JP6218099B1 - Solid foundation for liquefied and soft ground - Google Patents
Solid foundation for liquefied and soft ground Download PDFInfo
- Publication number
- JP6218099B1 JP6218099B1 JP2017006644A JP2017006644A JP6218099B1 JP 6218099 B1 JP6218099 B1 JP 6218099B1 JP 2017006644 A JP2017006644 A JP 2017006644A JP 2017006644 A JP2017006644 A JP 2017006644A JP 6218099 B1 JP6218099 B1 JP 6218099B1
- Authority
- JP
- Japan
- Prior art keywords
- outer periphery
- bottom plate
- rising
- outer peripheral
- corner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Foundations (AREA)
Abstract
【課題】地盤が液状化した場合における住宅のめり込み沈下を防止することが可能な住宅のべた基礎及びその造成方法を提供する。【解決手段】玄関、台所、風呂、便所、及び居室を有する住宅のべた基礎1であって、スラブ部2と当該スラブ部から立ち上がる立上り部3aとを備え、スラブ部は、所定形状の外周を有し、設計グランドラインGLに沿って延在する板状の底盤部2aと、底盤部の外周部から、当該外周部の全周に渡って、下方に突出する外周地中梁部2bと、を含み、底盤部における外周地中梁部より内側に位置する部分である中間部分4の下面から外周地中梁部の下端までの寸法D1が、0.3m以上である。【選択図】図1The present invention provides a solid foundation for a house capable of preventing the sinking and sinking of the house when the ground is liquefied, and a method for producing the foundation. A solid foundation 1 of a house having an entrance, a kitchen, a bath, a toilet, and a living room, comprising a slab part 2 and a rising part 3a rising from the slab part, and the slab part has an outer periphery of a predetermined shape. And a plate-like bottom board part 2a extending along the design ground line GL, and an outer peripheral underground beam part 2b protruding downward from the outer peripheral part of the bottom board part over the entire circumference of the outer peripheral part, The dimension D1 from the lower surface of the intermediate part 4 which is a part located inside the outer periphery underground beam part in a bottom board part to the lower end of an outer periphery underground beam part is 0.3 m or more. [Selection] Figure 1
Description
本発明は、液状化及び軟弱地盤に対応可能な住宅のべた基礎及びその造成方法に関する。 The present invention relates to a solid foundation for a house that can cope with liquefaction and soft ground, and a method for producing the foundation.
従来から、軟弱地盤に住宅を建設する場合に、住宅の基礎をべた基礎にすることが知られている。 Conventionally, when a house is constructed on soft ground, it is known that the foundation of the house is a solid foundation.
また、住宅の基礎の根入れ深さに関しては、例えば、住宅瑕疵担保責任保険法人住宅補償機構(現住宅補償機構株式会社)の設計施工基準が知られている(非特許文献1参照)。この設計基準は、他の瑕疵保険法人の基になっている。この設計基準の第40ページに基礎断面図が記載され、「根入れ深さは、地面より240mm以上とし、かつ、凍結深度以上として下さい。」と記載されている。 In addition, with regard to the depth of the foundation of the house, for example, the design and construction standards of the Housing Liability Guarantee Insurance Corporation Housing Compensation Organization (currently Housing Compensation Organization Co., Ltd.) are known (see Non-Patent Document 1). This design standard is the basis of other insurance companies. On page 40 of this design standard, a basic cross-sectional view is described, and “the depth of penetration should be 240 mm or more from the ground and the freezing depth or more.”
しかし、上記設計施工基準は、地盤の液状化対策に関して具体的な提案はなされていない。 However, no specific proposal has been made regarding the design and construction standards regarding measures for liquefaction of the ground.
本発明は地盤の液状化に伴う課題を解決するためになされたもので、地盤が液状化した場合における住宅のめり込み沈下を防止することが可能な住宅のべた基礎及びその造成方法を提供することを目的とする。 The present invention was made in order to solve the problems associated with liquefaction of the ground, and provides a solid foundation for a house capable of preventing the sinking of the house when the ground is liquefied and a method for producing the foundation. Objective.
上記課題を解決するために、本発明のある態様(aspect)に係るべた基礎(下面の全面に渡って捨てコンクリート層が設けられた場合を除く)は、玄関、台所、風呂、便所、及び居室を有する住宅のべた基礎であって、スラブ部と当該スラブ部から立ち上がる立上り部とを備え、前記スラブ部は、所定形状の外周を有し、設計グランドラインに沿って延在する板状の底盤部と、前記底盤部の外周部から、当該外周部の全周に渡って、下方に突出する外周地中梁部と、を含み、前記底盤部における前記外周地中梁部より内側に位置する部分である中間部分の下面から前記外周地中梁部の下端までの寸法が、0.3m以上であり、前記底盤部に、当該底盤部の全面に渡って、所定の面積当たり所定数以上の両端が開放されたパイプ(防蟻粒子が充填された水抜孔を除く)が、前記底盤部を上下方向に貫通するように設けられており、前記パイプの上端の開口が他の部材によって閉鎖されていない。 In order to solve the above-mentioned problems, a solid foundation according to an aspect of the present invention ( except when a discarded concrete layer is provided over the entire lower surface) includes a front door, a kitchen, a bath, a toilet, and a living room. A plate-shaped bottom board having a predetermined outer periphery and extending along a design ground line, comprising a slab part and a rising part rising from the slab part And an outer peripheral underground beam portion projecting downward from the outer peripheral portion of the bottom plate portion over the entire circumference of the outer peripheral portion, and located inside the outer peripheral underground beam portion in the bottom plate portion The dimension from the lower surface of the intermediate portion, which is a portion, to the lower end of the outer peripheral underground beam portion is 0.3 m or more, and the bottom plate portion has a predetermined number or more per predetermined area over the entire surface of the bottom plate portion. pipe whose both ends are open (termite particles of filler And excluding water drainage holes), the bottom plate portion provided so as to penetrate in the vertical direction, the opening at the upper end of the pipe is not closed by the other members.
この構成によれば、べた基礎の外周地中梁部と、底盤部における外周地中梁部より内側に位置する中間部分とが、下方に開口する凹部(以下、下向き凹部という)を形成する。そして、底盤部の中間部分の下面から外周地中梁部の下端までの寸法が、この下向き凹部の深さに相当する。そうすると、住宅の建設予定地に砕石地業を造成し、この砕石地業の外周部を除く部分の上に、砂・砂利層を形成し、砕石地業の外周部の上に外周地中梁部の下端部が位置し、且つ、砂・砂利層の上に下向き凹部が位置するようにベタ基礎を設けた場合、下向き凹部の深さが0.3m以上であるので、下向き凹部を0.3m以上の厚みの砂・砂利層で満たすことができる。その結果、地盤が液状化しても、下向き凹部に上昇する余剰水を下向き凹部内の砂・砂利層で吸収することができるので、住宅のめり込み沈下を防止することができる。また、底盤部の下向き凹部の砂・砂利層に液状化により発生した余剰水が上昇すると、下向き凹部の砂・砂利層中の空気が、両端が開放されたパイプから排出されるので、当該砂・砂利層が容易に余剰水を吸収することができる。その結果、好適に住宅のめり込み沈下を防止することができる。 According to this structure, the outer periphery underground beam part of a solid foundation and the intermediate part located inside the outer periphery underground beam part in a bottom board part form the recessed part (henceforth downward recessed part) opened below. And the dimension from the lower surface of the intermediate part of a bottom board part to the lower end of an outer periphery underground beam part is equivalent to the depth of this downward recessed part. Then, a crushed stone industry was created in the planned construction site of the house, a sand and gravel layer was formed on the portion other than the outer periphery of the crushed stone industry, and an outer ground underground beam was formed on the outer periphery of the crushed stone industry. When the solid foundation is provided so that the lower end portion of the portion is located and the downward concave portion is positioned on the sand / gravel layer, the depth of the downward concave portion is 0.3 m or more. It can be filled with sand and gravel layers with a thickness of 3m or more. As a result, even if the ground is liquefied, surplus water rising in the downward recess can be absorbed by the sand / gravel layer in the downward recess, so that the sinking of the house can be prevented. In addition, when excess water generated by liquefaction rises in the sand / gravel layer in the downward recess of the bottom plate, the air in the sand / gravel layer in the downward recess is discharged from the pipe open at both ends.・ The gravel layer can absorb excess water easily. As a result, the sinking of the house can be suitably prevented.
前記設計グランドラインから前記外周地中梁部の下端までの寸法である根入れ深さが0.4m以上であってもよい。 The penetration depth, which is a dimension from the design ground line to the lower end of the outer peripheral underground beam portion, may be 0.4 m or more.
この構成によれば、設計グランドラインから底盤部の中間部分の下面までの寸法が0.1m以上となるので、底盤部の必要強度を確保することができる。 According to this configuration, since the dimension from the design ground line to the lower surface of the intermediate portion of the bottom plate portion is 0.1 m or more, the necessary strength of the bottom plate portion can be ensured.
前記底盤部が入隅を有する形状の外周を有し、前記底盤部の外周部に、当該底盤部の全周に渡って、外周立上り部が設けられ、前記底盤部の入隅に位置する外周立上り部に接続するように中間立上り部が設けられていてもよい。 The bottom plate portion has an outer periphery with a corner shape, and an outer periphery rising portion is provided on the outer periphery of the bottom plate portion over the entire periphery of the bottom plate portion, and the outer periphery is located at the corner of the bottom plate portion. An intermediate rising portion may be provided so as to connect to the rising portion.
この構成によれば、入隅を有する外周形状の外周立上り部の上に入隅を有する建物が固定されるので、地震時に、入隅の角部に位置する外周立上り部(以下、入隅立ち上がり部という)に捻じれモーメントが発生する。しかし、中間立上り部が入隅立上り部を支持するので、当該捻じれモーメントによる入隅立上り部の損壊を防止することができる。 According to this configuration, since the building having the entrance corner is fixed on the outer periphery rising portion of the outer peripheral shape having the entrance corner, the outer periphery rise portion (hereinafter referred to as the entrance corner rise) located at the corner of the entrance corner at the time of an earthquake. Torsional moment occurs. However, since the intermediate rising portion supports the entering corner rising portion, damage to the entering corner rising portion due to the twisting moment can be prevented.
前記底盤部が出隅を有する形状の外周を有し、前記立上り部として、平面視において、前記出隅の部分を除いて前記底盤部の外周に沿い、前記出隅の部分において入隅を有する形状の外周を有して、前記底盤部から立ち上がるように外周立上り部が設けられていてもよい。 The bottom board portion has an outer periphery with a shape having a protruding corner, and the rising portion has an outer corner along the outer periphery of the bottom plate portion except for the protruding corner portion in a plan view, and has an entering corner at the protruding corner portion. The outer periphery rising part may be provided so that it may have a shape outer periphery and may stand up from the bottom board part.
この構成によれば、入隅を有する外周形状の外周立上り部の上に入隅を有する建物が固定されるので、地震時に、入隅立ち上がり部に捻じれモーメントが発生する。しかし、出隅の外周地中梁部が入隅立上り部を支持するので、当該捻じれモーメントによる入隅立上り部の損壊を防止することができる。 According to this configuration, since the building having the corner is fixed on the outer peripheral rising portion having the outer corner shape having the corner, a twisting moment is generated in the corner rising portion at the time of an earthquake. However, since the outer underground underground beam portion at the exit corner supports the rising corner rising portion, damage to the rising corner rising portion due to the twisting moment can be prevented.
前記底盤部の中間部分の下面から前記外周地中梁部の下端までの寸法が、0.3m以上1.0m以下であってもよい。 The dimension from the lower surface of the intermediate part of the bottom board part to the lower end of the outer periphery underground beam part may be 0.3 m or more and 1.0 m or less.
この構成によれば、余剰水が砕石地業から1.0mを越えて上昇することは予想されないので、安全に下向き凹部内の砂・砂利層で吸収することができる。 According to this configuration, it is not expected that surplus water will rise beyond 1.0 m from the crushed stone industry, so that it can be safely absorbed by the sand / gravel layer in the downward recess.
前記根入れ深さが、0.4m以上1.1m以下であってもよい。 The depth of penetration may be 0.4 m or more and 1.1 m or less.
この構成によれば、余剰水が砕石地業から1.0mを越えて上昇することは予想されないので、安全に下向き凹部内の砂・砂利層で吸収することができる。 According to this configuration, it is not expected that surplus water will rise beyond 1.0 m from the crushed stone industry, so that it can be safely absorbed by the sand / gravel layer in the downward recess.
また、本発明の他の態様(aspect)に係る住宅のべた基礎の造成方法は、上記のいずれかの住宅のべた基礎を用いた住宅のべた基礎の造成方法であって、前記住宅の建設予定地に砕石地業を造成する工程と、前記砕石地業の外周部を除く部分の上に、砂及び砂利の少なくとも一方で構成される砂・砂利層を造成する工程と、前記砕石地業の外周部の上に前記外周地中梁部の下端部が位置し、且つ、前記砂・砂利層の上に前記底盤部の中間部分が位置するように前記べた基礎を設ける工程と、を含み、
前記底盤部の前記中間部分の下の前記砂・砂利層の厚みが0.3m以上である。
Further, a method for creating a solid foundation for a house according to another aspect of the present invention is a method for creating a solid foundation for a house using any one of the solid foundations for a house described above. A step of creating a crushed stone industry on the ground, a step of creating a sand / gravel layer composed of at least one of sand and gravel on a portion excluding the outer periphery of the crushed stone industry, and Providing the solid foundation so that a lower end portion of the outer peripheral underground beam portion is positioned on the outer peripheral portion, and an intermediate portion of the bottom base portion is positioned on the sand / gravel layer,
The thickness of the sand / gravel layer under the intermediate portion of the bottom board is 0.3 m or more.
この構成によれば、底盤部の下向き凹部が0.3m以上の厚みの砂・砂利層で満されているので、地震により地盤が液状化しても、下向き凹部に上昇する余剰水を下向き凹部内の砂・砂利層で吸収することができる。その結果、住宅のめり込み沈下を防止することができる。 According to this configuration, since the downward concave portion of the bottom plate portion is filled with a sand / gravel layer having a thickness of 0.3 m or more, even if the ground liquefies due to an earthquake, excess water rising to the downward concave portion is contained in the downward concave portion. Can be absorbed by sand and gravel layer. As a result, the sinking of the house can be prevented.
前記べた基礎の前記底盤部の中間部分の下の前記砂・砂利層の厚みが0.3m以上1.0m以下であってもよい。 A thickness of the sand / gravel layer under the middle portion of the bottom base portion of the solid foundation may be not less than 0.3 m and not more than 1.0 m.
この構成によれば、余剰水が砕石地業から1.0mを越えて上昇することは予想されないので、安全に下向き凹部内の砂・砂利層で吸収することができる。 According to this configuration, it is not expected that surplus water will rise beyond 1.0 m from the crushed stone industry, so that it can be safely absorbed by the sand / gravel layer in the downward recess.
本発明は、地盤が液状化した場合における住宅のめり込み沈下を防止することが可能な住宅のべた基礎及びその造成方法を提供することができるという効果を奏する。 INDUSTRIAL APPLICABILITY The present invention has an effect that it is possible to provide a solid foundation for a house that can prevent the sinking and sinking of the house when the ground is liquefied and a method for producing the foundation.
(本発明の知見)
本発明者等は、種々の建物のうち、住宅に特化して、地盤の液状化に伴う課題を解決すべく鋭意検討した。その過程で、以下の知見を得た。
(Knowledge of the present invention)
The present inventors have intensively studied to solve problems associated with liquefaction of the ground, specializing in houses among various buildings. In the process, the following knowledge was obtained.
本発明者等は、國生剛治氏の論文「砂層の成層構造による液状化時の水膜生成と地盤安定性への影響(応用地質,第41巻,第2号,77−86頁,2000)」に着目した。この論文を、以下、「國生論文」と略記する。 The inventors of the present invention are the authors of Goji Kunio's paper “The formation of water film and the effect on ground stability during liquefaction due to the stratified structure of the sand layer (Application Geology, Vol. 41, No. 2, pp. 77-86, 2000). ”. Hereinafter, this paper is abbreviated as “national paper”.
この論文では、砂地盤においてよく見られる成層構造が液状化時の挙動に及ぼす影響について、2種類の模型実験を行っている。まず、成層構造を模擬した1次元の緩い飽和砂層の液状化実験によって、砂層に含まれる低透水層の直下で下部から絞り出された間隙水が一時貯留されて、容易に水膜が形成されることが示されている。そして、模型斜面の振動実験により、不均質砂層で水膜が発生すると、地盤の流動破壊が、過去の地震被害でしばしば見られたように震動終了後も継続し、水膜に沿って不連続的に生じることが示されている。また、浸透力により低透水層が破られると、上部層は局所的に再液状化して不安定化することが判明している。つまり、この論文では、砂地盤の成層構造における液状化のメカニズムがほぼ定性的に解明されている。そして、特に、シルトシーム(低透水層)を含む砂層についての実験結果から、この模擬的な液状化における砂層の沈下量が3.7cmであることが読み取れる(第79頁、図−5(a)シルトシームあり)。 In this paper, two types of model experiments are conducted on the effect of the stratified structure often seen in sand ground on the behavior during liquefaction. First, in a liquefaction experiment of a one-dimensional loose saturated sand layer that simulates a stratified structure, pore water squeezed from the bottom immediately below the low-permeability layer contained in the sand layer is temporarily stored, and a water film is easily formed. It has been shown that. When a water film is generated in a heterogeneous sand layer by a vibration test on the model slope, the flow failure of the ground continues even after the end of the vibration, as was often seen in past earthquake damage, and discontinuous along the water film. Has been shown to occur. Further, it has been found that when the low water permeability layer is broken by the osmotic force, the upper layer is locally liquefied and destabilized. In other words, in this paper, the liquefaction mechanism in the stratified structure of sand ground is clarified qualitatively. And especially from the experimental results for sand layers containing silt seams (low water permeability layers), it can be read that the amount of subsidence of sand layers in this simulated liquefaction is 3.7 cm (page 79, Fig. 5 (a)). Silt seam).
この沈下量の数値は、模型を用いた実験に基づくものであるので、そのまま、実際の地盤の液状化に適用することはできない。しかし、このように定性的にメカニズムが解明された液状化に関する具体的な数値は、安全率を見込めば、実際の地盤の液状化に有効に適用し得ることに本発明者等は気が付いた。 Since this numerical value of subsidence is based on an experiment using a model, it cannot be applied to actual liquefaction of the ground as it is. However, the present inventors have found that specific numerical values relating to liquefaction whose qualitative mechanism has been elucidated in this way can be effectively applied to actual ground liquefaction if the safety factor is expected.
本発明のこのような知見に基づいてなされたものである。 The present invention has been made based on such knowledge.
以下、これらの知見を具体化した本発明の実施形態について、添付図面を参照しつつ説明する。なお、以下では、全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、以下では、本発明を理解しやすくするために、図が以下のようにアレンジされている。以下の図では、本発明に関係しない要素が省略される場合がある。また、以下の図は、理解を容易にするために誇張されている場合があり、対象物の寸法比率が必ずしも正確ではない。また、各図が、厳密に互いに一致しない場合がある。 Hereinafter, embodiments of the present invention embodying these findings will be described with reference to the accompanying drawings. In the following description, the same or corresponding elements are denoted by the same reference numerals throughout all the drawings, and redundant description thereof is omitted. In the following, in order to facilitate understanding of the present invention, the drawings are arranged as follows. In the following drawings, elements not related to the present invention may be omitted. Further, the following drawings may be exaggerated for easy understanding, and the dimensional ratio of the object is not always accurate. Also, the drawings may not exactly match each other.
(実施形態1)
[べた基礎の構成]
図1は、本発明の実施形態1に係る住宅のべた基礎の構成を示す図であり、上段の図は、斜視図であり、下段の図は上段の図のA部の部分断面図である。この部分断面図は、A部におけるべた基礎の図面左右方向に沿った縦断面を示す。ここで、本願においては、以下のように定義する。「住宅」は、玄関、台所、風呂、便所、及び居室を有する建物を意味する。「住宅」は、基礎と、基礎の上に固定された建物本体とを含む。また、建物の基礎構造の寸法を、特許法施行規則第3条に規定されている計量法に従って、「m」で表す。また、建物本体に対して用いられる「入隅」及び「出隅」の概念を、基礎についても用いる。
(Embodiment 1)
[Structure of solid foundation]
FIG. 1 is a diagram illustrating a configuration of a solid foundation for a house according to
図1を参照すると、住宅のべた基礎(以下、単にべた基礎という)1は、スラブ部2と当該スラブ部2から立ち上がる立上り部3a、3b(図4参照)とを備える。べた基礎1の材質は特に限定されないが、例えば、内部に鉄筋が配置されたコンクリート製である。
Referring to FIG. 1, a solid foundation (hereinafter simply referred to as a solid foundation) 1 of a house includes a
立上り部3a、3bは、実際には上面に凹部が形成され、側面に開口が形成され得るが、図1では、簡略されて示されている。立上り部3a、3bは、建物本体(図示せず)の基部の外周に対応する外周立上り部3aと、建物本体の間仕切りに応じて設けられ、外周立上り部の適宜な2ヶ所を接続する中間立上り部3b(図4参照)とを含む。図1には、発明を理解し易くするために、建物本体の外周に対応する外周立上り部3aのみが示されている。
In fact, the rising
スラブ部2は、底盤部2aと外周地中梁部2bとを含む。底盤部2aは、所定形状の外周を有する。ここでは、入隅を有する矩形の外周を有する。底盤部2aの外周形状は、基本的に、外周立上り部の外周形状と一致するが、後述する実施形態4のように、一致しない場合もある。底盤部2aは、設計グランドラインGLに沿って延在する板状に形成される。
The
外周地中梁部2bは、底盤部2aの外周部から、当該外周部の全周に渡って、下方に突出するように設けられる。なお、外周地中梁部2bの適宜な2ヶ所を接続する中間地中梁部を設けてもよい。外周地中梁部2bの断面形状は任意である。典型的には、外周地中梁部2bは、下方に向かって、一方の底角が直角である台形に形成される。なお、典型的には、外周立上り部3aの外周面、スラブ部2の底盤部2a及び外周地中梁部2bの外周面は、面一に形成される。
The outer periphery
そして、スラブ部2では、底盤部2aにおける外周地中梁部2bより内側に位置する部分である中間部分4の下面から外周地中梁部2bの下端までの寸法D1が、0.3m以上である。ここで、「中間部分の下面から前記外周地中梁部の下端までの寸法」とは、中間部分4の下面の法線方向における当該下面と外周地中梁部2bの下端との距離を意味する。また、外周地中梁部2bと、底盤部2aにおける外周地中梁部2bより内側に位置する中間部分4とが、下方に開口する下向き凹部15を形成する。下向き凹部15の底面(上面)は、外周地中梁部2bの内周面と底盤部2aの中間部分の下面とで構成される。そして、底盤部2aの中間部分4の下面から外周地中梁部の下端までの寸法が、この下向き凹部15の深さに相当する。
And in the
また、設計グランドラインGLから外周地中梁部2bの下端までの寸法である根入れ深さD2が0.4m以上である。D1及びD2の数値限定の根拠は、後述する[本発明の原理]において説明する。なお、D1の上限は、1.0m以下とすることが好ましく、D2の上限は、1.1m以下とすることが好ましい。余剰水が砕石地業から1.0mを越えて上昇することは予想されないので、D1が1.0m以下であり、且つD2が1.1m以下であっても安全に下向き凹部15内の砂・砂利層で吸収することができるからである。
Moreover, the penetration depth D2 which is a dimension from the design ground line GL to the lower end of the outer periphery
[べた基礎の造成方法]
図2は、図1の住宅のべた基礎1を用いた住宅のべた基礎の造成方法を示す部分断面図である。
[How to create a solid foundation]
FIG. 2 is a partial cross-sectional view showing a method for building a solid foundation for a house using the
図2を参照すると、本実施形態1に係る住宅のべた基礎の造成方法では、住宅の建設予定地に砕石地業11が造成され、次いで、砕石地業11の外周部を除く部分の上に、砂及び砂利の少なくとも一方で構成される砂・砂利層12が造成され、次いで、砕石地業11の外周部の上に外周地中梁部2bの下端部が位置し、且つ、砂・砂利層12の上に底盤部2aの中間部分4が位置するようにべた基礎1が設けられる。なお、上述のように、外周地中梁部2bが、下方に向かって、一方の底角が直角である台形に形成される場合、べた基礎1は、砕石地業11の外周部の上に外周地中梁部2bの下端面が位置し、且つ、砂・砂利層12の上に外周地中梁部2bの内周面及び底盤部2aの中間部分4の下面が位置するように設けられる。また、砂・砂利層12は、下向き凹部15の底面(上面)を構成する外周地中梁部2bの内周面及び底盤部2aの中間部分4の下面の形状に沿う上面を有するよう、扁平な台形状の縦断面を有するように造成される。
Referring to FIG. 2, in the method for building the solid foundation of the house according to the first embodiment, the crushed
なお、砂・砂利層12の上に均しモルタル層(捨てコンクリート層)を設けてもよい。また、砂・砂利層12の上に、遮水(防湿)用のビニルシートを設けてもよい。
A leveling mortar layer (abandoned concrete layer) may be provided on the sand /
そして、底盤部2aの中間部分4の下の砂・砂利層12の厚みD3が0.3m以上とされる。ここで、「砂・砂利層」は、砂、又は砂利、又は砂及び砂利で構成されていれば良い。「砂及び砂利の少なくとも一方で構成される」とは、「砂・砂利層」が、実質的に砂及び砂利の少なくとも一方を含む意味であり、「砂・砂利層」が技術常識上の混在物を含んでいてもよい。底盤部2aの中間部分4の下の砂・砂利層の厚みD3の数値限定の根拠は、後述する[本発明の原理]において説明する。なお、当該砂・砂利層の厚みD3は、1.0m以下とすることが好ましい。余剰水が砕石地業から1.0mを越えて上昇することは予想されないので、D3が1.0m以下であっても安全に下向き凹部内の砂・砂利層で吸収することができるからである。
And thickness D3 of the sand and
[作用効果]
図1及び図2を参照すると、本実施形態1によれば、べた基礎1は、外周地中梁部2bと、底盤部2aにおける外周地中梁部2bより内側に位置する中間部分4とが、下方に開口する下向き凹部15を形成する。そして、底盤部2aの中間部分4の下面から外周地中梁部2bの下端までの寸法D1が、この下向き凹部15の深さに相当する。そうすると、上述のように、住宅の建設予定地に砕石地業11を造成し、この砕石地業11の外周部を除く部分の上に、砂・砂利層12を形成し、砕石地業11の外周部の上に外周地中梁部2bの下端部が位置し、且つ、砂・砂利層12の上に下向き凹部15が位置するようにベタ基礎1を設けると、下向き凹部15の深さが0.3m以上であるので、下向き凹部を0.3m以上の厚みの砂・砂利層で満たすことができる。その結果、地盤が液状化しても、下向き凹部15に上昇する余剰水を下向き凹部15内の砂・砂利層12で吸収することができるので、住宅のめり込み沈下を防止することができる。
[Function and effect]
1 and 2, according to the first embodiment, the
[本発明の原理]
<砂層の厚みの算出>
以下では、建物の基礎が9.0m×7.0mの矩形に2m×2mの入隅を有する建物のモデルを用いて、地盤の液状化に対する安全計算を行う。
[Principle of the present invention]
<Calculation of sand layer thickness>
In the following, a safety calculation for liquefaction of the ground is performed using a building model in which the foundation of the building has a rectangular shape of 9.0 m × 7.0 m and a corner of 2 m × 2 m.
まず、砂利及び砂単体及び、水を含む砂利及び砂の比重を実験により求めた。 First, specific gravities of gravel and sand alone, and gravel and sand containing water were determined by experiments.
砂利のみの比重は、ρg1=1.42であり、(砂利+水)の比重は、ρg2=1.95である。 The specific gravity of only gravel is ρg1 = 1.42, and the specific gravity of (gravel + water) is ρg2 = 1.95.
砂のみの比重は、ρs1=1.49であり、(砂+水)の比重は、ρs2=1.92である。 The specific gravity of only sand is ρs1 = 1.49, and the specific gravity of (sand + water) is ρs2 = 1.92.
次に、建物の直下において吸収する余剰水の厚みを検討する。 Next, the thickness of surplus water absorbed just below the building will be examined.
水を含む砂利又は砂の比重と、砂利又は砂単体の比重との差は、含まれている水の比重、すなわち、含水率に他ならない。また、この比重実験における含水率は、吸水率に相当する。従って、
砂利の吸水率は、ρg2−ρg1=0.53であり、
砂の吸水率は、ρs2−ρs1=0.43である。
The difference between the specific gravity of gravel or sand containing water and the specific gravity of gravel or single sand is nothing but the specific gravity of the contained water, that is, the water content. Further, the moisture content in this specific gravity experiment corresponds to the water absorption rate. Therefore,
The water absorption rate of gravel is ρg2−ρg1 = 0.53,
The water absorption rate of sand is ρs2−ρs1 = 0.43.
ここでは、液状化に対する安全を計算するので、吸水率として、安全側である低い方の値0.43を採用する。 Here, since safety against liquefaction is calculated, the lower value 0.43 on the safe side is adopted as the water absorption rate.
過剰間隙水(余剰水)は、砂質土における地震による常水位以下の液状化層で発生する。そこで、上昇する余剰水を安全に吸収及び保持すれば、地震時における地表で生じる、建物のめり込み沈下を防止することができる。 Excess pore water (surplus water) is generated in the liquefied layer below the normal water level due to the earthquake in sandy soil. Therefore, if the surplus water that rises can be safely absorbed and retained, it is possible to prevent the sinking and sinking of the building that occurs on the ground surface during an earthquake.
上述のように國生論文の結論に対する安全率として、国土交通省の告示に定める許容応力度の安全率(平13国交告1113号:「地盤の許容応力及び基礎ぐいの許容支持力を定める方法」第4参照)を採用する。当該告示には、「許容応力度は極限応力度の1/3」とする旨規定されていて、極限応力度に対し、許容応力度について3倍の安全率を見込んでいる。
As mentioned above, as the safety factor for the conclusion of the national paper, the safety factor of the allowable stress level specified in the notification of the Ministry of Land, Infrastructure, Transport and Tourism (
ここで、國生論文におけるシルトシーム(低透水層)を含む砂層の沈下量は3.7cmであった。これに3倍の安全率を見込むと、
0.037m×3=0.111mとなる。
Here, the subsidence amount of the sand layer including the silt seam (low permeability layer) in the national paper was 3.7 cm. If we expect a safety factor of 3 times,
0.037 m × 3 = 0.111 m.
必要な砂層の厚みは、その吸水率の逆比に比例する。そうすると、必要な砂層の厚みは、0.111÷0.43=0.258mとなる。 The required sand layer thickness is proportional to the inverse ratio of its water absorption. Then, the necessary thickness of the sand layer is 0.111 ÷ 0.43 = 0.258 m.
<建物への適用>
次に、上記の建物のモデルへの適用を、図1及び図2を参照して、検討する。上記建物のモデルでは、べた基礎の面積は、(9×7)−(2×2)=63−4=59m2である。これが、液状化発生床面積になる。
<Application to buildings>
Next, application to the building model will be discussed with reference to FIGS. In the building model, the area of the solid foundation is (9 × 7) − (2 × 2) = 63−4 = 59 m 2 . This is the liquefaction generation floor area.
一方、本実施形態1では、発生した余剰水を、上述の下向き凹部15内の砂・砂利層12によって吸収するので、べた基礎1の面積から、外周地中梁部2bの下端面の面積を差し引いたものが、実質的に余剰水を吸収する実質吸収床面積になる。
On the other hand, in this
外周地中梁部2bの下端の幅は、上記建物のモデルでは、0.25mである。従って、外周地中梁部2bの下端の面積は、(9+7)×2×0.25=8m2である。従って、実質吸収面積は、59−8=51m2となる。
The width of the lower end of the outer peripheral
発生する余剰水の厚みは地盤の沈下量に等しい。従って、余剰水の厚みは、ここでは、國生論文の沈下量3.7cmに上述の3倍の安全率を見込んだものになり、0.111mである。 The thickness of excess water generated is equal to the amount of ground subsidence. Therefore, the thickness of the surplus water is 0.111 m, which is calculated by considering the safety factor of the above three times to the subsidence amount of 3.7 cm in the national paper.
そうすると、余剰水の最大発生量は、0.111m×59m3=6,549m3となる。 Then, the maximum generation amount of excess water becomes 0.111m × 59m 3 = 6,549m 3.
必要な砂層の厚みは、6,549÷51÷0.43=0.298≒0.30mとなる。 The necessary sand layer thickness is 6,549 ÷ 51 ÷ 0.43 = 0.298≈0.30 m.
なお、砂利層の場合、必要な厚みは、6,549÷51÷0.53=0.242m<0.298mとなり、砂より砂利の方が安全であることが判る。 In the case of a gravel layer, the required thickness is 6,549 ÷ 51 ÷ 0.53 = 0.242 m <0.298 m, which indicates that gravel is safer than sand.
また、上記建物のモデルでは、設計グランドラインGLから底盤部2aの中間部分4の下面までの寸法が0.10mである。従って、建物の外周部のべた基礎1の根入れ深さは、
0.30+0.10=0.40mとなる。
In the building model, the dimension from the design ground line GL to the lower surface of the intermediate part 4 of the
0.30 + 0.10 = 0.40 m.
それ故、中間部分4の下面から外周地中梁部2bの下端までの寸法D1を0.3m以上とし、且つ、根入れ深さD2を0.4m以上とすることによって、地震時に発生する間隙水(余剰水)の噴出による、建物のめり込み沈下を防止することができる。
Therefore, when the dimension D1 from the lower surface of the intermediate portion 4 to the lower end of the outer peripheral
(実施形態2)
図3は、本発明の実施形態2に係る住宅のべた基礎1の構成を示す図であり、上段の図は平面図であり、下段の図は上段の図のB部の部分断面図である。この部分断面図は、B部におけるべた基礎1の図面左右方向に沿った縦断面を示す。
(Embodiment 2)
FIG. 3 is a diagram illustrating a configuration of the
図3を参照すると、本実施形態2では、底盤部2aに、当該底盤部2aの全面に渡って、所定の面積当たり所定数以上の両端が開放されたパイプ13が、底盤部2aを上下方向に貫通するように設けられている。これ以外の点は、実施形態1と同様である。パイプ13の材質は特に限定されないが、例えば、ビニール製である。パイプ13の外径は、ここでは、0.075mである。パイプ13は、例えば、底盤部2aの全面について、5m2当たり1本以上配設される。ここでは、例えば、底盤部2aの面積が、(9×7)−(3×3)=54m2であり、54÷5=10.8≒11本以上のパイプ13が配設される。具体的には、図3に示すように、底盤部2aの全面に、なるべく均一になるよう、13本配置される。また、パイプ13の配置は、その密度が重要であるので、ランダムに配置されても構わない。しかし、パイプ13を均一に配置するという観点からは、パイプ13を整列配置することが好ましい。
Referring to FIG. 3, in the second embodiment, a
なお、砂・砂利層12の上に均しモルタル層(捨てコンクリート層)又は遮水用のビニルシートが設けられる場合、パイプ13は、モルタル層(捨てコンクリート層)又は遮水用のビニルシートを貫通して、その下端が砂・砂利層12に開口するように設けられる。
In addition, when the leveling mortar layer (disposal concrete layer) or the vinyl sheet for water shielding is provided on the sand /
この実施形態2によれば、底盤部2aの下向き凹部15の砂・砂利層12に液状化により発生した余剰水が上昇すると、下向き凹部15の砂・砂利層12中の空気が、両端が開放されたパイプ13から排出されるので、当該砂・砂利層12が容易に余剰水を吸収することができる。その結果、好適に住宅のめり込み沈下を防止することができる。
According to the second embodiment, when the excess water generated by liquefaction rises in the sand /
(実施形態3)
図4は、本発明の実施形態3に係る住宅のべた基礎1の構成を示す図であり、上段の図は平面図であり、下段の図は上段の図のC部の部分断面図である。この部分断面図は、C部におけるべた基礎1の図面左右方向に沿った縦断面を示す。
(Embodiment 3)
FIG. 4 is a diagram showing a configuration of a
図4を参照すると、本実施形態3では、底盤部2aが入隅21を有する形状の外周を有している。そして、底盤部2aの外周部に、当該底盤部2aの全周に渡って、外周立上り部3aが設けられている。さらに、底盤部2aの入隅21に位置する外周立上り部3aに接続するように中間立上り部3bが設けられている。
Referring to FIG. 4, in the third embodiment, the
この実施形態3によれば、入隅21を有する外周形状の外周立上り部3aの上に入隅を有する建物が固定されるので、地震時に、入隅21の角部に位置する入隅立ち上がり部16に捻じれモーメントが発生する。しかし、中間立上り部3bが入隅立上り部16を支持するので、当該捻じれモーメントによる入隅立上り部16の損壊を防止することができる。
According to the third embodiment, since the building having the corner is fixed on the outer peripheral rising
(実施形態4)
図5は、本発明の実施形態4に係る住宅のべた基礎1の構成を示す図であり、下段の図は平面図であり、上段の図は下段の図のD部の部分断面図である。この部分断面図は、D部におけるべた基礎1の図面左右方向に沿った縦断面を示す。
(Embodiment 4)
FIG. 5 is a diagram illustrating a configuration of a
図5を参照すると、本実施形態4では、底盤部2aが出隅22を有する形状の外周を有している。そして、外周立上り部3aが、平面視において、出隅22の部分を除いて底盤部2aの外周に沿い、出隅22の部分において入隅21を有する形状の外周を有して、底盤部2aから立ち上がるように設けられている。
Referring to FIG. 5, in the fourth embodiment, the
この実施形態4によれば、入隅21を有する外周形状の外周立上り部3aの上に入隅を有する建物が固定されるので、地震時に、入隅立ち上がり部16に捻じれモーメントが発生する。しかし、出隅22の外周地中梁部2bが入隅立上り部16を支持するので、当該捻じれモーメントによる入隅立上り部16の損壊を防止することができる。
According to the fourth embodiment, since the building having the corner is fixed on the outer peripheral rising
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。 From the foregoing description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
本発明の住宅のべた基礎及びその造成方法は、地盤が液状化した場合における住宅のめり込み沈下を防止することが可能な住宅のべた基礎及びその造成方法として有用である。 The solid foundation of a house and its creation method of the present invention are useful as a solid foundation of a house that can prevent the sinking and sinking of the house when the ground is liquefied and its creation method.
1 べた基礎
2 スラブ部
2a 底盤部
2b 外周地中梁部
3a 外周立上り部
3b 中間立上り部
4 中間部分
11 砕石地業
12 砂・砂利層
13 パイプ
15 下向き凹部
16 入隅立上り部
21 入隅
22 出隅
D1 寸法
D2 寸法
D3 厚み
GL グランドライン
DESCRIPTION OF
Claims (4)
スラブ部と当該スラブ部から立ち上がる立上り部とを備え、
前記スラブ部は、所定形状の外周を有し、設計グランドラインに沿って延在する板状の底盤部と、前記底盤部の外周部から、当該外周部の全周に渡って、下方に突出する外周地中梁部と、を含み、
前記底盤部における前記外周地中梁部より内側に位置する部分である中間部分の下面から前記外周地中梁部の下端までの寸法が、0.3m以上であり、
前記底盤部に、当該底盤部の全面に渡って、所定の面積当たり所定数以上の両端が開放されたパイプ(防蟻粒子が充填された水抜孔を除く)が、前記底盤部を上下方向に貫通するように設けられており、
前記パイプの上端の開口が他の部材によって閉鎖されていない、住宅のべた基礎。 A solid foundation for a house with an entrance, kitchen, bath, toilet, and living room (except when a discarded concrete layer is provided over the entire lower surface) ,
A slab part and a rising part rising from the slab part,
The slab portion has an outer periphery of a predetermined shape, and protrudes downward from the outer peripheral portion of the plate-like bottom plate portion extending along the design ground line and the outer peripheral portion of the bottom plate portion over the entire circumference of the outer peripheral portion. Including an outer periphery underground beam portion,
The dimension from the lower surface of the intermediate part which is a part located inside the outer periphery underground beam part in the bottom board part to the lower end of the outer periphery underground beam part is 0.3 m or more,
A pipe (excluding a drain hole filled with ant-proof particles) having a predetermined number of ends or more opened per predetermined area over the entire surface of the bottom plate portion is provided on the bottom plate portion in the vertical direction. It is provided to penetrate,
Residential solid foundation in which the opening at the top of the pipe is not closed by another member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017006644A JP6218099B1 (en) | 2017-01-18 | 2017-01-18 | Solid foundation for liquefied and soft ground |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017006644A JP6218099B1 (en) | 2017-01-18 | 2017-01-18 | Solid foundation for liquefied and soft ground |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017091166A Division JP6218100B1 (en) | 2017-05-01 | 2017-05-01 | Construction method of solid foundation of house that can cope with liquefaction and soft ground |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6218099B1 true JP6218099B1 (en) | 2017-10-25 |
JP2018115462A JP2018115462A (en) | 2018-07-26 |
Family
ID=60156759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017006644A Active JP6218099B1 (en) | 2017-01-18 | 2017-01-18 | Solid foundation for liquefied and soft ground |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6218099B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019023394A (en) * | 2017-07-24 | 2019-02-14 | 株式会社竹中工務店 | Foundation structure and foundation construction method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962138A (en) * | 1982-10-01 | 1984-04-09 | 昭和アルミニウム株式会社 | Planking of structure made of metal |
JPH062336A (en) * | 1992-05-21 | 1994-01-11 | Yoshiro Watanabe | Method of mat foundation with stabilizing material |
JP2002021094A (en) * | 2000-07-11 | 2002-01-23 | Toshio Iizuka | Foundation structure for wooden house |
JP2004308134A (en) * | 2003-04-02 | 2004-11-04 | Sugimori:Kk | Construction method of mat foundation for wooden house |
JP2011074756A (en) * | 2010-12-28 | 2011-04-14 | Dainihon Wood-Preserving Co Ltd | Method for repelling ants and system using the method |
JP2013091924A (en) * | 2011-10-24 | 2013-05-16 | Konguro Engineering Kk | Liquefaction measure structure for ground improvement mat foundation and ground improvement mat foundation construction method |
-
2017
- 2017-01-18 JP JP2017006644A patent/JP6218099B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962138A (en) * | 1982-10-01 | 1984-04-09 | 昭和アルミニウム株式会社 | Planking of structure made of metal |
JPH062336A (en) * | 1992-05-21 | 1994-01-11 | Yoshiro Watanabe | Method of mat foundation with stabilizing material |
JP2002021094A (en) * | 2000-07-11 | 2002-01-23 | Toshio Iizuka | Foundation structure for wooden house |
JP2004308134A (en) * | 2003-04-02 | 2004-11-04 | Sugimori:Kk | Construction method of mat foundation for wooden house |
JP2011074756A (en) * | 2010-12-28 | 2011-04-14 | Dainihon Wood-Preserving Co Ltd | Method for repelling ants and system using the method |
JP2013091924A (en) * | 2011-10-24 | 2013-05-16 | Konguro Engineering Kk | Liquefaction measure structure for ground improvement mat foundation and ground improvement mat foundation construction method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019023394A (en) * | 2017-07-24 | 2019-02-14 | 株式会社竹中工務店 | Foundation structure and foundation construction method |
JP2023011057A (en) * | 2017-07-24 | 2023-01-20 | 株式会社竹中工務店 | Foundation structure and foundation construction method |
JP7532737B2 (en) | 2017-07-24 | 2024-08-14 | 株式会社竹中工務店 | Foundation structure and foundation construction method |
Also Published As
Publication number | Publication date |
---|---|
JP2018115462A (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thompson et al. | A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones | |
Ruiz et al. | Seismic rehabilitation of sixteenth-and seventeenth-century rammed earth–built churches in the Andean highlands: Field and laboratory study | |
Basset-Salom et al. | Seismic performance of masonry residential buildings in Lorca’s city centre, after the 11th May 2011 earthquake | |
JP6218099B1 (en) | Solid foundation for liquefied and soft ground | |
JP6218100B1 (en) | Construction method of solid foundation of house that can cope with liquefaction and soft ground | |
Noorifard et al. | Preventing undesirable seismic behaviour of infill walls in design process | |
Bureau of Indian Standards | Criteria for earthquake resistant design of structures | |
Rasouli et al. | Mitigation of nonuniform settlement of structures due to seismic liquefaction | |
JP3209640U (en) | Solid foundation for liquefied and soft ground | |
CN111379278A (en) | Variable-depth assembled vibration isolation trench | |
Hakhamaneshi | Rocking foundations for building systems-effect of footing shape, soil environment, embedment and normalized moment-to-shear ratio | |
US3848376A (en) | System for anchoring modular housing units | |
JP6240625B2 (en) | Retaining wall, creation site and creation method of creation site | |
CN108474205A (en) | Ground foundations for superstructures of buildings | |
JPH0941434A (en) | Structure of simplified cistern | |
JP4410572B2 (en) | Construction method of revetment for landfill | |
JP2008196212A (en) | Ground vibration propagation suppressing structure and construction method thereof | |
CN113323030B (en) | Vibration isolation structure for strengthening soil layer rigidity | |
Turchin et al. | Efficiency of using construction machines when strengthening foundation soils | |
Sharma et al. | Kath-Kuni architecture: field investigations and material characterisation | |
JPH09250144A (en) | Outside waterproof method of basement | |
JP5863915B1 (en) | Liquefaction countermeasure structure on site | |
JP2002021094A (en) | Foundation structure for wooden house | |
US9493925B2 (en) | Apparatus and method for stabilizing a slab foundation | |
JPH0261225A (en) | Low-rise structures on soft ground |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170915 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6218099 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |