JP6202315B2 - Low friction and low wear sliding member for water lubrication, and manufacturing method thereof - Google Patents
Low friction and low wear sliding member for water lubrication, and manufacturing method thereof Download PDFInfo
- Publication number
- JP6202315B2 JP6202315B2 JP2013214781A JP2013214781A JP6202315B2 JP 6202315 B2 JP6202315 B2 JP 6202315B2 JP 2013214781 A JP2013214781 A JP 2013214781A JP 2013214781 A JP2013214781 A JP 2013214781A JP 6202315 B2 JP6202315 B2 JP 6202315B2
- Authority
- JP
- Japan
- Prior art keywords
- alb
- sib
- ceramics
- sliding member
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000005461 lubrication Methods 0.000 title description 16
- 239000000919 ceramic Substances 0.000 claims description 82
- 239000000843 powder Substances 0.000 claims description 27
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 238000005245 sintering Methods 0.000 claims description 17
- 238000007731 hot pressing Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- 229910002804 graphite Inorganic materials 0.000 claims description 12
- 239000010439 graphite Substances 0.000 claims description 12
- 239000011261 inert gas Substances 0.000 claims description 9
- 239000011812 mixed powder Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- -1 or Inorganic materials 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 10
- 230000013011 mating Effects 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 229910002056 binary alloy Inorganic materials 0.000 description 5
- 150000001639 boron compounds Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- DJPURDPSZFLWGC-UHFFFAOYSA-N alumanylidyneborane Chemical compound [Al]#B DJPURDPSZFLWGC-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Landscapes
- Sliding-Contact Bearings (AREA)
- Ceramic Products (AREA)
Description
本発明は、水圧ポンプ等の水存在下の摺動機構を有する装置に好適に使用される水潤滑用摺動部材に関する。より具体的には、潤滑剤としてオイルでなく水を使用し、水中にオイルが漏れる心配がなく、コスト的にも安い、オイルフリー水潤滑用摺動部材とその製造方法に関する。 The present invention relates to a sliding member for water lubrication suitably used in a device having a sliding mechanism in the presence of water such as a hydraulic pump. More specifically, the present invention relates to a sliding member for oil-free water lubrication, which uses water instead of oil as a lubricant, has no fear of oil leaking into water, and is low in cost, and a method for manufacturing the same.
近年水圧ポンプなどの分野で、オイルを水中に漏らすような環境汚染を起こさない、オイルより水の方が安価で、低環境負荷であるなどの理由でオイルフリーの水潤滑システムが利用され始めている。
現在、オイルフリーの水潤滑用摺動材料として主に低摩耗の窒化珪素やアルミナ、低摩擦のダイヤモンドライクカーボン(DLC)などが使用されている。
一方、特許文献1〜4のように、AlB12やSiB6は金属材料の硬度を上げる硬質粒子として使用されている例はあるが、AlB12やSiB6のホウ素化合物を水潤滑用摺動部材の主要構成成分として用いるという研究例は見られない。
In recent years, oil-free water lubrication systems have begun to be used in fields such as hydraulic pumps because they do not cause environmental pollution that causes oil to leak into the water, water is cheaper than oil, and has a low environmental impact. .
Currently, low wear silicon nitride and alumina, low friction diamond-like carbon (DLC), etc. are mainly used as sliding materials for oil-free water lubrication.
On the other hand, as in
水潤滑用摺動材料として現在使用されている窒化珪素やアルミナは、被膜状とバルク状のどちらの形態でも利用可能であり、かつ、金属、樹脂に比べて摩耗が小さい利点を有しているが、摩擦が非常に大きいという問題点がある。
一方、DLCは、バルク状のものや厚膜状のものを作ることができないため、通常厚さ1ミクロン程度の低摩擦被膜として摺動基板面上に形成して用いられているが、比較的短時間で摩耗し基板面を露出してしまうため、摩擦が急上昇・不安定化しやすい問題点がある。
したがって、本発明は、低摩擦、低摩耗を示す水潤滑用摺動部材及びその製造方法の提供を課題としている。
Silicon nitride and alumina currently used as sliding materials for water lubrication can be used in both film and bulk forms and have the advantage of less wear compared to metals and resins. However, there is a problem that the friction is very large.
On the other hand, since DLC cannot make a bulk or thick film, it is usually used as a low friction coating with a thickness of about 1 micron on the sliding substrate surface. Since it wears in a short time and exposes the substrate surface, there is a problem that friction is likely to rise rapidly and become unstable.
Accordingly, an object of the present invention is to provide a water-lubricating sliding member exhibiting low friction and low wear and a method for manufacturing the same.
前記課題を解決するための多くの試験研究の結果、本発明者は、AlB12またはSiB6のホウ素化合物を主要成分とするセラミックスが、Si3N4、Al2O3、SiC等のセラミックスや鋼を相手材とした時、水中において低摩擦・低摩耗を示すことを知見した。本発明は、そのような知見に基づくものである。 As a result of many test studies for solving the above problems, the present inventor has found that ceramics mainly composed of boron compounds of AlB 12 or SiB 6 are ceramics such as Si 3 N 4 , Al 2 O 3 , SiC, etc. It has been found that when steel is used as the counterpart material, it exhibits low friction and wear in water. The present invention is based on such knowledge.
本発明のホウ素化合物を主要成分とするセラミックスにおいて、主要成分がAlB12のAlB12系セラミックスである場合、AlB12の重量割合は、60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上である。主要成分以外の成分としては、例えば、Al、AlB2、Bや第3成分が挙げられる。
また、主要成分がSiB6のSiB6系セラミックスである場合、SiB6の重量割合は、50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上である。主要成分以外の成分としては、例えば、Si、SiB3、SiBn、Bや第3成分が挙げられる。
In ceramics a boron compound of the present invention as a main component, when the major component is a AlB 12 based ceramics AlB 12, the weight ratio of AlB 12 is 60 wt% or more, preferably 70 wt% or more, more preferably 80 % By weight or more. Examples of components other than the main component include Al, AlB 2 , B, and a third component.
Also, if the main component is a SiB 6 based ceramics SiB 6, the weight ratio of SiB 6 is 50 wt% or more, preferably 60 wt% or more, more preferably 70 wt% or more. Examples of components other than the main component include Si, SiB 3 , SiB n , B, and a third component.
本発明に係るAlB12系またはSiB6系セラミックスからなる摺動部材は、Si3N4、Al2O3、SiC等のセラミックスや鋼から構成される相手材に対し、水中において摩擦係数0.2以下の低摩擦、かつ比摩耗量10-6mm3/Nmオーダー以下の低摩耗を示す。 The sliding member made of AlB 12 series or SiB 6 series ceramics according to the present invention has a friction coefficient of 0.2 or less in water against a counterpart material made of ceramics or steel such as Si 3 N 4 , Al 2 O 3 , SiC, etc. Low friction and low wear with specific wear of 10 -6 mm 3 / Nm or less.
本発明に係る請求項4のAlB12系セラミックスの製造方法は、AlとBの原子比が10:90から6:94までの範囲内となるように粒径150マイクロメートル以下のAl、AlB2、AlB12、B粉末から選択した1種類の粉末(すなわちAlB12粉末)、または、2種類以上の混合粉末を真空中または不活性ガス中、焼結温度1750℃以上2150℃以下、加圧力20MPa以上80MPa以下の条件で黒鉛型によるホットプレスをすることを特徴とする。 According to the fourth aspect of the present invention, there is provided a method for producing AlB 12 ceramics comprising Al and AlB 2 having a particle diameter of 150 micrometers or less so that the atomic ratio of Al to B is in the range of 10:90 to 6:94. , AlB 12 , one type of powder selected from B powder (ie, AlB 12 powder) or two or more types of mixed powder in vacuum or inert gas, sintering temperature 1750 ° C or higher and 2150 ° C or lower, pressure 20MPa It is characterized by hot pressing with a graphite mold under the condition of 80 MPa or less.
上記のようにAlB12系セラミックスの製造方法は、AlとBの原子比が10:90から6:94までの範囲内となるように粒径150マイクロメートル以下(好ましくは100マイクロメートル以下、より好ましくは50マイクロメートル以下)のAl、AlB2、AlB12、B粉末から選択した1種類の粉末、または、2種類以上の混合粉末をホットプレスする必要があるが、Al、AlB2、AlB12、B粉末から選択した1種類の粉末、または、2種類以上の混合粉末としたのは、非特許文献1にあるようにAl-B二元系でAl、AlB2、AlB12、B以外の材料が存在しないためである。さらに粒径が150マイクロメートル以下としたのは150マイクロメートル超過になると焼結中AlB12等の相の生成が充分に進まないためである。粒径の下限は、限定する必要はないが、取扱容易性から0.1マイクロメートル以上、好ましくは0.5マイクロメートル以上とすることができる。またAlとBの原子比についてBの原子比が90原子%未満になると、低摩擦・低摩耗でないAlB12以外の相が多くなり、Bの原子比が94原子%超過になると脆いB相が多くなり、得ようとするAlB12系セラミックスが得にくくなる。
As described above, the method for producing the AlB 12 ceramics has a particle size of 150 micrometers or less (preferably 100 micrometers or less, more preferably so that the atomic ratio of Al and B is in the range of 10:90 to 6:94. It is necessary to hot press one type of powder selected from Al, AlB 2 , AlB 12 , B powder or a mixed powder of two or more types, preferably 50 μm or less, but Al, AlB 2 , AlB 12 One type of powder selected from B powder or two or more types of mixed powders are Al-B binary systems other than Al, AlB 2 , AlB 12 , and B as described in
また上記のようにAlB12系セラミックスの製造方法は、真空中または不活性ガス中でホットプレスする必要があるが、真空中及び不活性ガス中以外のガス雰囲気でホットプレスを行うと、黒鉛型とガスの反応による型の劣化やAlB12系セラミックスのガス雰囲気との反応が起こり、得ようとするAlB12系セラミックスが得にくくなる。 In addition, as described above, the AlB 12- based ceramics manufacturing method needs to be hot pressed in a vacuum or in an inert gas, but if hot pressing is performed in a gas atmosphere other than in a vacuum or an inert gas, Deterioration of the mold due to the reaction of the gas and reaction with the gas atmosphere of the AlB 12 ceramics occurs, making it difficult to obtain the AlB 12 ceramics to be obtained.
また上記のAlB12系セラミックスの製造方法は、焼結温度1750℃以上2150℃以下でホットプレスする必要があるが、焼結温度が1750℃未満であると、緻密なセラミックスが得られにくくなる。一方、焼結温度が2150℃超過であると、AlB12系セラミックスが溶解し、型の外部に漏れるため、得ようとする形状のセラミックスが得られにくくなる。 In addition, the AlB 12 ceramic manufacturing method described above requires hot pressing at a sintering temperature of 1750 ° C. or higher and 2150 ° C. or lower, but if the sintering temperature is lower than 1750 ° C., it becomes difficult to obtain a dense ceramic. On the other hand, if the sintering temperature exceeds 2150 ° C., the AlB 12 ceramics dissolve and leak out of the mold, making it difficult to obtain the desired shape of ceramics.
また上記のAlB12系セラミックスの製造方法は、加圧力20MPa以上80MPa以下の条件でホットプレスする必要があるが、加圧力が20MPa未満であると、緻密なセラミックスが得られにくくなる。一方、加圧力が80MPa超過であると、ホットプレスに用いる黒鉛型が割れる恐れがある。 Further, the above AlB 12 ceramic manufacturing method requires hot pressing under a pressure of 20 MPa or more and 80 MPa or less, but if the pressure is less than 20 MPa, it is difficult to obtain a dense ceramic. On the other hand, if the applied pressure exceeds 80 MPa, the graphite mold used for hot pressing may break.
本発明に係る請求項5のSiB6系セラミックスの製造方法は、SiとBの原子比が17:83から10:90までの範囲内となるように粒径150マイクロメートル以下(好ましくは100マイクロメートル以下、より好ましくは50マイクロメートル以下)のSi、SiB3、SiB6、SiBn、B粉末から選択した1種類の粉末(すなわちSiB6粉末)、または、2種類以上の混合粉末を真空中または不活性ガス中、焼結温度1650℃以上1850℃以下、加圧力20MPa以上80MPa以下の条件で黒鉛型によるホットプレスをすることを特徴とする。 In the method for producing SiB 6 ceramics according to claim 5 of the present invention, the particle size is 150 micrometers or less (preferably 100 micrometers) so that the atomic ratio of Si and B is in the range of 17:83 to 10:90. One type of powder selected from Si, SiB 3 , SiB 6 , SiB n , B powder (ie SiB 6 powder) or a mixture of two or more types in vacuum Alternatively, it is characterized by hot pressing with a graphite mold under a sintering temperature of 1650 ° C. or higher and 1850 ° C. or lower and an applied pressure of 20 MPa or higher and 80 MPa or lower in an inert gas.
上記のようにSiB6系セラミックスの製造方法は、SiとBの原子比が17:83から10:90までの範囲内となるように粒径150マイクロメートル以下のSi、SiB3、SiB6、SiBn、B粉末から選択した1種類の粉末、または、2種類以上の混合粉末をホットプレスする必要があるが、Si、SiB3、SiB6、SiBn、B粉末から選択した1種類の粉末、または、2種類以上の混合粉末としたのは、非特許文献2にあるようにSi-B二元系でSi、SiB3、SiB6、SiBn、B以外の材料が存在しないためである。さらに粒径が150マイクロメートル以下としたのは150マイクロメートル超過になると焼結中SiB6等の相の生成が充分に進まないためである。粒径の下限は、限定する必要はないが、取扱容易性から0.1マイクロメートル以上、好ましくは0.5マイクロメートル以上とすることができる。またSiとBの原子比についてBの原子比が83原子%未満になると、低摩擦・低摩耗でないSiB6以外の相が多くなり、Bの原子比が90原子%超過になると脆いB相が多くなり、得ようとするSiB6系セラミックスが得にくくなる。 As described above, the SiB 6- based ceramics manufacturing method includes Si, SiB 3 , SiB 6 , Si particles having a particle size of 150 micrometers or less so that the atomic ratio of Si and B is in the range from 17:83 to 10:90. One type of powder selected from SiB n and B powders, or two or more types of mixed powders must be hot pressed, but one type of powder selected from Si, SiB 3 , SiB 6 , SiB n and B powders The reason why two or more kinds of mixed powders are used is that there is no material other than Si, SiB 3 , SiB 6 , SiB n , and B in the Si-B binary system as described in Non-Patent Document 2. . Furthermore, the reason why the particle size is set to 150 μm or less is that when the particle size exceeds 150 μm, the generation of phases such as SiB 6 does not proceed sufficiently during sintering. The lower limit of the particle size need not be limited, but can be 0.1 micrometer or more, preferably 0.5 micrometer or more from the viewpoint of ease of handling. As for the atomic ratio of Si and B, when the atomic ratio of B is less than 83 atomic%, there are many phases other than SiB 6 that are not low friction and low wear, and when the atomic ratio of B exceeds 90 atomic%, a brittle B phase is formed. The amount of SiB 6 ceramics to be obtained becomes difficult to obtain.
また上記のようにSiB6系セラミックスの製造方法は、真空中あるいは不活性ガス中でホットプレスする必要があるが、真空中及び不活性ガス中以外のガス雰囲気でホットプレスを行うと、黒鉛型とガスの反応による型の劣化やSiB6系セラミックスのガス雰囲気との反応が起こり、得ようとするSiB6系セラミックスが得にくくなる。 In addition, as described above, the SiB 6- based ceramic manufacturing method needs to be hot pressed in a vacuum or in an inert gas, but if hot pressing is performed in a gas atmosphere other than in a vacuum or an inert gas, Deterioration of the mold due to the reaction of the gas and reaction with the gas atmosphere of the SiB 6 ceramic occurs, making it difficult to obtain the SiB 6 ceramic to be obtained.
また上記のSiB6系セラミックスの製造方法は、焼結温度1650℃以上1850℃以下でホットプレスする必要があるが、焼結温度が1650℃未満であると、緻密なセラミックスが得られにくくなる。一方、焼結温度が1850℃超過であると、SiB6系セラミックスが溶解し、型の外部に漏れるため、得ようとする形状のセラミックスが得られにくくなる。
また上記のSiB6系セラミックスの製造方法は、加圧力20MPa以上80MPa以下の条件でホットプレスする必要があるが、加圧力が20MPa未満であると、緻密なセラミックスが得られにくくなる。一方、加圧力が80MPa超過であると、ホットプレスに用いる黒鉛型が割れる恐れがある。
The SiB 6 ceramic manufacturing method described above requires hot pressing at a sintering temperature of 1650 ° C. or higher and 1850 ° C. or lower. However, if the sintering temperature is lower than 1650 ° C., it becomes difficult to obtain a dense ceramic. On the other hand, if the sintering temperature exceeds 1850 ° C., the SiB 6 ceramics dissolve and leak out of the mold, making it difficult to obtain ceramics of the desired shape.
In addition, the SiB 6 -based ceramic manufacturing method described above requires hot pressing under a pressure of 20 MPa to 80 MPa, but if the pressure is less than 20 MPa, it is difficult to obtain a dense ceramic. On the other hand, if the applied pressure exceeds 80 MPa, the graphite mold used for hot pressing may break.
本発明に係る請求項6のAlB12系セラミックスやSiB6系セラミックスの製造方法は、黒鉛製型と前記粉末(上述の1種類の粉末、または、2種類以上の混合粉末)の間に厚さ0.3mm以上0.6mm以下のカーボン製シートを挟み、ホットプレスすることを特徴とする。 According to a sixth aspect of the present invention, there is provided a method for producing AlB 12 ceramics or SiB 6 ceramics, wherein the thickness is between the graphite mold and the powder (the above-mentioned one kind of powder or two or more kinds of mixed powder). It is characterized by hot pressing with a carbon sheet of 0.3 mm or more and 0.6 mm or less.
上記のように黒鉛製型と前記粉末の間に挟むカーボンシートの厚さは0.3mm以上0.6mm以下の範囲内である必要があるが、カーボンシートの厚さが0.3mm未満であると、焼結後、AlB12系セラミックスやSiB6系セラミックスが黒鉛型に付着しやすくなり、かつ熱応力がかかりやすくなるため割れやすくなる。一方カーボンシートの厚さが0.6mm超過であると、得られるAlB12系セラミックス及びSiB6系セラミックスの表面形状が凸凹になり、得ようとする形状のセラミックスが得られにくくなる。 As described above, the thickness of the carbon sheet sandwiched between the graphite mold and the powder needs to be within a range of 0.3 mm or more and 0.6 mm or less, but if the thickness of the carbon sheet is less than 0.3 mm, After sintering, AlB 12- based ceramics and SiB 6- based ceramics tend to adhere to the graphite mold and are susceptible to cracking because they tend to be subjected to thermal stress. On the other hand, if the thickness of the carbon sheet exceeds 0.6 mm, the surface shapes of the obtained AlB 12 ceramics and SiB 6 ceramics become uneven, making it difficult to obtain the desired ceramic shape.
以上のような本発明は、次のように整理することができる。
<1>AlB12またはSiB6のホウ素化合物を主要成分とするセラミックスからなり、セラミックスまたは鋼からなる相手部材に低摩擦・低磨耗を示すことを特徴とする水潤滑用摺動部材。
<2>摺動部材を構成するセラミックスが60重量%以上のAlB12または50重量%以上のSiB6を含有するものである、<1>に記載の水潤滑用摺動部材。
<3>相手部材のセラミックスがSi3N4、Al2O3、または、SiCであり、鋼がステンレス鋼である、<1>または<2>に記載の水潤滑用摺動部材。
<4>AlとBの原子比が10:90から6:94までの範囲内となるように粒径150マイクロメートル以下のAl、AlB2、AlB12、B粉末から選択した1種類の粉末、または、2種類以上の混合粉末を真空中または不活性ガス中、焼結温度1750℃以上2150℃以下、加圧力20MPa以上80MPa以下の条件で黒鉛型によるホットプレスを行うことを含む、AlB12を主要成分とするセラミックスからなる水潤滑用摺動部材の製造方法。
<5>SiとBの原子比が17:83から10:90までの範囲内となるように粒径150マイクロメートル以下のSi、SiB3、SiB6、SiBn、B粉末から選択した1種類の粉末または2種類以上の混合粉末を真空中または不活性ガス中、焼結温度1650℃以上1850℃以下、加圧力20MPa以上80MPa以下の条件で黒鉛型によるホットプレスを行うことを含む、SiB6を主要成分とするセラミックスからなる水潤滑用摺動部材の製造方法。
<6>黒鉛製型と粉末の間に厚さ0.3mm以上0.6mm以下のカーボン製シートを挟んで前記ホットプレスを行う、<4>または<5>に記載の水潤滑用摺動部材の製造方法。
<7>AlB12またはSiB6のホウ素化合物を主要成分とするセラミックスからなる一方の摺動部材、及び、前記一方の摺動部材に対し相対的に摺動し、セラミックスまたは鋼からなる他方の摺動部材を具備する水潤滑用摺動装置。
The present invention as described above can be organized as follows.
<1> A sliding member for water lubrication, comprising a ceramic mainly composed of a boron compound of AlB 12 or SiB 6 and exhibiting low friction and low wear on a mating member made of ceramic or steel.
<2> The sliding member for water lubrication according to <1>, wherein the ceramic constituting the sliding member contains 60% by weight or more of AlB 12 or 50% by weight or more of SiB 6 .
<3> The sliding member for water lubrication according to <1> or <2>, wherein the counterpart ceramic is Si 3 N 4 , Al 2 O 3 , or SiC, and the steel is stainless steel.
<4> One kind of powder selected from Al, AlB 2 , AlB 12 , and B powder having a particle size of 150 micrometers or less so that the atomic ratio of Al to B is in the range of 10:90 to 6:94, Alternatively, AlB 12 comprising two or more kinds of mixed powders in a vacuum or an inert gas, hot pressing with a graphite mold under a sintering temperature of 1750 ° C. to 2150 ° C. and a pressure of 20 MPa to 80 MPa. A method for producing a sliding member for water lubrication comprising ceramics as a main component.
<5> One type selected from Si, SiB 3 , SiB 6 , SiB n , and B powder with a particle size of 150 micrometers or less so that the atomic ratio of Si and B is within the range of 17:83 to 10:90 powder or in more than mixing powders of a vacuum or inert gas, the sintering temperature 1650 ° C. or higher 1850 ° C. or less, comprising: performing hot pressing by graphite-type under the following conditions pressure 20MPa or 80 MPa, SiB 6 A method for producing a water-lubricating sliding member made of ceramics containing as a main component.
<6> Manufacture of the water-lubricating sliding member according to <4> or <5>, wherein the hot pressing is performed by sandwiching a carbon sheet having a thickness of 0.3 mm or more and 0.6 mm or less between the graphite mold and the powder. Method.
<7> One sliding member made of a ceramic mainly composed of a boron compound of AlB 12 or SiB 6 and the other sliding member made of ceramics or steel that slides relative to the one sliding member. A sliding device for water lubrication comprising a moving member.
また、本発明は、次のような態様を含むことができる。
<8>摺動部材を構成するセラミックスが70重量%以上のAlB12または60重量%以上のSiB6を含有するものである、<2>に記載の水潤滑用摺動部材。
<9>摺動部材を構成するセラミックスが80重量%以上のAlB12または70重量%以上のSiB6を含有するものである、<8>に記載の水潤滑用摺動部材。
<10>一方の摺動部材を構成するセラミックスが60重量%以上のAlB12または50重量%以上のSiB6を含有するものである、<7>に記載の水潤滑用摺動装置。
<11>他方の摺動部材のセラミックスがSi3N4、Al2O3、または、SiCであり、鋼が高耐食性ステンレス鋼(SUS304、SUS316、SUS317、SUS321、SUS347、SUS836L、SUS329J1、SUS329J4L、SUS444、SUS447J1、SUSXM27、SUS420J1)である、<7>または<10>に記載の水潤滑用摺動装置。
In addition, the present invention can include the following aspects.
<8> The water-lubricating sliding member according to <2>, wherein the ceramic constituting the sliding member contains 70% by weight or more of AlB 12 or 60% by weight or more of SiB 6 .
<9> The water-lubricating sliding member according to <8>, wherein the ceramic constituting the sliding member contains 80% by weight or more of AlB 12 or 70% by weight or more of SiB 6 .
<10> The sliding device for water lubrication according to <7>, wherein the ceramic constituting one sliding member contains 60% by weight or more of AlB 12 or 50% by weight or more of SiB 6 .
<11> The ceramic of the other sliding member is Si 3 N 4 , Al 2 O 3 , or SiC, and the steel is highly corrosion-resistant stainless steel (SUS304, SUS316, SUS317, SUS321, SUS347, SUS836L, SUS329J1, SUS329J4L, The sliding device for water lubrication according to <7> or <10>, which is SUS444, SUS447J1, SUSXM27, SUS420J1).
本発明の水潤滑用摺動部材は、水中等の水存在下でSi3N4、Al2O3、SiC等のセラミックスや鋼を相手に低摩擦・低摩耗を示すことから、現用のSi3N4同士、Al2O3同士などの摺動面に置き換えうる摺動部材ということができる。
また本発明の水潤滑用摺動部材の製造方法は、黒鉛型の割れや劣化を生じることなく、離型が容易で、かつ、割れのない緻密なAlB12系セラミックスやSiB6系セラミックスからなる水潤滑用摺動部材を安定的に製造することができる。
The sliding member for water lubrication of the present invention exhibits low friction and low wear against ceramics and steel such as Si 3 N 4 , Al 2 O 3 and SiC in the presence of water such as underwater. 3 N 4 together, it can be said that a sliding member which can replace the sliding surfaces of the Al 2 O 3 or the like with each other.
The method for producing a water-lubricating sliding member according to the present invention is made of a dense AlB 12 ceramic or SiB 6 ceramic that is easy to release without cracking or degrading the graphite mold and has no crack. The sliding member for water lubrication can be manufactured stably.
以下、本発明の実施形態について説明する。
本発明のAlB12系セラミックス及びSiB6系セラミックスは、それぞれAl-B、Si-B二元系材料を基本とするが、その低摩擦・低摩耗性能を大きく阻害しない範囲内で不純物や第3成分を含むことができる。
Hereinafter, embodiments of the present invention will be described.
The AlB 12- based ceramics and SiB 6- based ceramics of the present invention are based on Al-B and Si-B binary materials, respectively. Ingredients can be included.
第5図、第6図に、非特許文献1、2に記載されたAl-B、Si-B二元系合金の状態図をそれぞれ示す。第5図において、(a)は、本発明の請求項4のAlB12系セラミックスの組成範囲を示し、第6図において、(a)は、請求項5のSiB6系セラミックスの組成範囲を示す。
FIGS. 5 and 6 show phase diagrams of the Al—B and Si—B binary alloys described in
本発明の水潤滑用摺動部材は、水中等の水の存在下で相手部材に対し相対的に摺動する摺動部の全体を構成するものであっても良いし、また、摺動部のうち摺動面を含む摺動面部のみを構成するものであっても良い。
相手部材のセラミックスは、限定されないが、Si3N4、Al2O3、SiC等を好適に使用することができる。また、相手部材の鋼は、限定されないが、ステンレス鋼等を好適に使用することができる。該相手部材は、前記水潤滑用摺動部材と相対的に摺動する相手部材側摺動部の全体を構成するものであっても良いし、また、その摺動面を含む摺動面部のみを構成するものであっても良い。
相対的な摺動は、いずれか一方が固定であっても良いし、両方が可動であっても良いし、また、直線摺動、回転摺動、曲線摺動、それらの複合的な摺動等のどのような摺動であっても良い。
The water-lubricating sliding member of the present invention may constitute the entire sliding portion that slides relative to the mating member in the presence of water such as water, or the sliding portion. Of these, only the sliding surface portion including the sliding surface may be configured.
The ceramic of the mating member is not limited, but Si 3 N 4 , Al 2 O 3 , SiC and the like can be suitably used. Moreover, although the steel of the other member is not limited, stainless steel etc. can be used conveniently. The mating member may constitute the entire mating member side sliding portion that slides relative to the sliding member for water lubrication, or only the sliding surface portion including the sliding surface. May be configured.
As for relative sliding, either one of them may be fixed, or both may be movable, and linear sliding, rotational sliding, curved sliding, and their combined sliding Any sliding may be used.
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で各種の設定調整や設計変更が可能であることは言うまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples, and various setting adjustments and design changes can be made without departing from the gist of the present invention. Needless to say.
表1に示される組成の原料粉末を用い、同表に示される焼結温度、加圧力、保持時間の条件により、2種類の実施例のセラミックスディスク試験片をアルゴンガス中における加圧焼結により製造した。 Using the raw material powder having the composition shown in Table 1, the ceramic disk test pieces of two examples were subjected to pressure sintering in argon gas according to the conditions of sintering temperature, pressurizing force and holding time shown in the same table. Manufactured.
上記の加圧焼結により得られた実施例のAlB12系セラミックス試験片(AlB12の含有量約90重量%)、SiB6系セラミックス試験片(SiB6の含有量約80重量%)及び市販の比較例のSi3N4、Al2O3板について、表面を粒径1μmのダイヤモンドペーストで研磨した後、市販のセラミックス軸受用Si3N4ボール、Al2O3ボール及びSiCボール相手にボールオンディスク摩擦試験装置で水中における摩擦係数、比磨耗量の評価を行った。この時、摺動速度は1.57mm/s、ボールのディスクへの押しつけ荷重は9.8N、測定温度は25℃である。 Example AlB 12 ceramic specimens (AlB 12 content of about 90% by weight), SiB 6 ceramics specimens (SiB 6 content of about 80% by weight) and commercial products obtained by the above-mentioned pressure sintering For the Si 3 N 4 and Al 2 O 3 plates of the comparative example, after polishing the surface with a diamond paste with a particle size of 1 μm, the commercially available Si 3 N 4 balls for ceramic bearings, Al 2 O 3 balls and SiC balls The friction coefficient and specific wear amount in water were evaluated using a ball-on-disk friction tester. At this time, the sliding speed is 1.57 mm / s, the pressing force of the ball against the disk is 9.8 N, and the measurement temperature is 25 ° C.
Si3N4ボールを相手にした場合の摩擦係数を図1に、Al2O3ボールを相手にした場合の摩擦係数を図2に、SiCボール相手にした場合の摩擦係数を図3に示す。Si3N4同士及びAl2O3同士の場合、摩擦係数はかなり高めになるが、実施例のAlB12系セラミックス試験片及びSiB6系セラミックス試験片をディスク試験片として用いる場合、相手材がSi3N4ボール、Al2O3ボール、SiCボールのいずれの場合も0.20未満の安定な摩擦係数を示すことがわかる。 Fig. 1 shows the friction coefficient when the Si 3 N 4 ball is used as the opponent, Fig. 2 shows the friction coefficient when the Al 2 O 3 ball is used as the opponent, and Fig. 3 shows the friction coefficient when the SiC ball is used as the opponent. . In the case of Si 3 N 4 and Al 2 O 3 , the friction coefficient is considerably high, but when using the AlB 12 series ceramic test piece and the SiB 6 series ceramic test piece of the example as a disk test piece, the counterpart material is It can be seen that all of the Si 3 N 4 balls, Al 2 O 3 balls, and SiC balls exhibit a stable friction coefficient of less than 0.20.
Si3N4、Al2O3、SiC軸受用ボールを相手材とした時の実施例(AlB12系セラミックス、SiB6系セラミックス)ディスク試験片と比較例(Si3N4、Al2O3)ディスク試験片の比摩耗量、及び、相手材ボール試験片の比摩耗量を図4に示す。
Si3N4同士及びAl2O3同士の場合、ディスク試験片及びボール試験片の比摩耗量はいずれも10-5mm3/Nm以上になるが、実施例のAlB12系セラミックス試験片及びSiB6系セラミックス試験片をディスク試験片として用いる場合、ディスク試験片及びボール試験片の比摩耗量はいずれも10-7〜10-6mm3/Nmオーダーに下がることがわかる。
Examples using Si 3 N 4 , Al 2 O 3 , and SiC bearing balls as counterpart materials (AlB 12 ceramics, SiB 6 ceramics) disk specimens and comparative examples (Si 3 N 4 , Al 2 O 3 4) The specific wear amount of the disk test piece and the specific wear amount of the counterpart ball test piece are shown in FIG.
In the case of Si 3 N 4 to each other and Al 2 O 3 to each other, the specific wear amount of the disk test piece and the ball test piece is 10 −5 mm 3 / Nm or more, but the AlB 12 series ceramic test piece of the example and When the SiB 6 ceramics test piece is used as a disk test piece, the specific wear amount of the disk test piece and the ball test piece is both reduced to the order of 10 −7 to 10 −6 mm 3 / Nm.
本発明の水潤滑用摺動部材は、Si3N4、Al2O3、SiC等のセラミックスや鋼の相手部材に対し、低摩擦・低摩耗を示すため、回転型、往復動型等の各種水圧ポンプなど、水存在下の各種の摺動機構を有する摺動装置への幅広い応用が期待される。 The water-lubricating sliding member of the present invention exhibits low friction and low wear against ceramic or steel mating members such as Si 3 N 4 , Al 2 O 3 , SiC, etc. A wide range of applications are expected for sliding devices having various sliding mechanisms in the presence of water, such as various hydraulic pumps.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013214781A JP6202315B2 (en) | 2013-10-15 | 2013-10-15 | Low friction and low wear sliding member for water lubrication, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013214781A JP6202315B2 (en) | 2013-10-15 | 2013-10-15 | Low friction and low wear sliding member for water lubrication, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015078078A JP2015078078A (en) | 2015-04-23 |
JP6202315B2 true JP6202315B2 (en) | 2017-09-27 |
Family
ID=53009883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013214781A Active JP6202315B2 (en) | 2013-10-15 | 2013-10-15 | Low friction and low wear sliding member for water lubrication, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6202315B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2779454B2 (en) * | 1990-01-30 | 1998-07-23 | 京セラ株式会社 | Aluminum oxide sintered body |
JP2931917B2 (en) * | 1990-05-30 | 1999-08-09 | 京セラ株式会社 | Manufacturing method of ceramic sintered body |
JP3085623B2 (en) * | 1994-02-28 | 2000-09-11 | 京セラ株式会社 | Non-magnetic ceramics for recording / reproducing head and method for producing the same |
JPH08338428A (en) * | 1995-06-14 | 1996-12-24 | Hitachi Ltd | Water lubrication pad type ceramic bearing device |
JP3740383B2 (en) * | 2001-05-28 | 2006-02-01 | 京セラ株式会社 | Holding device |
DE602005022980D1 (en) * | 2004-01-29 | 2010-09-30 | Nanosteel Co | WEAR-RESISTANT MATERIALS |
-
2013
- 2013-10-15 JP JP2013214781A patent/JP6202315B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015078078A (en) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7040938B2 (en) | Self-lubricating flexible carbon composite seal | |
JP5904792B2 (en) | Metallurgical composition of particulate material, self-lubricating sintered body, and method for obtaining self-lubricating sintered body | |
Chu et al. | Mechanical and electrical properties of carbon‐nanotube‐reinforced Cu–Ti alloy matrix composites | |
Zhu et al. | Effect of fluoride content on friction and wear performance of Ni 3 Al matrix high-temperature self-lubricating composites | |
Mohamed Mahmoud Ibrahim et al. | Tribological behavior of NiAl–1.5 wt% graphene composite under different velocities | |
JP6202315B2 (en) | Low friction and low wear sliding member for water lubrication, and manufacturing method thereof | |
EP3273119B1 (en) | Mechanical seal device and sliding ring thereof for use in aqueous environment | |
CN104878272A (en) | Nickel aluminum/copper oxide high-temperature self-lubricating composite material and preparation method thereof | |
Zhang et al. | Effect of La2O3 on the wear behavior of MoSi2 at high temperature | |
Tan et al. | High-temperature tribological behavior of Al-20Si-5Fe-2Ni/ZrB2 composites | |
CN107584125B (en) | A kind of preparation method of high toughness self-lubricating sialon-based composite material | |
WO2007097402A1 (en) | Sintered ceramic, slide part therefrom, and process for producing sintered ceramic | |
JP2014529005A (en) | Process for manufacturing lead-free plain bearing materials | |
CN106011539A (en) | Wide-temperature range and self-lubricating nickel aluminum/vanadium oxide/silver composite material and preparation method thereof | |
Pan et al. | Tribological behavior of B4C/hBN ceramic composites coupled with grey iron under the lubrication of emulsion | |
CN108002844B (en) | A wide temperature range self-lubricating sialon-based composite material | |
JP5882351B2 (en) | Method for producing Ni-based corrosion-resistant wear-resistant alloy | |
Sahani et al. | Nonlubricated sliding wear behavior study of SiC–B4C–Si cermet against a diamond indenter | |
JP2016108600A (en) | Slide member | |
Li et al. | Tribological properties of spark plasma sintered NiCr–Cr2AlC composites at elevated temperature | |
JP2019143179A (en) | Sputtering target | |
JP5595998B2 (en) | Solid solution or solid solution and dispersion strengthened metal-based self-lubricating composite material | |
CN112939604A (en) | High-thermal-conductivity silicon carbide material and preparation method thereof | |
Su et al. | Influence of sintering pressure on microstructure and tribological properties of Copper–Tin composites containing graphite and MoS2 | |
Zhang et al. | Microstructure Characteristics and Properties of HVOF Sprayed Ni‐Based Alloy Nano‐h‐BN Self‐Lubricating Composite Coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6202315 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |