JP6222239B2 - Resin composition, electrode, lead-acid battery, and production method thereof - Google Patents
Resin composition, electrode, lead-acid battery, and production method thereof Download PDFInfo
- Publication number
- JP6222239B2 JP6222239B2 JP2015544945A JP2015544945A JP6222239B2 JP 6222239 B2 JP6222239 B2 JP 6222239B2 JP 2015544945 A JP2015544945 A JP 2015544945A JP 2015544945 A JP2015544945 A JP 2015544945A JP 6222239 B2 JP6222239 B2 JP 6222239B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- component
- electrode
- resin
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 45
- 239000002253 acid Substances 0.000 title claims description 27
- 239000011347 resin Substances 0.000 claims description 73
- 229920005989 resin Polymers 0.000 claims description 73
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 71
- 229930185605 Bisphenol Natural products 0.000 claims description 51
- 238000006243 chemical reaction Methods 0.000 claims description 38
- ZAJAQTYSTDTMCU-UHFFFAOYSA-N 3-aminobenzenesulfonic acid Chemical compound NC1=CC=CC(S(O)(=O)=O)=C1 ZAJAQTYSTDTMCU-UHFFFAOYSA-N 0.000 claims description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- -1 bisphenol compound Chemical class 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 13
- ZMCHBSMFKQYNKA-UHFFFAOYSA-N 2-aminobenzenesulfonic acid Chemical class NC1=CC=CC=C1S(O)(=O)=O ZMCHBSMFKQYNKA-UHFFFAOYSA-N 0.000 claims description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 62
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 34
- 238000003860 storage Methods 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 17
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000002003 electrode paste Substances 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 229910052783 alkali metal Inorganic materials 0.000 description 11
- 150000001340 alkali metals Chemical class 0.000 description 10
- 230000005484 gravity Effects 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 150000007514 bases Chemical class 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 8
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000007600 charging Methods 0.000 description 6
- 230000001351 cycling effect Effects 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229950000244 sulfanilic acid Drugs 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 3
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 3
- SPSPIUSUWPLVKD-UHFFFAOYSA-N 2,3-dibutyl-6-methylphenol Chemical compound CCCCC1=CC=C(C)C(O)=C1CCCC SPSPIUSUWPLVKD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 239000012482 calibration solution Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 2
- 239000002142 lead-calcium alloy Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000001139 pH measurement Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000019635 sulfation Effects 0.000 description 2
- 238000005670 sulfation reaction Methods 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- AHAFWLDHQAFWFO-UHFFFAOYSA-N 3-(ethylamino)-4-methylbenzenesulfonic acid Chemical compound CCNC1=CC(S(O)(=O)=O)=CC=C1C AHAFWLDHQAFWFO-UHFFFAOYSA-N 0.000 description 1
- HGMGPNYETDBNFG-UHFFFAOYSA-N 4-(ethylamino)benzenesulfonic acid Chemical compound CCNC1=CC=C(S(O)(=O)=O)C=C1 HGMGPNYETDBNFG-UHFFFAOYSA-N 0.000 description 1
- QRAXZXPSAGQUNP-UHFFFAOYSA-N 4-(methylamino)benzenesulfonic acid Chemical group CNC1=CC=C(S(O)(=O)=O)C=C1 QRAXZXPSAGQUNP-UHFFFAOYSA-N 0.000 description 1
- BATCUENAARTUKW-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)-diphenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 BATCUENAARTUKW-UHFFFAOYSA-N 0.000 description 1
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 1
- WQTCZINVPXJNEL-UHFFFAOYSA-N 4-amino-3-methylbenzenesulfonic acid Chemical compound CC1=CC(S(O)(=O)=O)=CC=C1N WQTCZINVPXJNEL-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- VOWWYDCFAISREI-UHFFFAOYSA-N Bisphenol AP Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=CC=C1 VOWWYDCFAISREI-UHFFFAOYSA-N 0.000 description 1
- HTVITOHKHWFJKO-UHFFFAOYSA-N Bisphenol B Chemical compound C=1C=C(O)C=CC=1C(C)(CC)C1=CC=C(O)C=C1 HTVITOHKHWFJKO-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- WTOUNZMKIMUSBE-UHFFFAOYSA-M potassium 3-aminobenzenesulfonate Chemical compound NC=1C=C(C=CC1)S(=O)(=O)[O-].[K+] WTOUNZMKIMUSBE-UHFFFAOYSA-M 0.000 description 1
- LDZHTQSBXDDUFB-UHFFFAOYSA-M potassium;4-aminobenzenesulfonate Chemical compound [K+].NC1=CC=C(S([O-])(=O)=O)C=C1 LDZHTQSBXDDUFB-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- KYXOYPPMBYKBFL-UHFFFAOYSA-M sodium;2-aminobenzenesulfonate Chemical compound [Na+].NC1=CC=CC=C1S([O-])(=O)=O KYXOYPPMBYKBFL-UHFFFAOYSA-M 0.000 description 1
- GLXWXYTYBIBBLD-UHFFFAOYSA-M sodium;3-aminobenzenesulfonate Chemical compound [Na+].NC1=CC=CC(S([O-])(=O)=O)=C1 GLXWXYTYBIBBLD-UHFFFAOYSA-M 0.000 description 1
- KSVSZLXDULFGDQ-UHFFFAOYSA-M sodium;4-aminobenzenesulfonate Chemical compound [Na+].NC1=CC=C(S([O-])(=O)=O)C=C1 KSVSZLXDULFGDQ-UHFFFAOYSA-M 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Description
本発明は、樹脂組成物、電極、鉛蓄電池及びこれらの製造方法に関する。 The present invention relates to a resin composition, an electrode, a lead storage battery, and a method for producing them.
自動車用鉛蓄電池は、エンジン始動用及び電装品の電力供給用として広汎に用いられている。近年、環境保護及び燃費改善の取り組みとして、車両の一時停止時にはエンジンを止め、発進時に再始動するアイドリング・ストップ・システム(以下、「ISS」という)が実施され始めている。ISSにおいて使用される鉛蓄電池では、頻繁にエンジンの始動及び停止が繰り返されることにより、エンジン始動時の大電流放電回数が増え、電装品の使用と重なり放電負荷が多くなる。 BACKGROUND ART Lead-acid batteries for automobiles are widely used for engine starting and power supply for electrical components. In recent years, an idling stop system (hereinafter referred to as “ISS”) that stops the engine when the vehicle is temporarily stopped and restarts when the vehicle starts is being implemented as an effort to protect the environment and improve fuel efficiency. In the lead storage battery used in ISS, the engine is frequently started and stopped repeatedly, so that the number of large current discharges at the start of the engine increases, and the use of electrical components overlaps with the discharge load.
自動車用鉛蓄電池の充電は、オルタネータによる定電圧充電である。近年、充電中の水分解による電解液の減少を抑制することを目的として、オルタネータ電圧の設定値は低下してきている。また、近年では、このような低い充電電圧を採用することに加えて、発電制御システムと呼ばれる「走行中のオルタネータによる充電を、車両の走行状態及び鉛蓄電池の充電状態に応じて制御することにより、エンジン負荷を低減し、燃費向上及びCO2削減を図る」方式も採用されている。このような方式では、鉛蓄電池の充電が行われにくく、完全充電状態になりにくい。このような使用条件において鉛蓄電池は、充分に充電されず放電過多で使用されることが多くなる。Charging of the lead acid battery for automobiles is constant voltage charging by an alternator. In recent years, the set value of the alternator voltage has been lowered for the purpose of suppressing a decrease in the electrolyte due to water decomposition during charging. Further, in recent years, in addition to adopting such a low charging voltage, a power generation control system called “charging by an alternator during traveling is controlled according to the traveling state of the vehicle and the charged state of the lead storage battery. The system that reduces engine load, improves fuel consumption, and reduces CO 2 is also employed. In such a system, it is difficult to charge the lead storage battery, and it is difficult to achieve a fully charged state. Under such conditions of use, lead-acid batteries are often not fully charged and used due to excessive discharge.
鉛蓄電池の充電が完全に行われず、充電量の低い状態が継続すると、不活性の放電生成物である硫酸鉛が極板に蓄積する現象(サルフェーション)が起こる場合がある。このような状況では、活物質が還元されにくい(充電されにくい)状態であることから、サイクル特性等の電池性能が低下することが知られている。 If the lead storage battery is not fully charged and the state of low charge continues, a phenomenon (sulfation) in which lead sulfate as an inactive discharge product accumulates on the electrode plate may occur. In such a situation, it is known that battery performance such as cycle characteristics deteriorates because the active material is difficult to be reduced (it is difficult to be charged).
また、完全な充電が行われにくい場合には、鉛蓄電池内における極板の上部と下部の間で、電解液である希硫酸の濃淡差が生じる成層化現象が起こる。この場合、極板下部の希硫酸の濃度が高くなりサルフェーションが発生する。そのため、極板下部の反応性が低下し、極板上部だけが集中的に反応するようになる。その結果、活物質間の結びつきが弱くなる等の劣化が進み、極板上部において、活物質を支持する集電体(例えば集電体格子)から活物質が剥離して、サイクル特性等の電池性能が低下する。 Moreover, when it is difficult to perform complete charging, a stratification phenomenon occurs in which a difference in concentration of dilute sulfuric acid, which is an electrolytic solution, occurs between the upper and lower portions of the electrode plate in the lead acid battery. In this case, the concentration of dilute sulfuric acid in the lower part of the electrode plate increases and sulfation occurs. For this reason, the reactivity of the lower part of the electrode plate is reduced, and only the upper part of the electrode plate reacts intensively. As a result, deterioration such as weakening of the connection between the active materials progresses, and the active material peels off from the current collector supporting the active material (for example, current collector grid) at the upper part of the electrode plate, so that the battery having cycle characteristics and the like Performance decreases.
これに対し、サイクル特性等を向上させる手段として、下記特許文献1には、負極活物質と、フェノール類、アミノベンゼンスルホン酸及びホルムアルデヒドの縮合物とを用いて得られる鉛蓄電池用負極に関する技術が開示されている。 On the other hand, as a means for improving cycle characteristics and the like, the following Patent Document 1 discloses a technique relating to a negative electrode for a lead storage battery obtained by using a negative electrode active material and a condensate of phenols, aminobenzenesulfonic acid and formaldehyde. It is disclosed.
ところで、鉛蓄電池に対してはサイクル特性等の電池性能を更に向上させることが求められている。 By the way, for lead-acid batteries, it is required to further improve battery performance such as cycle characteristics.
本発明は、上記事情を鑑みてなされたものであり、鉛蓄電池において優れたサイクル特性を得ることが可能な樹脂組成物及びその製造方法を提供することを目的とする。また、本発明は、前記樹脂組成物を用いて製造される電極及び鉛蓄電池、並びに、これらの製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the resin composition which can acquire the cycling characteristics outstanding in the lead acid battery, and its manufacturing method. Moreover, an object of this invention is to provide the electrode and lead acid battery which are manufactured using the said resin composition, and these manufacturing methods.
本発明者らの鋭意検討の結果、上記特許文献1に記載の鉛蓄電池用負極を用いた場合に充分なサイクル特性が得られないことが明らかとなった。これに対し、本発明者らは、ビスフェノール系化合物と、アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種とを反応させて得られる樹脂を含むと共にアルコールの含有量が0.5質量%以下である樹脂組成物を用いることにより上記課題を解決し得ることを見出した。 As a result of intensive studies by the present inventors, it has become clear that sufficient cycle characteristics cannot be obtained when the lead-acid battery negative electrode described in Patent Document 1 is used. On the other hand, the present inventors reacted a bisphenol compound with at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives and at least one selected from the group consisting of formaldehyde and formaldehyde derivatives. It has been found that the above-described problems can be solved by using a resin composition that contains a resin obtained by using the resin composition and has an alcohol content of 0.5% by mass or less.
すなわち、本発明に係る樹脂組成物は、(a)ビスフェノール系化合物と、(b)アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種と、(c)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、を反応させて得られる樹脂を含み、アルコールの含有量が0.5質量%以下である。 That is, the resin composition according to the present invention comprises (a) a bisphenol compound, (b) at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and (c) formaldehyde and formaldehyde derivatives. A resin obtained by reacting at least one selected from the group consisting of the above and the alcohol content is 0.5% by mass or less.
本発明に係る樹脂組成物によれば、鉛蓄電池において優れたサイクル特性を得ることができる。また、本発明に係る樹脂組成物によれば、優れた充電受け入れ性、放電特性及びサイクル特性等の電池性能を両立することができる。 According to the resin composition according to the present invention, excellent cycle characteristics can be obtained in a lead storage battery. Moreover, according to the resin composition which concerns on this invention, battery performance, such as the outstanding charge acceptance property, discharge characteristic, and cycling characteristics, can be made compatible.
上記のとおり優れたサイクル特性が得られる要因については、アルコールの含有量が低い前記樹脂組成物を用いて得られる鉛蓄電池においては、鉛蓄電池の電極反応において生成する反応物が粗大化することが抑制されることにより電極の比表面積が高く保持されるためであると推測される。但し、要因はこれに限定されるものではない。 As described above, in the lead storage battery obtained using the resin composition having a low alcohol content, the reaction product generated in the electrode reaction of the lead storage battery may be coarsened. It is presumed that the specific surface area of the electrode is kept high by being suppressed. However, the factor is not limited to this.
前記樹脂の重量平均分子量は、30000〜70000であることが好ましい。この場合、更に優れたサイクル特性を得ることができる。 The resin preferably has a weight average molecular weight of 30,000 to 70,000. In this case, further excellent cycle characteristics can be obtained.
本発明に係る樹脂組成物において、未反応の(b)成分の含有量は、6質量%以下であることが好ましい。この場合、更に優れたサイクル特性を得ることができる。 In the resin composition according to the present invention, the content of the unreacted component (b) is preferably 6% by mass or less. In this case, further excellent cycle characteristics can be obtained.
本発明に係る樹脂組成物の不揮発分含量は、10〜50質量%であることが好ましい。この場合、前記樹脂の溶解性に優れ、更に優れた電池性能を得ることができる。 The nonvolatile content of the resin composition according to the present invention is preferably 10 to 50% by mass. In this case, the solubility of the resin is excellent, and further excellent battery performance can be obtained.
本発明に係る電極は、本発明に係る樹脂組成物を用いて製造されたものである。本発明に係る鉛蓄電池は、本発明に係る電極を備えている。これらにおいても、優れたサイクル特性を得ることができる。 The electrode according to the present invention is manufactured using the resin composition according to the present invention. The lead acid battery according to the present invention includes the electrode according to the present invention. Even in these, excellent cycle characteristics can be obtained.
本発明に係る樹脂組成物の製造方法は、(a)ビスフェノール系化合物と、(b)アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種と、(c)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、を反応させて樹脂を得る工程を備え、前記樹脂を含む樹脂組成物におけるアルコールの含有量が0.5質量%以下である。 The method for producing a resin composition according to the present invention comprises (a) a bisphenol compound, (b) at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and (c) formaldehyde and formaldehyde derivatives. A process of obtaining a resin by reacting at least one selected from the group consisting of: wherein the alcohol content in the resin composition containing the resin is 0.5% by mass or less.
本発明に係る樹脂組成物の製造方法によれば、鉛蓄電池において優れたサイクル特性を得ることができる。また、本発明に係る樹脂組成物の製造方法によれば、優れた充電受け入れ性、放電特性及びサイクル特性等の電池性能を両立することができる。 According to the method for producing a resin composition according to the present invention, excellent cycle characteristics can be obtained in a lead storage battery. Moreover, according to the manufacturing method of the resin composition which concerns on this invention, battery performance, such as the outstanding charge acceptance property, discharge characteristic, and cycling characteristics, can be made compatible.
本発明に係る樹脂組成物の製造方法は、(b)成分の配合量が(a)成分1.00モルに対して0.50〜1.30モルであり、(c)成分の配合量が(a)成分1.00モルに対してホルムアルデヒド換算で2.00〜3.50モルである態様が好ましい。この場合、更に優れたサイクル特性を得ることができる。 In the method for producing a resin composition according to the present invention, the amount of component (b) is 0.50 to 1.30 mol with respect to 1.00 mol of component (a), and the amount of component (c) is (A) The aspect which is 2.00-3.50 mol in conversion of formaldehyde with respect to 1.00 mol of components is preferable. In this case, further excellent cycle characteristics can be obtained.
本発明に係る電極の製造方法は、本発明に係る樹脂組成物の製造方法により得られた樹脂組成物を用いて電極を製造する工程を備える。本発明に係る鉛蓄電池の製造方法は、本発明に係る電極の製造方法により電極を得る工程を備える。これらにおいても、優れたサイクル特性を得ることができる。 The manufacturing method of the electrode which concerns on this invention is equipped with the process of manufacturing an electrode using the resin composition obtained by the manufacturing method of the resin composition which concerns on this invention. The manufacturing method of the lead acid battery which concerns on this invention comprises the process of obtaining an electrode with the manufacturing method of the electrode which concerns on this invention. Even in these, excellent cycle characteristics can be obtained.
本発明によれば、鉛蓄電池において優れたサイクル特性を得ることができる。また、本発明によれば、優れた充電受け入れ性、放電特性及びサイクル特性等の電池性能を両立することができる。本発明によれば、鉛蓄電池への樹脂組成物の応用を提供できる。 According to the present invention, excellent cycle characteristics can be obtained in a lead storage battery. Further, according to the present invention, it is possible to achieve both battery performance such as excellent charge acceptability, discharge characteristics, and cycle characteristics. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition to a lead acid battery can be provided.
特に、本発明によれば、前記樹脂組成物を用いて製造される負極を有する鉛蓄電池において優れた特性を得ることができる。本発明によれば、鉛蓄電池の負極への樹脂組成物の応用を提供できる。 In particular, according to the present invention, excellent characteristics can be obtained in a lead-acid battery having a negative electrode produced using the resin composition. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition to the negative electrode of lead acid battery can be provided.
本発明によれば、自動車における鉛蓄電池への樹脂組成物の応用を提供できる。また、本発明によれば、充電容量の低下が極めて少ないことから、過酷な環境で使用されるISS車両用途として充分満足し得る鉛蓄電池を提供することができる。本発明によれば、ISS車両における鉛蓄電池への樹脂組成物の応用を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition to the lead storage battery in a motor vehicle can be provided. In addition, according to the present invention, since the decrease in charge capacity is extremely small, it is possible to provide a lead storage battery that can be sufficiently satisfied as an ISS vehicle application used in a harsh environment. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition to the lead acid battery in an ISS vehicle can be provided.
以下、本発明の実施形態について詳細に説明する。なお、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. .
<樹脂組成物及びその製造方法>
本実施形態に係る樹脂組成物は、(a)ビスフェノール系化合物(以下、場合により「(a)成分」という)と、(b)アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種(以下、場合により「(b)成分」という)と、(c)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種(以下、場合により「(c)成分」という)と、を反応させて得られる樹脂(以下、「ビスフェノール系樹脂」という)を含み、当該樹脂組成物においてアルコールの含有量は0.5質量%以下である。本実施形態によれば、(a)成分、(b)成分及び(c)成分を反応させて得られるビスフェノール系樹脂が提供され、本実施形態に係るビスフェノール系樹脂は、(a)成分、(b)成分及び(c)成分が反応して得られる構造を有する。本実施形態に係る樹脂組成物は、例えば25℃において液状の樹脂溶液である。以下、樹脂組成物の構成成分等について説明する。<Resin composition and production method thereof>
The resin composition according to this embodiment is selected from the group consisting of (a) a bisphenol-based compound (hereinafter sometimes referred to as “(a) component”) and (b) aminobenzenesulfonic acid and an aminobenzenesulfonic acid derivative. At least one (hereinafter referred to as “component (b)” in some cases) and (c) at least one selected from the group consisting of formaldehyde and formaldehyde derivatives (hereinafter referred to as “component (c)” in some cases) are reacted. Resin (hereinafter referred to as “bisphenol-based resin”), and the content of alcohol in the resin composition is 0.5% by mass or less. According to this embodiment, a bisphenol-based resin obtained by reacting the component (a), the component (b) and the component (c) is provided, and the bisphenol-based resin according to this embodiment includes the component (a), the component ( It has a structure obtained by reacting component b) and component (c). The resin composition according to the present embodiment is a liquid resin solution at 25 ° C., for example. Hereinafter, the components of the resin composition will be described.
((a)成分:ビスフェノール系化合物)
ビスフェノール系化合物は、2個のヒドロキシフェニル基を有する化合物である。ビスフェノール系化合物としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)等が挙げられる。(a)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。ビスフェノール系化合物としては、充電受け入れ性に更に優れる観点からはビスフェノールAが好ましく、放電特性に更に優れる観点からはビスフェノールSが好ましい。((A) component: bisphenol compound)
A bisphenol-based compound is a compound having two hydroxyphenyl groups. Examples of the bisphenol compound include 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4-hydroxy Phenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter “ Bisphenol S "). (A) A component can be used individually by 1 type or in combination of 2 or more types. As the bisphenol compound, bisphenol A is preferable from the viewpoint of further excellent charge acceptability, and bisphenol S is preferable from the viewpoint of further excellent discharge characteristics.
ビスフェノール系化合物としては、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、ビスフェノールAとビスフェノールSとを併用することが好ましい。この場合、ビスフェノール系樹脂を得るためのビスフェノールAの配合量は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、70モル%以上が好ましく、75モル%以上がより好ましく、80モル%以上が更に好ましい。ビスフェノールAの配合量は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、99モル%以下が好ましく、98モル%以下がより好ましく、97モル%以下が更に好ましい。 As the bisphenol compound, it is preferable to use bisphenol A and bisphenol S in combination from the viewpoint of improving charge acceptability, discharge characteristics, and cycle characteristics in a well-balanced manner. In this case, the blending amount of bisphenol A for obtaining a bisphenol-based resin is 70 mol% or more based on the total amount of bisphenol A and bisphenol S, from the viewpoint of improving charge acceptance, discharging characteristics, and cycle characteristics in a balanced manner. Is more preferable, 75 mol% or more is more preferable, and 80 mol% or more is still more preferable. The blending amount of bisphenol A is preferably 99 mol% or less, more preferably 98 mol% or less, based on the total amount of bisphenol A and bisphenol S, from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner. 97 mol% or less is more preferable.
((b)成分:アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体)
アミノベンゼンスルホン酸としては、2−アミノベンゼンスルホン酸(別名オルタニル酸)、3−アミノベンゼンスルホン酸(別名メタニル酸)、4−アミノベンゼンスルホン酸(別名スルファニル酸)等が挙げられる。((B) component: aminobenzenesulfonic acid and aminobenzenesulfonic acid derivative)
Examples of the aminobenzene sulfonic acid include 2-aminobenzene sulfonic acid (also known as alternilic acid), 3-aminobenzene sulfonic acid (also known as metanylic acid), and 4-aminobenzene sulfonic acid (also known as sulfanilic acid).
アミノベンゼンスルホン酸誘導体としては、アミノベンゼンスルホン酸の一部の水素原子がアルキル基(例えば炭素数1〜5のアルキル基)等で置換された化合物、アミノベンゼンスルホン酸のスルホ基(−SO3H)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換された化合物などが挙げられる。アミノベンゼンスルホン酸の一部の水素原子がアルキル基で置換された化合物としては、4−(メチルアミノ)ベンゼンスルホン酸、3−メチル−4−アミノベンゼンスルホン酸、3−アミノ−4−メチルベンゼンスルホン酸、4−(エチルアミノ)ベンゼンスルホン酸、3−(エチルアミノ)−4−メチルベンゼンスルホン酸等が挙げられる。アミノベンゼンスルホン酸のスルホ基の水素原子がアルカリ金属で置換された化合物としては、2−アミノベンゼンスルホン酸ナトリウム、3−アミノベンゼンスルホン酸ナトリウム、4−アミノベンゼンスルホン酸ナトリウム、2−アミノベンゼンスルホン酸カリウム、3−アミノベンゼンスルホン酸カリウム、4−アミノベンゼンスルホン酸カリウム等が挙げられる。As the aminobenzenesulfonic acid derivative, a compound in which a part of hydrogen atoms of aminobenzenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms), a sulfo group of aminobenzenesulfonic acid (—SO 3). And compounds in which the hydrogen atom of H) is substituted with an alkali metal (for example, sodium and potassium). Examples of the compounds in which some of the hydrogen atoms of aminobenzenesulfonic acid are substituted with alkyl groups include 4- (methylamino) benzenesulfonic acid, 3-methyl-4-aminobenzenesulfonic acid, and 3-amino-4-methylbenzene. Examples include sulfonic acid, 4- (ethylamino) benzenesulfonic acid, and 3- (ethylamino) -4-methylbenzenesulfonic acid. Examples of the compound in which the hydrogen atom of the sulfo group of aminobenzenesulfonic acid is substituted with an alkali metal include sodium 2-aminobenzenesulfonate, sodium 3-aminobenzenesulfonate, sodium 4-aminobenzenesulfonate, 2-aminobenzenesulfone. Examples include potassium acid, potassium 3-aminobenzenesulfonate, and potassium 4-aminobenzenesulfonate.
(b)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(b)成分としては、充電受け入れ性及びサイクル特性が更に向上する観点から、4−アミノベンゼンスルホン酸が好ましい。 (B) A component can be used individually by 1 type or in combination of 2 or more types. As the component (b), 4-aminobenzenesulfonic acid is preferable from the viewpoint of further improving charge acceptability and cycle characteristics.
ビスフェノール系樹脂を得るための(b)成分の配合量は、放電特性が更に向上する観点から、(a)成分1.00モルに対して、0.50モル以上が好ましく、0.60モル以上がより好ましく、0.80モル以上が更に好ましく、0.90モル以上が特に好ましい。(b)成分の配合量は、放電特性及びサイクル特性が更に向上しやすくなる観点から、(a)成分1.00モルに対して、1.30モル以下が好ましく、1.20モル以下がより好ましく、1.10モル以下が更に好ましい。 The blending amount of the component (b) for obtaining the bisphenol-based resin is preferably 0.50 mol or more and 0.60 mol or more with respect to 1.00 mol of the component (a) from the viewpoint of further improving the discharge characteristics. Is more preferably 0.80 mol or more, particularly preferably 0.90 mol or more. The blending amount of the component (b) is preferably 1.30 mol or less, more preferably 1.20 mol or less with respect to 1.00 mol of the component (a), from the viewpoint that the discharge characteristics and the cycle characteristics are further improved. The amount is preferably 1.10 mol or less.
((c)成分:ホルムアルデヒド及びホルムアルデヒド誘導体)
ホルムアルデヒドとしては、ホルマリン(例えばホルムアルデヒド37質量%の水溶液)中のホルムアルデヒドを用いてもよい。前記ホルマリンは、重合を防ぐために10〜15質量%のメタノールを含有することが一般的である。このようなホルマリンを用いて得られたビスフェノール系樹脂を含む樹脂組成物のアルコール量が0.5質量%を超える場合には、サイクル特性が低下する。((C) component: formaldehyde and formaldehyde derivatives)
As formaldehyde, formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used. In order to prevent polymerization, the formalin generally contains 10 to 15% by mass of methanol. When the alcohol content of the resin composition containing the bisphenol-based resin obtained using such formalin exceeds 0.5% by mass, the cycle characteristics are deteriorated.
ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。(c)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。ホルムアルデヒドとホルムアルデヒド誘導体とを併用してもよい。(c)成分としては、優れたサイクル特性が得られやすくなる観点から、ホルムアルデヒド誘導体が好ましく、パラホルムアルデヒドがより好ましい。パラホルムアルデヒドは、例えば下記のような構造を有する。
HO(CH2O)n1H …(I)
[式(I)中、n1は2〜100の整数を示す。]Examples of formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane. (C) A component can be used individually by 1 type or in combination of 2 or more types. You may use formaldehyde and a formaldehyde derivative together. As the component (c), a formaldehyde derivative is preferable and paraformaldehyde is more preferable from the viewpoint that excellent cycle characteristics are easily obtained. For example, paraformaldehyde has the following structure.
HO (CH 2 O) n1 H (I)
[In Formula (I), n1 shows the integer of 2-100. ]
ビスフェノール系樹脂を得るための(c)成分のホルムアルデヒド換算の配合量は、(b)成分の反応性を向上できる観点から、(a)成分1.00モルに対して、2.00モル以上が好ましく、2.20モル以上がより好ましく、2.40モル以上が更に好ましい。(c)成分のホルムアルデヒド換算の配合量は、得られるビスフェノール系樹脂の溶媒への溶解性に優れる観点から、(a)成分1.00モルに対して、3.50モル以下が好ましく、3.20モル以下がより好ましく、3.00モル以下が更に好ましい。 From the viewpoint of improving the reactivity of the component (b), the amount of the component (c) for obtaining the bisphenol-based resin is 2.00 mol or more with respect to 1.00 mol of the component (a). The amount is preferably 2.20 mol or more, more preferably 2.40 mol or more. The amount of the component (c) in terms of formaldehyde is preferably 3.50 mol or less with respect to 1.00 mol of the component (a), from the viewpoint of excellent solubility of the resulting bisphenol-based resin in a solvent. 20 mol or less is more preferable, and 3.00 mol or less is still more preferable.
(溶媒)
本実施形態に係る樹脂組成物は、溶媒を更に含んでいてもよい。溶媒としては、水(例えばイオン交換水)、有機溶媒等が挙げられる。樹脂組成物に含まれる溶媒は、ビスフェノール系樹脂を得るために用いた反応溶媒であってもよい。(solvent)
The resin composition according to this embodiment may further contain a solvent. Examples of the solvent include water (for example, ion exchange water), an organic solvent, and the like. The solvent contained in the resin composition may be a reaction solvent used for obtaining a bisphenol-based resin.
本実施形態に係る樹脂組成物は、ビスフェノール系樹脂以外の天然樹脂又は合成樹脂を更に含有していてもよい。 The resin composition according to the present embodiment may further contain a natural resin or a synthetic resin other than the bisphenol-based resin.
ビスフェノール系樹脂は、例えば、下記式(II−a)で表される構造単位、及び、下記式(III−a)で表される構造単位の少なくとも一方を有することが好ましい。
式(II−a)で表される構造単位、及び、式(III−a)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(II−a)で表される構造単位、及び、式(III−a)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。 The ratio of the structural unit represented by the formula (II-a) and the structural unit represented by the formula (III-a) is not particularly limited, and may vary depending on synthesis conditions and the like. As the bisphenol-based resin, a resin having only one of the structural unit represented by the formula (II-a) and the structural unit represented by the formula (III-a) may be used.
ビスフェノール系樹脂は、例えば、下記式(II−b)で表される構造単位、及び、下記式(III−b)で表される構造単位の少なくとも一方を有することがより好ましい。 The bisphenol-based resin preferably has, for example, at least one of a structural unit represented by the following formula (II-b) and a structural unit represented by the following formula (III-b).
式(II−b)で表される構造単位、及び、式(III−b)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(II−b)で表される構造単位、及び、式(III−b)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。 The ratio of the structural unit represented by the formula (II-b) and the structural unit represented by the formula (III-b) is not particularly limited, and may vary depending on synthesis conditions and the like. As the bisphenol-based resin, a resin having only one of the structural unit represented by the formula (II-b) and the structural unit represented by the formula (III-b) may be used.
式(II−a)、式(II−b)、式(III−a)及び式(III−b)について更に説明する。前記X2及びX3としては、アルキリデン基(メチリデン基、エチリデン基、イソプロピリデン基、sec−ブチリデン基等)、シクロアルキリデン基(シクロヘキシリデン基等)、フェニルアルキリデン基(ジフェニルメチリデン基、フェニルエチリデン基等)などの有機基;スルホニル基などが挙げられ、充電受け入れ性に更に優れる観点からはイソプロピリデン基(−C(CH3)2−)基が好ましく、放電特性に更に優れる観点からはスルホニル基(−SO2−)が好ましい。前記X2及びX3はフッ素原子等のハロゲン原子により置換されていてもよい。前記X2及びX3がシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。R21、R23、R24、R31、R33及びR34のアルカリ金属としては、ナトリウム、カリウム等が挙げられる。n2及びn3は、サイクル特性及び溶媒への溶解性に更に優れる観点から、1〜150が好ましく、10〜150がより好ましい。n21及びn31は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上しやすい観点から、1又は2が好ましく、1がより好ましい。n22及びn32は、製造条件により変化するが、サイクル特性及び保存安定性に更に優れる観点から、0が好ましい。Formula (II-a), formula (II-b), formula (III-a) and formula (III-b) will be further described. Examples of X 2 and X 3 include alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group, phenyl). An organic group such as an ethylidene group); a sulfonyl group, and the like. From the viewpoint of further excellent charge acceptance, an isopropylidene group (—C (CH 3 ) 2 —) group is preferable, and from the viewpoint of further excellent discharge characteristics. A sulfonyl group (—SO 2 —) is preferred. X 2 and X 3 may be substituted with a halogen atom such as a fluorine atom. When X 2 and X 3 are cycloalkylidene groups, the hydrocarbon ring may be substituted with an alkyl group or the like. Examples of the alkali metal for R 21 , R 23 , R 24 , R 31 , R 33 and R 34 include sodium and potassium. n2 and n3 are preferably 1 to 150, and more preferably 10 to 150, from the viewpoint of further excellent cycle characteristics and solubility in a solvent. n21 and n31 are preferably 1 or 2, and more preferably 1, from the viewpoint of easy improvement in charge acceptance, discharge characteristics, and cycle characteristics. n22 and n32 vary depending on the production conditions, but 0 is preferable from the viewpoint of further excellent cycle characteristics and storage stability.
本実施形態に係る樹脂組成物におけるビスフェノール系樹脂の含有量は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、樹脂組成物における不揮発分の全質量を基準として、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。 The content of the bisphenol-based resin in the resin composition according to the present embodiment is 80% by mass on the basis of the total mass of nonvolatile components in the resin composition from the viewpoint of improving charge acceptability, discharge characteristics, and cycle characteristics in a balanced manner. The above is preferable, 90 mass% or more is more preferable, and 95 mass% or more is still more preferable.
ビスフェノール系樹脂の重量平均分子量は、鉛蓄電池において電極からビスフェノール系樹脂が電解液に溶出することを抑制することによりサイクル特性が向上しやすくなる観点から、30000以上が好ましく、35000以上がより好ましく、40000以上が更に好ましく、50000以上が特に好ましい。ビスフェノール系樹脂の重量平均分子量は、電極活物質に対する吸着性が低下して分散性が低下することを抑制することによりサイクル特性が向上しやすくなる観点から、70000以下が好ましく、65000以下がより好ましく、62000以下が更に好ましい。 The weight average molecular weight of the bisphenol-based resin is preferably 30000 or more, more preferably 35000 or more, from the viewpoint that the cycle characteristics are easily improved by suppressing the bisphenol-based resin from eluting from the electrode to the electrolyte in the lead storage battery. 40,000 or more is more preferable, and 50000 or more is particularly preferable. The weight average molecular weight of the bisphenol-based resin is preferably 70000 or less, more preferably 65000 or less from the viewpoint that the cycle characteristics are easily improved by suppressing the adsorptivity to the electrode active material and the dispersibility. 62,000 or less is more preferable.
ビスフェノール系樹脂の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。
(GPC条件)
装置:高速液体クロマトグラフ LC−2200 Plus(日本分光株式会社製)
ポンプ:PU−2080
示差屈折率計:RI−2031
検出器:紫外可視吸光光度計UV−2075(λ:254nm)
カラムオーブン:CO−2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製)The weight average molecular weight of the bisphenol-based resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
(GPC conditions)
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
本実施形態に係る樹脂組成物におけるアルコールの含有量は、樹脂組成物の全質量を基準として、0.5質量%(5000ppm)以下である。アルコールの含有量は、サイクル特性が更に向上する観点から、0.1質量%(1000ppm)以下がより好ましく、500ppm以下が更に好ましく、150ppm以下が特に好ましい。前記アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、エチレングリコール、グリセリン等の炭素数1〜5の低級アルコールなどが挙げられる。アルコールの含有量は、例えば、アルコールの含有量が少ない材料を用いて樹脂組成物を得ること(例えば、ビスフェノール系樹脂の製造工程により得られる組成物を樹脂組成物として用いる場合、ビスフェノール系樹脂を得るための材料として、アルコールの含有量が少ない材料を用いること)、又は、アルコールを揮発処理することにより低減することができる。 The content of alcohol in the resin composition according to this embodiment is 0.5% by mass (5000 ppm) or less based on the total mass of the resin composition. The content of alcohol is more preferably 0.1% by mass (1000 ppm) or less, further preferably 500 ppm or less, and particularly preferably 150 ppm or less from the viewpoint of further improving cycle characteristics. Examples of the alcohol include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, propanol, isopropyl alcohol, butanol, ethylene glycol, and glycerin. The alcohol content is obtained, for example, by using a material having a low alcohol content to obtain a resin composition (for example, when a composition obtained by a bisphenol resin production process is used as a resin composition, a bisphenol resin is used). It can be reduced by using a material with a low alcohol content) or by volatilizing the alcohol.
本実施形態に係る樹脂組成物における未反応の(b)成分(残存(b)成分)の含有量は、サイクル特性が更に向上する観点から、樹脂組成物の全質量を基準として、6質量%(60000ppm)以下が好ましく、4質量%(40000ppm)以下がより好ましく、2質量%(20000ppm)以下が更に好ましく、1.5質量%(15000ppm)以下が特に好ましい。未反応の(b)成分の含有量は、例えば、(a)成分、(b)成分及び(c)成分の反応時の反応溶液のpHを10.0以下に調整すること、又は、(c)成分の配合量を多くすることにより低減することができる。 The content of the unreacted component (b) (residual component (b)) in the resin composition according to this embodiment is 6% by mass based on the total mass of the resin composition from the viewpoint of further improving cycle characteristics. (60000 ppm) or less is preferable, 4 mass% (40000 ppm) or less is more preferable, 2 mass% (20000 ppm) or less is further preferable, and 1.5 mass% (15000 ppm) or less is particularly preferable. The content of the unreacted component (b) is, for example, adjusting the pH of the reaction solution during the reaction of the components (a), (b) and (c) to 10.0 or lower, or (c ) It can be reduced by increasing the amount of component.
本実施形態に係る樹脂組成物におけるアルコール及び未反応の(b)成分の含有量は、例えば、以下のように測定して算出することができる。アルコールの含有量は、樹脂組成物をガスクロマトグラフ質量分析装置(GC/MS)に注入し、アルコールのピーク面積と、標準サンプル(例えばメタノール)のピーク面積との比から算出することができる。未反応の(b)成分は、GPCの紫外可視吸光光度計における全ピークに対する(b)成分のピークの面積比から求めることができる。 The content of the alcohol and the unreacted component (b) in the resin composition according to the present embodiment can be calculated by, for example, measuring as follows. The alcohol content can be calculated by injecting the resin composition into a gas chromatograph mass spectrometer (GC / MS) and calculating the ratio between the peak area of the alcohol and the peak area of the standard sample (for example, methanol). The unreacted component (b) can be determined from the area ratio of the peak of component (b) to the total peak in the GPC UV-visible spectrophotometer.
本実施形態に係る樹脂組成物における不揮発分含量(Nonvolatile Matter content)は、ビスフェノール系樹脂の溶解性及び電池特性に更に優れる観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましい。同様の観点から、本実施形態に係る樹脂組成物における不揮発分含量は、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下が更に好ましい。 The nonvolatile content in the resin composition according to the present embodiment is preferably 10% by mass or more, more preferably 15% by mass or more, from the viewpoint of further improving the solubility of the bisphenol-based resin and battery characteristics. More preferably, it is more than mass%. From the same viewpoint, the nonvolatile content in the resin composition according to this embodiment is preferably 50% by mass or less, more preferably 45% by mass or less, and further preferably 40% by mass or less.
不揮発分含量の測定は、例えば、下記の手順により測定することができる。まず、所定量(例えば2g)の樹脂組成物を容器(例えばステンレスシャーレ等の金属シャーレ)に入れた後、熱風乾燥機を用いて樹脂組成物を150℃、60分間乾燥させる。次に、容器の温度が室温(例えば25℃)に戻った後、残分質量を測定する。そして、下記の式から不揮発分含量を算出する。
不揮発分含量(質量%)=[(乾燥後の残分質量)/(乾燥前の樹脂組成物の質量)]×100The nonvolatile content can be measured, for example, by the following procedure. First, after putting a predetermined amount (for example, 2 g) of a resin composition into a container (for example, a metal petri dish such as a stainless steel petri dish), the resin composition is dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returns to room temperature (for example, 25 ° C.), the residual mass is measured. Then, the nonvolatile content is calculated from the following formula.
Nonvolatile content (mass%) = [(residual mass after drying) / (mass of resin composition before drying)] × 100
本実施形態に係る樹脂組成物の製造方法は、(a)成分、(b)成分及び(c)成分を反応させてビスフェノール系樹脂を得る樹脂製造工程を備えている。本実施形態に係る樹脂組成物は、樹脂製造工程において得られる組成物であってもよく、樹脂製造工程後にビスフェノール系樹脂と他の成分とを混合して得られる組成物であってもよい。 The manufacturing method of the resin composition which concerns on this embodiment is equipped with the resin manufacturing process which makes (a) component, (b) component, and (c) component react, and obtains a bisphenol-type resin. The resin composition according to the present embodiment may be a composition obtained in the resin production process, or may be a composition obtained by mixing a bisphenol-based resin and other components after the resin production process.
ビスフェノール系樹脂は、例えば、(a)成分、(b)成分及び(c)成分を反応溶媒中で反応させることにより得ることができる。反応溶媒は、水(例えばイオン交換水)であることが好ましい。反応を促進させるために、有機溶媒、触媒、添加剤等を用いてもよい。 The bisphenol-based resin can be obtained, for example, by reacting the component (a), the component (b), and the component (c) in a reaction solvent. The reaction solvent is preferably water (for example, ion exchange water). In order to promote the reaction, an organic solvent, a catalyst, an additive, or the like may be used.
樹脂製造工程は、サイクル特性を更に向上できる観点から、(b)成分の配合量が(a)成分1.00モルに対して0.50〜1.30モルであり、且つ、(c)成分の配合量が(a)成分1.00モルに対してホルムアルデヒド換算で2.00〜3.50モルである態様が好ましい。(b)成分及び(c)成分の好ましい配合量は、(b)成分及び(c)成分の配合量のそれぞれについて上述した範囲である。 In the resin production process, from the viewpoint of further improving cycle characteristics, the blending amount of component (b) is 0.50 to 1.30 mol relative to 1.00 mol of component (a), and component (c) The aspect which is 2.00-3.50 mol in conversion of formaldehyde with respect to 1.00 mol of (a) component is preferable. (B) The preferable compounding quantity of a component and (c) component is the range mentioned above about each of the compounding quantity of (b) component and (c) component.
ビスフェノール系樹脂は、充分量のビスフェノール系樹脂が得られやすい観点から、(a)成分、(b)成分及び(c)成分を塩基性条件(アルカリ性条件)で反応させることにより得ることが好ましい。塩基性条件に調整するためには、塩基性化合物を用いてもよい。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム等が挙げられる。塩基性化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。塩基性化合物の中でも、反応性に優れる観点から、水酸化ナトリウム及び水酸化カリウムが好ましい。 The bisphenol-based resin is preferably obtained by reacting the component (a), the component (b) and the component (c) under basic conditions (alkaline conditions) from the viewpoint that a sufficient amount of bisphenol-based resin can be easily obtained. In order to adjust to basic conditions, you may use a basic compound. Examples of the basic compound include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate and the like. A basic compound can be used individually by 1 type or in combination of 2 or more types. Among the basic compounds, sodium hydroxide and potassium hydroxide are preferable from the viewpoint of excellent reactivity.
反応時の反応溶液が中性(pH=7.0)である場合、ビスフェノール系樹脂の生成反応が進行しにくい場合があり、反応溶液が酸性(pH<7.0)である場合、副反応が進行する場合がある。そのため、反応時の反応溶液のpHは、ビスフェノール系樹脂の生成反応を進行させつつ副反応が進行することを抑制する観点から、アルカリ性である(7.0を超える)ことが好ましく、7.1以上がより好ましく、7.2以上が更に好ましい。反応溶液のpHは、ビスフェノール系樹脂の(b)成分に由来する基の加水分解が進行することを抑制する観点から、12.0以下が好ましく、10.0以下がより好ましく、9.0以下が更に好ましい。反応溶液のpHは、例えば株式会社堀場製作所製のツインpHメーター AS−212で測定することができる。pHは25℃におけるpHと定義する。 When the reaction solution at the time of the reaction is neutral (pH = 7.0), the formation reaction of the bisphenol-based resin may not proceed easily, and when the reaction solution is acidic (pH <7.0), side reaction May progress. Therefore, the pH of the reaction solution at the time of the reaction is preferably alkaline (more than 7.0) from the viewpoint of suppressing the side reaction from proceeding while the formation reaction of the bisphenol-based resin proceeds, and 7.1 The above is more preferable, and 7.2 or more is more preferable. The pH of the reaction solution is preferably 12.0 or less, more preferably 10.0 or less, and 9.0 or less from the viewpoint of suppressing the hydrolysis of the group derived from the component (b) of the bisphenol resin. Is more preferable. The pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
上記のようなpHに調整しやすいことから、強塩基性化合物の配合量は、(b)成分1.00モルに対して、1.01モル以上が好ましく、1.02モル以上がより好ましく、1.03モル以上が更に好ましい。同様の観点から、強塩基性化合物の配合量は、(b)成分1.00モルに対して、1.10モル以下が好ましく、1.08モル以下がより好ましく、1.07モル以下が更に好ましい。強塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。 Since it is easy to adjust the pH as described above, the blending amount of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more, relative to 1.00 mol of the component (b), 1.03 mol or more is still more preferable. From the same viewpoint, the compounding amount of the strongly basic compound is preferably 1.10 mol or less, more preferably 1.08 mol or less, and further 1.07 mol or less with respect to 1.00 mol of component (b). preferable. Examples of the strongly basic compound include sodium hydroxide and potassium hydroxide.
本実施形態では、ビスフェノール系樹脂の製造方法により得られる反応物(反応溶液)をそのまま、後述する電極の製造に用いてもよいし、反応物を乾燥して得られるビスフェノール系樹脂を溶媒(水等)に溶解させて、後述する電極の製造に用いてもよい。 In this embodiment, the reaction product (reaction solution) obtained by the method for producing a bisphenol-based resin may be used as it is for the production of an electrode described later, or the bisphenol-based resin obtained by drying the reaction product is used as a solvent (water Etc.) and may be used for the production of an electrode to be described later.
樹脂組成物のpHは、ビスフェノール系樹脂の溶媒(水等)への溶解性に優れる観点から、アルカリ性である(7.0を超える)ことが好ましく、7.1以上がより好ましい。樹脂組成物のpHは、未反応の(b)成分の含有量を低減できる観点から、10.0以下が好ましく、9.0以下がより好ましく、8.5以下が更に好ましい。特に、樹脂製造工程において得られる組成物を樹脂組成物として用いる場合、樹脂組成物のpHは、上記範囲であることが好ましい。樹脂組成物のpHは、例えば株式会社堀場製作所製のツインpHメーター AS−212で測定することができる。pHは25℃におけるpHと定義する。 The pH of the resin composition is preferably alkaline (greater than 7.0), more preferably 7.1 or more, from the viewpoint of excellent solubility of the bisphenol-based resin in a solvent (such as water). The pH of the resin composition is preferably 10.0 or less, more preferably 9.0 or less, and even more preferably 8.5 or less from the viewpoint of reducing the content of the unreacted component (b). In particular, when the composition obtained in the resin production process is used as a resin composition, the pH of the resin composition is preferably in the above range. The pH of the resin composition can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
ビスフェノール系樹脂の合成反応は、(a)成分、(b)成分及び(c)成分が反応してビスフェノール系樹脂が得られればよく、例えば、(a)成分、(b)成分及び(c)成分を同時に反応させてもよく(a)成分、(b)成分及び(c)成分のうちの2成分を反応させた後に残りの1成分を反応させてもよい。 The synthesis reaction of the bisphenol-based resin is sufficient if the (a) component, the (b) component, and the (c) component react to obtain a bisphenol-based resin. For example, the (a) component, (b) component, and (c) The components may be reacted at the same time, and the remaining one component may be reacted after reacting two of the components (a), (b) and (c).
ビスフェノール系樹脂の合成反応は、次のように二段階で行うことが好ましい。第一段階の反応では、例えば、(b)成分、溶媒(水等)及び塩基性化合物を仕込んだ後に攪拌し、(b)成分におけるスルホ基の水素原子をアルカリ金属等で置換して(b)成分のアルカリ金属塩等を得る。これにより、後述の縮合反応において副反応を抑制しやすくなる。反応系の温度は、(b)成分の溶媒(水等)への溶解性に優れる観点から、0℃以上が好ましく、25℃以上がより好ましい。反応系の温度は、副反応を抑制する観点から、80℃以下が好ましく、70℃以下がより好ましく、65℃以下が更に好ましい。反応時間は、例えば30分である。 The synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows. In the first stage reaction, for example, the component (b), the solvent (water, etc.) and the basic compound are charged and stirred, and the hydrogen atom of the sulfo group in the component (b) is replaced with an alkali metal or the like (b ) An alkali metal salt of the component is obtained. Thereby, it becomes easy to suppress a side reaction in the below-mentioned condensation reaction. The temperature of the reaction system is preferably 0 ° C. or higher, more preferably 25 ° C. or higher, from the viewpoint of excellent solubility of the component (b) in a solvent (such as water). The temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of suppressing side reactions. The reaction time is, for example, 30 minutes.
第二段階の反応では、例えば、第一段階で得られた反応物に(a)成分及び(c)成分を加えて縮合反応させることによりビスフェノール系樹脂を得る。反応系の温度は、(a)成分、(b)成分及び(c)成分の反応性に優れる観点から、75℃以上が好ましく、85℃以上がより好ましく、87℃以上が更に好ましい。反応系の温度は、副反応を抑制する観点から、100℃以下が好ましく、95℃以下がより好ましく、93℃以下が更に好ましい。反応時間は、例えば5〜20時間である。 In the second-stage reaction, for example, the bisphenol-based resin is obtained by adding the components (a) and (c) to the reaction product obtained in the first stage and causing a condensation reaction. The temperature of the reaction system is preferably 75 ° C. or higher, more preferably 85 ° C. or higher, and still more preferably 87 ° C. or higher, from the viewpoint of excellent reactivity of the components (a), (b) and (c). The temperature of the reaction system is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and still more preferably 93 ° C. or lower, from the viewpoint of suppressing side reactions. The reaction time is, for example, 5 to 20 hours.
<電極及び鉛蓄電池並びにこれらの製造方法>
本実施形態に係る電極は、本実施形態に係る樹脂組成物を用いて製造されたものである。本実施形態に係る電極の製造方法は、本実施形態に係る樹脂組成物の製造方法により得られた樹脂組成物を用いて電極を製造する工程を備える。電極は、例えば、電極活物質、電極活物質の原料等を含む電極材と、当該電極材を支持する集電体とを有している。電極は、例えば、鉛蓄電池用の負極(負極板等)である。電極材の構成成分は、後述する電極ペーストから溶媒を除いた固形分、又は、当該固形分を化成処理して得られる成分である。<Electrodes and lead acid batteries and methods for producing them>
The electrode according to the present embodiment is manufactured using the resin composition according to the present embodiment. The manufacturing method of the electrode which concerns on this embodiment is equipped with the process of manufacturing an electrode using the resin composition obtained by the manufacturing method of the resin composition which concerns on this embodiment. The electrode includes, for example, an electrode active material, an electrode material containing a raw material for the electrode active material, and a current collector that supports the electrode material. The electrode is, for example, a negative electrode (a negative electrode plate or the like) for a lead storage battery. The constituent component of the electrode material is a solid content obtained by removing the solvent from the electrode paste described later, or a component obtained by chemical conversion of the solid content.
本実施形態に係る鉛蓄電池は、本実施形態に係る電極を備えている。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。本実施形態に係る鉛蓄電池の製造方法は、例えば、本実施形態に係る電極の製造方法により電極を得る電極製造工程と、電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。 The lead storage battery according to the present embodiment includes the electrode according to the present embodiment. Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable. The method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining an electrode by the electrode manufacturing method according to the present embodiment, and an assembly process for obtaining a lead storage battery by assembling components including the electrode. Yes.
電極製造工程では、例えば、電極ペーストを集電体(例えば集電体格子)に充填した後に、熟成及び乾燥を行うことにより未化成の電極を得る。電極ペーストは、例えば、分散剤として本実施形態に係る樹脂組成物を含有しており、電極活物質の原料及び添加剤等を更に含有している。電極が負極である場合、負極活物質の原料としては、例えば、鉛粉が挙げられる。前記鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの紛体と鱗片状金属鉛の混合物)が挙げられる。 In the electrode manufacturing process, for example, after filling an electrode paste into a current collector (for example, current collector grid), aging and drying are performed to obtain an unformed electrode. The electrode paste contains, for example, the resin composition according to the present embodiment as a dispersant, and further contains a raw material for the electrode active material, an additive, and the like. When the electrode is a negative electrode, examples of the raw material for the negative electrode active material include lead powder. Examples of the lead powder include lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in a ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
添加剤としては、硫酸バリウム、炭素材料、補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)などが挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック等が挙げられる。 Examples of the additive include barium sulfate, a carbon material, and reinforcing short fibers (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, carbon fiber, and the like). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
本実施形態に係る電極が負極である場合、負極ペーストは、例えば、以下の方法により得ることができる。まず、鉛粉に添加剤を添加して混練することにより混合物を得る。次に、この混合物に、溶媒(水等)、及び、本実施形態に係る樹脂組成物を加えて混合する。そして、希硫酸を加えることにより負極ペーストが得られる。 When the electrode according to this embodiment is a negative electrode, the negative electrode paste can be obtained, for example, by the following method. First, an additive is added to lead powder and kneaded to obtain a mixture. Next, a solvent (water or the like) and the resin composition according to the present embodiment are added to the mixture and mixed. And negative electrode paste is obtained by adding dilute sulfuric acid.
負極ペーストにおいて、硫酸バリウムの配合量は、鉛粉の全質量を基準として0.01〜1.0質量%が好ましい。炭素材料の配合量は、鉛粉の全質量を基準として0.2〜1.4質量%が好ましい。本実施形態に係る樹脂組成物の配合量は、鉛粉の全質量を基準として、樹脂固形分換算で、0.01〜2.0質量%が好ましく、0.05〜1.0質量%がより好ましく、0.1〜0.5質量%が更に好ましい。 In the negative electrode paste, the compounding amount of barium sulfate is preferably 0.01 to 1.0% by mass based on the total mass of the lead powder. The blending amount of the carbon material is preferably 0.2 to 1.4% by mass based on the total mass of the lead powder. The compounding amount of the resin composition according to the present embodiment is preferably 0.01 to 2.0% by mass and 0.05 to 1.0% by mass in terms of resin solid content based on the total mass of the lead powder. More preferred is 0.1 to 0.5% by mass.
集電体の材質としては、鉛−カルシウム−錫合金及び鉛−カルシウム合金、並びに、これらに砒素、セレン、銀、ビスマス等を微量添加した鉛−カルシウム−錫系合金及び鉛−カルシウム系合金などが挙げられる。 Current collector materials include lead-calcium-tin alloys and lead-calcium alloys, and lead-calcium-tin alloys and lead-calcium alloys obtained by adding trace amounts of arsenic, selenium, silver, bismuth, etc. Is mentioned.
熟成条件としては、温度35〜85℃、湿度50〜98RH%の雰囲気で15〜60時間が好ましい。乾燥条件は、温度45〜80℃で15〜30時間が好ましい。 The aging conditions are preferably 15 to 60 hours in an atmosphere at a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. The drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
本実施形態に係る電極が負極である場合、鉛蓄電池用の正極(正極板等)は、例えば、下記の方法により得ることができる。まず、正極活物質の原料である鉛粉(PbO)に対して、補強用短繊維を加えた後、水及び希硫酸を加える。これを混練して正極ペーストを作製する。正極ペーストを作製するに際しては、正極活物質の原料として鉛丹(Pb3O4)を加えてもよい。この正極ペーストを集電体(集電体格子等)に充填した後に熟成及び乾燥を行うことにより未化成の正極が得られる。正極ペーストにおいて、補強用短繊維の配合量は、鉛粉の全質量を基準として0.005〜0.3質量%が好ましい。集電体の種類、熟成条件、乾燥条件は、負極の場合とほぼ同様である。When the electrode which concerns on this embodiment is a negative electrode, the positive electrode (positive electrode plate etc.) for lead acid batteries can be obtained by the following method, for example. First, after adding reinforcing short fibers to lead powder (PbO) which is a raw material of the positive electrode active material, water and dilute sulfuric acid are added. This is kneaded to produce a positive electrode paste. In producing the positive electrode paste, red lead (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material. After filling the positive electrode paste into a current collector (current collector grid or the like), aging and drying are performed to obtain an unformed positive electrode. In the positive electrode paste, the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the lead powder. The type of current collector, aging conditions, and drying conditions are almost the same as in the case of the negative electrode.
組み立て工程では、例えば、上記のように作製した負極及び正極を、セパレータを介して積層し、同極性の極板の耳部同士をストラップで連結させて極板群を得る。この極板群を電槽内に配置して未化成電池を作製する。次に、未化成電池に希硫酸を入れて化成処理を行う。続いて、化成後の硫酸の比重(20℃換算)を適切な電解液比重に調整して鉛蓄電池が得られる。化成に用いる硫酸の比重(20℃換算)は1.20〜1.26が好ましい。化成後の調整された硫酸の比重(20℃換算)は1.25〜1.35が好ましい。また、前記化成処理後、希硫酸を一度抜いて、比重(20℃換算)1.25〜1.35の硫酸を入れることにより鉛蓄電池を得ることもできる。前記硫酸には、硫酸塩が含まれていてもよい。 In the assembling process, for example, the negative electrode and the positive electrode manufactured as described above are stacked via a separator, and the electrode plate groups are obtained by connecting the ears of the same polarity electrode plates with a strap. This electrode group is arranged in a battery case to produce an unformed battery. Next, dilute sulfuric acid is added to the non-chemical cell to perform chemical conversion treatment. Subsequently, the lead acid battery is obtained by adjusting the specific gravity (converted to 20 ° C.) of the sulfuric acid after conversion to an appropriate electrolyte specific gravity. As for the specific gravity (20 degreeC conversion) of the sulfuric acid used for chemical conversion, 1.20-1.26 are preferable. As for the specific gravity (20 degreeC conversion) of the adjusted sulfuric acid after chemical conversion, 1.25-1.35 are preferable. Moreover, after the said chemical conversion treatment, a lead acid battery can also be obtained by once extracting dilute sulfuric acid and adding sulfuric acid with specific gravity (20 degreeC conversion) 1.25-1.35. The sulfuric acid may contain a sulfate.
セパレータの材質としては、ポリエチレン、ガラス繊維等が挙げられる。なお、化成条件、及び、硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程において実施されることに限られず、電極製造工程の熟成、乾燥後において実施されてもよい(タンク化成)。 Examples of the material for the separator include polyethylene and glass fiber. The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. The chemical conversion treatment is not limited to being performed in the assembly process, and may be performed after aging and drying of the electrode manufacturing process (tank chemical conversion).
以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the following examples.
<樹脂溶液の調製>
[実施例1]
攪拌装置、還流装置及び温度調節装置を備えた反応容器に下記の各成分を仕込み第1の混合液を得た。
水酸化ナトリウム:1.05モル[42.0質量部]
イオン交換水:44.0モル[792.6質量部]
4−アミノベンゼンスルホン酸:1.00モル[173.2質量部]<Preparation of resin solution>
[Example 1]
The following components were charged into a reaction vessel equipped with a stirrer, a reflux device and a temperature controller to obtain a first mixed solution.
Sodium hydroxide: 1.05 mol [42.0 parts by mass]
Ion exchange water: 44.0 mol [792.6 parts by mass]
4-aminobenzenesulfonic acid: 1.00 mol [173.2 parts by mass]
第1の混合液を25℃にて30分混和・攪拌した。続いて、第1の混合液に下記の各成分を仕込み第2の混合液を得た。
ビスフェノールA:0.96モル[219.2質量部]
ビスフェノールS:0.04モル[10.4質量部]
パラホルムアルデヒド(三井化学株式会社製):3.00モル[90.9質量部](ホルムアルデヒド換算)The first mixture was mixed and stirred at 25 ° C. for 30 minutes. Subsequently, the following components were charged into the first mixed liquid to obtain a second mixed liquid.
Bisphenol A: 0.96 mol [219.2 parts by mass]
Bisphenol S: 0.04 mol [10.4 parts by mass]
Paraformaldehyde (manufactured by Mitsui Chemicals): 3.00 mol [90.9 parts by mass] (formaldehyde conversion)
第2の混合液(pH=8.6)を90℃にて10時間反応させることにより樹脂溶液を得た。実施例1で得られた樹脂溶液中に含まれるビスフェノール系樹脂を低温乾燥(60℃、6時間)で単離し、1H−NMRスペクトルを測定した。1H−NMRスペクトルの測定結果を図1に示す。A resin solution was obtained by reacting the second mixed solution (pH = 8.6) at 90 ° C. for 10 hours. The bisphenol-based resin contained in the resin solution obtained in Example 1 was isolated by low-temperature drying (60 ° C., 6 hours), and a 1 H-NMR spectrum was measured. The measurement result of 1 H-NMR spectrum is shown in FIG.
ビスフェノール系樹脂の重量平均分子量を下記条件のGPCにより測定した。
(GPC条件)
装置:高速液体クロマトグラフ LC−2200 Plus(日本分光株式会社製)
ポンプ:PU−2080
示差屈折率計:RI−2031
検出器:紫外可視吸光光度計UV−2075(λ:254nm)
カラムオーブン:CO−2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製)The weight average molecular weight of the bisphenol-based resin was measured by GPC under the following conditions.
(GPC conditions)
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
前記標準試料より算出した検量線を図2に示す。横軸は保持時間であり、縦軸は分子量の対数である。GPCを用いて測定される重量平均分子量は53900であった。 A calibration curve calculated from the standard sample is shown in FIG. The horizontal axis is the retention time, and the vertical axis is the logarithm of molecular weight. The weight average molecular weight measured using GPC was 53900.
[実施例2〜7、比較例1〜2]
樹脂溶液の構成成分を表1に示す成分へ変更したこと以外は実施例1と同様の方法により、実施例2〜7及び比較例1〜2の樹脂溶液を得た。また、実施例1と同様にビスフェノール系樹脂の重量平均分子量を測定した。なお、表1中、37質量%ホルマリンの配合量は、ホルムアルデヒド換算の配合量である。[Examples 2-7, Comparative Examples 1-2]
Resin solutions of Examples 2 to 7 and Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that the constituent components of the resin solution were changed to the components shown in Table 1. Further, the weight average molecular weight of the bisphenol-based resin was measured in the same manner as in Example 1. In Table 1, the blending amount of 37% by mass formalin is a blending amount in terms of formaldehyde.
<アルコール含有量の測定>
樹脂溶液におけるアルコール含有量は、下記条件のガスクロマトグラフィーにより得られる標準サンプルのピーク面積検量線から算出した。なお、樹脂溶液をイオン交換水で100倍に希釈したものを測定試料とした。
(ガスクロマトグラフィー条件)
ガスクロマトグラフ質量分析装置:株式会社島津製作所製 GCMSQP−2010
カラム:アジレント・テクノロジー株式会社製 HP−5MS 5%Phenyl−95%Methylpolysiloxane(0.25mm I.D.×30m、0.25μm)
温度条件:初期温度40℃(5min)
昇温速度:20℃/min(280℃まで)
最終温度:280℃
サンプル量:1μL注入口条件
注入モード:スプリット法
標準サンプル:メタノールの濃度を20ppm、50ppm、100ppmにそれぞれ調整した水溶液
キャリアガス:ヘリウム(流量1mL/min)
検出器:FID<Measurement of alcohol content>
The alcohol content in the resin solution was calculated from a peak area calibration curve of a standard sample obtained by gas chromatography under the following conditions. In addition, what diluted the resin solution 100 times with ion-exchange water was used as the measurement sample.
(Gas chromatography conditions)
Gas chromatograph mass spectrometer: GCMSQP-2010 manufactured by Shimadzu Corporation
Column: HP-5MS 5% Phenyl-95% Methylpolysiloxane (0.25 mm ID × 30 m, 0.25 μm) manufactured by Agilent Technologies
Temperature condition: Initial temperature 40 ° C. (5 min)
Temperature increase rate: 20 ° C / min (up to 280 ° C)
Final temperature: 280 ° C
Sample amount: 1 μL inlet condition Injection mode: Split method Standard sample: aqueous solution with methanol concentration adjusted to 20 ppm, 50 ppm, 100 ppm, respectively Carrier gas: Helium (flow rate 1 mL / min)
Detector: FID
<残存成分の含有量>
樹脂溶液におけるアミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体の含有量をGPCの紫外可視吸光光度計における全ピークに対するアミノベンゼンスルホン酸ピーク及びアミノベンゼンスルホン酸誘導体の面積比から求めた。<Residual component content>
The contents of aminobenzene sulfonic acid and aminobenzene sulfonic acid derivative in the resin solution were determined from the area ratio of aminobenzene sulfonic acid peak and aminobenzene sulfonic acid derivative to all peaks in the GPC UV-Vis spectrophotometer.
<不揮発分含量の測定>
不揮発分含量は、下記の手順により測定した。まず、50φ×15mmの容器(ステンレスシャーレ)に、樹脂溶液2gを入れ、150℃で60分間熱風乾燥機を用いて乾燥させた。次に、容器の温度が室温(25℃)に戻った後、残分質量を測定することにより不揮発分含量を測定した。<Measurement of nonvolatile content>
The nonvolatile content was measured by the following procedure. First, 2 g of the resin solution was placed in a 50φ × 15 mm container (stainless steel petri dish) and dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returned to room temperature (25 ° C.), the non-volatile content was measured by measuring the residual mass.
<pHの測定>
樹脂溶液のpHは、反応終了後に樹脂溶液を下記のpH測定装置のセンサー部に500mL注入して測定した。
(pH測定の条件)
pH測定装置:株式会社堀場製作所製 ツインpHメーター AS−212
校正液:株式会社堀場製作所製 pH校正液(pH4.01、pH6.86)<Measurement of pH>
The pH of the resin solution was measured by injecting 500 mL of the resin solution into the sensor part of the following pH measuring device after the reaction was completed.
(Conditions for pH measurement)
pH measuring device: HORIBA, Ltd. Twin pH meter AS-212
Calibration solution: pH calibration solution manufactured by HORIBA, Ltd. (pH 4.01, pH 6.86)
<負極板の作製>
鉛粉の全質量を基準として、樹脂溶液を固形分換算で0.2質量%と、ファーネスブラック0.2質量%と、硫酸バリウム1.0質量%とを鉛粉に対して添加した後に乾式混合した。次に、希硫酸(比重1.26(20℃換算))及び水を加えながら混練して負極ペーストを作製した。負極ペーストを厚さ0.6mmのエキスパンド集電体(鉛−カルシウム−錫合金)に充填して負極板を作製した。負極板を通常の方法に従い、温度50℃、湿度95%の雰囲気下に18時間放置して熟成した後、温度50℃の雰囲気下で乾燥して未化成負極板を得た。<Preparation of negative electrode plate>
Based on the total mass of the lead powder, the resin solution is 0.2% by mass in terms of solid content, 0.2% by mass of furnace black, and 1.0% by mass of barium sulfate are added to the lead powder and then dry-processed. Mixed. Next, the mixture was kneaded while adding dilute sulfuric acid (specific gravity 1.26 (converted at 20 ° C.)) and water to prepare a negative electrode paste. The negative electrode paste was filled into an expanded current collector (lead-calcium-tin alloy) having a thickness of 0.6 mm to produce a negative electrode plate. The negative electrode plate was aged for 18 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 95% according to a normal method, and then dried in an atmosphere of a temperature of 50 ° C. to obtain an unformed negative electrode plate.
<正極板の作製>
鉛粉の全質量を基準として、0.01質量%のポリエチレン繊維からなるカットファイバー(補強用短繊維)を鉛粉に対して添加した後に乾式混合した。次に、希硫酸(比重1.26(20℃換算))及び水を加えて混練して正極ペーストを作製した。鋳造格子体からなる正極集電体(鉛−カルシウム−錫合金)に正極ペーストを充填して、温度50℃、湿度95%の雰囲気下に18時間放置して熟成した後、温度50℃の雰囲気下で乾燥して未化成正極板を得た。<Preparation of positive electrode plate>
Based on the total mass of the lead powder, a cut fiber (reinforcing short fiber) made of 0.01 mass% polyethylene fiber was added to the lead powder and then dry mixed. Next, dilute sulfuric acid (specific gravity 1.26 (converted at 20 ° C.)) and water were added and kneaded to prepare a positive electrode paste. A positive electrode current collector (lead-calcium-tin alloy) made of a cast grid is filled with a positive electrode paste and left to mature for 18 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 95%, and then an atmosphere at a temperature of 50 ° C. It dried below and obtained the unchemically formed positive electrode plate.
<電池の組み立て>
未化成負極板及び未化成正極板が交互に積層されるように、ポリエチレン製のセパレータを介して6枚の未化成負極板及び5枚の未化成正極板を積層した後に、同極性の極板の耳部同士をストラップで連結させて極板群を作製した。極板群を電槽に挿入して2V単セル電池(JIS50301規定のB19サイズの単セルに相当)を組み立てた。この電池に希硫酸(比重1.24(20℃換算))を注液した後に、50℃の水槽中、通電電流10Aで15時間の条件で化成した。そして、希硫酸を排出した後に、再び比重1.28(20℃換算)の希硫酸を注入して鉛蓄電池を得た。<Battery assembly>
After laminating 6 unformed negative plates and 5 unformed positive plates through polyethylene separators so that unformed negative plates and unformed positive plates are alternately laminated, the same polarity electrode plate The electrode plate groups were prepared by connecting the ears of the two pieces with a strap. The electrode plate group was inserted into a battery case to assemble a 2V single cell battery (corresponding to a B19 size single cell defined in JIS 50301). After dilute sulfuric acid (specific gravity: 1.24 (converted at 20 ° C.)) was poured into this battery, it was formed in a 50 ° C. water bath at an energizing current of 10 A for 15 hours. And after discharging | emitting dilute sulfuric acid, the dilute sulfuric acid of specific gravity 1.28 (20 degreeC conversion) was inject | poured again and the lead acid battery was obtained.
<電池特性の評価>
上記の2V単セル電池について、充電受け入れ性、放電特性及びサイクル特性を下記のとおり測定した。比較例1の充電受け入れ性、放電特性及びサイクル特性の測定結果をそれぞれ100とし、実施例の各特性を相対評価した。結果を表1に示す。<Evaluation of battery characteristics>
About said 2V single cell battery, charge acceptance, discharge characteristics, and cycling characteristics were measured as follows. The measurement results of charge acceptability, discharge characteristics, and cycle characteristics of Comparative Example 1 were set to 100, and the characteristics of the examples were relatively evaluated. The results are shown in Table 1.
(充電受け入れ性)
充電受け入れ性として、電池の充電状態(State of charge)が90%になった状態(つまり、満充電状態から電池容量の10%を放電した状態)において、2.33Vで定電圧充電した際の5秒後の電流値を測定した。5秒後の電流値が大きいほど初期の充電容量が高く、充電受け入れ性が良い電池であると評価される。(Charge acceptance)
As charge acceptability, when the state of charge of the battery is 90% (that is, when 10% of the battery capacity is discharged from the fully charged state), charging at a constant voltage of 2.33V The current value after 5 seconds was measured. The larger the current value after 5 seconds, the higher the initial charge capacity, and it is evaluated that the battery has better charge acceptability.
(放電特性)
放電特性として、−15℃において5Cで定電流放電し、電池電圧が1.0Vに達するまでの放電持続時間を測定した。放電持続時間が長いほど放電特性に優れる電池であると評価される。なお、前記Cとは、満充電状態から定格容量を定電流放電するときの電流の大きさを相対的に表したものである。例えば、定格容量を1時間で放電させることができる電流を「1C」、2時間で放電させることができる電流を「0.5C」と表現する。(Discharge characteristics)
As discharge characteristics, a constant current discharge was performed at −15 ° C. at 5 C, and the discharge duration until the battery voltage reached 1.0 V was measured. The longer the discharge duration, the better the battery. The C is a relative representation of the magnitude of current when the rated capacity is discharged at a constant current from a fully charged state. For example, a current that can discharge the rated capacity in 1 hour is expressed as “1C”, and a current that can be discharged in 2 hours is expressed as “0.5C”.
(サイクル特性)
サイクル特性は、日本工業規格の軽負荷寿命試験(JIS D 5301)に準じた方法で評価した。サイクル数が大きいほど耐久性が高い電池であると評価される。(Cycle characteristics)
The cycle characteristics were evaluated by a method according to a Japanese Industrial Standard light load life test (JIS D 5301). The larger the number of cycles, the higher the durability.
実施例では、比較例と比べサイクル特性が向上していることが確認できる。また、ビスフェノールAとビスフェノールSを併用して合成したビスフェノール系樹脂を用いた実施例1及び2では、サイクル特性が顕著に向上することが確認できる。 In the example, it can be confirmed that the cycle characteristics are improved as compared with the comparative example. In Examples 1 and 2 using bisphenol-based resins synthesized by using bisphenol A and bisphenol S in combination, it can be confirmed that the cycle characteristics are remarkably improved.
また、実施例では、優れた充電受け入れ性、放電特性及びサイクル特性が両立されていることが確認できる。なお、実施例6では、比較例と比べて放電特性が小さいが、実用上問題のない特性が得られている。 Moreover, in an Example, it can confirm that the outstanding charge acceptance property, discharge characteristic, and cycling characteristics are compatible. In Example 6, although the discharge characteristics are small as compared with the comparative example, characteristics having no practical problems are obtained.
本発明によれば、鉛蓄電池において優れたサイクル特性を得ることが可能な樹脂組成物及びその製造方法を提供することができる。また、本発明によれば、前記樹脂組成物を用いて製造される電極及び鉛蓄電池、並びに、これらの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition which can obtain the cycling characteristics outstanding in the lead acid battery, and its manufacturing method can be provided. Moreover, according to this invention, the electrode and lead acid battery which are manufactured using the said resin composition, and these manufacturing methods can be provided.
Claims (10)
アルコールの含有量が0.5質量%以下である、樹脂組成物。A reaction between (a) a bisphenol compound, (b) at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and (c) at least one selected from the group consisting of formaldehyde and formaldehyde derivatives. Including a resin obtained by
A resin composition having an alcohol content of 0.5% by mass or less.
前記樹脂を含む樹脂組成物におけるアルコールの含有量が0.5質量%以下である、樹脂組成物の製造方法。A reaction between (a) a bisphenol compound, (b) at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and (c) at least one selected from the group consisting of formaldehyde and formaldehyde derivatives. A step of obtaining a resin,
The manufacturing method of the resin composition whose content of the alcohol in the resin composition containing the said resin is 0.5 mass% or less.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013223251 | 2013-10-28 | ||
JP2013223251 | 2013-10-28 | ||
PCT/JP2014/078098 WO2015064445A1 (en) | 2013-10-28 | 2014-10-22 | Resin composition, electrode, lead acid storage battery, method for producing resin composition, method for producing electrode, and method for manufacturing lead acid storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015064445A1 JPWO2015064445A1 (en) | 2017-03-09 |
JP6222239B2 true JP6222239B2 (en) | 2017-11-01 |
Family
ID=53004053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015544945A Active JP6222239B2 (en) | 2013-10-28 | 2014-10-22 | Resin composition, electrode, lead-acid battery, and production method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6222239B2 (en) |
CN (1) | CN105683233B (en) |
WO (1) | WO2015064445A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015137330A (en) * | 2014-01-23 | 2015-07-30 | 日立化成株式会社 | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition |
JP2015137331A (en) * | 2014-01-23 | 2015-07-30 | 日立化成株式会社 | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition |
WO2015156293A1 (en) * | 2014-04-08 | 2015-10-15 | 日立化成株式会社 | Bisphenol-based resin, electrode, lead storage battery, production methods for these, and resin composition |
US9997782B2 (en) | 2014-04-08 | 2018-06-12 | Hitachi Chemical Company, Ltd | Bisphenol-based resin, electrode, lead storage battery, production methods for these, and resin composition |
JP2019071165A (en) * | 2016-03-01 | 2019-05-09 | 日立化成株式会社 | Resin for lead storage battery, electrode, lead storage battery, and vehicle |
JP2017160304A (en) * | 2016-03-08 | 2017-09-14 | 日立化成株式会社 | Bisphenol resin, electrode, lead storage battery and method of producing the same, and resin composition |
JP6384639B2 (en) * | 2016-09-12 | 2018-09-05 | 日立化成株式会社 | Electrode, lead-acid battery, and method for manufacturing the same |
JP7015613B2 (en) * | 2017-12-05 | 2022-02-03 | 昭和電工マテリアルズ株式会社 | Ear thinning inhibitor, method of suppressing ear thinning, and use as ear thinning inhibitor |
JP7075072B2 (en) * | 2018-06-19 | 2022-05-25 | 昭和電工マテリアルズ株式会社 | Bisphenol resin, electrodes, lead-acid batteries and their manufacturing methods |
EP3919560A4 (en) * | 2019-02-01 | 2022-10-26 | Zeon Corporation | DISPERSION LIQUID, CONDUCTIVE FILM AND ASSOCIATED METHOD OF MANUFACTURE, ELECTRODE AND SOLAR CELL |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153299A (en) * | 1989-09-01 | 1992-10-06 | Sanyo-Kokusaku Pulp Co., Ltd. | Production of novel condensates comprising bisphenols and aromatic aminosulfonic acids, condensates and dispersant, additive and water-reducing agent based thereon |
JPH0693067A (en) * | 1992-09-10 | 1994-04-05 | Nippon Paper Ind Co Ltd | Water-soluble bisphenol condensate |
JPH06319976A (en) * | 1993-05-10 | 1994-11-22 | Nippon Paper Ind Co Ltd | Dispersant |
JPH07133405A (en) * | 1993-11-11 | 1995-05-23 | Nippon Paper Ind Co Ltd | Phenolic water-based resin composition |
JP2696303B2 (en) * | 1994-03-04 | 1998-01-14 | 日本製紙株式会社 | Dispersant and method for producing the same |
JP2762231B2 (en) * | 1994-03-28 | 1998-06-04 | 日本製紙株式会社 | Dispersant for concrete |
JPH09151229A (en) * | 1995-11-28 | 1997-06-10 | Nippon Paper Ind Co Ltd | Novel phenolic, aqueous resin composition and intermediate and preparation thereof |
US6074782A (en) * | 1996-03-29 | 2000-06-13 | Aisin Seiki Kabushiki Kaisha | Lead storage battery containing a negative electrode active substance including a negative electrode additive |
JP3186038B2 (en) * | 1997-03-31 | 2001-07-11 | 日本製紙株式会社 | Dispersant for concrete |
JPH11250913A (en) * | 1998-03-02 | 1999-09-17 | Aisin Seiki Co Ltd | Lead-acid battery |
JP3733821B2 (en) * | 2000-02-03 | 2006-01-11 | 日本製紙株式会社 | Dispersant |
JP2009019079A (en) * | 2007-07-10 | 2009-01-29 | Nippon Paper Chemicals Co Ltd | Method for producing water-soluble formaldehyde condensate with reduced residual formaldehyde content |
JP2010270252A (en) * | 2009-05-22 | 2010-12-02 | Ricoh Co Ltd | Pigment dispersion, inkjet ink using the pigment dispersion, ink cartridge, and image formation apparatus |
MX2012010082A (en) * | 2010-03-01 | 2012-09-12 | Shin Kobe Electric Machinery | Lead storage battery. |
US20130029210A1 (en) * | 2010-03-02 | 2013-01-31 | Satoshi Minoura | Lead acid storage battery |
EP3288107B1 (en) * | 2010-05-10 | 2019-02-20 | Hitachi Chemical Company, Ltd. | Lead storage battery |
KR20130108261A (en) * | 2010-09-30 | 2013-10-02 | 신코베덴키 가부시키가이샤 | Lead-acid battery |
RU2013133847A (en) * | 2010-12-21 | 2015-01-27 | Син-Кобе Электрик Машинери Ко., Лтд. | LEAD ACID BATTERY |
KR20140021663A (en) * | 2011-05-13 | 2014-02-20 | 신코베덴키 가부시키가이샤 | Lead acid battery |
WO2013031263A1 (en) * | 2011-09-01 | 2013-03-07 | 新神戸電機株式会社 | Lead storage cell |
-
2014
- 2014-10-22 JP JP2015544945A patent/JP6222239B2/en active Active
- 2014-10-22 WO PCT/JP2014/078098 patent/WO2015064445A1/en active Application Filing
- 2014-10-22 CN CN201480059112.2A patent/CN105683233B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105683233A (en) | 2016-06-15 |
WO2015064445A1 (en) | 2015-05-07 |
JPWO2015064445A1 (en) | 2017-03-09 |
CN105683233B (en) | 2017-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6222239B2 (en) | Resin composition, electrode, lead-acid battery, and production method thereof | |
JP6172384B2 (en) | Bisphenol-based resin, electrode, lead-acid battery, production method thereof, and resin composition | |
WO2017149871A1 (en) | Resin for lead storage battery, electrode, lead storage battery, and motor vehicle | |
JP6724781B2 (en) | Lead acid battery | |
JP6432609B2 (en) | Lead acid battery, micro hybrid vehicle and idling stop system vehicle | |
JPWO2017170422A1 (en) | Lead acid battery, micro hybrid vehicle and idling stop system vehicle | |
JP6354855B2 (en) | Electrode, lead-acid battery, and method for manufacturing the same | |
JP6597994B2 (en) | Liquid lead-acid battery for idling stop vehicles | |
JP2018116843A (en) | Electrode and lead acid storage battery | |
JP2015174872A (en) | Bisphenol resin, electrode, lead storage battery and method of producing them, and resin composition | |
JP6384639B2 (en) | Electrode, lead-acid battery, and method for manufacturing the same | |
JP6638241B2 (en) | Lead storage battery | |
JP2017160326A (en) | Phenolic resin, electrode, lead storage battery and method of producing the same, and resin composition | |
JP2017160304A (en) | Bisphenol resin, electrode, lead storage battery and method of producing the same, and resin composition | |
JP2019204702A (en) | Lead acid battery | |
JP6870207B2 (en) | Lead-acid battery | |
JP2015137331A (en) | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition | |
US9997782B2 (en) | Bisphenol-based resin, electrode, lead storage battery, production methods for these, and resin composition | |
JP2015183171A (en) | Phenolic resin, electrode, lead storage battery and method of producing the same, and resin composition | |
JP6950365B2 (en) | Negative electrode material paste, negative electrode and lead acid battery, and their manufacturing method | |
JP2015137330A (en) | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition | |
JP7075072B2 (en) | Bisphenol resin, electrodes, lead-acid batteries and their manufacturing methods | |
JP6856113B2 (en) | Lead-acid battery | |
JP2019131639A (en) | Bisphenol resin, electrode, lead storage battery and method for producing the same | |
JP6953874B2 (en) | Lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170918 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6222239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |