[go: up one dir, main page]

JP6224533B2 - Overcharge detection device for lithium ion battery - Google Patents

Overcharge detection device for lithium ion battery Download PDF

Info

Publication number
JP6224533B2
JP6224533B2 JP2014139862A JP2014139862A JP6224533B2 JP 6224533 B2 JP6224533 B2 JP 6224533B2 JP 2014139862 A JP2014139862 A JP 2014139862A JP 2014139862 A JP2014139862 A JP 2014139862A JP 6224533 B2 JP6224533 B2 JP 6224533B2
Authority
JP
Japan
Prior art keywords
overcharge
lithium ion
ion battery
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014139862A
Other languages
Japanese (ja)
Other versions
JP2016018641A (en
Inventor
山口 裕之
裕之 山口
平松 光夫
光夫 平松
尚宜 高本
尚宜 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Toyota Motor Corp
Original Assignee
Hamamatsu Photonics KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Toyota Motor Corp filed Critical Hamamatsu Photonics KK
Priority to JP2014139862A priority Critical patent/JP6224533B2/en
Publication of JP2016018641A publication Critical patent/JP2016018641A/en
Application granted granted Critical
Publication of JP6224533B2 publication Critical patent/JP6224533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、リチウムイオン電池用の過充電検出装置に関する。   The present invention relates to an overcharge detection device for a lithium ion battery.

リチウムイオン電池は、電圧やエネルギー密度が高くメモリー効果が少ないなどの特徴を有していることから、自動車や携帯機器など様々な分野で利用されている。その利用が進むに連れて、リチウムイオン電池には電圧やエネルギー密度の更なる向上が求められており、それに併せて安全性の更なる向上も望まれている。   Lithium ion batteries have characteristics such as high voltage and energy density and low memory effect, and are used in various fields such as automobiles and portable devices. As its use progresses, further improvements in voltage and energy density are required for lithium ion batteries, and further improvements in safety are also desired.

安全性の向上には、リチウムイオン電池に異常が発生したとき、その異常を高い精度で検出する必要がある。例えば、リチウムイオン電池に過充電が発生したとき、その過充電を高い精度で検出する必要がある。過充電を検出する方法としては、電池の電圧である電池電圧を利用する方法が知られている。例えば特許文献1に記載の過充電検出装置は、電池電圧に対応する電圧と基準電圧との比較に基づいて電池の過充電を検知している。   In order to improve safety, when an abnormality occurs in the lithium ion battery, it is necessary to detect the abnormality with high accuracy. For example, when an overcharge occurs in a lithium ion battery, it is necessary to detect the overcharge with high accuracy. As a method for detecting overcharge, a method using a battery voltage, which is a battery voltage, is known. For example, the overcharge detection device described in Patent Literature 1 detects battery overcharge based on a comparison between a voltage corresponding to the battery voltage and a reference voltage.

特開2010−203790号公報JP 2010-203790 A

リチウムイオン電池の過充電を、上記特許文献1のように電池電圧の上昇に基づいて検出することが提案されている。しかし、電池電圧は、電池に接続された外部回路、電池の内部抵抗、電池の周辺および内部の温度など様々なパラメータの影響を受ける。特に、内部抵抗は、電池の使用期間や充放電回数により増加したり、電池の温度により増減したりする。そのため、刻々と変化する電池の状態を電池電圧から正確に把握することが難しく、したがって電池の過充電を電池電圧から正確に把握することが難しい。   It has been proposed to detect overcharge of a lithium ion battery based on an increase in battery voltage as in Patent Document 1. However, the battery voltage is affected by various parameters such as the external circuit connected to the battery, the internal resistance of the battery, the temperature around and inside the battery. In particular, the internal resistance increases depending on the battery usage period and the number of times of charging / discharging, and increases or decreases depending on the battery temperature. Therefore, it is difficult to accurately grasp the state of the battery that changes every moment from the battery voltage, and therefore it is difficult to accurately grasp the overcharge of the battery from the battery voltage.

このように、電池電圧を用いると電池の過充電が高い精度で検出できない場合がある。そのため、リチウムイオン電池の過充電検出の精度を向上できる技術が望まれる。   Thus, when battery voltage is used, battery overcharge may not be detected with high accuracy. Therefore, a technique capable of improving the accuracy of overcharge detection of a lithium ion battery is desired.

本発明によれば、正極と負極と電解質とを含むリチウムイオン電池用の過充電検出装置であって、正極および負極の少なくとも一方から発せられた光を検出する光検出部と、光検出部で検出された光の強度が予め設定された閾値強度より大きいとき、リチウムイオン電池に過充電が発生したと判定する過充電判定部と、を備えるリチウムイオン電池用の過充電検出装置、が提供される。   According to the present invention, there is provided an overcharge detection device for a lithium ion battery including a positive electrode, a negative electrode, and an electrolyte, wherein the light detection unit detects light emitted from at least one of the positive electrode and the negative electrode, and the light detection unit. An overcharge detection device for a lithium ion battery, comprising: an overcharge determination unit that determines that an overcharge has occurred in a lithium ion battery when the detected light intensity is greater than a preset threshold intensity. The

本発明によれば、リチウムイオン電池の過充電検出の精度を向上できる。   According to the present invention, the accuracy of overcharge detection of a lithium ion battery can be improved.

リチウムイオン電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of a lithium ion battery system. リチウムイオン電池の構成の一例を模式的に示す正面図である。It is a front view which shows typically an example of a structure of a lithium ion battery. リチウムイオン電池の構成の一例を模式的に示す側面図である。It is a side view which shows typically an example of a structure of a lithium ion battery. 光導波路の先端部分の構成の一例を模式的に示す側面図である。It is a side view which shows typically an example of a structure of the front-end | tip part of an optical waveguide. リチウムイオン電池の充電曲線と光の強度との関係を示すグラフである。It is a graph which shows the relationship between the charge curve of a lithium ion battery, and the intensity | strength of light. リチウムイオン電池の充電曲線と光の強度との関係を示すグラフである。It is a graph which shows the relationship between the charge curve of a lithium ion battery, and the intensity | strength of light.

本発明によれば、正極と負極と電解質とを含むリチウムイオン電池用の過充電検出装置であって、正極および負極の少なくとも一方から発せられた光を検出する光検出部と、光検出部で検出された光の強度が予め設定された閾値強度以上のとき、リチウムイオン電池に過充電が発生したと判定する過充電判定部と、を備えるリチウムイオン電池用の過充電検出装置が提供される。   According to the present invention, there is provided an overcharge detection device for a lithium ion battery including a positive electrode, a negative electrode, and an electrolyte, wherein the light detection unit detects light emitted from at least one of the positive electrode and the negative electrode, and the light detection unit. An overcharge detection device for a lithium ion battery is provided that includes an overcharge determination unit that determines that an overcharge has occurred in a lithium ion battery when the detected light intensity is greater than or equal to a preset threshold intensity. .

発明者らは、リチウムイオン電池において過充電が発生した時に正極や負極から光が発せられる、という現象を見出した。これは、過充電によって正極、負極及び電解質の少なくとも一つにおいてラジカルや過酸化物などが生成し、それらが正極や負極で発光する現象と考えられる。正極側の光の強度は負極側の光の強度よりも強いこと、過充電防止剤を含む電解質を用いると光の強度がより強くなること、なども今回新たに見出された知見である。正極側の光の強度が負極側の光の強度よりも強い理由は、過充電時の正極は強い酸化雰囲気であり、電解液が酸化分解して活性種が生成するためと考えられる。過充電防止剤を含む電解質を用いると光の強度がより強くなる理由は、過充電防止剤から生成される活性種が発光に寄与しているためと考えられる。これらの発見により、正極や負極からの光を検出することで、リチウムイオン電池の過充電の発生を容易に判定することができ、電池を安全に停止させることができる。この発光現象は、外乱を受け難いこと、過充電の初期の段階から起きること、計測し易いことなどから、早期かつ正確に過充電を検出でき、過充電検出の精度を向上することができる。   The inventors have found a phenomenon that light is emitted from the positive electrode and the negative electrode when overcharge occurs in a lithium ion battery. This is considered to be a phenomenon in which radicals, peroxides, and the like are generated in at least one of the positive electrode, the negative electrode, and the electrolyte due to overcharge, and these emit light at the positive electrode and the negative electrode. The newly discovered findings include the fact that the light intensity on the positive electrode side is stronger than the light intensity on the negative electrode side, and that the light intensity becomes stronger when an electrolyte containing an overcharge inhibitor is used. The reason why the light intensity on the positive electrode side is stronger than the light intensity on the negative electrode side is considered to be because the positive electrode during overcharging is in a strong oxidizing atmosphere and the electrolytic solution is oxidized and decomposed to generate active species. The reason why the intensity of light becomes stronger when an electrolyte containing an overcharge inhibitor is used is considered to be that active species generated from the overcharge inhibitor contribute to light emission. Based on these findings, it is possible to easily determine the occurrence of overcharge of the lithium ion battery by detecting light from the positive electrode and the negative electrode, and to safely stop the battery. This light emission phenomenon is less susceptible to disturbances, occurs from an early stage of overcharge, and is easy to measure, so that overcharge can be detected early and accurately, and the accuracy of overcharge detection can be improved.

以下、本発明の実施の形態に係る過充電検出装置およびそれを用いたリチウムイオン電池について図面を参照して説明する。   Hereinafter, an overcharge detection device according to an embodiment of the present invention and a lithium ion battery using the same will be described with reference to the drawings.

図1は、過充電検出装置を用いたリチウムイオン電池システムの構成の一例を示している。リチウムイオン電池システムAは、リチウムイオン電池1と、保護装置2とを備えている。リチウムイオン電池1は、リチウムイオンを利用した充放電可能なセルであり、正極と、負極と、少なくとも正極と負極との間に介在する電解質とを有している。正極は正極端子3に接続され、負極は負極端子4に接続されている。保護装置2は、リチウムイオン電池1に過充電が発生したとき、リチウムイオン電池1の動作を停止する安全機構であり、過充電検出装置10と、動作停止装置14とを備えている。過充電検出装置10は、リチウムイオン電池1に過充電が発生したことを検出する。動作停止装置14は、過充電検出装置10で過充電が検出されたときリチウムイオン電池システムAの動作、すなわち充電動作を停止する。   FIG. 1 shows an example of the configuration of a lithium ion battery system using an overcharge detection device. The lithium ion battery system A includes a lithium ion battery 1 and a protection device 2. The lithium ion battery 1 is a chargeable / dischargeable cell using lithium ions, and has a positive electrode, a negative electrode, and an electrolyte interposed between at least the positive electrode and the negative electrode. The positive electrode is connected to the positive electrode terminal 3, and the negative electrode is connected to the negative electrode terminal 4. The protection device 2 is a safety mechanism that stops the operation of the lithium ion battery 1 when the lithium ion battery 1 is overcharged, and includes an overcharge detection device 10 and an operation stop device 14. The overcharge detection device 10 detects that an overcharge has occurred in the lithium ion battery 1. The operation stop device 14 stops the operation of the lithium ion battery system A, that is, the charging operation when the overcharge detection device 10 detects overcharge.

過充電検出装置10には、光導波路11と、光検出器12と、過充電判定部13とが設けられている。光導波路11は、一端をリチウムイオン電池1内に挿入され、他端をリチウムイオン電池1外の光検出器12に接続され、リチウムイオン電池1内で発せられた光を受光し、光検出器12へ導く。光導波路11としては、光ファイバーが例示される。光検出器12は、光導波路11から出力された光を検出し、検出した光の強度に対応する検出信号を過充電判定部13へ出力する。光検出器12としては、CCD(Charge Coupled Device)、フォトダイオードおよびフォトトランジスタのような半導体検出器、光電子増倍管、光電管が例示される。光導波路11と光検出器12とは、リチウムイオン電池1内で発せられた光を受光して検出する光検出部とみることができる。過充電判定部13は、光検出器12で検出された光の強度が予め設定された閾値強度より大きいとき、リチウムイオン電池1に過充電が発生したと判定する。閾値強度としては、リチウムイオン電池1内で発光のない状態(リチウムイオン電池1が過充電でない状態)で光検出器12により検出される光の強度(バックグラウンド)、または、ノイズなどによる誤検出の可能性を考慮してそのバックグラウンドに所定の値を加えた強度、に例示される。また、誤判定を防止する観点から、過充電判定部13は、光の強度を複数回測定して平均の強度を算出し、その平均の強度を閾値強度と比較してもよい。過充電判定部13は、過充電が発生したと判定すると、リチウムイオン電池1に過充電が発生したことを示す過充電信号、または、リチウムイオン電池システムAの動作を停止させる制御信号を動作停止装置14へ出力する。過充電判定部13としては、検出された光の強度に対応する検出信号の電圧と閾値強度に対応する基準電圧との比較結果に基づいて上記の判定を行う電子回路や、検出信号に基づいて上記の比較・判定の処理を行う計測機器やコンピュータに例示される。なお、図1の例では過充電検出装置10がリチウムイオン電池システムAに含まれているが、本実施の形態はその例に限定されるものではなく、過充電検出装置10はリチウムイオン電池システムAとは別に設けられていてもよい。あるいは、過充電検出装置10の一部がリチウムイオン電池1に含まれ、使用時に過充電検出装置10の残りの部分と一体となる構成であってもよい。また、図1の例では光導波路11を用いて光を受光しているが、本実施の形態はその例に限定されるものではなく、光検出器12をリチウムイオン電池1内に導入して光導波路11を省略してもよい。   The overcharge detection device 10 includes an optical waveguide 11, a photodetector 12, and an overcharge determination unit 13. The optical waveguide 11 has one end inserted into the lithium ion battery 1 and the other end connected to the photodetector 12 outside the lithium ion battery 1 to receive the light emitted from the lithium ion battery 1. Lead to twelve. An example of the optical waveguide 11 is an optical fiber. The photodetector 12 detects the light output from the optical waveguide 11 and outputs a detection signal corresponding to the detected light intensity to the overcharge determination unit 13. Examples of the photodetector 12 include a CCD (Charge Coupled Device), a semiconductor detector such as a photodiode and a phototransistor, a photomultiplier tube, and a phototube. The optical waveguide 11 and the photodetector 12 can be regarded as a light detection unit that receives and detects light emitted in the lithium ion battery 1. The overcharge determination unit 13 determines that overcharge has occurred in the lithium ion battery 1 when the intensity of light detected by the photodetector 12 is greater than a preset threshold intensity. As the threshold intensity, light intensity (background) detected by the photodetector 12 in a state where no light is emitted in the lithium ion battery 1 (the lithium ion battery 1 is not overcharged), or erroneous detection due to noise or the like Considering this possibility, the intensity obtained by adding a predetermined value to the background is exemplified. Further, from the viewpoint of preventing erroneous determination, the overcharge determination unit 13 may calculate the average intensity by measuring the light intensity a plurality of times, and compare the average intensity with the threshold intensity. When the overcharge determination unit 13 determines that overcharge has occurred, the overcharge signal indicating that overcharge has occurred in the lithium ion battery 1 or a control signal for stopping the operation of the lithium ion battery system A is stopped. Output to the device 14. As the overcharge determination unit 13, an electronic circuit that performs the above determination based on the comparison result between the voltage of the detection signal corresponding to the detected light intensity and the reference voltage corresponding to the threshold intensity, or based on the detection signal It is exemplified by a measuring instrument or a computer that performs the above comparison / determination process. In addition, although the overcharge detection apparatus 10 is included in the lithium ion battery system A in the example of FIG. 1, this Embodiment is not limited to the example, and the overcharge detection apparatus 10 is a lithium ion battery system. It may be provided separately from A. Alternatively, a part of the overcharge detection device 10 may be included in the lithium ion battery 1 and integrated with the rest of the overcharge detection device 10 when in use. Further, in the example of FIG. 1, light is received using the optical waveguide 11, but this embodiment is not limited to this example, and the photodetector 12 is introduced into the lithium ion battery 1. The optical waveguide 11 may be omitted.

動作停止装置14は、過充電判定部13からの過充電信号または制御信号に応答して、リチウムイオン電池1の充電を停止する。動作停止装置14は、充電電流が流れる配線上に設けられた、トランジスタのようなスイッチ素子に例示され、過充電信号または制御信号に応答してスイッチをオフにすることで、充電電流を遮断して、充電を停止する。図1の例では、リチウムイオン電池1の負極と負極端子4とを結ぶ配線上に設けられている。   The operation stopping device 14 stops charging the lithium ion battery 1 in response to the overcharge signal or the control signal from the overcharge determination unit 13. The operation stop device 14 is exemplified by a switch element such as a transistor provided on a wiring through which a charging current flows, and cuts off the charging current by turning off the switch in response to an overcharge signal or a control signal. Stop charging. In the example of FIG. 1, it is provided on the wiring connecting the negative electrode of the lithium ion battery 1 and the negative electrode terminal 4.

図2および図3は、リチウムイオン電池の構成の一例を示している。リチウムイオン電池1は、正極21と、負極22と、少なくとも正極21と負極22との間に介在する電解質層25とを含んでいる。電解質層25は、電解質を含み、更にセパレータを含み得る。正極21には正極集電タブ23が形成され、負極22には負極集電タブ24が形成される。これら正極集電タブ23および負極集電タブ24は、図1に示されるように、それぞれ正極端子3および負極端子4に電気的に接続される。正極21と負極22と電解質層25とは更に積層されていてもよい。なお、図2および図3の例では、リチウムイオン電池1は積層型であるが、本実施の形態はその例に限定されるものではなく、リチウムイオン電池1は巻回型であってもよい。   2 and 3 show an example of the configuration of a lithium ion battery. The lithium ion battery 1 includes a positive electrode 21, a negative electrode 22, and at least an electrolyte layer 25 interposed between the positive electrode 21 and the negative electrode 22. The electrolyte layer 25 includes an electrolyte and may further include a separator. A positive electrode current collecting tab 23 is formed on the positive electrode 21, and a negative electrode current collecting tab 24 is formed on the negative electrode 22. The positive current collecting tab 23 and the negative current collecting tab 24 are electrically connected to the positive terminal 3 and the negative terminal 4, respectively, as shown in FIG. The positive electrode 21, the negative electrode 22, and the electrolyte layer 25 may be further laminated. 2 and 3, the lithium ion battery 1 is a stacked type, but the present embodiment is not limited to this example, and the lithium ion battery 1 may be a wound type. .

正極21は、正極集電体と、正極集電体の少なくとも一方の面に配置された正極活物質を含む正極活物質層とを有している。正極集電体の材料としては、アルミニウム、ニッケル、ステンレスのような金属材料が例示される。正極活物質としては、リチウム含有複合化合物、具体的には、層状構造のコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMnO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiNi1−xCo)、ニッケルマンガン酸リチウム(LiNi1−xMn、例えばLiNi0.5Mn0.5)、ニッケルコバルトマンガン酸リチウム(LiNi1−x−yCoMn、例えばLiNi1/3Co1/3Mn1/3)、スピネル構造のマンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiCoMnO)、ニッケルマンガン酸リチウム(LiNi0.5Mn1.5)、オリビン構造のリン酸鉄リチウム(LiFePO)、フッ化リン酸鉄リチウム(LiFePOF)、が例示される。 The positive electrode 21 includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material disposed on at least one surface of the positive electrode current collector. Examples of the material for the positive electrode current collector include metal materials such as aluminum, nickel, and stainless steel. As the positive electrode active material, a lithium-containing composite compound, specifically, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium nickelate (LiNiO 2 ), lithium nickel cobaltate (LiNi 1 ) having a layered structure. -X Co x O 2 ), lithium nickel manganate (LiNi 1-x Mn x O 2 , for example, LiNi 0.5 Mn 0.5 O 2 ), nickel cobalt lithium manganate (LiNi 1-xy Co x Mn y O 2, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganate (LiMn 2 of spinel structure O 4), lithium cobalt manganese oxide (LiCoMnO 4), lithium nickel manganese oxide (LiNi 0 .5 Mn 1.5 O 4 ), olivine-structured lithium iron phosphate (LiFePO 4 ) and lithium iron phosphate (Li 2 FePO 4 F) are exemplified.

負極22は、負極集電体と、負極集電体の少なくとも一方の面に配置された負極活性物質を含む負極活性物質層とを有している。負極集電体の材料としては、銅、銅を含む合金のような金属材料が例示される。負極活性物質としては、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料、具体的には、天然又は人造の黒鉛(グラファイト)、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)、低温焼成炭素、又は、これらのうちのいくつかを組み合わせた材料、が例示される。   The negative electrode 22 has a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material disposed on at least one surface of the negative electrode current collector. Examples of the material for the negative electrode current collector include copper and metal materials such as alloys containing copper. As the negative electrode active substance, a particulate carbon material containing at least a graphite structure (layered structure), specifically, natural or artificial graphite (graphite), graphitizable carbon (soft carbon), non-graphitizable Examples include carbon (hard carbon), low-temperature calcined carbon, or a material combining some of these.

また、正極21および負極22は、それぞれ、バインダーを含んでもよい。バインダーの材料としては、特に制限されず、ポリテトラフロオロエチレン、ポリブタジエンゴム、水素添加ブチレンゴム、スチレンブタジエンゴム、多硫化ゴム、ポリフッ化ビニル、ポリフッ化ビニリデンを用いることができる。また、正極21および負極22は、所望により導電助材を含んでもよい。導電助材としては、特に制限されず、黒鉛、カーボンブラック等を用いることができる。   Moreover, each of the positive electrode 21 and the negative electrode 22 may contain a binder. The material for the binder is not particularly limited, and polytetrafluoroethylene, polybutadiene rubber, hydrogenated butylene rubber, styrene butadiene rubber, polysulfide rubber, polyvinyl fluoride, and polyvinylidene fluoride can be used. Moreover, the positive electrode 21 and the negative electrode 22 may contain a conductive support material as desired. The conductive aid is not particularly limited, and graphite, carbon black and the like can be used.

電解質層25の電解質としては、電解液やゲル状あるいは固体の電解質が例示され、電解液が好適に用いられる。電解液は、リチウム塩と溶剤とを含む。リチウム塩としては、六フッ化リン酸リチウム(LiPF)、四フッ化リン酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(Li(CFSON)、が例示される。溶剤としては、炭酸エステル、環状エステル類(エチレンカーボネート(EC)、プロピレンカーボネート(PC)など)、鎖状エステル類(ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)など)、脂肪族カルボン酸エステル類(ギ酸メチル(MF)など)、γ−ラクトン類(γ−ブチロラクトン(BL)など)、鎖状エーテル類(1,2−ジメトキシエタン(DME)など)、若しくは、これらのうちのいくつかを組み合わせた溶剤、が例示される。また、溶剤は、イオン液体であってもよい。イオン液体のアニオンとしては、(CFSO(TFSI)、(CSO(BETI)、(FSO(FSI)、(CFSO(TFSM)、BF 、PF 、CFSO (TfO)、CFBF 、CBF 、または、これらいくつかを組み合わせた材料、が例示される。イオン液体のカチオンとしては、リチウム、1−エチル−3−メチルイミダゾリウム(EMI)のようなイミダゾリウム、テトラエチルアンモニウム(TEA)のようなアンモニウム、1−ブチル−3−メチルピリジニウムのようなピリジニウム、1−メチル−1−プロピル−ピロリジニウム(MPPy)、1−ブチル−1−メチルピロリジニウム(BMP)若しくはN−メチル−N−プロピルピロリジニウム(P13)のようなピロリジニウム、N−メチル−N−プロピルピペリジニウム(PP13)のようなピペリジニウム、トリエチルメトキシエチルホスホニウム(TEMEP)のようなホスホニウム、トリエチルスルホニウム(TES)のようなスルホニウム、または、これらいくつかを組み合わせた材料、が例示される。また、ゲル状の電解質としては、上記電解液を含んだポリマーゲル電解質が例示される。ポリマーゲル電解質のマトリックスとしては、ポリ(フッ化ビニリデン−ヘキサフリオプロピレン)共重合体(PVDF−HFP)が例示される。 Examples of the electrolyte of the electrolyte layer 25 include an electrolytic solution, a gel-like or solid electrolyte, and the electrolytic solution is preferably used. The electrolytic solution contains a lithium salt and a solvent. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluorophosphate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and trifluoromethanesulfone. Examples include lithium acid (LiCF 3 SO 3 ) and bis (trifluoromethanesulfonyl) imide lithium (Li (CF 3 SO 2 ) 2 N). Solvents include carbonic acid esters, cyclic esters (ethylene carbonate (EC), propylene carbonate (PC), etc.), chain esters (dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc.) Aliphatic carboxylic acid esters (such as methyl formate (MF)), γ-lactones (such as γ-butyrolactone (BL)), chain ethers (such as 1,2-dimethoxyethane (DME)), or these Solvents combining some of these are exemplified. The solvent may be an ionic liquid. Examples of the anion of the ionic liquid, (CF 3 SO 2) 2 N - (TFSI), (C 2 F 5 SO 2) 2 N - (BETI), (FSO 2) 2 N - (FSI), (CF 3 SO 2) 3 C - (TFSM) , BF 4 -, PF 6 -, CF 3 SO 3 - (TfO), CF 3 BF 3 -, C 2 F 5 BF 3 - material or a combination of these some, Is exemplified. Examples of the cation of the ionic liquid include lithium, imidazolium such as 1-ethyl-3-methylimidazolium (EMI), ammonium such as tetraethylammonium (TEA), pyridinium such as 1-butyl-3-methylpyridinium, Pyrrolidinium, such as 1-methyl-1-propyl-pyrrolidinium (MPPy), 1-butyl-1-methylpyrrolidinium (BMP) or N-methyl-N-propylpyrrolidinium (P13), N-methyl-N Examples include piperidinium such as propylpiperidinium (PP13), phosphonium such as triethylmethoxyethylphosphonium (TEMEP), sulfonium such as triethylsulfonium (TES), or a combination of these. Moreover, as a gel electrolyte, the polymer gel electrolyte containing the said electrolyte solution is illustrated. An example of the polymer gel electrolyte matrix is a poly (vinylidene fluoride-hexafuropropylene) copolymer (PVDF-HFP).

電解質層25中には、過充電防止剤が含まれていることが好ましい。過充電防止剤は好ましくは芳香族化合物を含み、ビフェニル(BP)、シクロヘキシルベンゼン(フェニルシクロヘキサン)が例示される。過充電防止剤は、過充電を防止するだけでなく、正極21や負極22から発せられる光の強度を強める機能を有する。過充電防止剤を電解質層25に含ませることにより、発せられる光の強度を強めて、過充電検出精度を向上でき、より安全に電池を停止させることができる。   The electrolyte layer 25 preferably contains an overcharge inhibitor. The overcharge inhibitor preferably contains an aromatic compound, and examples thereof include biphenyl (BP) and cyclohexylbenzene (phenylcyclohexane). The overcharge preventing agent not only prevents overcharge, but also has a function of increasing the intensity of light emitted from the positive electrode 21 and the negative electrode 22. By including an overcharge inhibitor in the electrolyte layer 25, the intensity of emitted light can be increased, the overcharge detection accuracy can be improved, and the battery can be stopped more safely.

電解質層25のセパレータとしては、絶縁性を有する多孔膜であれば特に制限はないが、ポリプロピレン(PP)、ポリエチレン(PE)のようなポリオレフィンの単層又は複数層の微多孔膜、または、それらと無機多孔膜との積層膜が例示される。   The separator of the electrolyte layer 25 is not particularly limited as long as it is a porous film having an insulating property, but a single layer or a plurality of layers of a microporous film of polyolefin such as polypropylene (PP) or polyethylene (PE), or those And a laminated film of an inorganic porous film.

光導波路11の先端部分、すなわち光を受ける受光部分は、正極21および負極22の少なくとも一方で発せられた光を受光可能な位置に配置される。具体的には、光導波路11の先端部分は、正極21および負極22の少なくとも一方の近傍、例えばそれら電極の表面または端部から1mm以内の位置に配置される。それら電極に接するように配置されてもよい。光導波路11は、正極21側に配置されることが好ましい。正極21側で発せられる光の強度の方が、負極22側で発せられる光の強度よりも強いからである。光導波路11の正極21側への配置により、受光される光の強度を強めて、過充電検出精度を向上でき、より安全に電池を停止させることができる。図2の例では、光導波路11は、正極21の端部から1mm以内の位置に、セパレータ26に支持されるように配置されている。あるいは、光導波路11cのように、正極21の表面に接する位置に、正極21に支持されるように配置されてもよい。   The front end portion of the optical waveguide 11, that is, the light receiving portion that receives light, is disposed at a position where light emitted from at least one of the positive electrode 21 and the negative electrode 22 can be received. Specifically, the tip portion of the optical waveguide 11 is disposed in the vicinity of at least one of the positive electrode 21 and the negative electrode 22, for example, at a position within 1 mm from the surface or end of the electrodes. You may arrange | position so that those electrodes may be touched. The optical waveguide 11 is preferably disposed on the positive electrode 21 side. This is because the intensity of light emitted on the positive electrode 21 side is stronger than the intensity of light emitted on the negative electrode 22 side. By arranging the optical waveguide 11 on the positive electrode 21 side, the intensity of received light can be increased, the overcharge detection accuracy can be improved, and the battery can be stopped more safely. In the example of FIG. 2, the optical waveguide 11 is disposed at a position within 1 mm from the end of the positive electrode 21 so as to be supported by the separator 26. Or you may arrange | position so that it may be supported by the positive electrode 21 in the position which touches the surface of the positive electrode 21, like the optical waveguide 11c.

光導波路11は、光路となるコアとコアの周りを覆うクラッドとから成り、コアの屈折率がクラッドの屈折率よりも高くなるように形成され、光ファイバーに例示される。図4は、光導波路の先端部分の構成の一例を示している。光導波路11では、コア11a及びクラッド11bの先端部分がくさび形に研削され、その研削面Sが正極21の表面や負極22の表面の方へ向けられることが好ましい。先端部分からの光の取り込み量が増加するからである。あるいは、光導波路11では、正極21の表面や負極22の表面からの光が集光されるように、先端部分に集光用のプリズム(図示されず)やレンズ(図示されず)が設置されてもよい。   The optical waveguide 11 includes a core serving as an optical path and a clad covering the periphery of the core. The optical waveguide 11 is formed such that the refractive index of the core is higher than the refractive index of the clad, and is exemplified by an optical fiber. FIG. 4 shows an example of the configuration of the tip portion of the optical waveguide. In the optical waveguide 11, it is preferable that the tip portions of the core 11 a and the clad 11 b are ground in a wedge shape, and the ground surface S is directed toward the surface of the positive electrode 21 or the surface of the negative electrode 22. This is because the amount of light taken in from the tip portion increases. Alternatively, in the optical waveguide 11, a condensing prism (not shown) or a lens (not shown) is installed at the tip so that light from the surface of the positive electrode 21 or the surface of the negative electrode 22 is collected. May be.

光導波路11のコアの屈折率は、電解質層25の電解質の屈折率よりも高いことが好ましい。光導波路11の先端部分のコアへの入射条件である光の入射角を大きくするためである。また、光導波路11としては、石英ガラス製の光ファイバーが挙げられる。その場合、電解質層25の電解液に対する光導波路11の化学的安定性を向上できる。あるいは、光導波路11としては、クラッドに蛍光色素を含ませたポリマー製の光ファイバーが挙げられる。その場合、正極21の表面などからの光によりクラッドの蛍光色素が発光することで、光導波路11の先端だけでなく、側面からも光を検出でき、検出効率を上げることができる。このように蛍光色素の発光を利用することは、蛍光への変換効率は低いものの、光導波路11の光収集効率を向上させる役割を持ち、クラッド以外にも、例えば光導波路11の近傍の容器の側面に蛍光性物質を配置することも好ましい構成として挙げられる。   The refractive index of the core of the optical waveguide 11 is preferably higher than the refractive index of the electrolyte of the electrolyte layer 25. This is to increase the incident angle of light, which is an incident condition to the core at the tip portion of the optical waveguide 11. Further, as the optical waveguide 11, an optical fiber made of quartz glass can be mentioned. In that case, the chemical stability of the optical waveguide 11 with respect to the electrolyte solution of the electrolyte layer 25 can be improved. Alternatively, as the optical waveguide 11, a polymer optical fiber in which a fluorescent dye is contained in a clad can be cited. In this case, the clad fluorescent dye emits light by light from the surface of the positive electrode 21, so that light can be detected not only from the tip of the optical waveguide 11 but also from the side surface, and the detection efficiency can be increased. Utilizing the light emission of the fluorescent dye in this manner has a role of improving the light collection efficiency of the optical waveguide 11 although the conversion efficiency to fluorescence is low. For example, in addition to the cladding, for example, a container near the optical waveguide 11 Arranging the fluorescent substance on the side surface is also a preferable configuration.

次に、本発明の実施の形態に係る過充電検出装置の動作の一例について説明する。
図1の過充電検出装置10を用いたリチウムイオン電池システムAにおいて、リチウムイオン電池1が過充電の状態になると、正極21および負極22の少なくとも一方において、その少なくとも一部分が発光する。光導波路11は、先端部分で光を受光し、光検出器12へ導く。光検出器12は、光導波路11から出力された光を検出し、検出した光の強度に対応する検出信号を過充電判定部13へ出力する。過充電判定部13は、検出信号に基づいて、検出した光の強度と、予め設定された閾値強度とを比較する。ただし、閾値強度は、例えば、リチウムイオン電池1で発光のない状態で光検出器12により検出される光の強度(バックグラウンド)に所定の値を加えた強度である。過充電判定部13は、光検出器12で検出された光の強度が上記閾値強度より大きいとき、発光が起きたと判断し、リチウムイオン電池1に過充電が発生したと判定する。過充電判定部13は、過充電が発生したと判定すると、リチウムイオン電池1に過充電が発生したことを示す過充電信号またはリチウムイオン電池システムAの動作を停止させる制御信号を動作停止装置14へ出力する。動作停止装置14は、過充電判定部13からの過充電信号または制御信号に応答して、リチウムイオン電池1の充電を停止する。
Next, an example of the operation of the overcharge detection device according to the embodiment of the present invention will be described.
In the lithium ion battery system A using the overcharge detection device 10 of FIG. 1, when the lithium ion battery 1 is overcharged, at least one of the positive electrode 21 and the negative electrode 22 emits light. The optical waveguide 11 receives light at the tip portion and guides it to the photodetector 12. The photodetector 12 detects the light output from the optical waveguide 11 and outputs a detection signal corresponding to the detected light intensity to the overcharge determination unit 13. The overcharge determination unit 13 compares the detected light intensity with a preset threshold intensity based on the detection signal. However, the threshold intensity is, for example, an intensity obtained by adding a predetermined value to the intensity (background) of light detected by the photodetector 12 in the state where the lithium ion battery 1 does not emit light. The overcharge determination unit 13 determines that light emission has occurred when the intensity of light detected by the photodetector 12 is greater than the threshold intensity, and determines that overcharge has occurred in the lithium ion battery 1. When the overcharge determining unit 13 determines that overcharge has occurred, the overcharge signal indicating that overcharge has occurred in the lithium ion battery 1 or a control signal for stopping the operation of the lithium ion battery system A is provided. Output to. The operation stopping device 14 stops charging the lithium ion battery 1 in response to the overcharge signal or the control signal from the overcharge determination unit 13.

本実施の形態では、発光を観察することによって、リアルタイムで確実にリチウムイオン電池内の過充電による過充電を検出できるので、リチウムイオン電池の過充電検出の精度を向上できる。それにより、過充電が発生した場合でも、リチウムイオン電池をより安全に停止できる。また、電池が劣化するなど、内部抵抗の変化が大きく、電池電圧での過充電の検出が難しくなるような状況であっても、確実に過充電検出ができ、リチウムイオン電池を確実により安全に停止できる。   In the present embodiment, since the overcharge due to overcharge in the lithium ion battery can be detected reliably in real time by observing the light emission, the accuracy of the overcharge detection of the lithium ion battery can be improved. Thereby, even when overcharge occurs, the lithium ion battery can be stopped more safely. In addition, even in situations where internal resistance changes greatly, such as when the battery deteriorates, and it becomes difficult to detect overcharge at the battery voltage, it is possible to reliably detect overcharge, making lithium ion batteries safer and more secure. You can stop.

また、リチウムイオン電池1に電池電圧で異常を検出する回路を取り付けて、上述の過充電検出装置10と併用すれば、リチウムイオン電池の過充電検出の精度をより向上できることに加えて、電池電圧で異常を検出する回路が不調の場合にも、過充電検出装置10で過充電を確実に検出できる。すなわち、過充電検出装置10は、リチウムイオン電池1の過充電検出の冗長性を向上できる。   In addition, if a circuit for detecting an abnormality with the battery voltage is attached to the lithium ion battery 1 and used in combination with the above-described overcharge detection device 10, the accuracy of the overcharge detection of the lithium ion battery can be further improved. The overcharge detection device 10 can reliably detect overcharge even when the circuit for detecting an abnormality is malfunctioning. That is, the overcharge detection device 10 can improve the redundancy of the overcharge detection of the lithium ion battery 1.

以下、本発明の実施例を示す。以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
なお、以下の各例において、充電時の電池電圧の測定は、以下の充放電装置で行った。
充電時の電池電圧の測定装置:東洋システム製TOSCAT−3200
Examples of the present invention will be described below. The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, the battery voltage during charging was measured with the following charging / discharging device.
Battery voltage measuring device during charging: TOSCAT-3200 manufactured by Toyo System

(A)発光の確認
(実施例A1)過充電防止剤がない場合
(a)リチウムイオン電池
リチウムイオン電池内の正極の表面が観察可能なモデル電池を作製した。具体的には、正極活物質としてLiNi1/3Co1/3Mn1/3、正極の導電助剤としてアセチレンブラック、正極のバインダーとしてポリフッ化ビニリデン、負極活物質として天然黒鉛、負極のバインダーとしてポリフッ化ビニリデン、電解液としてLiPF(1 mol/l)+EC/DMC(3/7)、セパレータとしてポリエチレン(PE)微多孔膜をそれぞれ用い、光導波路として石英ガラス製の光ファイバーを正極の端部の位置に導入したリチウムイオン電池を作製した。光検出器として、浜松ホトニクス製H7155−01光電子増倍管を用いた。
(b)過充電と電池挙動
上記(a)で作製したリチウムイオン電池について、電池電圧が4.7Vになるまで電流0.1Cで過充電した。その後、電池電圧が4.7Vの状態を1時間保持した。続いて、電池電圧を5.0Vにして1時間保持した。ただし、本明細書においては、過充電は電池電圧が4.2V以上の状態とし、電池電圧が4.2V以上の領域を過充電領域ともいう。また、電池挙動として、正極表面から発せられる光の強度を計測した。その結果を、図5に示す。
(A) Confirmation of light emission (Example A1) When no overcharge inhibitor is present (a) Lithium ion battery A model battery in which the surface of the positive electrode in the lithium ion battery can be observed was produced. Specifically, LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, acetylene black as the conductive auxiliary agent for the positive electrode, polyvinylidene fluoride as the binder for the positive electrode, natural graphite as the negative electrode active material, Polyvinylidene fluoride as the binder, LiPF 6 (1 mol / l) + EC / DMC (3/7) as the electrolyte, polyethylene (PE) microporous film as the separator, and quartz glass optical fiber as the optical waveguide as the positive electrode A lithium ion battery introduced at the end position was prepared. As a photodetector, an H7155-01 photomultiplier tube manufactured by Hamamatsu Photonics was used.
(B) Overcharge and battery behavior The lithium ion battery produced in (a) above was overcharged at a current of 0.1 C until the battery voltage reached 4.7V. Thereafter, the battery voltage was maintained at 4.7V for 1 hour. Subsequently, the battery voltage was set to 5.0 V and held for 1 hour. However, in this specification, overcharging is performed when the battery voltage is 4.2 V or higher, and a region where the battery voltage is 4.2 V or higher is also referred to as an overcharge region. Further, as the battery behavior, the intensity of light emitted from the positive electrode surface was measured. The result is shown in FIG.

図5に示すように、過充電領域となる4.2V付近から正極に発光が見られ、電池電圧の上昇と共に光の強度が上昇した。これは、過充電によって、正極にラジカル等の活性種が生成し、それらが発光しているためと考えられる。   As shown in FIG. 5, light emission was observed on the positive electrode from around 4.2 V, which is the overcharge region, and the light intensity increased with an increase in battery voltage. This is presumably because active species such as radicals are generated in the positive electrode due to overcharge, and they emit light.

(実施例A2)過充電防止剤がある場合
(a)リチウムイオン電池
LiPF(1 mol/l)+EC/DMC(3/7)の電解液100重量%に対して、過充電防止剤としてビフェニル1重量%とシクロヘキシルベンゼン1重量%を加えたほかは、上記実施例A1の場合と同様のリチウムイオン電池を作製した。
(b)過充電と電池挙動
上記実施例A1の場合と同様のプロファイルで電流及び電圧をリチウムイオン電池に印加して過充電を行い、電池挙動を調べた。その結果を、図6に示す。
(Example A2) When there is an overcharge inhibitor (a) Biphenyl as an overcharge inhibitor with respect to 100% by weight of an electrolyte solution of a lithium ion battery LiPF 6 (1 mol / l) + EC / DMC (3/7) A lithium ion battery was prepared in the same manner as in Example A1 except that 1% by weight and 1% by weight of cyclohexylbenzene were added.
(B) Overcharge and battery behavior Overcharge was performed by applying current and voltage to the lithium ion battery with the same profile as in Example A1, and the battery behavior was examined. The result is shown in FIG.

図6に示すように、過充電領域となる4.2V付近から正極に発光が見られ、電池電圧の上昇と共に光の強度が上昇した。また、上記実施例A1の場合と比較して、光の強度が約3倍になった。過充電防止剤のビフェニルやシクロヘキシルベンゼンは約4.3〜4.7Vでアノード酸化され、一部は正極上にポニフェニレンの導電性被膜を形成し、一部はカチオンラジカルとなることが知られている。したがって、光の強度が強くなったのは、上記実施例A1の場合の発光に加えて、これらポニフェニレンやカチオンラジカルなどが発光に寄与していることが考えられる。   As shown in FIG. 6, light emission was observed at the positive electrode from around 4.2 V, which is the overcharge region, and the light intensity increased with an increase in battery voltage. In addition, the light intensity was about three times that of Example A1. It is known that the overcharge inhibitors biphenyl and cyclohexylbenzene are anodized at about 4.3 to 4.7 V, partly forming a conductive film of poniphenylene on the positive electrode, and partly becoming a cation radical. ing. Therefore, it is considered that the light intensity is increased in addition to the light emission in the case of Example A1, in addition to these poniphenylenes and cation radicals.

(B)発光による過充電保護機能の確認
過電圧検出時の電池温度の測定は、以下の温度測定装置で行った。
過電圧検出時の電池温度の測定装置:グラフテック製GL220(データーロガー)及び熱電対
(B) Confirmation of overcharge protection function by light emission The battery temperature at the time of detecting the overvoltage was measured by the following temperature measuring device.
Battery temperature measuring device when overvoltage is detected: GL220 (data logger) made by Graphtec and thermocouple

(実施例B1)過充電防止剤がない場合
(i)リチウムイオン電池
電流遮断機能付き安全弁を備えた1500mAhの18650型(直径18mm長さ(高さ)65mmの円筒型)リチウムイオン電池を作製した。具体的には、正極活物質としてLiNi1/3Co1/3Mn1/3、正極の導電助剤としてアセチレンブラック、正極のバインダーとしてポリフッ化ビニリデン、負極活物質として天然黒鉛、負極のバインダーとしてポリフッ化ビニリデン、電解液としてLiPF(1 mol/l)+EC/DMC(3/7)、セパレータとしてポリエチレン(PE)微多孔膜をそれぞれ用い、光導波路として石英ガラス製の光ファイバーを正極の表面の端部から1mmの位置にセパレータに支持されるように導入したリチウムイオン電池を作製した。光検出器として、浜松ホトニクス製H7155−01光電子増倍管を用いた。過充電判定部及び動作停止装置として、上記の充放電装置を用いた。
(ii)過充電と電池挙動
リチウムイオン電池について、SOC(State of Charge)100%の状態から電流1Cを供給して過充電を行い、正極の発光に基づく過充電保護を実行し、発光により過電圧を検知したときの電池温度を計測した。発光の判断に用いる閾値強度は、リチウムイオン電池1内において過充電前の発光のない状態で光検出器12により検出される光の強度(バックグラウンド)250cpsに、ノイズ等による誤検出を排除するために250cpsを加えて、500cpsとした。電池温度としては、リチウムイオン電池1の容器の側面の長さ(高さ)30mmの位置の温度を測定した。その結果を、表1に示す。
(Example B1) When there is no overcharge inhibitor (i) Lithium ion battery A 1500 mAh 18650 type (cylindrical type with a diameter of 18 mm and a length (height) of 65 mm) equipped with a safety valve with a current interruption function was produced. . Specifically, LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, acetylene black as the conductive auxiliary agent for the positive electrode, polyvinylidene fluoride as the binder for the positive electrode, natural graphite as the negative electrode active material, Polyvinylidene fluoride as the binder, LiPF 6 (1 mol / l) + EC / DMC (3/7) as the electrolyte, polyethylene (PE) microporous film as the separator, and quartz glass optical fiber as the optical waveguide as the positive electrode A lithium ion battery introduced so as to be supported by the separator at a position of 1 mm from the end of the surface was produced. As a photodetector, an H7155-01 photomultiplier tube manufactured by Hamamatsu Photonics was used. The charge / discharge device described above was used as the overcharge determination unit and the operation stop device.
(Ii) Overcharge and battery behavior For lithium-ion batteries, overcharge is performed by supplying a current of 1C from an SOC (State of Charge) of 100%, and overcharge protection based on light emission from the positive electrode is performed. The battery temperature at the time of detecting was measured. The threshold intensity used for the determination of light emission eliminates false detection due to noise or the like in the light intensity (background) 250 cps detected by the photodetector 12 in the state without light emission before overcharging in the lithium ion battery 1. Therefore, 250 cps was added to obtain 500 cps. As the battery temperature, the temperature at the position of the length (height) 30 mm of the side surface of the container of the lithium ion battery 1 was measured. The results are shown in Table 1.

(実施例B2)過充電防止剤がある場合
(i)リチウムイオン電池
LiPF(1 mol/l)+EC/DMC(3/7)の電解液100重量%に対して、過充電防止剤としてビフェニル1重量%とシクロヘキシルベンゼン1重量%を加えたほかは、上記実施例B1の場合と同様のリチウムイオン電池を作製した。
(2)過充電と電池挙動
上記実施例B1と同様の過充電を行い、正極の発光に基づく過充電保護を実行し、その時の電池温度を計測した。その結果を、表1に示す。
(Example B2) When there is an overcharge inhibitor (i) Biphenyl as an overcharge inhibitor with respect to 100% by weight of an electrolyte solution of lithium ion battery LiPF 6 (1 mol / l) + EC / DMC (3/7) A lithium ion battery was prepared in the same manner as in Example B1 except that 1% by weight and 1% by weight of cyclohexylbenzene were added.
(2) Overcharge and battery behavior Overcharge was performed in the same manner as in Example B1, overcharge protection based on light emission from the positive electrode was performed, and the battery temperature at that time was measured. The results are shown in Table 1.

(比較例B1)
(1)リチウムイオン電池
リチウムイオン電池内に光導波路を導入せず、したがって発光の検出を実施しないほかは、上記実施例B1の場合と同様のリチウムイオン電池を作製した。
(2)過充電と電池挙動
上記実施例B1と同様の過充電を行い、電流遮断機能付き安全弁が作動した場合にはその時点で、安全弁が作動しない場合には所定の時間経過後の電池温度を計測した。その結果を、表1に示す。
(Comparative Example B1)
(1) Lithium-ion battery A lithium-ion battery similar to that in Example B1 was prepared except that the optical waveguide was not introduced into the lithium-ion battery, and therefore, no detection of light emission was performed.
(2) Overcharge and battery behavior Overcharge similar to that in Example B1 above is performed, and when the safety valve with a current cutoff function is activated, at that time, when the safety valve is not activated, the battery temperature after a predetermined time has elapsed. Was measured. The results are shown in Table 1.

(比較例B2)
(1)リチウムイオン電池
リチウムイオン電池内に光導波路を導入せず、したがって発光の検出を実施しないほかは、上記実施例B2の場合と同様のリチウムイオン電池を作製した。
(2)過充電と電池挙動
上記実施例B2と同様の過充電を行い、電流遮断機能付き安全弁が作動した場合にはその時点で、その安全弁が作動しない場合には所定の時間経過後の電池温度を計測した。その結果を、表1に示す。
(Comparative Example B2)
(1) Lithium-ion battery A lithium-ion battery similar to that in Example B2 above was prepared except that the optical waveguide was not introduced into the lithium-ion battery, and therefore the detection of light emission was not performed.
(2) Overcharge and battery behavior Overcharge similar to Example B2 above is performed, and when the safety valve with a current cutoff function is activated, the battery after a predetermined time has elapsed when the safety valve is not activated. The temperature was measured. The results are shown in Table 1.

Figure 0006224533
Figure 0006224533

実施例B1では、表1に示すように、発光を観測したときの電池温度は約50℃であり、過充電の検出時の温度としては低温であった。この発光に基づいて過充電と判定することで、安全に充電を停止できた。   In Example B1, as shown in Table 1, the battery temperature when luminescence was observed was about 50 ° C., and the temperature when overcharge was detected was low. By determining overcharge based on this light emission, charging could be safely stopped.

また、実施例B2では、表1に示すように、発光を観測したときの電池温度は約30℃であり、過充電の検出時の温度としては更に低温であった。この発光に基づいて過充電と判定することで、更に安全に充電を停止できた。   In Example B2, as shown in Table 1, the battery temperature when luminescence was observed was about 30 ° C., and the temperature when overcharge was detected was even lower. By determining overcharge based on this light emission, the charge could be stopped more safely.

また、比較例B1では、表1に示すように、発光を検出できず、電流遮断機能付き安全弁が作動しなかったため熱暴走が起き、所定の時間経過後に電池温度は200℃以上の高温となった。電流遮断機能付き安全弁が作動しなかったのは、充電の途中で電池が過充電の状態になったが、電池内部でのガスの発生が少ないため、電池内部が高圧にならなかったためと考えられる。   Further, in Comparative Example B1, as shown in Table 1, light emission could not be detected, and the safety valve with a current interrupt function did not operate, so thermal runaway occurred, and the battery temperature reached a high temperature of 200 ° C. or higher after a predetermined time. It was. The reason why the safety valve with the current cutoff function did not work is that the battery was overcharged during charging, but the gas inside the battery was less generated, so the inside of the battery did not become high pressure. .

また、比較例B2では、表1に示すように、発光を検出できないため、過充電防止剤により電流遮断機能付き安全弁が作動して電池温度の上昇が抑えられたが、電池温度は約80℃となった。電流遮断機能付き安全弁が作動したのは、充電の途中で電池が過充電の状態になり、電池内部で過充電防止剤の分解によりガスが多量に発生して、電池内部が高圧になったためと考えられる。   Further, in Comparative Example B2, as shown in Table 1, since it was not possible to detect light emission, the safety valve with a current interruption function was actuated by the overcharge preventing agent to suppress the rise in battery temperature, but the battery temperature was about 80 ° C. It became. The safety valve with the current cutoff function was activated because the battery became overcharged during charging, and a large amount of gas was generated due to the decomposition of the overcharge inhibitor inside the battery, resulting in a high pressure inside the battery. Conceivable.

実施例B1、B2および比較例B1、B2に示されるように、発光を観察することによって、リアルタイムで電池内の過充電を検出できるため、安全に電池を停止させることができた。   As shown in Examples B1 and B2 and Comparative Examples B1 and B2, overcharge in the battery can be detected in real time by observing light emission, so that the battery could be safely stopped.

なお、上記の過充電を検出する手法は、過充電のエネルギーにより電池材料またはその生成物が発光していると考えられる。したがって、上記以外の過充電を検出する方法として、逆に、光導波路を用いて電池内に光を照射し、電池材料またはその生成物にエネルギーを付与して、それらの燐光を検出することで、電池材料の過充電状態や劣化状態を観察することも可能と考えられる。   In addition, it is thought that the battery material or its product is light-emitting by the method of detecting said overcharge by the energy of overcharge. Therefore, as a method of detecting overcharge other than the above, conversely, light is irradiated into the battery using an optical waveguide, energy is applied to the battery material or its product, and the phosphorescence is detected. It is considered possible to observe the overcharged state and the deteriorated state of the battery material.

1 リチウムイオン電池
2 保護装置
3 正極端子
4 負極端子
10 過充電検出装置
11 光導波路
11a コア
11b クラッド
11c 光導波路
12 光検出器
13 過充電判定部
14 動作停止装置
21 正極
22 負極
23 正極集電タブ
24 負極集電タブ
25 電解質層
A リチウムイオン電池システム
S 研削面
DESCRIPTION OF SYMBOLS 1 Lithium ion battery 2 Protection apparatus 3 Positive electrode terminal 4 Negative electrode terminal 10 Overcharge detection apparatus 11 Optical waveguide 11a Core 11b Clad 11c Optical waveguide 12 Photodetector 13 Overcharge determination part 14 Operation stop apparatus 21 Positive electrode 22 Negative electrode 23 Positive electrode current collection tab 24 Negative electrode current collecting tab 25 Electrolyte layer A Lithium ion battery system S Grinding surface

Claims (1)

正極と負極と電解質とを含むリチウムイオン電池用の過充電検出装置であって、
前記正極および前記負極の少なくとも一方から発せられた光を検出する光検出部と、
前記光検出部で検出された光の強度が予め設定された閾値強度より大きいとき、前記リチウムイオン電池に過充電が発生したと判定する過充電判定部と、
を備える、
リチウムイオン電池用の過充電検出装置。
An overcharge detection device for a lithium ion battery including a positive electrode, a negative electrode, and an electrolyte,
A light detection unit for detecting light emitted from at least one of the positive electrode and the negative electrode;
An overcharge determination unit that determines that an overcharge has occurred in the lithium ion battery when the intensity of light detected by the light detection unit is greater than a preset threshold intensity;
Comprising
Overcharge detection device for lithium ion batteries.
JP2014139862A 2014-07-07 2014-07-07 Overcharge detection device for lithium ion battery Active JP6224533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139862A JP6224533B2 (en) 2014-07-07 2014-07-07 Overcharge detection device for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139862A JP6224533B2 (en) 2014-07-07 2014-07-07 Overcharge detection device for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016018641A JP2016018641A (en) 2016-02-01
JP6224533B2 true JP6224533B2 (en) 2017-11-01

Family

ID=55233735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139862A Active JP6224533B2 (en) 2014-07-07 2014-07-07 Overcharge detection device for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6224533B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112094B2 (en) 2014-10-22 2017-04-12 トヨタ自動車株式会社 All solid state battery system
WO2021045222A1 (en) * 2019-09-06 2021-03-11 三洋化成工業株式会社 Secondary battery module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857968B2 (en) * 2005-07-12 2012-01-18 日産自動車株式会社 Bipolar battery, battery pack and vehicle equipped with these batteries
JP5343313B2 (en) * 2006-11-27 2013-11-13 日産自動車株式会社 Secondary battery system
JP5721847B2 (en) * 2010-10-29 2015-05-20 エンパイア テクノロジー ディベロップメント エルエルシー Energy storage device
JP2013080639A (en) * 2011-10-05 2013-05-02 National Institute Of Advanced Industrial & Technology Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2016018641A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US9768476B2 (en) System and method for detecting a state of a lithium secondary battery by measuring a voltage of a negative electrode with respect to a reference electrode
CN102655245B (en) Anomalously charged state detection device and test method for lithium secondary cell
CN104823319B (en) Electrolyte solution additive for lithium secondary battery, non-aqueous electrolyte solution containing said electrolyte solution additive, and lithium secondary battery
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
US20100119940A1 (en) Secondary battery
US12051778B2 (en) Lithium-ion battery containing electrolyte including capacity restoration additives and method for restoring capacity of lithium-ion battery
WO2015049778A1 (en) Lithium ion secondary battery, lithium ion secondary battery system, method for detecting potential in lithium ion secondary battery, and method for controlling lithium ion secondary battery
KR20080063511A (en) Lithium ion batteries
JP2014116251A (en) Lithium ion secondary battery, and lithium ion secondary battery control method, state detection method of lithium ion secondary battery
KR102264734B1 (en) Nonaqueous electrolyte and lithium secondary battery comprising the same
JP2010040488A (en) Battery
JP6171821B2 (en) Power storage device having life determination function, and battery life determination method
WO2015040684A1 (en) Reference electrode with thermometer function, lithium-ion secondary battery including reference electrode with thermometer function, lithium-ion secondary battery system including reference electrode with thermometer function, and lithium-ion secondary battery control method
JP6224533B2 (en) Overcharge detection device for lithium ion battery
US10110024B2 (en) All-solid-state battery system with charge control based on light detection
KR101882286B1 (en) Battery Pack Having Voltage Valancing Syetem
JP2013089311A (en) Controller of laminated lithium ion battery
US11296359B2 (en) Non-aqueous electrolyte solution and lithium secondary battery including the same
JP2013211157A (en) Battery pack, and power storage device and lifetime determination method using the same
KR101613101B1 (en) The Method for Preparing Secondary Battery and Secondary Battery Using the Same
Demeaux et al. Impact of storage on the LiNi0. 4Mn1. 6O4 high voltage spinel performances in alkylcarbonate-based electrolytes
JP6658103B2 (en) Detection device and detection method
EP3588659A1 (en) Lithium secondary battery regeneration method
CN117996170A (en) Electrolyte and lithium metal secondary battery
US20140045012A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171005

R151 Written notification of patent or utility model registration

Ref document number: 6224533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250