレータ43と、を含んでいる。つまり、この例では、発電要素4の両面に負極板42が位置している。但し、発電要素4の最外層に正極板41が位置する構成も可能である。なお、図2における各部の寸法は必ずしも正確なものではなく、説明のために誇張したものとなっている。   As shown in FIG. 2, the film-clad battery 1 is a battery in which a rectangular power generation element 4 is accommodated in an exterior body 5 made of a laminate film together with an electrolytic solution. The power generation element 4 includes a plurality of positive plates 41 and negative plates 42 that are alternately stacked with separators 43 interposed therebetween. For example, the three negative plates 42, the two positive plates 41, and the gap therebetween And four separators 43. That is, in this example, the negative electrode plates 42 are located on both surfaces of the power generation element 4. However, a configuration in which the positive electrode plate 41 is located on the outermost layer of the power generation element 4 is also possible. In addition, the dimension of each part in FIG. 2 is not necessarily exact, and is exaggerated for explanation.

正極板41は、長方形をなす正極集電体41aの両面に正極活物質層41b,41cを形成したものである。正極集電体41aは、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔から構成されている。また、正極活物質層41b,41cは、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、または、コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物からなる正極活物質と、カーボンブラック等の導電助剤と、バインダと、を混合したものを、正極集電体41aの主面に塗布し、乾燥及び圧延することにより形成されている。 The positive electrode plate 41 is obtained by forming positive electrode active material layers 41b and 41c on both surfaces of a rectangular positive electrode current collector 41a. The positive electrode current collector 41a is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil. The positive electrode active material layers 41b and 41c are made of, for example, a positive electrode active material made of a lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ). In addition, a mixture of a conductive additive such as carbon black and a binder is applied to the main surface of the positive electrode current collector 41a, dried and rolled.

負極板42は、長方形をなす負極集電体42aの両面に負極活物質層42b,42cを形成したものである。負極集電体42aは、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔から構成されている。負極活物質層42b,42cは、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、バインダを混合したものを、負極集電体42aの主面に塗布し、乾燥及び圧延させることにより形成されている。   The negative electrode plate 42 is obtained by forming negative electrode active material layers 42b and 42c on both surfaces of a rectangular negative electrode current collector 42a. The negative electrode current collector 42a is made of, for example, an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil. The negative electrode active material layers 42b and 42c are made of, for example, a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. The mixture of the binder is applied to the main surface of the negative electrode current collector 42a, dried and rolled.

上記負極集電体42aの長手方向の端縁の一部は、負極活物質層42b,42cを具備しない延長部として延びており、その先端が負極端子3に接合されている。また図2には示されていないが、同様に、上記正極集電体41aの長手方向の端縁の一部が、正極活物質層41b,41cを具備しない延長部として延びており、その先端が正極端子2に接合されている。   A part of the longitudinal edge of the negative electrode current collector 42 a extends as an extended portion that does not include the negative electrode active material layers 42 b and 42 c, and the tip thereof is joined to the negative electrode terminal 3. Although not shown in FIG. 2, similarly, a part of the edge in the longitudinal direction of the positive electrode current collector 41a extends as an extension portion that does not include the positive electrode active material layers 41b and 41c, and the tip thereof Is joined to the positive terminal 2.

上記セパレータ43は、正極板41と負極板42との間の短絡を防止すると同時に電解質を保持する機能を有するものであって、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜からなり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能を有している。なお、セパレータ43としては、ポリオレフィン等の単層膜に限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造のものや、ポリオレフィン微多孔性膜と有機不織布等を積層したものも用いることができる。   The separator 43 has a function of preventing a short circuit between the positive electrode plate 41 and the negative electrode plate 42 and at the same time holding an electrolyte. For example, the separator 43 is made of polyolefin such as polyethylene (PE) or polypropylene (PP). When the overcurrent flows, the pores of the layer are blocked by the heat generation, and the current is cut off. The separator 43 is not limited to a single-layer film such as polyolefin, but may also be a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric. .

また、電解液としては、特に限定されるものではないが、リチウムイオン二次電池に一般的に使用される電解質として、例えば、有機溶媒にリチウム塩が溶解した非水電解液を用いることができる。   Further, the electrolyte solution is not particularly limited, but for example, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used as an electrolyte generally used in a lithium ion secondary battery. .

上記のような構成の発電要素4を電解液とともに収容する外装体5は、図2に一部を拡大して示すように、熱融着層51と金属層52と保護層53との三層構造を有するラミネートフィルムからなる。中間の金属層52は、例えばアルミニウム箔からなり、その内側面を覆う熱融着層51は、熱融着が可能な合成樹脂例えばポリプロピレン(PP)からなり、金属層52の外側面を覆う保護層53は耐久性に優れた合成樹脂例えばポリエチレンテレフタレート(PET)からなる。なお、さらに多数の層を有するラミネートフィルムを用いることもできる。また、上記の例では金属層52の両面に合成樹脂層をラミネートしているが、金属層52の外側の合成樹脂層は必ずしも必須のものではなく、内側表面にのみ合成樹脂層を備えた構成であってもよい。   The exterior body 5 that houses the power generation element 4 having the above-described configuration together with the electrolytic solution is a three-layered structure including a heat-sealing layer 51, a metal layer 52, and a protective layer 53, as shown in an enlarged view in FIG. It consists of a laminated film having a structure. The intermediate metal layer 52 is made of, for example, an aluminum foil, and the heat-sealing layer 51 that covers the inner surface thereof is made of a synthetic resin that can be heat-fused, for example, polypropylene (PP), and is a protection that covers the outer surface of the metal layer 52. The layer 53 is made of a synthetic resin having excellent durability, such as polyethylene terephthalate (PET). A laminate film having a larger number of layers can also be used. In the above example, the synthetic resin layers are laminated on both surfaces of the metal layer 52. However, the synthetic resin layer on the outer side of the metal layer 52 is not necessarily essential, and the configuration includes the synthetic resin layer only on the inner surface. It may be.

上記外装体5は、一つの例では、図2の発電要素4の下面側に配置される1枚のラミネートフィルムと上面側に配置される他の1枚のラミネートフィルムとの2枚構造をなし、これら2枚のラミネートフィルムの周囲の4辺を重ね合わせ、かつ互いに熱融着した構成となっている。図示例は、このような2枚構造の外装体5を示している。また、他の一つの例では、外装体5は1枚の比較的大きなラミネートフィルムからなり、2つ折りとした状態で内側に発電要素4を配置した上で、周囲の3辺を重ね合わせ、かつ互いに熱融着した構成となっている。   In one example, the outer package 5 has a two-sheet structure of one laminate film disposed on the lower surface side of the power generation element 4 in FIG. 2 and another laminate film disposed on the upper surface side. The four sides around the two laminate films are superposed and heat-sealed to each other. The illustrated example shows such a two-layer exterior body 5. In another example, the exterior body 5 is made of a single relatively large laminate film, and the power generation element 4 is arranged inside in a folded state, and the surrounding three sides are overlapped, and It is the structure which mutually heat-seal | fused.

長方形をなすフィルム外装電池1の短辺側に位置する一対の端子2,3は、ラミネートフィルムを熱融着する際に、ラミネートフィルムの接合面を通して外部へ導出されている。   The pair of terminals 2 and 3 positioned on the short side of the rectangular film-clad battery 1 are led out to the outside through the bonding surface of the laminate film when the laminate film is heat-sealed.

上記のフィルム外装電池1の製造手順について、図3を参照して説明する。図3は製造工程の一部を簡略的に示したものである。まず、正極板41、負極板42およびセパレータ43を順次積層し、かつ正極集電体41a及び負極集電体42aを正負極の端子2,3にスポット溶接や超音波溶接等により取り付けて発電要素4を構成する。次に、この発電要素4を外装体5となるラミネートフィルムで覆い、一辺を残して残りの周囲の3辺を熱融着する。次に、開口する一辺を通して外装体5の内部に電解液を充填する。その後、図3の第1封止工程S11において、開口する一辺を熱融着して外装体5を密閉状態とする。続くエージング工程S12では、上述したように外装体5の内部に発電要素4と電解液とを密封した状態で、適宜なレベルまで充電を行い、この状態で、一定時間エージングを行う。   The manufacturing procedure of said film-clad battery 1 is demonstrated with reference to FIG. FIG. 3 schematically shows a part of the manufacturing process. First, the positive electrode plate 41, the negative electrode plate 42, and the separator 43 are sequentially laminated, and the positive electrode current collector 41a and the negative electrode current collector 42a are attached to the positive and negative terminals 2 and 3 by spot welding, ultrasonic welding, or the like. 4 is configured. Next, the power generating element 4 is covered with a laminate film that becomes the outer package 5, and the remaining three sides are heat-sealed, leaving one side. Next, an electrolytic solution is filled into the exterior body 5 through one side of the opening. Then, in 1st sealing process S11 of FIG. 3, the one side to open is heat-sealed and the exterior body 5 is made into a sealing state. In the subsequent aging step S12, as described above, the power generation element 4 and the electrolytic solution are sealed inside the exterior body 5, and the battery is charged to an appropriate level, and in this state, aging is performed for a certain time.

そして、エージングの完了後、外装体5のエージング時に発生したガスを含む内部に残存するガスを排出するために、ガス抜き工程S13において、ガス抜きが実施される。このガス抜き工程S13では、少なくとも大気圧よりも圧力(気圧)の低い真空の環境下において、図4に示すように、四辺が密封された外装体5の一部をカッター刃等を用いて裁断することによって、外装体5の内部と外部とを連通する開口14を形成する。そして、後述するように、外装体5が配置された環境(空間)の圧力(気圧)を、低真空の圧力領域(JIS規格 100Pa以上)内の、所定の圧力範囲Prまで減圧した後、このように環境の圧力が所定の圧力範囲Pr内にある状態を、所定期間Th以上、保持する。   And after completion of aging, in order to discharge | emit the gas which remains inside including the gas generated at the time of aging of the exterior body 5, degassing is implemented in degassing process S13. In this degassing step S13, at least in a vacuum environment where the pressure (atmospheric pressure) is lower than the atmospheric pressure, as shown in FIG. 4, a part of the exterior body 5 whose four sides are sealed is cut using a cutter blade or the like. By doing so, the opening 14 which connects the inside of the exterior body 5 and the exterior is formed. Then, as will be described later, after the pressure (atmospheric pressure) of the environment (space) in which the exterior body 5 is disposed is reduced to a predetermined pressure range Pr within a low vacuum pressure region (JIS standard 100 Pa or more), Thus, the state where the environmental pressure is within the predetermined pressure range Pr is maintained for a predetermined period Th or more.

このようなガス抜き工程S13が完了すると、図3の第2封止工程S14において、外装体5に設けた上記の開口14よりも内側の封止ライン15に沿って熱融着することによって、開口14を含む一辺を封止して、四方が封止ライン13に沿って密閉されたフィルム外装電池1が得られる。その後、電圧検査などのために再度充電を行い、出荷される。   When such a degassing step S13 is completed, in the second sealing step S14 of FIG. 3, by heat-sealing along the sealing line 15 inside the opening 14 provided in the exterior body 5, The film-clad battery 1 in which one side including the opening 14 is sealed and the four sides are sealed along the sealing line 13 is obtained. Thereafter, it is charged again for voltage inspection and shipped.

図5は、上記のガス抜き工程S13において、外装体5が設けられた密閉空間である環境内の圧力の変化を示しており、縦軸は環境内の圧力すなわち真空度(hPa)、横軸は時間(秒)である。同図に示すように、本実施例では、環境内の圧力を、所定の圧力範囲Pr内に、所定期間Th、保持している。   FIG. 5 shows a change in pressure in the environment, which is a sealed space in which the exterior body 5 is provided, in the gas venting step S13. The vertical axis indicates the pressure in the environment, that is, the degree of vacuum (hPa), and the horizontal axis. Is time (seconds). As shown in the figure, in this embodiment, the pressure in the environment is held for a predetermined period Th within a predetermined pressure range Pr.

より具体的には、先ず、狙いの圧力範囲Prへ向けて減圧を行い(図5の矢印Y1参照)、圧力範囲Prの近傍まで低下した時点t0で、減圧を停止する。なお、この実施例では、初回の減圧の停止(減圧バルブの閉)の際には、しばらく圧力が低下し続けるために、圧力低下のオーバーシュート分を見越して、狙いの圧力範囲Prよりも高い圧力の段階(t0)で初回の減圧を停止している。その後、図5の矢印Y2に示すように、減圧停止状態でフィルム外装電池1内部のガスが外部に放出されることにより環境内の圧力が徐々に上昇し、狙いの圧力範囲Prの上限値Pmax付近の所定値Ps(Ps<Pmax)まで上昇した時点t2で、極短い一定時間(例えば、0.1秒)だけ減圧を実施する。例えば、減圧バルブを一時的に開く。この一時的な減圧の実施により、環境内の圧力が狙いの圧力範囲Prの下限値Pminの近傍まで低下する。つまり、環境内の圧力が狙いの圧力範囲Prの下限値Pminの近傍まで低下するように、減圧を実施する一定時間が予め適合により設定されている。   More specifically, first, the pressure is reduced toward the target pressure range Pr (see arrow Y1 in FIG. 5), and the pressure reduction is stopped at time t0 when the pressure is reduced to the vicinity of the pressure range Pr. In this embodiment, when pressure reduction is stopped for the first time (the pressure reducing valve is closed), the pressure continues to decrease for a while, so that it is higher than the target pressure range Pr in anticipation of the overshoot of the pressure decrease. The first pressure reduction is stopped at the pressure stage (t0). Thereafter, as shown by an arrow Y2 in FIG. 5, the gas inside the film-clad battery 1 is released to the outside in the decompression stop state, whereby the pressure in the environment gradually increases, and the upper limit value Pmax of the target pressure range Pr. At a time point t2 when the pressure rises to a predetermined value Ps (Ps <Pmax) in the vicinity, the pressure is reduced for a very short period of time (for example, 0.1 second). For example, the pressure reducing valve is temporarily opened. By performing this temporary pressure reduction, the pressure in the environment is reduced to the vicinity of the lower limit value Pmin of the target pressure range Pr. In other words, a certain time for reducing pressure is set in advance so that the pressure in the environment is reduced to the vicinity of the lower limit value Pmin of the target pressure range Pr.

圧力範囲Prの上限値Pmaxは、それ以上圧力が高くなると外装体5の内部のガスの排出が良好に行われなくなる(NGとなる)値であり、例えば約13hPaに設定される。圧力範囲Prの下限値Pminは、それ以上圧力が低くなる(真空度が高くなる)と電解液の沸騰を生じるおそれのある値であり、例えば約10hPaに設定される。   The upper limit value Pmax of the pressure range Pr is a value at which the gas inside the exterior body 5 is not discharged well (becomes NG) when the pressure is further increased, and is set to about 13 hPa, for example. The lower limit value Pmin of the pressure range Pr is a value that may cause boiling of the electrolyte when the pressure is further decreased (the degree of vacuum is increased), and is set to about 10 hPa, for example.

ガス抜きの完了、つまり所定の圧力範囲Prの保持の終了については、この実施例では、図5に示すように、ガス抜きが進行するに従って、環境の圧力の上昇速度が低下することに着目し、圧力の上昇速度、つまり圧力の勾配(ΔP/t)を監視して、この上昇速度ΔP/tが所定の判定値以下となった時点t3で、外装体5の内部のガスが十分に排出されたと判断して、ガス抜き工程を終了している。つまり、環境内の圧力が狙いの圧力範囲Prまで低下した時点t1から、保持の終了時点t3までの期間が、外装体5の内部のガスを十分に排出するのに必要な「所定期間」に相当する。   Regarding the completion of the degassing, that is, the end of the holding of the predetermined pressure range Pr, in this embodiment, as shown in FIG. 5, it is noted that the rate of increase in the environmental pressure decreases as the degassing progresses. The pressure rising speed, that is, the pressure gradient (ΔP / t) is monitored, and at the time t3 when the rising speed ΔP / t becomes equal to or less than a predetermined determination value, the gas inside the outer package 5 is sufficiently discharged. The degassing process is finished because it is determined that it has been performed. That is, the period from the time point t1 when the pressure in the environment is reduced to the target pressure range Pr to the end point t3 of the holding is a “predetermined period” necessary for sufficiently discharging the gas inside the exterior body 5. Equivalent to.

[1]以上のように本実施例では、ガス抜き工程における環境の圧力を、高真空の圧力領域(0.1〜10−5Pa)に比して十分に真空度が低い(つまり、圧力が高い)低真空の圧力領域(100Pa以上)における所定の圧力範囲Pr内に、外装体5の内部のガスが排出されるのに十分な所定期間T以上、保持し続けることによって、真空度が高い場合に生じる電解液の沸騰による揮発を十分に抑制しつつ、比較的長い所定期間T(例えば、10秒以上)にわたって真空状態を維持することで、外装体5の内部における開口1から遠い位置に存在するガスについても、このガスが開口14の近傍まで移動するのに必要な時間が与えられ、外装体5の内部のガスを良好に排出することができる。しかも、真空度が低く抑制されているために、減圧装置の負担も軽減し、生産性に優れている。 [1] As described above, in this embodiment, the degree of vacuum is sufficiently low (that is, the pressure is lower than the high vacuum pressure region (0.1 to 10-5 Pa)) in the degassing process. high) within a predetermined pressure range Pr at low vacuum pressure region (above 100 Pa), sufficient predetermined period T h or more for the gas inside the outer package 5 is discharged, by continuing to hold, the degree of vacuum while sufficiently suppressing the volatilization by the electrolytic solution boiling which occurs when high, a relatively long predetermined time period T h (e.g., 10 seconds or more) over to maintain the vacuum state, the opening 1 4 in the interior of the outer package 5 As for the gas existing at a far position, a time required for the gas to move to the vicinity of the opening 14 is given, and the gas inside the outer package 5 can be discharged well. In addition, since the degree of vacuum is suppressed to a low level, the burden on the decompression device is reduced and the productivity is excellent.

[2]ここで、狙いの圧力範囲Prは、少なくとも低真空(大気圧よりも低く、かつ、100Pa以上)の圧力領域であり、より具体的には、少なくとも電解液が沸騰するおそれのある圧力である電解の沸騰点(約10hPa)よりも高い範囲で、例えば10〜13hPa程度の、従来よりもはるかに真空度の低い圧力範囲Prである。なお、電解液が沸騰する圧力は雰囲気温度によって変化するが、通常、減圧室内部の雰囲気温度は略一定に保たれているため、狙いの圧力範囲Prはあらかじめ定められた一定の圧力範囲となる。もちろん、減圧室内の雰囲気温度が変化する場合は、雰囲気温度に応じて圧力範囲Prを変更しても良い。 [2] Here, the target pressure range Pr is a pressure region of at least a low vacuum (lower than atmospheric pressure and 100 Pa or more), more specifically, a pressure at which the electrolyte solution may boil. The pressure range Pr is in a range higher than the boiling point (about 10 hPa) of the electrolyte solution , such as about 10 to 13 hPa, which is much lower in vacuum than in the past. The pressure at which the electrolyte boils varies depending on the ambient temperature. Usually, however, the ambient temperature in the decompression chamber is kept substantially constant, so the target pressure range Pr is a predetermined constant pressure range. . Of course, when the atmospheric temperature in the decompression chamber changes, the pressure range Pr may be changed according to the atmospheric temperature.

[3]更に、ガス抜き工程において、環境内の圧力が狙いの圧力範囲Prの上限値Pmaxの近傍の所定値Psまで上昇すると、予め設定された一定時間、減圧を実施する動作を繰り返すという簡素な制御によって、環境内の圧力を狙いの圧力範囲に保持することができる。   [3] Further, in the degassing step, when the pressure in the environment rises to a predetermined value Ps in the vicinity of the upper limit value Pmax of the target pressure range Pr, a simple operation of repeatedly performing pressure reduction for a predetermined time period is repeated. Through appropriate control, the pressure in the environment can be maintained within the target pressure range.

[4]また、外装体5の内部のガスが抜けていくに従って、環境内の圧力の上昇速度(真空度の低下速度)も低下していくことから、圧力の上昇速度が所定値以下となるまで、ガス抜き工程を継続し、つまり環境内の圧力を狙いの圧力範囲Prに保持し続けており、これによって、外装体5の内部のガス残量を簡素な制御で精度良く少なくすることができる。   [4] Further, as the gas inside the outer package 5 is released, the rate of increase in pressure in the environment (rate of decrease in vacuum) also decreases, so that the rate of increase in pressure becomes a predetermined value or less. Until the degassing process is continued, that is, the pressure in the environment is kept within the target pressure range Pr, thereby reducing the remaining gas amount inside the exterior body 5 with simple control with high accuracy. it can.

[5]但し、より簡易的に、狙いの圧力範囲Prに保持する所定期間Tを、予め適合により設定された一定時間としても良い。この一定時間は、外装体5の大きさ等により変動するものであるが、あまり短すぎるとガスを十分に排出することができないために、好ましくは10秒以上である。 [5] However, more simply, the predetermined time period T h to keep the pressure range Pr aim, may be constant time set in advance by adaptation. This fixed time varies depending on the size of the outer package 5 and the like, but if it is too short, the gas cannot be sufficiently discharged, and is preferably 10 seconds or longer.

1…フィルム外装電池
2,3…端子
4…発電要素
5…外装体
14…開口
DESCRIPTION OF SYMBOLS 1 ... Film exterior battery 2, 3 ... Terminal 4 ... Power generation element 5 ... Exterior body 14 ... Opening

Claims (1)

正極板および負極板をセパレータを介して積層してなる発電要素が、偏平な外装体の内部に電解液とともに収容され、端子を導出した状態で上記外装体が密封されてなるフィルム外装電池の製造方法において、
大気圧よりも圧力が低い所定の環境下で、上記発電要素が電解液とともに内部に密封された外装体の一部に、この外装体の内部と外部とを連通する開口を形成し、この開口より外装体の内部のガスを排出するガス抜き工程を有し、
このガス抜き工程は、上記外装体が配置された環境の圧力を、低真空の所定の圧力範囲内に所定期間以上保持するとともに、上記環境内の圧力が所定値まで上昇すると、減圧を実施する動作を繰り返すことにより、上記環境内の圧力を所定の圧力範囲に保持し、
上記低真空の所定の圧力範囲は、それ以上圧力が高くなると上記外装体の内部のガスの排出が良好に行われなくなる値を上限値とし、それ以上圧力が低くなると上記電解液の沸騰を生じる虞のある値を下限値とするよう設定され、
上記所定値は、上記低真空の所定の圧力範囲内の値であって、所定圧力範囲の上限値付近の値であり、
上記所定期間が、上記減圧の実施に伴う環境内の圧力の上昇速度が所定の判定値以下となるまでの期間であることを特徴とするフィルム外装電池の製造方法。
Production of a film-clad battery in which a power generation element formed by laminating a positive electrode plate and a negative electrode plate through a separator is housed together with an electrolyte in a flat outer package, and the outer package is sealed in a state where terminals are led out. In the method
In a predetermined environment where the pressure is lower than atmospheric pressure, an opening that communicates the inside and outside of the exterior body is formed in a part of the exterior body in which the power generation element is sealed together with the electrolyte. It has a degassing step of discharging the gas inside the exterior body more,
In this degassing step, the pressure of the environment in which the exterior body is disposed is maintained within a predetermined pressure range of low vacuum for a predetermined period or more , and when the pressure in the environment increases to a predetermined value, the pressure is reduced. By repeating the operation, the pressure in the environment is maintained within a predetermined pressure range,
The predetermined pressure range of the low vacuum is set to a value that prevents the gas inside the outer casing from being discharged well when the pressure is further increased, and the electrolyte is boiled when the pressure is further decreased. It is set so that there is a feared value as the lower limit,
The predetermined value is a value within a predetermined pressure range of the low vacuum, and is a value near an upper limit value of the predetermined pressure range,
The method for producing a film-clad battery, wherein the predetermined period is a period until the rate of increase in pressure in the environment accompanying the execution of the pressure reduction becomes equal to or less than a predetermined determination value .
JP2013234502A 2013-11-13 2013-11-13 Method for producing film-clad battery Active JP6236292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234502A JP6236292B2 (en) 2013-11-13 2013-11-13 Method for producing film-clad battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234502A JP6236292B2 (en) 2013-11-13 2013-11-13 Method for producing film-clad battery

Publications (2)

Publication Number Publication Date
JP2015095375A JP2015095375A (en) 2015-05-18
JP6236292B2 true JP6236292B2 (en) 2017-11-22

Family

ID=53197642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234502A Active JP6236292B2 (en) 2013-11-13 2013-11-13 Method for producing film-clad battery

Country Status (1)

Country Link
JP (1) JP6236292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127250A (en) * 2017-02-09 2018-08-16 日産自動車株式会社 Sheet adhering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331916A (en) * 2002-05-08 2003-11-21 Tdk Corp Secondary cell, and manufacturing method of the same
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2015095375A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
KR101547403B1 (en) Secondary battery comprising unified positive lead and negative lead and the method for preparing thereof
EP2587566B1 (en) Rechargeable battery with improved safety
JP5657307B2 (en) Welding method, battery, method for manufacturing battery pack, and battery
JP6058815B2 (en) Method for producing film-clad battery
JP2019536254A (en) Button battery and manufacturing method thereof
JP6088054B2 (en) Film exterior battery insertion guide device
JP6725351B2 (en) Electric storage element and method for manufacturing electric storage element
JP2009187889A (en) Battery case and battery pack
WO2017158986A1 (en) Battery cell
JPWO2013046712A1 (en) Sealed secondary battery
CN110383568B (en) Secondary battery and method for manufacturing secondary battery
JP6154468B2 (en) Laminate film manufacturing method and perforating apparatus
JP2011054420A (en) Battery module, assembled battery, and method of manufacturing the battery module
JP2017027652A (en) Nonaqueous electrolyte secondary battery and manufacturing method for the same
JP2019087336A (en) Secondary battery
JP6781074B2 (en) Rechargeable battery
JP5472941B2 (en) Non-aqueous electrolyte battery
JP6236292B2 (en) Method for producing film-clad battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2008198484A (en) Battery and its manufacturing method
WO2015005227A1 (en) Film-packaged cell and method for manufacturing same
JP6454164B2 (en) Laminate exterior power storage device and manufacturing method thereof
US9786886B2 (en) Nonaqueous battery
JP2013214520A (en) Stacked secondary battery
JP5977651B2 (en) Battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6236292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250