JP6220009B2 - Method for producing electrical contact material containing carbon nanotubes coated with silver - Google Patents
Method for producing electrical contact material containing carbon nanotubes coated with silver Download PDFInfo
- Publication number
- JP6220009B2 JP6220009B2 JP2016085849A JP2016085849A JP6220009B2 JP 6220009 B2 JP6220009 B2 JP 6220009B2 JP 2016085849 A JP2016085849 A JP 2016085849A JP 2016085849 A JP2016085849 A JP 2016085849A JP 6220009 B2 JP6220009 B2 JP 6220009B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon nanotubes
- silver
- coated
- electrical contact
- contact material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 105
- 239000002041 carbon nanotube Substances 0.000 title claims description 102
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 102
- 239000000463 material Substances 0.000 title claims description 81
- 239000004332 silver Substances 0.000 title claims description 76
- 229910052709 silver Inorganic materials 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 75
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000011259 mixed solution Substances 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- 238000010306 acid treatment Methods 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims description 3
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 2
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000003828 vacuum filtration Methods 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H11/00—Apparatus or processes specially adapted for the manufacture of electric switches
- H01H11/04—Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
- H01H11/048—Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/02—Pretreatment of the fibres or filaments
- C22C47/04—Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/14—Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1658—Process features with two steps starting with metal deposition followed by addition of reducing agent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1886—Multistep pretreatment
- C23C18/1893—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/027—Composite material containing carbon particles or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2300/00—Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
- H01H2300/036—Application nanoparticles, e.g. nanotubes, integrated in switch components, e.g. contacts, the switch itself being clearly of a different scale, e.g. greater than nanoscale
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/847—Surface modifications, e.g. functionalization, coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Contacts (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Switches (AREA)
Description
本発明は、銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法に関し、特に、銀の含有量を低減しながらも優れた特性を有する、銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法に関する。 The present invention relates to a method of manufacturing an electrical contact material containing carbon nanotubes coated with silver, and more particularly, to an electrical material containing carbon nanotubes coated with silver having excellent characteristics while reducing the silver content. The present invention relates to a method for manufacturing a contact material.
一般に、電気接点材料は、遮断器や開閉器などの電気機器において電気回路を開放又は閉成するときに接触する部分に用いられる通電用接触素子であり、モータスイッチ、スイッチギヤ、MCB、小型モータ及びランプ、自動車、家電製品などに適用される。 In general, an electrical contact material is a contact element for energization used in a contact portion when an electrical circuit is opened or closed in an electrical device such as a circuit breaker or a switch. And lamps, automobiles, home appliances, etc.
また、電気接点材料には、融点が高いこと、電気伝導度及び熱伝導度に優れること、接触抵抗が低いことだけでなく、耐溶着性に優れること、開閉が容易であること、耐摩耗性に関連する硬度が高いこと、接触面の変化が少ないことなど、様々な性質が求められる。 In addition, the electrical contact material has a high melting point, excellent electrical conductivity and thermal conductivity, low contact resistance as well as excellent welding resistance, easy opening and closing, and wear resistance. Various properties are required, such as high hardness related to, and little change in contact surface.
このような電気接点材料は、電流領域によって、小電流用電気接点材料(1A以下)、中電流用電気接点材料(1A〜600A)、大電流用電気接点材料(600A以上)に分けられる。 Such electric contact materials are classified into electric contact materials for small current (1A or less), electric contact materials for medium current (1A to 600A), and electric contact materials for high current (600A or more) depending on the current region.
一般に、小電流用接点材料としては電気伝導度に優れた接点材料が用いられ、中電流用接点材料としては電気伝導度、耐摩耗性、融点などに優れた接点材料が用いられ、大電流用接点材料としては高融点の電気接点材料が用いられる。 Generally, contact materials with excellent electrical conductivity are used as contact materials for small current, and contact materials with excellent electrical conductivity, wear resistance, melting point, etc. are used as contact materials for medium current. As the contact material, an electric contact material having a high melting point is used.
また、電気接点材料は、材質によって、タングステン系電気接点材料、銀・酸化物系電気接点材料、貴金属系電気接点材料にも分けられる。 In addition, the electrical contact materials are classified into tungsten-based electrical contact materials, silver / oxide-based electrical contact materials, and noble metal-based electrical contact materials depending on the material.
図9に示すように銀・ニッケル合金を用いて電気接点材料を製造する際に、銀・ニッケル系電気接点材料が小電流や中電流に用いられる場合は、約80重量%以上の銀が用いられる。 As shown in FIG. 9, when silver / nickel alloy is used to produce an electrical contact material, when silver / nickel based electrical contact material is used for a small current or medium current, about 80% by weight or more of silver is used. It is done.
近年、電気接点材料の耐摩耗性や電気的特性などを向上させるために、金属に炭素系化合物を添加した電気接点材料が提案されており、特許文献1、特許文献2及び特許文献3には銀(Ag)粉末とカーボンナノチューブとを含む電気接点材料が開示されている。 In recent years, in order to improve the wear resistance, electrical characteristics, etc. of electrical contact materials, electrical contact materials in which carbon-based compounds are added to metals have been proposed. Patent Document 1, Patent Document 2 and Patent Document 3 An electrical contact material comprising silver (Ag) powder and carbon nanotubes is disclosed.
しかし、これらの従来の電気接点材料においては、カーボンナノチューブを含むので電気的特性は向上するが、依然として銀(Ag)の含有量が高いことから製造コストが高く、製造工程が複雑であるという問題があった。 However, these conventional electrical contact materials improve the electrical characteristics because they contain carbon nanotubes, but still have a high production cost due to the high silver (Ag) content, and the production process is complicated. was there.
本発明は、このような問題を解決するためになされたものであり、銀の含有量を低減しながらも優れた特性を有する、銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法を提供することを目的とする。 The present invention has been made to solve such problems, and a method for producing an electrical contact material containing silver-coated carbon nanotubes having excellent characteristics while reducing the silver content The purpose is to provide.
本発明の上記目的は、(a)カーボンナノチューブを硝酸溶液中に入れて超音波分散及び酸処理する段階と、(b)前記段階(a)で超音波分散及び酸処理されたカーボンナノチューブを洗浄する段階と、(c)前記洗浄されたカーボンナノチューブを塩化スズと塩酸の混合溶液及び塩化パラジウムと塩酸の混合溶液と順次混合し、その後超音波を加えて前記カーボンナノチューブの表面にスズとパラジウムを結合させる段階と、(d)硝酸銀水溶液とアンモニア水溶液を無色になるまで混合し、その後前記段階(c)で製造されたカーボンナノチューブを混合する段階と、(e)前記段階(d)で製造された混合溶液にグリオキシル酸水溶液と水酸化ナトリウム水溶液を混合し、その後脱イオン水で洗浄して銀がコーティングされたカーボンナノチューブを製造する段階と、(f)前記銀がコーティングされたカーボンナノチューブと金属が混合された合金を混合して粉末混合体を製造する段階とを含む、本発明による銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法を提供することにより達成することができる。 The above objects of the present invention are: (a) a step of ultrasonically dispersing and acid-treating carbon nanotubes in a nitric acid solution , and (b) cleaning the carbon nanotubes ultrasonically dispersed and acid-treated in step (a). And (c) sequentially mixing the washed carbon nanotubes with a mixed solution of tin chloride and hydrochloric acid and a mixed solution of palladium chloride and hydrochloric acid, and then applying ultrasonic waves to stin and palladium on the surface of the carbon nanotubes. Bonding, (d) mixing the aqueous silver nitrate solution and aqueous ammonia solution until colorless, then mixing the carbon nanotubes produced in step (c), and (e) producing in step (d). The mixed solution is mixed with an aqueous solution of glyoxylic acid and an aqueous solution of sodium hydroxide, and then washed with deionized water to provide a silver-coated carbohydrate. And (f) mixing the silver-coated carbon nanotubes with a metal-mixed alloy to produce a powder mixture, the silver-coated carbon nanotubes according to the present invention. This can be achieved by providing a method for producing an electrical contact material containing.
また、前記段階(f)において、前記カーボンナノチューブと混合される合金を構成する金属は、伝導度を14.3MS/m以上にしてもよい。 In the step (f), the metal constituting the alloy mixed with the carbon nanotubes may have a conductivity of 14.3 MS / m or more.
さらに、前記合金は、銅、ニッケル及び金からなる群から選択される1種以上の金属が混合されたものであってもよい。 Further, the alloy may be a mixture of one or more metals selected from the group consisting of copper, nickel and gold.
さらに、前記段階(f)の後に、(g)前記粉末混合体を超音波分散し、真空乾燥する段階と、(h)前記真空乾燥した粉末混合体を焼結する段階とをさらに含んでもよい。 Furthermore, after the step (f), the method may further include (g) ultrasonically dispersing the powder mixture and vacuum drying, and (h) sintering the vacuum dried powder mixture. .
さらに、前記段階(b)においては、前記カーボンナノチューブをPH7になるまで洗浄するようにしてもよい。 Furthermore, in the step (b), the carbon nanotubes may be washed until PH7 is reached.
さらに、前記段階(e)においては、前記グリオキシル酸水溶液と前記水酸化ナトリウム水溶液をPH9になるまで混合するようにしてもよい。 Furthermore, in the step (e), the aqueous glyoxylic acid solution and the aqueous sodium hydroxide solution may be mixed until PH9 is reached.
さらに、前記グリオキシル酸水溶液と前記水酸化ナトリウム水溶液が混合された混合溶液を脱イオン水でPH7になるまで洗浄するようにしてもよい。 Further, a mixed solution in which the aqueous glyoxylic acid solution and the aqueous sodium hydroxide solution are mixed may be washed with deionized water until PH7 is reached.
さらに、前記段階(a)において、前記カーボンナノチューブの超音波分散を5分間行い、酸処理を2時間行うようにしてもよい。 Furthermore, in the step (a), ultrasonic dispersion of the carbon nanotubes may be performed for 5 minutes, and acid treatment may be performed for 2 hours.
さらに、前記段階(e)においては、前記グリオキシル酸水溶液と前記水酸化ナトリウム水溶液を混合する際に、90℃で1時間反応させるようにしてもよい。 Furthermore, in the step (e), the glyoxylic acid aqueous solution and the sodium hydroxide aqueous solution may be mixed and reacted at 90 ° C. for 1 hour.
さらに、前記段階(h)は、放電プラズマ焼結法(Spark Plasma Sintering, SPS)により行うようにしてもよい。 Further, the step (h) may be performed by a spark plasma sintering (SPS) method.
本発明の他の目的は、(a)カーボンナノチューブに超音波分散及び酸処理を行い、その後前記カーボンナノチューブの表面にスズとパラジウムを結合させる段階と、(b)硝酸銀水溶液とアンモニア水溶液を混合し、その後前記段階(a)で製造されたカーボンナノチューブを混合する段階と、(c)前記段階(b)で製造された混合溶液にグリオキシル酸水溶液と水酸化ナトリウム水溶液を混合して銀がコーティングされたカーボンナノチューブを製造し、その後金属が混合された合金を混合して粉末混合体を製造する段階とを含む、本発明による銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法を提供することにより達成することができる。 Another object of the present invention is to (a) perform ultrasonic dispersion and acid treatment on the carbon nanotube, and then bind tin and palladium to the surface of the carbon nanotube; and (b) mix silver nitrate aqueous solution and ammonia aqueous solution. Thereafter, the step of mixing the carbon nanotubes manufactured in the step (a), and (c) mixing the aqueous solution of glyoxylic acid and the aqueous solution of sodium hydroxide into the mixed solution manufactured in the step (b) to coat silver. A method of manufacturing an electrical contact material containing silver-coated carbon nanotubes according to the present invention, comprising: preparing a carbon nanotube and then mixing a metal-mixed alloy to produce a powder mixture. This can be achieved.
また、前記段階(c)において、前記カーボンナノチューブと混合される合金を構成する金属は、伝導度を14.3MS/m以上にしてもよい。 In the step (c), the metal constituting the alloy mixed with the carbon nanotube may have a conductivity of 14.3 MS / m or more.
さらに、前記合金は、銅、ニッケル及び金からなる群から選択される1種以上の金属が混合されたものであってもよい。 Further, the alloy may be a mixture of one or more metals selected from the group consisting of copper, nickel and gold.
さらに、前記段階(c)の後に、(d)前記粉末混合体を超音波分散し、真空乾燥する段階と、(e)前記真空乾燥した粉末混合体を焼結する段階とをさらに含んでもよい。 Further, after the step (c), the method may further include (d) ultrasonically dispersing the powder mixture and vacuum drying, and (e) sintering the vacuum dried powder mixture. .
本発明による銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法においては、電気接点材料の製造時にカーボンナノチューブに銀を含有させることにより、カーボンナノチューブ同士の凝集を抑制してカーボンナノチューブを電気接点材料中に均一に分散させるという効果がある。 In the method for producing an electrical contact material containing silver-coated carbon nanotubes according to the present invention, the carbon nanotubes are prevented from agglomerating with each other by adding silver to the carbon nanotubes during the production of the electrical contact material. There is an effect that the electric contact material is uniformly dispersed.
また、電気接点材料に用いられる銀の含有量を低減することにより、電気接点材料全体の製造コストを低減するという効果がある。 Moreover, there is an effect of reducing the manufacturing cost of the entire electrical contact material by reducing the content of silver used in the electrical contact material.
さらに、カーボンナノチューブに少量の銀を用いながらも電気接点材料が優れた特性を有するようにし、電気接点材料が用いられる遮断器などの機能を大幅に向上させるという効果がある。 Furthermore, there is an effect that the electrical contact material has excellent characteristics while using a small amount of silver in the carbon nanotube, and the function of a circuit breaker using the electrical contact material is greatly improved.
以下、添付図面を参照して本発明の一実施形態による銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法について詳細に説明する。 Hereinafter, a method for manufacturing an electrical contact material containing carbon nanotubes coated with silver according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
図1は本発明による銀がコーティングされたカーボンナノチューブを含有する電気接点材料を示す構成図であり、図2は本発明による電気接点に含有されるカーボンナノチューブを示すSEM画像であり、図3は本発明による電気接点に含有される銀がコーティングされたカーボンナノチューブを示すSEM画像であり、図4は本発明による電気接点に含有される銀がコーティングされたカーボンナノチューブを示す他のSEM画像である。 FIG. 1 is a block diagram showing an electrical contact material containing carbon nanotubes coated with silver according to the present invention, FIG. 2 is an SEM image showing carbon nanotubes contained in electrical contacts according to the present invention, and FIG. FIG. 4 is an SEM image showing a carbon nanotube coated with silver contained in an electrical contact according to the present invention, and FIG. 4 is another SEM image showing a carbon nanotube coated with silver contained in an electrical contact according to the present invention. .
また、図5は本発明による電気接点に含有される銀がコーティングされたカーボンナノチューブを示すTEM画像であり、図6は本発明による電気接点に含有される銀がコーティングされたカーボンナノチューブのEDS分析を示すグラフであり、図7は本発明による電気接点材料の製造過程を示すフローチャートであり、図8は本発明による銀がコーティングされたカーボンナノチューブの製造過程を示すフローチャートである。 FIG. 5 is a TEM image showing carbon nanotubes coated with silver contained in electrical contacts according to the present invention, and FIG. 6 is an EDS analysis of carbon nanotubes coated with silver contained in electrical contacts according to the present invention. FIG. 7 is a flowchart showing a process of manufacturing an electrical contact material according to the present invention, and FIG. 8 is a flowchart showing a process of manufacturing a carbon nanotube coated with silver according to the present invention.
図1に示すように、本発明の製造方法により製造される電気接点材料は、銀がコーティングされたカーボンナノチューブ(CNT)10を含有する。 As shown in FIG. 1, the electrical contact material produced by the production method of the present invention contains carbon nanotubes (CNT) 10 coated with silver.
ここで、電気接点材料は、銀(Ag)、銅(Cu)、ニッケル(Ni)及び金(Au)からなる群から選択される1種以上の金属を含むように構成され、銀(Ag)、銅(Cu)、ニッケル(Ni)、金(Au)としては、それぞれ伝導度が63MS/m、59.6MS/m、14.3MS/m、45.2MS/m以上のものを用いることにより、後述する電気接点材料の密度、電気伝導度、硬度、熱伝導度、延伸率及び電気的寿命を向上させることができる。 Here, the electrical contact material is configured to include one or more metals selected from the group consisting of silver (Ag), copper (Cu), nickel (Ni), and gold (Au), and silver (Ag). By using copper (Cu), nickel (Ni), and gold (Au) having conductivity of 63 MS / m, 59.6 MS / m, 14.3 MS / m, 45.2 MS / m or more, respectively. The density, electrical conductivity, hardness, thermal conductivity, stretch ratio, and electrical life of the electrical contact material described later can be improved.
銀(Ag)は、電気伝導度及び熱伝導度に優れ、低接触抵抗性であるので、電気接点の基本材料として多く用いられ、ニッケル(Ni)は、電気伝導度及び熱伝導度が銀(Ag)より低いが、機械的強度が高いので、銀(Ag)と共に電気接点材料として用いられる。 Silver (Ag) is excellent in electrical conductivity and thermal conductivity, and has low contact resistance, so it is often used as a basic material for electrical contacts. Nickel (Ni) has silver (A) electrical conductivity and thermal conductivity. Although it is lower than Ag), it is used as an electrical contact material together with silver (Ag) because of its high mechanical strength.
ここで、金属の粒径は、1μm〜10μmにすることが好ましい。 Here, the particle size of the metal is preferably 1 μm to 10 μm.
また、銀・ニッケル系合金における銀(Ag)の含有量は、特に限定されるものではないが、55重量%〜65重量%であることが好ましい。銀(Ag)の含有量が55重量%未満では、電気伝導度が低いので電気接点材料として用いることができず、65重量%を超えると、耐摩耗性及び耐消耗性が劣るので製造コストが大幅に上昇する。 Further, the content of silver (Ag) in the silver / nickel alloy is not particularly limited, but is preferably 55 wt% to 65 wt%. If the content of silver (Ag) is less than 55% by weight, the electrical conductivity is low, so it cannot be used as an electrical contact material. Increase significantly.
よって、ニッケル(Ni)の含有量は、35重量%〜45重量%であることが好ましい。 Therefore, the content of nickel (Ni) is preferably 35% by weight to 45% by weight.
カーボンナノチューブは、炭素原子同士がSP2結合により連結されてハニカム構造を形成してチューブ状をなす新素材であって、直径は炭素壁の層数に応じて数〜数十ナノメートル(nm)程度となる。 Carbon nanotubes are a new material in which carbon atoms are connected by SP2 bonds to form a honeycomb structure to form a tube shape. The diameter is several to several tens of nanometers (nm) depending on the number of carbon wall layers. It becomes.
カーボンナノチューブは、電気的、機械的、熱的特性に非常に優れていて複合材料の強化材として用いることができ、電気的ブリッジ(electrical bridge)の役割を果たして電気接点材料の電気的、機械的特性を向上させることができる。 Carbon nanotubes have excellent electrical, mechanical, and thermal properties and can be used as reinforcements in composite materials. They act as electrical bridges and serve as electrical and mechanical materials for electrical contact materials. Characteristics can be improved.
しかし、このような利点を有するカーボンナノチューブには、金属との結合時に分散が困難であるなどの問題がある。 However, the carbon nanotube having such advantages has a problem that it is difficult to disperse when bonded to a metal.
すなわち、電気接点材料にカーボンナノチューブを用いた場合、カーボンナノチューブ同士の凝集により電気接点材料中での均一な分散が得られにくいという問題があり、その不均一な分散により素材特性に影響を与えるという問題がある。 In other words, when carbon nanotubes are used as the electrical contact material, there is a problem that it is difficult to obtain uniform dispersion in the electrical contact material due to aggregation of the carbon nanotubes, and the material properties are affected by the uneven dispersion. There's a problem.
よって、本発明においては、銀(Ag)がコーティングされたカーボンナノチューブを用いて電気接点材料を製造することにより、カーボンナノチューブを電気接点材料中に均一に分散させる。 Therefore, in the present invention, the carbon nanotubes are uniformly dispersed in the electrical contact material by producing the electrical contact material using the carbon nanotubes coated with silver (Ag).
すなわち、図1に示すように銀(Ag)がコーティングされたカーボンナノチューブを用いた場合、材料間の界面に均一に分散し、電気接点に求められる熱伝導度及び耐摩耗性を向上させる。 That is, as shown in FIG. 1, when carbon nanotubes coated with silver (Ag) are used, the carbon nanotubes are uniformly dispersed at the interface between materials, and the thermal conductivity and wear resistance required for electrical contacts are improved.
図2〜図5に示すように、カーボンナノチューブ(CNT)、又は銀(Ag)を含有するカーボンナノチューブ(CNT)は、透過型電子顕微鏡(Transmission Electron Microscope, TEM)や走査型電子顕微鏡(Scanning Electron Microscope, SEM)を用いてその状態が確認され、図6のEDS分析結果を参照すると、各成分が検知されたときに強度が高くなる。 As shown in FIGS. 2 to 5, carbon nanotubes (CNT) or carbon nanotubes (CNT) containing silver (Ag) are used in transmission electron microscopes (TEMs) and scanning electron microscopes (scanning electron microscopes). The state is confirmed using a Microscope (SEM), and referring to the EDS analysis result of FIG. 6, the intensity increases when each component is detected.
以下、図7及び図8を参照して、銀がコーティングされたカーボンナノチューブの製造過程について詳細に説明する。 Hereinafter, the manufacturing process of the carbon nanotube coated with silver will be described in detail with reference to FIGS.
まず、銀及びニッケルを含有する合金と銀がコーティングされたカーボンナノチューブとを混合して粉末混合体を製造する(S101)。 First, an alloy containing silver and nickel and a carbon nanotube coated with silver are mixed to produce a powder mixture (S101).
ここで、銀がコーティングされたカーボンナノチューブを製造する過程は次の通りである。 Here, the process of manufacturing the carbon nanotube coated with silver is as follows.
まず、カーボンナノチューブ0.04gを7Mの硝酸(HNO3)溶液中に入れ、超音波分散を5分間行い、酸処理を2時間行う(S201)。 First, 0.04 g of carbon nanotubes are placed in a 7M nitric acid (HNO 3 ) solution, ultrasonic dispersion is performed for 5 minutes, and acid treatment is performed for 2 hours (S201).
次に、ステップS201で超音波分散及び酸処理されたカーボンナノチューブを、真空濾過法(Vacuum filtration)を用いて脱イオン水でPH7になるまで洗浄する(S203)。 Next, the carbon nanotubes subjected to ultrasonic dispersion and acid treatment in step S201 are washed with deionized water until pH 7 is obtained using vacuum filtration (S203).
次に、ステップS203で洗浄されたカーボンナノチューブを塩化スズ(SnCl2)と塩酸(HCl)の混合溶液及び塩化パラジウム(PdCl2)と塩酸(HCl)の混合溶液と順次混合し、超音波を加えることにより、カーボンナノチューブの表面にスズ(Sn2+)とパラジウム(Pd2+)を結合させる(S205)。 Next, the carbon nanotubes washed in step S203 are sequentially mixed with a mixed solution of tin chloride (SnCl 2 ) and hydrochloric acid (HCl) and a mixed solution of palladium chloride (PdCl 2 ) and hydrochloric acid (HCl), and an ultrasonic wave is applied. Thus, tin (Sn 2+ ) and palladium (Pd 2+ ) are bonded to the surface of the carbon nanotube (S205).
次に、0.3Mの硝酸銀(AgNO3)水溶液とアンモニア水溶液を溶液が無色になるまで混合し、その後ステップS205で製造されたカーボンナノチューブを混合する(S207)。 Next, a 0.3M silver nitrate (AgNO 3 ) aqueous solution and an aqueous ammonia solution are mixed until the solution becomes colorless, and then the carbon nanotubes produced in step S205 are mixed (S207).
次に、0.1Mのグリオキシル酸水溶液と0.5Mの水酸化ナトリウム(NaOH)水溶液をPH9になるまで混合し、混合溶液を90℃で1時間反応させ、その後真空濾過法を用いて脱イオン水でPH7になるまで洗浄して銀がコーティングされたカーボンナノチューブを製造する(S209)。 Next, a 0.1 M aqueous solution of glyoxylic acid and a 0.5 M aqueous solution of sodium hydroxide (NaOH) are mixed until PH9 is reached, the mixed solution is reacted at 90 ° C. for 1 hour, and then deionized using vacuum filtration. Washing with water until PH7 is achieved to produce carbon nanotubes coated with silver (S209).
次に、銀がコーティングされたカーボンナノチューブと合金を混合して粉末混合体を製造する(S211)。 Next, a carbon nanotube coated with silver and an alloy are mixed to produce a powder mixture (S211).
次に、ステップS211で製造された粉末混合体を超音波分散し、真空乾燥し(S103)、その後真空乾燥した粉末混合体を焼結する(S105)。 Next, the powder mixture produced in step S211 is ultrasonically dispersed and vacuum dried (S103), and then the vacuum dried powder mixture is sintered (S105).
ここで、粉末混合体の焼結は、摂氏750℃〜830℃の温度を1分間維持して行うが、焼結方法としては、放電プラズマ焼結法を用いる。 Here, the powder mixture is sintered while maintaining a temperature of 750 ° C. to 830 ° C. for 1 minute. As a sintering method, a discharge plasma sintering method is used.
放電プラズマ焼結法は、黒鉛モールド内で加圧中の原料粒子にパルス電流を直接通電させることにより粒子間の空間から発生する放電プラズマを主熱源として用いる焼結法である。 The discharge plasma sintering method is a sintering method using, as a main heat source, discharge plasma generated from a space between particles by directly applying a pulse current to raw material particles being pressed in a graphite mold.
この方法により、放電プラズマの高エネルギーを熱拡散、電場の作用などに効果的に応用することができる。 By this method, the high energy of the discharge plasma can be effectively applied to thermal diffusion, electric field action, and the like.
また、放電プラズマ焼結法は、比較的低い温度から短時間で急速な昇温が可能であるので、粒子の成長を制御することができ、短時間で緻密な複合体を得ることができ、焼結しにくい材料(難焼結材料)でも容易に焼結することができる。
<実験例>
<Experimental example>
上記表1に示すように、本発明の製造方法により製造された銀がコーティングされたカーボンナノチューブを含有する電気接点材料は、密度、電気伝導度、電気的寿命などが大幅に向上している。 As shown in Table 1 above, the electrical contact material containing silver-coated carbon nanotubes produced by the production method of the present invention has greatly improved density, electrical conductivity, electrical life, and the like.
すなわち、本発明においては、電気接点材料の製造時にカーボンナノチューブに銀を含有させることにより、カーボンナノチューブ同士の凝集を抑制してカーボンナノチューブを電気接点材料中に均一に分散させる。 In other words, in the present invention, the carbon nanotubes are uniformly dispersed in the electrical contact material by suppressing the aggregation of the carbon nanotubes by adding silver to the carbon nanotubes during the production of the electrical contact material.
また、電気接点材料に用いられる銀の含有量を低減することにより、電気接点材料全体の製造コストを低減する。 Moreover, the manufacturing cost of the whole electrical contact material is reduced by reducing the content of silver used in the electrical contact material.
さらに、カーボンナノチューブに少量の銀を用いながらも電気接点材料が優れた特性を有するようにし、電気接点材料が用いられる遮断器などの機能を大幅に向上させる。 Furthermore, the electrical contact material has excellent characteristics while using a small amount of silver for the carbon nanotube, and the function of the circuit breaker in which the electrical contact material is used is greatly improved.
以上、本発明の好ましい一実施形態について説明したが、本発明は、様々な変化、変更及び均等物を用いることができ、上記実施形態を適切に変形して同様に応用することができることは明らかである。よって、上記記載内容は特許請求の範囲により定義される本発明の範囲を限定するものではない。 As mentioned above, although one preferred embodiment of the present invention was described, it is clear that the present invention can use various changes, modifications, and equivalents, and can be similarly applied by appropriately modifying the above embodiment. It is. Therefore, the above description does not limit the scope of the present invention defined by the claims.
10 銀がコーティングされたカーボンナノチューブ 10 Carbon nanotubes coated with silver
Claims (14)
(b)前記段階(a)で超音波分散及び酸処理されたカーボンナノチューブを洗浄する段階と、
(c)前記洗浄されたカーボンナノチューブを塩化スズと塩酸の混合溶液及び塩化パラジウムと塩酸の混合溶液と順次混合し、その後超音波を加えて前記カーボンナノチューブの表面にスズとパラジウムを結合させる段階と、
(d)硝酸銀水溶液とアンモニア水溶液を無色になるまで混合し、その後前記段階(c)で製造されたカーボンナノチューブを混合する段階と、
(e)前記段階(d)で製造された混合溶液にグリオキシル酸水溶液と水酸化ナトリウム水溶液を混合し、その後脱イオン水で洗浄して銀がコーティングされたカーボンナノチューブを製造する段階と、
(f)前記銀がコーティングされたカーボンナノチューブと、金属が混合された合金とを混合して粉末混合体を製造する段階と、を含むことを特徴とする銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法。 (A) placing carbon nanotubes in a nitric acid solution and subjecting them to ultrasonic dispersion and acid treatment;
(B) washing the carbon nanotubes subjected to ultrasonic dispersion and acid treatment in the step (a);
(C) sequentially mixing the washed carbon nanotubes with a mixed solution of tin chloride and hydrochloric acid and a mixed solution of palladium chloride and hydrochloric acid, and then applying ultrasonic waves to bond tin and palladium to the surface of the carbon nanotubes; ,
(D) mixing an aqueous silver nitrate solution and an aqueous ammonia solution until colorless, and then mixing the carbon nanotubes produced in the step (c);
(E) mixing a glyoxylic acid aqueous solution and a sodium hydroxide aqueous solution into the mixed solution produced in the step (d), and then washing with deionized water to produce silver-coated carbon nanotubes;
(F) the silver containing carbon nanotubes coated, comprising the steps of producing a powder mixture by mixing the metal is mixed alloy, carbon nanotubes silver-coated, which comprises a Manufacturing method of electrical contact material.
(h)前記真空乾燥した粉末混合体を焼結する段階と、をさらに含む、請求項1に記載の銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法。 (G) ultrasonically dispersing the powder mixture and vacuum drying;
The method for producing an electrical contact material containing carbon nanotubes coated with silver according to claim 1, further comprising (h) sintering the vacuum-dried powder mixture.
(b)硝酸銀水溶液とアンモニア水溶液を混合し、その後前記段階(a)で製造されたカーボンナノチューブを混合する段階と、
(c)前記段階(b)で製造された混合溶液にグリオキシル酸水溶液と水酸化ナトリウム水溶液を混合して銀がコーティングされたカーボンナノチューブを製造し、その後、前記銀がコーティングされたカーボンナノチューブと、金属が混合された合金とを混合して粉末混合体を製造する段階と、を含むことを特徴とする銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法。 (A) performing ultrasonic dispersion and acid treatment on the carbon nanotube, and then bonding tin and palladium to the surface of the carbon nanotube;
(B) mixing an aqueous silver nitrate solution and an aqueous ammonia solution, and then mixing the carbon nanotubes produced in the step (a);
(C) mixing the aqueous solution of glyoxylic acid and the aqueous solution of sodium hydroxide in the mixed solution prepared in the step (b) to produce silver-coated carbon nanotubes; and thereafter , the silver-coated carbon nanotubes; method of manufacturing an electrical contact material containing carbon nanotubes silver, wherein is coated to include the steps of mixing a metal is mixed alloy to produce the powder mixture, the.
(e)前記真空乾燥した粉末混合体を焼結する段階と、をさらに含む、請求項11に記載の銀がコーティングされたカーボンナノチューブを含有する電気接点材料の製造方法。 (D) ultrasonically dispersing the powder mixture and vacuum drying;
The method for producing an electrical contact material containing carbon nanotubes coated with silver according to claim 11, further comprising (e) sintering the vacuum-dried powder mixture.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150071929A KR20160137178A (en) | 2015-05-22 | 2015-05-22 | METHOD FOR ELECTRICAL CONTACT MATERIALS INCLUDING AG PLATED CNTs |
KR10-2015-0071929 | 2015-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016216820A JP2016216820A (en) | 2016-12-22 |
JP6220009B2 true JP6220009B2 (en) | 2017-10-25 |
Family
ID=55754118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016085849A Active JP6220009B2 (en) | 2015-05-22 | 2016-04-22 | Method for producing electrical contact material containing carbon nanotubes coated with silver |
Country Status (6)
Country | Link |
---|---|
US (1) | US10210965B2 (en) |
EP (1) | EP3096328B1 (en) |
JP (1) | JP6220009B2 (en) |
KR (1) | KR20160137178A (en) |
CN (1) | CN106169386B (en) |
ES (1) | ES2807795T3 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108546938B (en) * | 2018-04-28 | 2020-07-14 | 湖北理工学院 | Preparation method of nickel-coated carbon nanotube composite material |
CN109137524A (en) * | 2018-07-18 | 2019-01-04 | 开封大学 | A kind of preparation method of Ag doped silicon carbide nano wave-absorbing material |
CN109536785B (en) * | 2018-11-30 | 2020-11-20 | 宁波晋畅机电科技有限公司 | Ultra-Silent Roller Hinge Link Slider |
CN109371296B (en) * | 2018-11-30 | 2020-11-20 | 宁波晋畅机电科技有限公司 | Anti-twist jointless coupling |
CN110744067B (en) * | 2019-09-29 | 2022-06-07 | 济南大学 | Method for preparing carbon nano tube loaded gold nano by ultrasonic spraying |
CN110964941A (en) * | 2019-12-27 | 2020-04-07 | 东莞正丰科技有限公司 | Composite carbon material silver-based electric contact material and preparation method thereof |
CN111180102B (en) * | 2020-01-04 | 2020-12-15 | 浙江大学 | A kind of preparation method of conductive silver paste based on silver-coated graphite conductive agent |
CN113492277B (en) * | 2020-03-19 | 2022-09-02 | 江苏奥匠新材料科技有限公司 | Low-temperature solder paste material with metal coating and carbon nano tube reinforcement and preparation method thereof |
CN111462938B (en) * | 2020-04-17 | 2021-09-14 | 珠海蓉胜超微线材有限公司 | Copper-coated carbon nano composite flat wire and preparation method thereof |
CN112195355B (en) * | 2020-10-12 | 2021-10-15 | 昆明理工大学 | A metal matrix composite material with carbon nanotubes distributed in a hexagonal shape and a preparation method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1256450A (en) | 1998-12-04 | 2000-06-14 | 冯桂玉 | Seven-piece abacus-initating picture code |
JP4482744B2 (en) * | 2001-02-23 | 2010-06-16 | 株式会社日立製作所 | Electroless copper plating solution, electroless copper plating method, wiring board manufacturing method |
CN1624175A (en) | 2003-12-02 | 2005-06-08 | 上海电器科学研究所(集团)有限公司 | Carbon nanotube silver graphite electrical contact material and preparation method thereof |
WO2008048705A2 (en) * | 2006-03-10 | 2008-04-24 | Goodrich Corporation | Low density lightning strike protection for use in airplanes |
US20080248194A1 (en) | 2007-04-04 | 2008-10-09 | L'air Liquide - Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for producing a copper layer on a substrate in a flat panel display manufacturing process |
JP2009030100A (en) | 2007-07-26 | 2009-02-12 | Mitsubishi Material Cmi Kk | Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD |
KR100962890B1 (en) | 2007-10-29 | 2010-06-10 | 현대자동차주식회사 | Manufacturing Method of Reinforced Copper Composites Using Nickel Coated Carbon Nanotubes |
KR20090047328A (en) * | 2007-11-07 | 2009-05-12 | 삼성전기주식회사 | Conductive Paste and Printed Circuit Board Using the Same |
KR100988285B1 (en) | 2008-10-09 | 2010-10-18 | 주식회사 엑사이엔씨 | Tungsten wire |
CN102324335B (en) | 2011-06-07 | 2013-10-23 | 天津工业大学 | A kind of preparation method of composite electric contact material |
KR101371088B1 (en) * | 2012-07-26 | 2014-03-12 | 한국과학기술연구원 | a fabricating method of metal thin film using electroless deposition and a thin film device fabricated thereby |
KR101509028B1 (en) | 2013-03-14 | 2015-04-07 | 주식회사 대유신소재 | Methods of manufacturing aluminium-carbon nanotube and aluminium-carbon nanotube composites manufactured by the methods |
WO2014173793A1 (en) * | 2013-04-21 | 2014-10-30 | Sht Smart High Tech Ab | Method for coating of carbon nanomaterials |
US9149833B2 (en) * | 2013-06-19 | 2015-10-06 | Indian Institute Of Technology Madras | Metal nanoparticle decorated carbon nanotubes and methods of preparation and use |
KR101609028B1 (en) * | 2013-11-29 | 2016-04-05 | 엘에스산전 주식회사 | Electrical contact materials and method for preparing the same |
-
2015
- 2015-05-22 KR KR1020150071929A patent/KR20160137178A/en not_active Ceased
-
2016
- 2016-04-11 ES ES16164655T patent/ES2807795T3/en active Active
- 2016-04-11 EP EP16164655.9A patent/EP3096328B1/en active Active
- 2016-04-22 JP JP2016085849A patent/JP6220009B2/en active Active
- 2016-05-19 CN CN201610340703.8A patent/CN106169386B/en active Active
- 2016-05-23 US US15/162,471 patent/US10210965B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2807795T3 (en) | 2021-02-24 |
US20160343463A1 (en) | 2016-11-24 |
EP3096328A1 (en) | 2016-11-23 |
KR20160137178A (en) | 2016-11-30 |
JP2016216820A (en) | 2016-12-22 |
US10210965B2 (en) | 2019-02-19 |
EP3096328B1 (en) | 2020-05-06 |
CN106169386B (en) | 2019-01-22 |
CN106169386A (en) | 2016-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220009B2 (en) | Method for producing electrical contact material containing carbon nanotubes coated with silver | |
KR101609028B1 (en) | Electrical contact materials and method for preparing the same | |
JP5270632B2 (en) | Method for producing composite material of nanocarbon and metal or ceramic | |
JP2018513919A (en) | Graphene / silver composite material and preparation method thereof | |
CN106086495B (en) | Cupric oxide doped siller tin oxide composite and preparation method thereof | |
CN103894623B (en) | A kind of preparation method of antioxidant ultrafine nickel powder | |
JPWO2006043431A1 (en) | Composite metal body and method for producing the same | |
CN105209660A (en) | Method for coating of carbon nanomaterials | |
CN104741602B (en) | A kind of electrical contact material including metal and metal oxide and preparation method thereof | |
CN106903325A (en) | The preparation method of silver-tin contact material and its contact material being made | |
KR102258336B1 (en) | METHOD FOR ELECTRICAL CONTACT MATERIALS INCLUDING AG PLATED CNTs | |
US1026344A (en) | Binder for the manufacture of refractory conductors. | |
CN109266891B (en) | Preparation method of tin oxide enhanced silver-based electric contact alloy | |
JP7631540B2 (en) | Composite material for electrical contacts and method for producing same | |
CN1539727A (en) | Preparation method of metal-coated nanocrystalline composite powder | |
KR20180117256A (en) | Conductive metal-coated Al powder and manufacturing method | |
JP2017109889A (en) | Composite powder and manufacturing method therefor, electrical contact material and manufacturing method therefor | |
CN100402204C (en) | Electrochemical displacement-deposition method for preparing composite metal powder | |
JP2003231972A (en) | Method for manufacturing electronic parts, and electronic parts | |
JP2019131453A (en) | Iron compound particle, iron compound electrode and method for producing the same | |
WO2016136321A1 (en) | Composite material and manufacturing method thereof | |
JP2015155360A (en) | Production method of sinter ceramic electrode | |
JP2015081377A (en) | Method of producing nickel powder including method of coating surface of nickel particle with cobalt-containing nickel layer and nickel powder using the method | |
JP2015194415A (en) | Nickel fine particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6220009 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |