[go: up one dir, main page]

JP6222836B2 - Conductive polymer dispersion and conductive coating film - Google Patents

Conductive polymer dispersion and conductive coating film Download PDF

Info

Publication number
JP6222836B2
JP6222836B2 JP2014030608A JP2014030608A JP6222836B2 JP 6222836 B2 JP6222836 B2 JP 6222836B2 JP 2014030608 A JP2014030608 A JP 2014030608A JP 2014030608 A JP2014030608 A JP 2014030608A JP 6222836 B2 JP6222836 B2 JP 6222836B2
Authority
JP
Japan
Prior art keywords
conductive polymer
poly
conductive
coating film
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014030608A
Other languages
Japanese (ja)
Other versions
JP2015155501A (en
Inventor
賢一 藤綱
賢一 藤綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2014030608A priority Critical patent/JP6222836B2/en
Publication of JP2015155501A publication Critical patent/JP2015155501A/en
Application granted granted Critical
Publication of JP6222836B2 publication Critical patent/JP6222836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

本発明は、π共役系導電性高分子を含む導電性高分子分散液及び導電性塗膜に関する。   The present invention relates to a conductive polymer dispersion containing a π-conjugated conductive polymer and a conductive coating film.

主鎖がπ電子を含む共役系で構成されているπ共役系導電性高分子は、電解重合法及び化学酸化重合法により合成することができる。
電解重合法では、ドーパントとなる電解質とπ共役系導電性高分子を形成する前駆体モノマーとの混合溶液中に、予め形成した電極材料などの支持体を浸漬し、支持体上にπ共役系導電性高分子をフィルム状に形成する。そのため、大量に製造することが困難であった。
一方、化学酸化重合法では、電解重合のような制約がなく、π共役系導電性高分子の前駆体モノマーに酸化剤及び酸化重合触媒を添加し、液中で大量のπ共役系導電性高分子を製造できる。
しかし、化学酸化重合法では、π共役系導電性高分子主鎖の共役系の成長に伴い、溶媒に対する溶解性が乏しくなるため、不溶の固形粉体で得られるようになる。不溶性のものでは支持体表面上にπ共役系導電性高分子膜を均一に形成することが困難になる。
そこで、π共役系導電性高分子に官能基を導入して可溶化する方法、バインダに分散して可溶化する方法、ポリアニオンを添加して可溶化する方法が提案されている。
例えば、水への分散性を向上させるために、分子量が2,000〜500,000の範囲のポリアニオンであるポリスチレンスルホン酸の存在下で、酸化剤を用いて、3,4−ジアルコキシチオフェンを化学酸化重合して、ポリ(3,4−ジアルコキシチオフェン)水分散液を製造する方法が提案されている(特許文献1参照)。また、ポリアクリル酸の存在下で化学酸化重合してπ共役系導電性高分子コロイド水分散液を製造する方法が提案されている(特許文献2参照)。
A π-conjugated conductive polymer whose main chain is composed of a conjugated system containing π electrons can be synthesized by an electrolytic polymerization method and a chemical oxidative polymerization method.
In the electropolymerization method, a support such as a previously formed electrode material is immersed in a mixed solution of an electrolyte serving as a dopant and a precursor monomer that forms a π-conjugated conductive polymer, and the π-conjugated system is formed on the support. A conductive polymer is formed into a film. Therefore, it was difficult to manufacture in large quantities.
On the other hand, in the chemical oxidative polymerization method, there is no restriction like electrolytic polymerization, and an oxidant and an oxidation polymerization catalyst are added to the precursor monomer of the π-conjugated conductive polymer, and a large amount of π-conjugated conductive conductivity is increased in the liquid. Can produce molecules.
However, in the chemical oxidative polymerization method, as the conjugated system of the π-conjugated conductive polymer main chain grows, the solubility in a solvent becomes poor, so that an insoluble solid powder can be obtained. If it is insoluble, it becomes difficult to form a π-conjugated conductive polymer film uniformly on the support surface.
Therefore, a method of solubilizing by introducing a functional group into a π-conjugated conductive polymer, a method of solubilizing by dispersing in a binder, and a method of solubilizing by adding a polyanion have been proposed.
For example, in order to improve the dispersibility in water, 3,4-dialkoxythiophene is used in the presence of polystyrene sulfonic acid, which is a polyanion having a molecular weight in the range of 2,000 to 500,000, using an oxidizing agent. A method for producing a poly (3,4-dialkoxythiophene) aqueous dispersion by chemical oxidative polymerization has been proposed (see Patent Document 1). In addition, a method for producing a π-conjugated conductive polymer colloid aqueous dispersion by chemical oxidative polymerization in the presence of polyacrylic acid has been proposed (see Patent Document 2).

特許文献1,2記載の方法によれば、π共役系導電性高分子を含有する水分散液を容易に製造できる。しかし、特許文献1,2における水分散液を塗布して形成した導電性塗膜は耐光性が低く、可視光または紫外光が当たると、表面抵抗が急激に上昇するという問題を有していた。
そこで、ポリリン酸等を添加することによって、π共役系導電性高分子を含有する水分散溶液から形成した導電性塗膜の表面抵抗の上昇を抑える方法が提案されている(特許文献3)。しかしながら、特許文献3に記載の方法でも、紫外光照射後の表面抵抗の上昇を充分に抑制することはできず、しかもポリリン酸を添加すると、水分散液の安定性が低下するという新たな問題も生じた。
According to the methods described in Patent Documents 1 and 2, an aqueous dispersion containing a π-conjugated conductive polymer can be easily produced. However, the conductive coating film formed by applying the aqueous dispersion in Patent Documents 1 and 2 has low light resistance, and has a problem that the surface resistance rapidly increases when exposed to visible light or ultraviolet light. .
Then, the method of suppressing the raise of the surface resistance of the electroconductive coating film formed from the aqueous dispersion solution containing (pi) conjugated system conductive polymer by adding polyphosphoric acid etc. is proposed (patent document 3). However, even the method described in Patent Document 3 cannot sufficiently suppress the increase in surface resistance after irradiation with ultraviolet light, and the addition of polyphosphoric acid causes a new problem that the stability of the aqueous dispersion decreases. Also occurred.

特許第2636968号公報Japanese Patent No. 2636968 特開平7−165892号公報Japanese Patent Laid-Open No. 7-165892 特表2006−505099号公報JP-T-2006-505099

本発明は、分散液としての安定性が高く、耐光性に優れる導電性塗膜を容易に形成できる導電性高分子分散液を提供することを目的とする。また、耐光性に優れた導電性塗膜を提供することを目的とする。   An object of the present invention is to provide a conductive polymer dispersion which can easily form a conductive coating film having high stability as a dispersion and excellent in light resistance. Moreover, it aims at providing the conductive coating film excellent in light resistance.

本発明は、以下の態様を有する。
[1]π共役系導電性高分子と、ポリアニオンと、シランカップリング剤と、分散媒とを含有し、前記シランカップリング剤は、アルコキシシリル基と2つ以上のエポキシ基とを有し、質量平均分子量が200〜10000であり、前記シランカップリング剤の含有量が、π共役系導電性高分子及びポリアニオンの合計質量を100質量部とした際に、50〜1000質量部である、導電性高分子分散液。
][1]に記載の導電性高分子分散液が塗布されて形成されたことを特徴とする導電性塗膜。
The present invention has the following aspects.
[1] and π-conjugated conductive polymer, a polyanion, a silane-coupling agent, contains a dispersion medium, wherein the silane coupling agent has an alkoxysilyl group and two or more epoxy groups The mass average molecular weight is 200 to 10000, and the content of the silane coupling agent is 50 to 1000 parts by mass when the total mass of the π-conjugated conductive polymer and the polyanion is 100 parts by mass. Conductive polymer dispersion.
[ 2 ] A conductive coating film formed by applying the conductive polymer dispersion according to [1 ] .

本発明の導電性高分子分散液は、分散液としての安定性が高く、耐光性に優れる導電性塗膜を容易に形成できる。
本発明の導電性塗膜は、耐光性に優れる。
The conductive polymer dispersion of the present invention can easily form a conductive coating film having high stability as a dispersion and excellent light resistance.
The conductive coating film of the present invention is excellent in light resistance.

<導電性高分子分散液>
本発明の導電性高分子分散液は、π共役系導電性高分子とポリアニオンとポリマー型多官能シランカップリング剤と分散媒とを含有する。
<Conductive polymer dispersion>
The conductive polymer dispersion of the present invention contains a π-conjugated conductive polymer, a polyanion, a polymer type polyfunctional silane coupling agent, and a dispersion medium.

(π共役系導電性高分子)
π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であり、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。なかでも、重合の容易さ、空気中での安定性の点からは、ポリチオフェン類、ポリピロール類及びポリアニリン類が好ましい。さらに、溶剤に対する可溶性及び透明性の点から、ポリチオフェン類が好ましい。
(Π-conjugated conductive polymer)
The π-conjugated conductive polymer is an organic polymer whose main chain is composed of a π-conjugated system, for example, polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, Examples thereof include polythiophene vinylenes and copolymers thereof. Of these, polythiophenes, polypyrroles and polyanilines are preferred from the viewpoint of ease of polymerization and stability in air. Furthermore, polythiophenes are preferable from the viewpoint of solubility in solvents and transparency.

ポリチオフェン類としては、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)が挙げられる。
ポリピロール類としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)が挙げられる。
ポリアニリン類としては、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)が挙げられる。
上記π共役系導電性高分子は1種を単独で使用してもよいし、2種以上を併用してもよい。
上記π共役系導電性高分子の中でも、導電性、透明性、耐熱性の点から、ポリ(3,4−エチレンジオキシチオフェン)又はポリピロールが好ましい。
Polythiophenes include polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3 -Heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chloro Thiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), poly (3 -Hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxy Offene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly (3 -Dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly (3 4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3,4-diheptyloxythiophene), poly (3,4-dioctyloxythiophene) ), Poly (3,4-didecyloxythiophene), poly (3,4-didodeci) Oxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butenedioxythiophene), poly (3-methyl-4-methoxythiophene) ), Poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3 -Methyl-4-carboxybutylthiophene).
Examples of polypyrroles include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole) , Poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3 -Methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole) Le), poly (3-methyl-4-hexyloxy-pyrrole), poly (3-methyl-4-hexyloxy-pyrrole) and the like.
Examples of polyanilines include polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-aniline sulfonic acid), and poly (3-aniline sulfonic acid).
The above π-conjugated conductive polymers may be used alone or in combination of two or more.
Among the π-conjugated conductive polymers, poly (3,4-ethylenedioxythiophene) or polypyrrole is preferable from the viewpoint of conductivity, transparency, and heat resistance.

(ポリアニオン)
ポリアニオンとは、アニオン基を有する構成単位を有する重合体である。このポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。
ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、スルホン酸基、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホン酸基、一置換硫酸エステル基、カルボキシ基がより好ましい。
ポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ−2−アクリルアミド−2−メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
上記ポリアニオンは1種を単独で使用してもよいし、2種以上を併用してもよい。
(Polyanion)
A polyanion is a polymer having a structural unit having an anion group. The anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
The anion group of the polyanion may be any functional group that can undergo chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a sulfonic acid group, mono-substituted A sulfate group, a monosubstituted phosphate group, a phosphate group, a carboxy group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfonic acid group, a mono-substituted sulfate group, and a carboxy group are more preferable.
Specific examples of polyanions include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl carboxylic acid. Examples include acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
The said polyanion may be used individually by 1 type, and may use 2 or more types together.

ポリアニオンの重合度は、モノマー単位が10〜100,000個の範囲であることが好ましく、分散性及び導電性の点からは、50〜10,000個の範囲がより好ましい。   The degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of dispersibility and conductivity.

ポリアニオンの含有量は、π共役系導電性高分子1モルに対して0.1〜10モルの範囲であることが好ましく、1〜7モルの範囲であることがより好ましい。ポリアニオンの含有量が前記下限値より少なくなると、π共役系導電性高分子へのドーピング効果が弱くなる傾向にあり、導電性が不足することがある。その上、分散性および溶解性が低くなり、均一な分散液を得ることが困難になる。また、ポリアニオンの含有量が前記上限値より多くなると、π共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくい。   The content of the polyanion is preferably in the range of 0.1 to 10 mol, and more preferably in the range of 1 to 7 mol, with respect to 1 mol of the π-conjugated conductive polymer. When the polyanion content is less than the lower limit, the doping effect on the π-conjugated conductive polymer tends to be weakened, and the conductivity may be insufficient. In addition, dispersibility and solubility are lowered, making it difficult to obtain a uniform dispersion. On the other hand, when the polyanion content exceeds the upper limit, the content of the π-conjugated conductive polymer decreases, and it is difficult to obtain sufficient conductivity.

ポリアニオンは、そのアニオン基の一部がπ共役系導電性高分子に配位しており、π共役系導電性高分子とポリアニオンとは複合体を形成している。π共役系導電性高分子にポリアニオンのアニオン基が配位することにより、π共役系導電性高分子がドーピングされて導電性が発現する。ポリアニオンのπ共役系導電性高分子に配位しない余剰のアニオン基は、該複合体を水に可溶化させる役割を果たす。
導電性高分子分散液中の導電性複合体(π共役系導電性高分子とポリアニオンとの複合体)の含有量は0.05〜5.0質量%であることが好ましく、0.1〜4.0質量%であることがより好ましい。導電性複合体の含有量が0.05質量%未満であると、充分な導電性が得られないことがあり、5.0質量%を超えると、均一な導電性塗膜が得られないことがある。
In the polyanion, a part of its anion group is coordinated to the π-conjugated conductive polymer, and the π-conjugated conductive polymer and the polyanion form a complex. When the anion group of the polyanion is coordinated to the π-conjugated conductive polymer, the π-conjugated conductive polymer is doped to develop conductivity. Excess anionic groups that do not coordinate with the π-conjugated conductive polymer of the polyanion serve to solubilize the complex in water.
The content of the conductive complex (complex of π-conjugated conductive polymer and polyanion) in the conductive polymer dispersion is preferably 0.05 to 5.0% by mass, It is more preferable that it is 4.0 mass%. When the content of the conductive composite is less than 0.05% by mass, sufficient conductivity may not be obtained, and when it exceeds 5.0% by mass, a uniform conductive coating film cannot be obtained. There is.

(ポリマー型多官能シランカップリング剤)
ポリマー型多官能シランカップリング剤は、アルコキシシリル基と、アルコキシシリル基以外の2つ以上の反応性官能基(例えば、エポキシ基、アミノ基等)とを有するポリマー型のシランカップリング剤である。
ポリマー型多官能シランカップリング剤のなかでも、耐光性向上効果がより高いことから、エポキシ基を2つ以上有するポリマー型多官能シランカップリング剤が好ましい。
(Polymer type polyfunctional silane coupling agent)
The polymer type polyfunctional silane coupling agent is a polymer type silane coupling agent having an alkoxysilyl group and two or more reactive functional groups (for example, an epoxy group, an amino group, etc.) other than the alkoxysilyl group. .
Among polymer-type polyfunctional silane coupling agents, a polymer-type polyfunctional silane coupling agent having two or more epoxy groups is preferable because the effect of improving light resistance is higher.

エポキシ基を2つ以上有するポリマー型多官能シランカップリング剤としては、下記一般式(1)又は下記一般式(2)で表される化合物が挙げられる。
式(1)において、R,R,Rは、各々独立に、水素原子、グリシジル基、下記一般式(3)で示されるアルコキシシリル基から選ばれ、R,R,Rの少なくとも1つは前記アルコキシシリル基であり、R,R,Rの少なくとも2つはグリシジル基である。aは1〜100のいずれかの整数であり、1〜40のいずれかの整数であることが好ましく、1〜30のいずれかの整数であることがより好ましい。
式(2)において、R,R,Rは、各々独立に、水素原子、グリシジル基、下記一般式(3)で示されるアルコキシシリル基から選ばれ、R,R,Rの少なくとも1つは前記アルコキシシリル基であり、R,R,Rの少なくとも2つはグリシジル基である。bは4〜10のいずれかの整数であり、4〜8のいずれかの整数であることが好ましく、4〜5のいずれかの整数であることがより好ましい。cは0〜10のいずれかの整数であり、0〜8のいずれかの整数であることが好ましく、0〜5のいずれかの整数であることがより好ましい。dは0〜10のいずれかの整数であり、0〜8のいずれかの整数であることが好ましく、0〜5のいずれかの整数であることがより好ましい。eは0〜10のいずれかの整数であり、0〜8のいずれかの整数であることが好ましく、0〜5のいずれかの整数であることがより好ましい。
式(3)において、Rは、炭素数1〜6のアルキル基であり、Xは、水素原子又は炭素数1〜4のアルキル基である。nは1〜3のいずれかの整数である。
Examples of the polymer type polyfunctional silane coupling agent having two or more epoxy groups include compounds represented by the following general formula (1) or the following general formula (2).
In the formula (1), R 1 , R 2 and R 3 are each independently selected from a hydrogen atom, a glycidyl group and an alkoxysilyl group represented by the following general formula (3), and R 1 , R 2 and R 3 Is at least one alkoxysilyl group, and at least two of R 1 , R 2 and R 3 are glycidyl groups. a is an integer of 1 to 100, preferably an integer of 1 to 40, and more preferably an integer of 1 to 30.
In the formula (2), R 4 , R 5 and R 6 are each independently selected from a hydrogen atom, a glycidyl group and an alkoxysilyl group represented by the following general formula (3), and R 4 , R 5 and R 6. Is at least one alkoxysilyl group, and at least two of R 4 , R 5 and R 6 are glycidyl groups. b is an integer of 4 to 10, preferably an integer of 4 to 8, and more preferably an integer of 4 to 5. c is an integer of 0 to 10, preferably an integer of 0 to 8, and more preferably an integer of 0 to 5. d is an integer of 0 to 10, preferably an integer of 0 to 8, and more preferably an integer of 0 to 5. e is an integer of 0 to 10, preferably an integer of 0 to 8, and more preferably an integer of 0 to 5.
In Formula (3), R 7 is an alkyl group having 1 to 6 carbon atoms, and X is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n is an integer of 1 to 3.

一般式(1)で表される化合物においては、グリシジル基(C)とアルコキシシリル基(D)とのモル比率(C/D)が0.02〜100であることが好ましく、0.05〜50であることがより好ましく、0.1〜10であることがさらに好ましい。
一般式(2)で表される化合物においては、グリシジル基(E)とアルコキシシリル基(F)とのモル比率(E/F)が0.1〜9であることが好ましく、0.2〜5であることがより好ましい。
In the compound represented by the general formula (1), the molar ratio (C / D) of the glycidyl group (C) and the alkoxysilyl group (D) is preferably 0.02 to 100, It is more preferable that it is 50, and it is still more preferable that it is 0.1-10.
In the compound represented by the general formula (2), the molar ratio (E / F) of the glycidyl group (E) and the alkoxysilyl group (F) is preferably 0.1 to 9, and preferably 0.2 to 5 is more preferable.

Figure 0006222836
Figure 0006222836

ポリマー型多官能シランカップリング剤のエポキシ当量(1当量のエポキシ基を含む樹脂の質量)は100〜500であることが好ましく、100〜400であることがより好ましく、100〜300であることがさらに好ましい。エポキシ当量は、JIS K7236:2009に従って求めることができる。ポリマー型多官能シランカップリング剤のエポキシ当量が前記範囲内であれば、該導電性高分子分散液から形成される導電性塗膜の耐光性がより高くなる。
ポリマー型多官能シランカップリング剤の質量平均分子量は200〜10000であることが好ましく、300〜8000であることがより好ましい。ここで、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定し、標準ポリスチレンを用いて求めた値である。ポリマー型多官能シランカップリング剤の質量平均分子量が前記下限値以上であれば、該導電性高分子分散液から形成される導電性塗膜の耐光性がより高くなり、前記上限値以下であれば、ポリマー型多官能シランカップリング剤を容易に入手できる。
The epoxy equivalent of the polymer-type polyfunctional silane coupling agent (the mass of the resin containing 1 equivalent of an epoxy group) is preferably 100 to 500, more preferably 100 to 400, and more preferably 100 to 300. Further preferred. The epoxy equivalent can be determined according to JIS K7236: 2009. When the epoxy equivalent of the polymer type polyfunctional silane coupling agent is within the above range, the light resistance of the conductive coating film formed from the conductive polymer dispersion becomes higher.
The mass average molecular weight of the polymer type polyfunctional silane coupling agent is preferably 200 to 10,000, and more preferably 300 to 8,000. Here, the mass average molecular weight is a value measured by gel permeation chromatography (GPC) and obtained using standard polystyrene. If the mass average molecular weight of the polymer type polyfunctional silane coupling agent is equal to or higher than the lower limit, the light resistance of the conductive coating film formed from the conductive polymer dispersion becomes higher, and should be equal to or lower than the upper limit. For example, a polymer type polyfunctional silane coupling agent can be easily obtained.

2つ以上のエポキシ基を有するポリマー型多官能シランカップリング剤の具体例としては、信越化学工業社製のX−12−981、X−12−984が挙げられる。   Specific examples of the polymer-type polyfunctional silane coupling agent having two or more epoxy groups include X-12-981 and X-12-984 manufactured by Shin-Etsu Chemical Co., Ltd.

前記ポリマー型多官能シランカップリング剤の含有割合は、π共役系導電性高分子及びポリアニオンの合計質量を100質量部とした際に、50〜1000質量部であることが好ましく、80〜700質量部であることがより好ましい。
ポリマー型多官能シランカップリング剤の含有割合が前記下限値以上であれば、該導電性高分子分散液から形成される導電性塗膜の耐光性をより高くでき、前記上限値以下であれば、充分な導電性を確保できる。
The content ratio of the polymer type polyfunctional silane coupling agent is preferably 50 to 1000 parts by mass, and 80 to 700 parts by mass when the total mass of the π-conjugated conductive polymer and the polyanion is 100 parts by mass. More preferably, it is a part.
If the content ratio of the polymer-type polyfunctional silane coupling agent is equal to or higher than the lower limit, the light resistance of the conductive coating film formed from the conductive polymer dispersion can be further increased, and if the content is equal to or lower than the upper limit. Sufficient conductivity can be secured.

(分散媒)
導電性高分子分散液に含まれる分散媒としては、例えば、水、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、アセトニトリル、ベンゾニトリル等の極性溶媒、クレゾール、フェノール、キシレノール等のフェノール類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ヘキサン、ベンゼン、トルエン等の炭化水素類、ギ酸、酢酸等のカルボン酸類、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3−メチル−2−オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、1種を単独で用いてもよいし、2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよい。
(Dispersion medium)
Examples of the dispersion medium contained in the conductive polymer dispersion include water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, acetonitrile. , Polar solvents such as benzonitrile, phenols such as cresol, phenol and xylenol, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, hydrocarbons such as hexane, benzene and toluene, formic acid , Carboxylic acids such as acetic acid, carbonate compounds such as ethylene carbonate and propylene carbonate, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether , Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, heterocyclic compounds such as 3-methyl-2-oxazolidinone, nitrile compounds such as acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, and benzonitrile Etc. These solvents may be used alone, as a mixture of two or more kinds, or as a mixture with other organic solvents.

(バインダ)
導電性高分子分散液は、該導電性高分子分散液から形成される導電性塗膜の耐久性および透明性の向上、基材との密着性向上を目的として、バインダを含有してもよい。
バインダは、熱硬化性樹脂であってもよいし、熱可塑性樹脂であってもよい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリイミド、ポリアミドイミド、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等のポリアミド、ポリビニルアルコール、ポリビニルブチラール、ポリ酢酸ビニル、ポリ塩化ビニル等のビニル樹脂、エポキシ樹脂、オキセタン樹脂、キシレン樹脂、アラミド樹脂、ポリイミドシリコーン、ポリウレタン、ポリウレア、メラミン樹脂、フェノール樹脂、ポリエーテル、アクリル樹脂およびこれらの共重合体等が挙げられる。
バインダの中でも、基材との密着性が高いことから、ポリエステル、ポリウレタン、メラミン樹脂、オキセタン樹脂、エポキシ樹脂、アクリル樹脂が好ましい。
(Binder)
The conductive polymer dispersion may contain a binder for the purpose of improving the durability and transparency of the conductive coating film formed from the conductive polymer dispersion and improving the adhesion to the substrate. .
The binder may be a thermosetting resin or a thermoplastic resin. For example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyimide, polyamideimide, polyamide 6, polyamide 6,6, polyamide 12, polyamide 11, etc., polyvinyl alcohol, polyvinyl butyral, polyvinyl acetate, polychlorinated Examples thereof include vinyl resins such as vinyl, epoxy resins, oxetane resins, xylene resins, aramid resins, polyimide silicones, polyurethanes, polyureas, melamine resins, phenol resins, polyethers, acrylic resins, and copolymers thereof.
Among the binders, polyester, polyurethane, melamine resin, oxetane resin, epoxy resin, and acrylic resin are preferable because of high adhesion to the substrate.

バインダの含有量は、前記複合体100質量部に対して1000〜100000質量部であることが好ましく、3000〜50000質量部であることがより好ましい。バインダが前記下限値以上であれば、得られる導電性塗膜の強度を充分に向上させることができ、前記上限値以下であれば、充分な導電性を確保できる。   The binder content is preferably 1000 to 100000 parts by mass, and more preferably 3000 to 50000 parts by mass with respect to 100 parts by mass of the composite. If the binder is not less than the lower limit, the strength of the resulting conductive coating film can be sufficiently improved, and if it is not more than the upper limit, sufficient conductivity can be ensured.

(添加剤)
導電性高分子分散液には、必要に応じて、添加剤が含まれてもよい。
添加剤としてはπ共役系導電性高分子及びポリアニオンと混合しうるものであれば特に制限されず、例えば、無機導電剤、界面活性剤、消泡剤、非ポリマー型のカップリング剤、酸化防止剤、紫外線吸収剤などを使用できる。
無機導電剤としては、金属イオン(金属塩を水に溶解させて形成する)類、導電性カーボン等が挙げられる。
界面活性剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等の陰イオン界面活性剤; アミン塩、4 級アンモニウム塩等の陽イオン界面活性剤; カルボキシベタイン、アミノカルボン酸塩、イミダゾリウムベタイン等の両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸アミド等の非イオン界面活性剤等が挙げられる。
消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンレジン等が挙げられる。
非ポリマー型のカップリング剤としては、ビニル基、アミノ基、エポキシ基等を有する非ポリマー型(質量平均分子量が200未満)のシランカップリング剤等が挙げられる。
酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、糖類、ビタミン類等が挙げられる。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、オギザニリド系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤、ベンゾエート系紫外線吸収剤等が挙げられる。酸化防止剤と紫外線吸収剤とは併用することが好ましい。
(Additive)
The conductive polymer dispersion may contain additives as necessary.
The additive is not particularly limited as long as it can be mixed with a π-conjugated conductive polymer and a polyanion. For example, an inorganic conductive agent, a surfactant, an antifoaming agent, a non-polymer type coupling agent, an antioxidant Agents, ultraviolet absorbers and the like can be used.
Examples of the inorganic conductive agent include metal ions (formed by dissolving a metal salt in water), conductive carbon, and the like.
Surfactants include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates; cationic surfactants such as amine salts and quaternary ammonium salts; carboxybetaines and aminocarboxylics Examples include amphoteric surfactants such as acid salts and imidazolium betaines; nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, ethylene glycol fatty acid esters, and polyoxyethylene fatty acid amides.
Examples of the antifoaming agent include silicone resin, polydimethylsiloxane, and silicone resin.
Examples of the non-polymer type coupling agent include a non-polymer type (mass average molecular weight of less than 200) silane coupling agent having a vinyl group, an amino group, an epoxy group, and the like.
Examples of the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, saccharides, vitamins and the like.
Examples of UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, salicylate UV absorbers, cyanoacrylate UV absorbers, oxanilide UV absorbers, hindered amine UV absorbers, and benzoate UV absorbers. Is mentioned. It is preferable to use an antioxidant and an ultraviolet absorber in combination.

(導電性高分子分散液の製造方法)
上記導電性高分子分散液を製造する方法としては、例えば、ポリアニオンと分散媒の存在下でπ共役系導電性高分子の前駆体モノマーを化学酸化重合して、π共役系導電性高分子がポリアニオンによって分散媒に可溶化した分散液を得た後、その分散液にポリマー型多官能シランカップリング剤を添加する方法が挙げられる。
(Method for producing conductive polymer dispersion)
As a method for producing the conductive polymer dispersion, for example, a precursor monomer of a π-conjugated conductive polymer is chemically oxidatively polymerized in the presence of a polyanion and a dispersion medium, and a π-conjugated conductive polymer is obtained. An example is a method in which after obtaining a dispersion solubilized in a dispersion medium by a polyanion, a polymer type polyfunctional silane coupling agent is added to the dispersion.

<導電性塗膜>
本発明の導電性塗膜は、上記導電性高分子分散液が塗布されて形成された塗膜である。
導電性塗膜は、通常、基材上に塗布されて形成される。ここで、基材としては特に制限されないが、導電性塗膜は透明性を有するため、基材も透明であることが好ましい。
透明基材を構成する材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネートなどが挙げられる。透明基材としては、ガラスも使用できる。
また、基材として、上質紙、クラフト紙、コート紙等の紙を用いることができる。
<Conductive coating film>
The conductive coating film of the present invention is a coating film formed by applying the conductive polymer dispersion.
The conductive coating film is usually formed by coating on a substrate. Here, although it does not restrict | limit especially as a base material, Since a conductive coating film has transparency, it is preferable that a base material is also transparent.
The materials constituting the transparent substrate include polyethylene terephthalate (PET), polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propio. And the like. Glass can also be used as the transparent substrate.
In addition, paper such as high-quality paper, kraft paper, and coated paper can be used as the substrate.

導電性高分子分散液の塗布方法として、例えば、バーコーティング、コンマコーティング、リバースコーティング、リップコーティング、スプレーコーティング、フレキソ印刷、グラビア印刷などが適用される。
導電性高分子分散液の塗布後には、硬化処理を施すことが好ましい。
硬化方法としては、加熱または光照射が適用される。加熱方法としては、例えば、熱風加熱や赤外線加熱などの通常の方法を採用できる。また、光照射により硬化する場合には、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプなどの光源から紫外光を照射する方法を採用できる。
紫外光照射における照度は100mW/cm以上が好ましい。照度が100mW/cm未満であると、充分に架橋しないことがある。なお、本発明における照度は、トプコン社製UVR−T1(工業用UVチェッカー、受光器;UD−T36、測定波長範囲;300〜390nm、ピーク感度波長;約355nm)を用いて測定した値である。
As a coating method of the conductive polymer dispersion, for example, bar coating, comma coating, reverse coating, lip coating, spray coating, flexographic printing, gravure printing and the like are applied.
It is preferable to perform a curing treatment after the application of the conductive polymer dispersion.
As the curing method, heating or light irradiation is applied. As a heating method, for example, a normal method such as hot air heating or infrared heating can be employed. Moreover, when hardening by light irradiation, the method of irradiating ultraviolet light from light sources, such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, can be employ | adopted, for example.
The illuminance upon irradiation with ultraviolet light is preferably 100 mW / cm 2 or more. If the illuminance is less than 100 mW / cm 2 , the film may not be sufficiently crosslinked. In addition, the illumination intensity in this invention is the value measured using Topcon Co., Ltd. UVR-T1 (Industrial UV checker, light receiver; UD-T36, measurement wavelength range; 300-390 nm, peak sensitivity wavelength; about 355 nm). .

導電性塗膜の厚さ(平均値)は0.001〜10μmであることが好ましく、0.01〜1μmであることがより好ましい。導電性塗膜の厚みが前記下限値以上であれば、充分な導電性を確保でき、前記上限値以下であれば、充分な可撓性を確保できる。   The thickness (average value) of the conductive coating film is preferably 0.001 to 10 μm, and more preferably 0.01 to 1 μm. If the thickness of the conductive coating film is not less than the lower limit value, sufficient conductivity can be ensured, and if the thickness is not more than the upper limit value, sufficient flexibility can be ensured.

(作用効果)
ポリマー型多官能シランカップリング剤を含有する本発明の導電性高分子分散液から導電性塗膜を形成した際には、π共役系導電性高分子とポリアニオンとの複合体同士を高い架橋率で架橋させることができ、導電性塗膜の耐光性が高くなる。したがって、本発明の導電性高分子分散液から形成した導電性塗膜に紫外光が照射されても表面抵抗が上昇しにくくなっている。
ポリマー型多官能シランカップリング剤の代わりにモノマー型のシランカップリング剤又はオリゴマー型のシランカップリング剤を導電性高分子分散液に含有させた場合には、シランカップリング剤がシルセスキオキサンの形態を形成するなどして、シロキサン結合が充分に形成されない。そのため、導電性複合体同士を充分に架橋できず、耐光性の向上効果は小さい。
(Function and effect)
When a conductive coating film is formed from the conductive polymer dispersion of the present invention containing a polymer-type polyfunctional silane coupling agent, a complex of a π-conjugated conductive polymer and a polyanion is highly crosslinked. The light resistance of the conductive coating film is increased. Therefore, even if the conductive coating film formed from the conductive polymer dispersion of the present invention is irradiated with ultraviolet light, the surface resistance is hardly increased.
In the case where a monomer type silane coupling agent or an oligomer type silane coupling agent is contained in the conductive polymer dispersion instead of the polymer type polyfunctional silane coupling agent, the silane coupling agent is silsesquioxane. For example, the siloxane bond is not sufficiently formed. For this reason, the conductive composites cannot be sufficiently crosslinked with each other, and the effect of improving light resistance is small.

(製造例1)ポリスチレンスルホン酸の合成
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。
得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1000ml添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約1000ml溶液を除去し、残液に2000mlのイオン交換水を加え、限外ろ過法を用いて約20000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。
さらに、得られたろ液に約2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この限外ろ過操作を3回繰り返した。そして、得られた溶液中の水を減圧除去して、無色固形状のポリスチレンスルホン酸を得た。
(Production Example 1) Synthesis of polystyrene sulfonic acid 206 g of sodium styrene sulfonate was dissolved in 1000 ml of ion-exchanged water, and while stirring at 80 ° C., 1.14 g of ammonium persulfate oxidizing agent solution previously dissolved in 10 ml of water was dissolved. The solution was added dropwise for 20 minutes, and the solution was stirred for 12 hours.
To the obtained sodium styrenesulfonate-containing solution, 1000 ml of sulfuric acid diluted to 10% by mass was added, about 1000 ml of the polystyrenesulfonic acid-containing solution was removed using an ultrafiltration method, and 2000 ml of ion-exchanged water was added to the remaining liquid. And about 20,000 ml solution was removed using ultrafiltration. The above ultrafiltration operation was repeated three times.
Further, about 2000 ml of ion-exchanged water was added to the obtained filtrate, and about 2000 ml of solution was removed using an ultrafiltration method. This ultrafiltration operation was repeated three times. Then, water in the obtained solution was removed under reduced pressure to obtain colorless solid polystyrene sulfonic acid.

(製造例2)導電性高分子分散液の調製
14.2gの3,4−エチレンジオキシチオフェンと、36.7gのポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合させた。
これにより得た混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液をゆっくり加え、3時間攪拌して反応させた。
これにより得られた反応液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。
そして、得られた溶液に10質量%に希釈した200mlの硫酸と2000mlのイオン交換水を加え、限外ろ過法により約2000ml溶液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法により約2000ml溶液を除去した。この操作を3回繰り返した。
さらに、得られた溶液に2000mlのイオン交換水を加え、限外ろ過法により約2000ml溶液を除去した。この操作を5回繰り返して、約1.2質量%の青色のポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)分散液(以下、「PEDOT−PSS分散液」という。)を得た。
(Production Example 2) Preparation of conductive polymer dispersion 14.2 g of 3,4-ethylenedioxythiophene and a solution of 36.7 g of polystyrene sulfonic acid dissolved in 2000 ml of ion-exchanged water were mixed at 20 ° C. I let you.
While keeping the mixed solution thus obtained at 20 ° C. and stirring, 29.64 g of ammonium persulfate dissolved in 200 ml of ion exchange water and 8.0 g of ferric sulfate oxidation catalyst solution were slowly added and stirred for 3 hours. And reacted.
2000 ml of ion-exchanged water was added to the reaction solution thus obtained, and about 2000 ml of solution was removed using an ultrafiltration method. This operation was repeated three times.
Then, 200 ml of sulfuric acid diluted to 10% by mass and 2000 ml of ion-exchanged water are added to the obtained solution, about 2000 ml of solution is removed by ultrafiltration, 2000 ml of ion-exchanged water is added thereto, and ultrafiltration is performed. About 2000 ml of solution was removed by the method. This operation was repeated three times.
Furthermore, 2000 ml of ion-exchanged water was added to the obtained solution, and about 2000 ml of solution was removed by ultrafiltration. This operation was repeated 5 times to obtain about 1.2% by mass of a blue polystyrenesulfonic acid-doped poly (3,4-ethylenedioxythiophene) dispersion (hereinafter referred to as “PEDOT-PSS dispersion”).

(実施例1)
製造例2により得たPEDOT−PSS分散液100gとエタノール100gの混合溶液200gに、シランカップリング剤(信越化学工業社製、X−12−984、2つ以上のエポキシ基を有するポリマー型多官能シランカップリング剤、質量平均分子量4.0×10、エポキシ当量270、粘度1860mPa・s)8g(PEDOT−PSS固形分100質量部に対して333質量部)を添加し、攪拌して導電性高分子分散液Aを得た。
導電性高分子分散液Aをポリエチレンテレフタレートフィルム(東洋紡製A4300、厚さ:188μm)に、#8のバーコーターで塗布し、120℃、3分間、加熱により乾燥し、導電性塗膜を形成して導電性シートを得た。
Example 1
To 200 g of a mixed solution of 100 g of PEDOT-PSS dispersion obtained in Production Example 2 and 100 g of ethanol, a silane coupling agent (X-12-984, manufactured by Shin-Etsu Chemical Co., Ltd., polymer type polyfunctional having two or more epoxy groups) Silane coupling agent, mass average molecular weight 4.0 × 10 3 , epoxy equivalent 270, viscosity 1860 mPa · s) 8 g (333 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content) was added and stirred to be conductive. A polymer dispersion A was obtained.
Conductive polymer dispersion A was applied to a polyethylene terephthalate film (Toyobo A4300, thickness: 188 μm) with a # 8 bar coater and dried by heating at 120 ° C. for 3 minutes to form a conductive coating film. Thus, a conductive sheet was obtained.

[耐光性評価]
導電性塗膜の耐光性を以下の方法により評価した。その結果を表1,2に示す。
得られた導電性シートの導電性塗膜の初期の表面抵抗を測定した後、紫外線フェードメーターを用いて、導電性シートに、カーボンアークにより発生させた紫外光を96時間又は480時間照射させた。そして、光照射後の導電性塗膜の表面抵抗を測定した。測定結果を表1,2に示す。光照射後の表面抵抗の上昇が小さい程、耐光性に優れる。
表面抵抗は、三菱化学社製ハイレスタMCP−HT450を用い、JIS K6911に準じて測定した。
[Light resistance evaluation]
The light resistance of the conductive coating film was evaluated by the following method. The results are shown in Tables 1 and 2.
After measuring the initial surface resistance of the conductive coating film of the obtained conductive sheet, the conductive sheet was irradiated with ultraviolet light generated by a carbon arc for 96 hours or 480 hours using an ultraviolet fade meter. . And the surface resistance of the conductive coating film after light irradiation was measured. The measurement results are shown in Tables 1 and 2. The smaller the increase in surface resistance after light irradiation, the better the light resistance.
The surface resistance was measured in accordance with JIS K6911 using a Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Corporation.

[透明性評価]
日本電色工業社製へイズメータ測定器(NDH5000)を用い、JIS K7136に準じて全光線透過率およびへイズを測定した。
[Transparency evaluation]
The total light transmittance and haze were measured according to JIS K7136 using a Nippon Denshoku Industries Co., Ltd. haze meter measuring device (NDH5000).

(実施例2)
シランカップリング剤を信越化学工業社製X−12−981(2つ以上のエポキシ基を有するポリマー型多官能シランカップリング剤、質量平均分子量3.0×10、エポキシ当量290、粘度1010Pa・s)に変更した以外は実施例1と同様にして導電性高分子分散液Bを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Bを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Example 2)
X-12-981 manufactured by Shin-Etsu Chemical Co., Ltd. (polymer type polyfunctional silane coupling agent having two or more epoxy groups, mass average molecular weight 3.0 × 10 3 , epoxy equivalent 290, viscosity 1010 Pa · A conductive polymer dispersion B was obtained in the same manner as in Example 1 except for changing to s). A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion B was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

(実施例3)
シランカップリング剤X−12−984の添加量を2g(PEDOT−PSS固形分100質量部に対して83質量部)に変更した以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Example 3)
A conductive coating film was formed in the same manner as in Example 1 except that the addition amount of the silane coupling agent X-12-984 was changed to 2 g (83 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content). A conductive sheet was obtained. Then, the light resistance was evaluated in the same manner as in Example 1.

(実施例4)
シランカップリング剤X−12−984の添加量を4g(PEDOT−PSS固形分100質量部に対して167質量部)に変更した以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
Example 4
A conductive coating film was formed in the same manner as in Example 1 except that the addition amount of the silane coupling agent X-12-984 was changed to 4 g (167 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content). A conductive sheet was obtained. Then, the light resistance was evaluated in the same manner as in Example 1.

(実施例5)
シランカップリング剤X−12−984の添加量を16g(PEDOT−PSS固形分100質量部に対して666質量部)に変更した以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Example 5)
A conductive coating film was formed in the same manner as in Example 1 except that the addition amount of the silane coupling agent X-12-984 was changed to 16 g (666 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content). A conductive sheet was obtained. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例1)
シランカップリング剤を添加しなかった以外は実施例1と同様にして、導電性塗膜を形成し、導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 1)
A conductive coating film was formed in the same manner as in Example 1 except that the silane coupling agent was not added to obtain a conductive sheet. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例2)
シランカップリング剤を信越化学工業社製KBM403(3−グリシドキシプロピルトリエトキシシラン、1つのエポキシ基を有する非ポリマー型シランカップリング剤)1g(PEDOT−PSS固形分100質量部に対して83質量部)に変更した以外は実施例1と同様にして導電性高分子分散液Cを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Cを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 2)
1 g of silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. KBM403 (3-glycidoxypropyltriethoxysilane, non-polymer silane coupling agent having one epoxy group) (83 parts by mass based on 100 parts by mass of PEDOT-PSS solid content) A conductive polymer dispersion C was obtained in the same manner as in Example 1 except that the mass was changed to (parts by mass). A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion C was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例3)
信越化学工業社製KBM403の量を2g(PEDOT−PSS固形分100質量部に対して167質量部)に変更した以外は比較例2と同様にして導電性高分子分散液Dを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Dを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 3)
A conductive polymer dispersion D was obtained in the same manner as in Comparative Example 2 except that the amount of KBM403 manufactured by Shin-Etsu Chemical Co., Ltd. was changed to 2 g (167 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content). A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion D was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例4)
信越化学工業社製KBM403の量を4g(PEDOT−PSS固形分100質量部に対して333質量部)に変更した以外は比較例2と同様にして導電性高分子分散液Eを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Eを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 4)
A conductive polymer dispersion E was obtained in the same manner as in Comparative Example 2 except that the amount of KBM403 manufactured by Shin-Etsu Chemical Co., Ltd. was changed to 4 g (333 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content). A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion E was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例5)
シランカップリング剤を信越化学工業社製KBM402(3−グリシドキシプロピルメチルジメトキシシラン、1つのエポキシ基を有する非ポリマー型シランカップリング剤)2g(PEDOT−PSS固形分100質量部に対して167質量部)に変更した以外は実施例1と同様にして導電性高分子分散液Fを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Fを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 5)
A silane coupling agent was made by Shin-Etsu Chemical Co., Ltd. KBM402 (3-glycidoxypropylmethyldimethoxysilane, non-polymer type silane coupling agent having one epoxy group) 2 g (based on 100 parts by mass of PEDOT-PSS solid content) A conductive polymer dispersion F was obtained in the same manner as in Example 1 except that the mass was changed to (parts by mass). A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion F was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例6)
シランカップリング剤を信越化学工業社製KBM503(3−メタクリロキシプロピルトリメトキシシラン、メタクリル系の非ポリマー型シランカップリング剤)2g(PEDOT−PSS固形分100質量部に対して167質量部)に変更した以外は実施例1と同様にして導電性高分子分散液Gを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Gを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 6)
Silane coupling agent is KBG503 (3-methacryloxypropyltrimethoxysilane, methacrylic non-polymeric silane coupling agent) manufactured by Shin-Etsu Chemical Co., Ltd. 2 g (167 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content). A conductive polymer dispersion G was obtained in the same manner as Example 1 except for the change. A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion G was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

(比較例7)
シランカップリング剤を信越化学工業社製KBM5103(3−アクリロキシプロピルトリメトキシシラン、アクリル系の非ポリマー型シランカップリング剤)2g(PEDOT−PSS固形分100質量部に対して167質量部)に変更した以外は実施例1と同様にして導電性高分子分散液Hを得た。導電性高分子分散液Aの代わりに導電性高分子分散液Hを用いたこと以外は実施例1と同様にし、導電性塗膜を形成して導電性シートを得た。そして、実施例1と同様に耐光性を評価した。
(Comparative Example 7)
Silane coupling agent is KBE 5103 (3-acryloxypropyltrimethoxysilane, acrylic non-polymer type silane coupling agent) manufactured by Shin-Etsu Chemical Co., Ltd. 2 g (167 parts by mass with respect to 100 parts by mass of PEDOT-PSS solid content) A conductive polymer dispersion H was obtained in the same manner as in Example 1 except for the change. A conductive sheet was obtained by forming a conductive coating film in the same manner as in Example 1 except that the conductive polymer dispersion H was used instead of the conductive polymer dispersion A. Then, the light resistance was evaluated in the same manner as in Example 1.

Figure 0006222836
Figure 0006222836

Figure 0006222836
Figure 0006222836

ポリマー型多官能シランカップリング剤を含む導電性高分子分散液から形成した実施例1〜5の導電性塗膜は、紫外光照射後における表面抵抗の上昇が小さく、耐光性に優れていた。
シランカップリング剤を含まない導電性高分子分散液から形成した比較例1の導電性塗膜は、紫外光照射後における表面抵抗の上昇が大きく、耐光性が低かった。
ポリマー型多官能シランカップリング剤を含まない代わりに非ポリマー型シランカップリング剤を含む導電性高分子分散液から形成した比較例2〜7の導電性塗膜は、紫外光照射後における表面抵抗の上昇が大きく、耐光性が低かった。
The conductive coating films of Examples 1 to 5 formed from a conductive polymer dispersion containing a polymer-type polyfunctional silane coupling agent had a small increase in surface resistance after irradiation with ultraviolet light and were excellent in light resistance.
The conductive coating film of Comparative Example 1 formed from a conductive polymer dispersion containing no silane coupling agent had a large increase in surface resistance after irradiation with ultraviolet light and low light resistance.
The conductive coating films of Comparative Examples 2 to 7 formed from a conductive polymer dispersion containing a non-polymer type silane coupling agent instead of no polymer type polyfunctional silane coupling agent had a surface resistance after ultraviolet light irradiation. The rise of the light was large and the light resistance was low.

Claims (2)

π共役系導電性高分子と、ポリアニオンと、シランカップリング剤と、分散媒とを含有し、前記シランカップリング剤は、アルコキシシリル基と2つ以上のエポキシ基とを有し、質量平均分子量が200〜10000であり、
前記シランカップリング剤の含有量が、π共役系導電性高分子及びポリアニオンの合計質量を100質量部とした際に、50〜1000質量部である、導電性高分子分散液。
a π-conjugated conductive polymer, a polyanion, a silane-coupling agent, contains a dispersion medium, wherein the silane coupling agent has an alkoxysilyl group and two or more epoxy groups, weight average The molecular weight is 200-10000,
The conductive polymer dispersion, wherein the content of the silane coupling agent is 50 to 1000 parts by mass when the total mass of the π-conjugated conductive polymer and the polyanion is 100 parts by mass .
請求項1に記載の導電性高分子分散液が塗布されて形成されたことを特徴とする導電性塗膜。 A conductive coating film formed by applying the conductive polymer dispersion according to claim 1 .
JP2014030608A 2014-02-20 2014-02-20 Conductive polymer dispersion and conductive coating film Active JP6222836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030608A JP6222836B2 (en) 2014-02-20 2014-02-20 Conductive polymer dispersion and conductive coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030608A JP6222836B2 (en) 2014-02-20 2014-02-20 Conductive polymer dispersion and conductive coating film

Publications (2)

Publication Number Publication Date
JP2015155501A JP2015155501A (en) 2015-08-27
JP6222836B2 true JP6222836B2 (en) 2017-11-01

Family

ID=54774997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030608A Active JP6222836B2 (en) 2014-02-20 2014-02-20 Conductive polymer dispersion and conductive coating film

Country Status (1)

Country Link
JP (1) JP6222836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7708541B2 (en) * 2020-11-18 2025-07-15 理想テクノロジーズ株式会社 Inkjet head and inkjet printer
JP7550658B2 (en) 2021-01-13 2024-09-13 信越ポリマー株式会社 Conductive polymer-containing liquid and method for producing same, and conductive laminate and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916740B2 (en) * 2006-03-16 2012-04-18 信越ポリマー株式会社 Conductive coating
WO2009019855A1 (en) * 2007-08-06 2009-02-12 Nisshin Steel Co., Ltd. Aqueous emulsion coating material and coated steel sheet using the same
US20120015179A1 (en) * 2008-10-30 2012-01-19 Essilor International (Compagnie Generale D'optique Conductive Polymer-Based Curable Coating Composition Providing Coated Articles with Enhanced Antistatic Properties
US20110248223A1 (en) * 2008-12-31 2011-10-13 Essilor International (Compagnie Generale D'optique) Additives for Enhancing the Antistatic Properties of Conductive Polymer-Based Coatings

Also Published As

Publication number Publication date
JP2015155501A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6148988B2 (en) Conductive polymer dispersion and conductive coating film
JP6163401B2 (en) Antistatic release agent, antistatic release coating film and antistatic release substrate
EP1857504B1 (en) Electroconductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, electroconductive coating film, antistatic pressure-sensitive adhesive, antistatic pressure-sensitive adhesive layer, protective material, and process for producing the same
JP6452265B2 (en) Conductive polymer dispersion and conductive coating film
JP6358758B2 (en) Conductive polymer dispersion and conductive coating film
JP2008300063A (en) Conductive ink, transparent conductive layer, input device, and display device
JP2017125094A (en) Conductive polymer dispersion liquid and method for producing the same, and method for producing conductive film
JP6548329B2 (en) Alcohol-containing conductive polymer dispersion liquid and method for producing conductive film
JP2019137815A (en) Method of producing conductive polymer dispersion, and method of producing conductive film
JP4916740B2 (en) Conductive coating
JP6222836B2 (en) Conductive polymer dispersion and conductive coating film
JP6562548B2 (en) Conductive polymer dispersion and conductive film
JP6590692B2 (en) Method for producing conductive polymer dispersion and method for producing conductive film
JP5456072B2 (en) Conductive coating
JP5919095B2 (en) Conductive polymer paint and conductive coating film
JP7269816B2 (en) Conductive release film and manufacturing method thereof
JP6504706B2 (en) Method for producing conductive polymer organic solvent dispersion
JP2008031204A (en) Electroconductive polymer solution and electroconductive coated film
JP6611317B2 (en) Conductive polymer dispersion and method for producing the same, conductive film and method for producing the same
JP2017157530A (en) Conductive film and method of producing the same
JP6465485B2 (en) Method for producing conductive solid, method for producing conductive polymer organic solvent dispersion, and method for producing antistatic film
JP4881806B2 (en) Wiring sheet manufacturing method
JP2009256545A (en) Electroconductive polymer solution and electroconductive coating film
JP2017125096A (en) Method for producing conductive polymer dispersion liquid and method for producing conductive film
JP7325280B2 (en) Conductive film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6222836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250