以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
図1は、本発明の第1実施形態に係る動力伝達機構が組み込まれた車両1の駆動系統の構成を概念的に示す図である。
車両1は、エンジン(E/G)2を動力源とする自動車である。車両1は、変速機3、トルクコンバータ4、スタータ5、オルタネータ6、機械式オイルポンプ7および電動式オイルポンプ8を備えている。
変速機3は、Vベルト式の無段変速機(CVT:Continuously
Variable Transmission)の構成を有している。すなわち、変速機3は、プライマリプーリ11、セカンダリプーリ12およびプライマリプーリ11とセカンダリプーリ12とに巻き掛けられたVベルト13を備えている。プライマリプーリ11は、連結軸14に支持されている。セカンダリプーリ12は、T/M出力軸15に支持されている。T/M出力軸15には、ファイナルギヤ16が取り付けられている。ファイナルギヤ16は、ディファレンシャルギヤ17と噛合している。
また、変速機3は、前後進切換機構18を備えている。前後進切換機構18は、遊星歯車機構21、逆転クラッチ22および前進ブレーキ23を含む。
遊星歯車機構21は、サンギヤ24、プラネタリギヤ25、キャリア26およびリングギヤ27を備えている。サンギヤ24は、T/M入力軸28に保持されている。サンギヤ24の外周面には、ギヤ歯が形成されている。プラネタリギヤ25は、たとえば、複数設けられ、サンギヤ24の周囲に等角度間隔で配置されている。各プラネタリギヤ25の外周面には、ギヤ歯が形成されており、各プラネタリギヤ25は、サンギヤ24と噛合している。キャリア26は、各プラネタリギヤ25を回転可能に一括して保持している。リングギヤ27は、円環状をなし、連結軸14に保持されている。リングギヤ27の内周面には、ギヤ歯が形成されており、リングギヤ27は、各プラネタリギヤ25と噛合している。
逆転クラッチ22は、T/M入力軸28とキャリア26との間に介装されている。逆転クラッチ22が締結されると、T/M入力軸28とキャリア26とが連結されて、それらが一体的に回転可能になる。逆転クラッチ22が切断されると、T/M入力軸28とキャリア26とが分離されて、それらが個別に回転可能になる。
前進ブレーキ23は、作動状態(オン)でキャリア26の回転を停止させ、非作動状態でキャリア26の回転を許容するブレーキ機構である。
逆転クラッチ22が切断され、前進ブレーキ23が作動している状態において、T/M入力軸28に動力が伝達されると、サンギヤ24がT/M入力軸28とともに回転する。そして、サンギヤ24の回転がプラネタリギヤ25を介してリングギヤ27に伝達され、リングギヤ27がサンギヤ24と逆方向に減速回転する。このとき、リングギヤ27の回転は、連結軸14、プライマリプーリ11、Vベルト13、セカンダリプーリ12、T/M出力軸15、ファイナルギヤ16およびディファレンシャルギヤ17を介して、ディファレンシャルギヤ17から左右に延びるドライブシャフト29L,29Rに伝達される。これにより、ドライブシャフト29L,29Rが回転し、ドライブシャフト29L,29Rとともに、駆動輪30L,30Rが車両1の前進方向に回転する。
逆転クラッチ22が継合され、前進ブレーキ23が作動していない状態において、T/M入力軸28に動力が伝達されると、サンギヤ24およびプラネタリギヤ25がT/M入力軸28とともに回転する。プラネタリギヤ25の回転がリングギヤ27に伝達され、リングギヤ27がサンギヤ24と同方向に回転する。このとき、リングギヤ27の回転は、プライマリプーリ11、Vベルト13、セカンダリプーリ12、T/M出力軸15、ファイナルギヤ16およびディファレンシャルギヤ17を介して、ドライブシャフト29L,29Rに伝達される。これにより、ドライブシャフト29L,29Rが回転し、駆動輪30L,30Rが車両1の後進方向に回転する。
トルクコンバータ4は、エンジン2の出力軸(以下、「E/G出力軸」という。)31と変速機3のT/M入力軸28との間に介装されている。トルクコンバータ4は、トルコン入力軸41、トルコン出力軸42、トルコンカバー43、ポンプインペラ44、タービンランナ45およびロックアップクラッチ46を備えている。
トルコン入力軸41は、E/G出力軸31と同一の軸線上に配置され、E/G出力軸31に連結されている。
トルコン出力軸42は、T/M入力軸28と同一の軸線上に配置され、一端および他端がそれぞれT/M入力軸28およびトルコンカバー43に接続されている。
トルコンカバー43は、トルコン出力軸42と一体回転可能に設けられている。トルコンカバー43は、トルコン出力軸42の回転軸線を中心とする円筒状の外周面を有し、その外周面には、ギヤ歯が形成されている。
ポンプインペラ44は、トルコンカバー43内に収容されている。ポンプインペラ44には、トルコン入力軸41が連結されており、ポンプインペラ44は、トルコン入力軸41と一体的に回転する。
タービンランナ45は、ポンプインペラ44に対してトルコン出力軸42側と反対側に配置されている。タービンランナ45は、トルコンカバー43に連結され、トルコンカバー43と一体的に回転する。
ロックアップクラッチ46は、トルコンカバー43内に収容され、ポンプインペラ44に対してトルコン出力軸42側に配置されている。ロックアップクラッチ46が継合されると、トルコン入力軸41とトルコンカバー43とが直結され、その継合が解除されると、トルコン入力軸41とトルコンカバー43とが分離される。
ロックアップクラッチ46が切断された状態において、E/G出力軸31からトルコン入力軸41に動力が入力されると、トルコン入力軸41およびポンプインペラ44が回転する。ポンプインペラ44が回転すると、ポンプインペラ44からタービンランナ45に向かうオイルの流れが生じる。このオイルの流れがタービンランナ45で受けられて、タービンランナ45が回転する。そして、トルコンカバー43およびトルコン出力軸42がタービンランナ45と一体となって回転し、タービンランナ45の回転による動力がトルコン出力軸42に出力される。
ロックアップクラッチ46が継合された状態において、E/G出力軸31からトルコン入力軸41に動力が入力されると、トルコンカバー43およびトルコン出力軸42がトルコン入力軸41と一体となって回転し、E/G出力軸31からの動力がトルコン出力軸42に出力される。
スタータ5は、出力軸51がE/G出力軸31と平行をなすように設けられている。E/G出力軸31には、フライホイール52が保持されている。出力軸51には、スタータギヤ53が保持されている。スタータギヤ53は、フライホイール52のギヤ歯と噛合/噛合解除可能に設けられている。
オルタネータ6は、回転軸54がE/G出力軸31と平行をなすように設けられている。回転軸54には、オルタネータギヤ55が保持されている。オルタネータギヤ55は、トルコンカバー43の外周面のギヤ歯と噛合している。
機械式オイルポンプ7は、ポンプ入力軸がトルコン出力軸42と同軸に設けられている。これにより、トルコン出力軸42が回転すると、トルコン出力軸42から機械式オイルポンプ7に動力が伝達されて、機械式オイルポンプ7が作動し、機械式オイルポンプ7からオイルが送り出される。機械式オイルポンプ7から送り出されるオイルは、変速機3などに供給される。
電動式オイルポンプ8は、モータによって駆動されるオイルポンプであり、機械式オイルポンプ7で十分な油圧を発生できない状況で作動し、オイルを変速機3などに供給する。
車両1の停止(停車)中におけるエンジン2の始動の際には、トルクコンバータ4のロックアップクラッチ46および前後進切換機構18の逆転クラッチ22が切断される。また、前後進切換機構18の前進ブレーキ23が非作動状態にされる。
エンジン2の始動には、スタータ5が使用される。すなわち、スタータ5のスタータギヤ53がフライホイール52のギヤ歯に噛合されて、スタータ5が駆動され、スタータ5の動力がスタータギヤ53およびフライホイール52を介してE/G出力軸31に伝達される。これにより、エンジン2がクランキングされる。そして、エンジン2がクランキングされながら、点火プラグがスパークされることにより、エンジン2が始動する。
図2は、車両1の停止中における機械式オイルポンプ7の発生油圧の立ち上げおよび車両1の走行開始時の動力伝達経路を図解的に示す図である。
電動オイルポンプ8が駆動されて、電動オイルポンプ8から油圧が発生すると、スタータ5が停止され、前後進切換機構18の前進ブレーキ23が作動状態にされる。
エンジン2が始動し、その動力がE/G出力軸31からトルコン入力軸41に入力され、トルコン入力軸41およびポンプインペラ44が一体となって回転する。トルクコンバータ4のロックアップクラッチ46が切断されているので、ポンプインペラ44が回転すると、ポンプインペラ44からタービンランナ45に向かうオイルの流れが生じる。このオイルの流れがタービンランナ45で受けられて、タービンランナ45が回転する。そして、トルコンカバー43およびトルコン出力軸42がタービンランナ45と一体となって回転し、タービンランナ45の回転による動力がトルコン出力軸42に出力される。
トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7の発生油圧が上昇する。機械式オイルポンプ7から十分な油圧が発生するまでの間は、電動式オイルポンプ8が駆動されて、電動式オイルポンプ8から変速機3にオイルが供給される。
前後進切換機構18の逆転クラッチ22が切断され、前進ブレーキ23が作動しているので、トルコン出力軸42と一体に回転するT/M入力軸28の動力は、遊星歯車機構21のサンギヤ24を介してプラネタリギヤ25に伝達され、プラネタリギヤ25を回転させる。そして、プラネタリギヤ25の回転がリングギヤ27に伝達され、リングギヤ27が回転することにより、トルコン出力軸42の動力が連結軸14に伝達される。このとき、キャリア26が固定されているので、T/M入力軸28の動力は、減速されて、連結軸14に伝達される。
連結軸14に伝達される動力は、プライマリプーリ11、Vベルト13、セカンダリプーリ12、T/M出力軸15、ファイナルギヤ16およびディファレンシャルギヤ17を介して、ドライブシャフト29L,29Rに伝達され、駆動輪30L,30Rを車両1の前進方向に回転させる。これにより、車両1が発進する。
図3は、車両1の加速時の動力伝達経路を図解的に示す図である。
車両1の発進後、所定車速に達すると、トルクコンバータ4のロックアップクラッチ46が継合される。ロックアップクラッチ46が継合されると、E/G出力軸31からトルコン入力軸41に入力される動力は、トルコンカバー43を介して、速度変化なく、トルコン出力軸42に伝達される。トルコン出力軸42から駆動輪30L,30Rへの動力の伝達経路は、前述のとおりであるから、その説明を省略する。
このとき、状況に応じて、オルタネータ6により、トルコンカバー43からオルタネータギヤ55を介してオルタネータ6の回転軸54に伝達される動力が電力に回生される。
また、トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7から変速機3にオイルが引き続き供給される。
図4は、車両1の停止中にオルタネータ6で発電が行われるときの動力伝達経路を図解的に示す図である。
車両1では、停止(停車)中に、オルタネータ6により、エンジン2の動力を電力に回生(停止発電)することができる。
停止発電の際には、トルクコンバータ4のロックアップクラッチ46が継合される。これにより、E/G出力軸31からトルコン入力軸41に入力される動力は、トルコンカバー43に直接に伝達され、トルコンカバー43を回転させる。トルコンカバー43の回転による動力は、オルタネータギヤ55を介してオルタネータ6の回転軸54に伝達され、オルタネータ6により電力に回生される。
また、停止発電の際には、前後進切換機構18の逆転クラッチ22が切断され、前後進切換機構18の前進ブレーキ23が非作動状態にされる。そのため、トルコン出力軸42がトルコンカバー43と一体に回転しても、トルコン出力軸42の動力は、変速機3の連結軸14に伝達されない。
トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7から変速機3にオイルが供給される。
図5は、車両1のコースト走行中の動力伝達経路を図解的に示す図である。
車両1の走行中に、運転者によるアクセルペダルの踏み込みがなくなると、車両1がコースト走行状態となる。なお、コースト走行状態は、一般には、アクセルペダルおよびブレーキペダルが踏み込まれていない惰性走行状態をいうが、本実施形態におけるコースト走行状態には、アクセルペダルが踏み込まれず、ブレーキペダルが踏み込まれている減速状態が含まれてもよい。
コースト走行中は、トルクコンバータ4のロックアップクラッチ46および前後進切換機構18の逆転クラッチ22が切断される。また、前後進切換機構18の前進ブレーキ23が作動状態にされる。そして、エンジン2に対する燃料の供給が停止され、エンジン2の回転数が惰性減衰状態となり、回転数0rpmに向けて、減速する。
駆動輪30L,30Rからの動力は、それぞれドライブシャフト29L,29Rを介して、ディファレンシャルギヤ17に伝達され、ディファレンシャルギヤ17からファイナルギヤ16を介して、変速機3のT/M出力軸15に伝達される。T/M出力軸15に伝達された動力は、セカンダリプーリ12、Vベルト13およびプライマリプーリ11を介して、連結軸14に伝達される。このとき、T/M出力軸15から連結軸14に伝達される動力は、所定の変速比(T/M入力軸28の回転数を可及的に低回転に維持する変速比)で変速される。
前後進切換機構18の逆転クラッチ22が切断され、前進ブレーキ23が作動しているので、連結軸14に伝達される動力は、遊星歯車機構21のプラネタリギヤ25を介してサンギヤ24に伝達され、サンギヤ24、T/M入力軸28およびトルコン出力軸42を一体回転させる。前進ブレーキ23が作動状態とされることにより、キャリア26が固定されているので、連結軸14の動力は、増速および反転されて、トルコン出力軸42に伝達され、トルコン出力軸42を回転させる。
トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7から変速機3にオイルが供給される。そのため、変速機3のVベルト13の挟圧(CVTベルト挟圧)および前進ブレーキ23の作動圧が適正に維持される。
また、トルコン出力軸42とともにトルコンカバー43が回転する。トルコンカバー43の回転による動力は、オルタネータギヤ55を介してオルタネータ6の回転軸54に伝達され、オルタネータ6により電力に回生される。
トルクコンバータ4のロックアップクラッチ46が切断されているので、トルコンカバー43の回転は、トルコン入力軸41に直接には伝達されない。
図6は、車両1のコースト走行中にエンジン2が再始動されるときの動力伝達経路を図解的に示す図である。
車両1のコースト走行中に、運転者によってアクセル操作がなされると、エンジン2が再始動される。具体的には、スタータ5のスタータギヤ53がフライホイール52のギヤ歯に噛合されて、スタータ5が駆動され、スタータ5の動力がスタータギヤ53およびフライホイール52を介してE/G出力軸31に伝達される。これにより、エンジン2がクランキングされる。そして、エンジン2がクランキングされながら、点火プラグがスパークされることにより、エンジン2が再始動(ファイアリング)する。
そして、エンジン2の回転数(E/G出力軸31の回転数)がT/M入力軸28の回転数まで上昇すると、ロックアップクラッチ46が継合される。ロックアップクラッチ46が継合されると、E/G出力軸31からトルコン入力軸41に入力される動力は、トルコンカバー43を介して、速度変化なく、トルコン出力軸42に伝達される。
以上のように、トルクコンバータ4は、従来のトルクコンバータとは異なり、タービンランナ45がトルコンカバー43に連結され、トルコン入力軸41がポンプインペラ44に連結され、トルコン出力軸42がトルコンカバー43に連結された構成を有している。
エンジン2からトルコン入力軸41に動力が入力されると、トルコン入力軸41およびポンプインペラ44が回転する。ポンプインペラ44が回転すると、ポンプインペラ44からタービンランナ45に向かうオイルの流れが生じる。このオイルの流れがタービンランナ45で受けられて、タービンランナ45およびトルコンカバー43が回転し、その回転による動力がトルコン出力軸42から出力される。
トルコンカバー43は、オルタネータ6に動力を伝達可能に設けられている。これにより、車両1のコースト走行時に、トルクコンバータ4のロックアップクラッチ46が切断され、トルコン入力軸41とトルコンカバー43とが分離した状態で、変速機3側からトルコン出力軸42に伝達される動力をトルコンカバー43を介してオルタネータ6に伝達し、オルタネータ6で動力を電力に回生することができる。そのため、コースト走行時に、エンジン2の回転数を下げて、エンジン2のフリクションやポンピングロスによる車両の減速を抑制することにより、オルタネータ6による回生量を増大させることができる。また、車両1の減速度を弱めるための不必要なアクセル操作を抑制することができる。
さらに、E/G出力軸31からオルタネータ6に動力が伝達される構成と比較して、オルタネータ6を高回転化することができ、オルタネータ6の高回転化による小型化を図ることができる。
しかも、オルタネータ6がトルコンカバー43から動力が伝達されるように設けられているので、E/G出力軸31からオルタネータ6に動力が伝達される構成と比較して、変速機3とトルクコンバータ4との間の軸長が延長されない。
よって、E/G出力軸31からオルタネータ6に動力が伝達される構成と比較して、トルクコンバータ4と変速機3との間の軸長を延長せずに、オルタネータ6による回生量を増大させることができる。そして、オルタネータ6で回生される電力を補機の駆動電力などとして消費することにより、車両の燃費の向上を図ることができる。また、オルタネータ6の高回転化による小型化を図ることができる。
図7および図8は、本発明の第2実施形態に係る動力伝達機構が組み込まれた車両1の駆動系統の構成を概念的に示す図である。図7および図8において、図1に示される各部に相当する部分には、それらの各部と同一の参照符号が付されている。また、図7および図8に示される構成について、図1に示される構成との相違点のみを説明する。
図7および図8に示される構成の車両101には、オルタネータ6に代えて、モータジェネレータ102が備えられている。モータジェネレータ102は、電動機(モータ)および発電機(ジェネレータ)としての機能を有する。モータジェネレータ102の回転軸103には、M/Gギヤ104が保持され、M/Gギヤ104は、トルコンカバー43の外周面のギヤ歯と噛合している。
車両101では、スタータ5が備えられておらず、モータジェネレータ102がエンジン2のスタータとして使用される。
車両101の停止(停車)中におけるエンジン2の始動の際には、トルクコンバータ4のロックアップクラッチ46および前後進切換機構18の逆転クラッチ22が切断され、前後進切換機構18の前進ブレーキ23が非作動状態にされる。そして、モータジェネレータ102が制御され、モータジェネレータ102がモータとして駆動される。モータジェネレータ102の動力は、図7に示されるように、M/Gギヤ104およびトルコンカバー43を介して、トルコン出力軸42に伝達され、トルコン出力軸42を回転させる。トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動して、機械式オイルポンプ7の発生油圧が上昇し、機械式オイルポンプ7から変速機3にオイルが供給される。
このように、モータジェネレータ102の動力により、エンジン2が始動される前に、機械式オイルポンプ7を駆動することができ、機械式オイルポンプ7による油圧を確保することができる。そのため、機械式オイルポンプ7を補助するための電動式オイルポンプ8を不要とすることができ、車両1と比較して、車両101のコストおよび重量の低減を図ることができる。
その後、ロックアップクラッチ46が継合される。ロックアップクラッチ46が継合されると、トルコンカバー43の回転がトルコン入力軸41を介してE/G出力軸31に伝達される。これにより、エンジン2がクランキングされる。そして、エンジン2がクランキングされながら、点火プラグがスパークされることにより、エンジン2が始動する。
また、車両101のコースト走行中におけるエンジン2の再始動の際には、トルクコンバータ4のロックアップクラッチ46および前後進切換機構18の逆転クラッチ22が切断され、前後進切換機構18の前進ブレーキ23が作動した状態から、ロックアップクラッチ46が継合または半継合(半クラッチ)される。そして、モータジェネレータ102が制御され、モータジェネレータ102がモータとして駆動される。モータジェネレータ102の動力は、図8に示されるように、M/Gギヤ104およびトルコンカバー43を介して、E/G出力軸31に伝達される。これにより、エンジン2がクランキングされる。そして、エンジン2がクランキングされながら、点火プラグがスパークされることにより、エンジン2が再始動する。
運転者によるアクセル操作からエンジン2の再始動までの間、モータジェネレータ102の動力がトルコンカバー43を介してトルコン出力軸42に伝達され、モータジェネレータ102の動力による車両101の走行(EV走行)状態または走行アシスト状態となる。よって、コースト走行からのエンジンの再始動時に、その始動の遅れをカバーすることができる。
図9は、本発明の第3実施形態に係る動力伝達機構が組み込まれた車両1の駆動系統の構成を概念的に示す図である。図9において、図7および図8に示される各部に相当する部分には、それらの各部と同一の参照符号が付されている。また、図9に示される構成について、図7および図8に示される構成との相違点のみを説明する。
図9に示される構成の車両111には、図7および図8に示される構成に加えて、トルコン出力軸42からトルコン入力軸41に向かう一方向に動力を減速して伝達する逆方向減速機構112が備えられている。逆方向減速機構112は、トルコンカバー43内に収容され、トルコン入力軸41とトルコンカバー43との間に介装されて、ロックアップクラッチ46と並列に設けられている。
具体的に、逆方向減速機構112は、第1ギヤ113、第2ギヤ114、第3ギヤ115、第4ギヤ116およびワンウェイクラッチ117を備えている。第1ギヤ113は、トルコンカバー43と回転軸線が一致するように配置され、トルコンカバー43に保持されている。第2ギヤ114は、第1ギヤ113の周囲に配置され、第1ギヤ113と噛合している。第2ギヤ114の個数は、1個であってもよいし、複数個であってもよい。複数個の第2ギヤ114が設けられる場合、第2ギヤ114は、第1ギヤ113の周囲に等角度間隔で配置されることが好ましい。第3ギヤ115は、第2ギヤ114に対応して設けられ、その対応する第2ギヤ114と共通の軸118に保持されている。第3ギヤ115のギヤ径は、第2ギヤ114のギヤ径よりも小さい。第4ギヤ116は、トルコン入力軸41および第1ギヤ113と回転軸線が一致するように配置され、トルコン入力軸41に保持されている。第4ギヤ116のギヤ径は、第1ギヤ113のギヤ径よりも大きく、第3ギヤ115と第4ギヤ116とが噛合するように設定されている。ワンウェイクラッチ117は、トルコン入力軸41と第4ギヤ116との間に介装されている。ワンウェイクラッチ117は、第4ギヤ116からトルコン入力軸41への動力の伝達を許容し、トルコン入力軸41から第4ギヤ116への動力の伝達を阻止する。
車両111の停止(停車)中におけるエンジン2の始動の際には、トルクコンバータ4のロックアップクラッチ46および前後進切換機構18の逆転クラッチ22が切断され、前後進切換機構18の前進ブレーキ23が非作動状態にされる。そして、モータジェネレータ102が制御され、モータジェネレータ102がモータとして駆動される。モータジェネレータ102の動力は、M/Gギヤ104およびトルコンカバー43を介して、トルコン出力軸42に伝達され、トルコン出力軸42を回転させる。トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動して、機械式オイルポンプ7の発生油圧が上昇し、機械式オイルポンプ7から変速機3にオイルが供給される。
また、第1ギヤ113がトルコンカバー43と一体的に回転する。第1ギヤ113の回転による動力は、第2ギヤ114に伝達され、第2ギヤ114および第2ギヤ114とともに軸118に保持されている第3ギヤ115を第1ギヤ113と逆方向に回転させる。第3ギヤ115の回転による動力は、第4ギヤ116に伝達され、第4ギヤ116を第2ギヤ114および第3ギヤ115と逆方向、つまり第1ギヤ113と同方向に回転させる。そして、第4ギヤ116の回転による動力は、ワンウェイクラッチ117およびトルコン出力軸42を介してE/G出力軸31に伝達される。これにより、エンジン2がクランキングされる。エンジン2がクランキングされながら、点火プラグがスパークされることにより、エンジン2が始動する。
このように、エンジン2の始動時に、モータジェネレータ102からの始動トルクが逆方向減速機構112を介してエンジン2に伝達されることにより、モータジェネレータ102のトルクが増幅され、その増幅されたトルクがエンジン始動トルクとして印加される。そのため、モータジェネレータ102が小型であっても、低温始動時など、大きな始動トルクが要求される場合にも充分に対応することができる。
図10は、車両111の走行開始時の動力伝達経路を図解的に示す図である。
エンジン2が始動すると、前後進切換機構18の前進ブレーキ23が作動状態にされる。
エンジン2の動力がE/G出力軸31からトルコン入力軸41に入力され、トルコン入力軸41およびポンプインペラ44が一体となって回転する。トルクコンバータ4のロックアップクラッチ46が切断されているので、ポンプインペラ44が回転すると、ポンプインペラ44からタービンランナ45に向かうオイルの流れが生じる。このオイルの流れがタービンランナ45で受けられて、タービンランナ45が回転する。そして、トルコンカバー43およびトルコン出力軸42がタービンランナ45と一体となって回転し、タービンランナ45の回転による動力がトルコン出力軸42に出力される。
このとき、必要に応じて、モータジェネレータ102がモータとして駆動され、モータジェネレータ102の動力によりトルコン出力軸42の回転がアシストされる。これにより、車両111の発進時の加速がアシストされるので、ドライバビリティが向上する。
前後進切換機構18の逆転クラッチ22が切断され、前進ブレーキ23が作動しているので、トルコン出力軸42と一体に回転するT/M入力軸28の動力は、遊星歯車機構21のサンギヤ24を介してプラネタリギヤ25に伝達され、プラネタリギヤ25を回転させる。そして、プラネタリギヤ25の回転がリングギヤ27に伝達され、リングギヤ27が回転することにより、トルコン出力軸42の動力が連結軸14に伝達される。このとき、キャリア26が固定されているので、T/M入力軸28の動力は、減速されて、連結軸14に伝達される。
連結軸14に伝達される動力は、プライマリプーリ11、Vベルト13、セカンダリプーリ12、T/M出力軸15、ファイナルギヤ16およびディファレンシャルギヤ17を介して、ドライブシャフト29L,29Rに伝達され、駆動輪30L,30Rを車両111の前進方向に回転させる。これにより、車両111が発進する。
また、トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7から変速機3にオイルが引き続き供給される。
図11は、車両111の加速時の動力伝達経路を図解的に示す図である。
車両111の発進後、所定車速に達すると、トルクコンバータ4のロックアップクラッチ46が継合される。ロックアップクラッチ46が継合されると、E/G出力軸31からトルコン入力軸41に入力される動力は、トルコンカバー43を介して、速度変化なく、トルコン出力軸42に伝達される。トルコン出力軸42から駆動輪30L,30Rへの動力の伝達経路は、前述のとおりであるから、その説明を省略する。
このとき、エンジン2が最適燃費ライン上で動作するように、モータジェネレータ102によるアシスト/回生が制御される。
また、トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7から変速機3にオイルが引き続き供給される。
図12は、車両111の停止中の動力伝達経路を図解的に示す図である。
車両111では、停止(停車)中に、モータジェネレータ102により、エンジン2の動力を電力に回生(停止発電)することができる。
停止発電の際には、まず、モータジェネレータ102で機械式オイルポンプ7が駆動され、油圧が確保された後、次に、トルクコンバータ4のロックアップクラッチ46が継合される。これにより、E/G出力軸31からトルコン入力軸41に入力される動力は、トルコンカバー43に直接に伝達され、トルコンカバー43を回転させる。トルコンカバー43の回転による動力は、M/Gギヤ104を介してモータジェネレータ102の回転軸103に伝達され、モータジェネレータ102により電力に回生される。
また、停止発電の際には、前後進切換機構18の逆転クラッチ22が切断され、前後進切換機構18の前進ブレーキ23が非作動状態にされる。そのため、トルコン出力軸42がトルコンカバー43と一体に回転しても、トルコン出力軸42の動力は、変速機3の連結軸14に伝達されない。
図13は、車両111のコースト走行中の動力伝達経路を図解的に示す図である。
車両111のコースト走行中は、トルクコンバータ4のロックアップクラッチ46および前後進切換機構18の逆転クラッチ22が切断され、前後進切換機構18の前進ブレーキ23が作動状態にされる。また、フューエルカット制御により、エンジン2に対する燃料の供給が停止される。
駆動輪30L,30Rからの動力は、それぞれドライブシャフト29L,29Rを介して、ディファレンシャルギヤ17に伝達され、ディファレンシャルギヤ17からファイナルギヤ16を介して、変速機3のT/M出力軸15に伝達される。T/M出力軸15に伝達された動力は、セカンダリプーリ12、Vベルト13およびプライマリプーリ11を介して、連結軸14に伝達される。このとき、T/M出力軸15から連結軸14に伝達される動力は、所定の変速比(T/M入力軸28の回転数を可及的に低回転に維持する変速比)で変速される。
前後進切換機構18の逆転クラッチ22が切断され、前進ブレーキ23が作動しているので、連結軸14に伝達される動力は、遊星歯車機構21のプラネタリギヤ25を介してサンギヤ24に伝達され、サンギヤ24、T/M入力軸28およびトルコン出力軸42を一体回転させる。前進ブレーキ23が作動状態とされることにより、キャリア26が固定されているので、連結軸14の動力は、増速および反転されて、トルコン出力軸42に伝達され、トルコン出力軸42を回転させる。
トルコン出力軸42の回転に伴って、機械式オイルポンプ7が作動し、機械式オイルポンプ7から変速機3にオイルが供給される。
また、トルコン出力軸42とともにトルコンカバー43が回転し、第1ギヤ113がトルコンカバー43と一体的に回転する。第1ギヤ113の回転による動力は、第2ギヤ114に伝達され、第2ギヤ114および第2ギヤ114とともに軸118に保持されている第3ギヤ115を第1ギヤ113と逆方向に回転させる。第3ギヤ115の回転による動力は、第4ギヤ116に伝達され、第4ギヤ116を第2ギヤ114および第3ギヤ115と逆方向、つまり第1ギヤ113と同方向に回転させる。そして、第4ギヤ116の回転による動力は、ワンウェイクラッチ117およびトルコン出力軸42を介してE/G出力軸31に伝達される。
このように、トルコンカバー43の回転は、逆方向減速機構112により減速され、トルコン入力軸41を介して、E/G出力軸31に伝達される。これにより、エンジン2の回転数が逆方向減速機構112のギヤ比(第1ギヤ113と第4ギヤ116とのギヤ比)に応じて低減され、エンジン2のフリクションやポンピングロスによる車両の減速が抑制されるので、その分、モータジェネレータ102により、トルコンカバー43の回転による動力を電力に回生することができる。
図14は、車両111のコースト走行中にエンジン2が再始動されるときの動力伝達経路を図解的に示す図である。図15は、車両111のコースト走行中にエンジン2が再始動されるときのエンジン2およびT/M入力軸28の回転数の関係を示す図である。
車両1のコースト走行中に、運転者によってアクセル操作がなされると、エンジン2が再始動される。コースト走行中は、エンジン2の回転数が自立復帰可能な最低の回転数(たとえば、300rpm)以上に維持されている。運転者によってアクセル操作がなされると、点火プラグがスパークされることにより、エンジン2が再始動(ファイアリング)する。
そして、図15に示されるように、エンジン2の回転数(E/G出力軸31の回転数)がT/M入力軸28の回転数まで上昇すると、ロックアップクラッチ46が継合される。ロックアップクラッチ46が継合されると、E/G出力軸31からトルコン入力軸41に入力される動力は、トルコンカバー43を介して、速度変化なく、トルコン出力軸42に伝達される。
以上のように、車両111のコースト走行時に、変速機3側からの動力が逆方向減速機構112を介してエンジン2に伝達されることにより、エンジン2の回転数をT/M入力軸28の回転数よりも低く抑えて、エンジン2の回転を自立復帰可能な最低の回転数以上に維持することができる。その結果、コースト走行からのエンジン2の速やかな再始動とエンジン2のフリクションやポンピングロスの低減による燃費の向上との両立を図ることができる。
トルコン入力軸41と第4ギヤ116との間にワンウェイクラッチ117が介装された構成を取り上げたが、ワンウェイクラッチ117に代えて、トルコンカバー43(トルコン出力軸42)と第1ギヤ113との間に、トルコン出力軸42側から第1ギヤ113への動力の伝達を許容し、第1ギヤ113からトルコン出力軸42側への動力の伝達を阻止する構成のワンウェイクラッチが介装されてもよい。ただし、ロックアップクラッチ46が継合された状態において、前者の構成(ワンウェイクラッチ117を備える構成)では、ワンウェイクラッチ117の両側の回転数差が相対的に小さいので、ワンウェイクラッチ117による引き摺り損失が相対的に小さく、後者の構成では、ワンウェイクラッチの両側の回転数差が相対的に大きいので、ワンウェイクラッチによる引き摺り損失が相対的に大きくなる。よって、前者の構成では、後者の構成よりも、燃費を向上させることができる。
図16は、本発明の第4実施形態に係る動力伝達機構が組み込まれた車両121の駆動系統の構成を概念的に示す図である。図16において、図9に示される各部に相当する部分には、それらの各部と同一の参照符号が付されている。また、図16に示される構成について、図9に示される構成との相違点のみを説明する。
図16に示される構成では、シングルピニオン式遊星歯車機構からなる逆方向減速機構122が採用されている。逆方向減速機構122は、サンギヤ123、プラネタリギヤ124、キャリア125、リングギヤ126およびワンウェイクラッチ127を備えている。サンギヤ123は、トルコンカバー43と回転軸線が一致するように配置され、トルコンカバー43に保持されている。プラネタリギヤ124は、たとえば、複数個設けられ、サンギヤ123の周囲に等角度間隔で配置されている。各プラネタリギヤ124は、サンギヤ123と噛合している。キャリア125は、トルクコンバータ4のポンプインペラ44と一体回転可能に設けられ、各プラネタリギヤ124を回転可能に一括して保持している。リングギヤ126は、円環状をなし、回転不能に設けられている。リングギヤ126の内周面には、ギヤ歯が形成されており、各プラネタリギヤ124と噛合している。
ワンウェイクラッチ127は、トルコン出力軸42とサンギヤ123との間に介装されている。ワンウェイクラッチ127は、トルコン出力軸42からサンギヤ123への動力の伝達を許容し、サンギヤ123からトルコン出力軸42への動力の伝達を阻止する。
トルコンカバー43が回転すると、サンギヤ123がトルコンカバー43と一体的に回転する。サンギヤ123の回転は、プラネタリギヤ124に逆転伝達される。リングギヤ126が回転不能に設けられているので、サンギヤ123からプラネタリギヤ124に回転が伝達されると、キャリア125がサンギヤ123よりも低速で回転し、トルコン入力軸41およびE/G出力軸31がキャリア125と一体的に回転する。このように、トルコンカバー43の回転による動力は、逆方向減速機構122により減速され、トルクコンバータ4を介して、E/G出力軸31に伝達される。
トルコン出力軸42とサンギヤ123との間にワンウェイクラッチ127が介装された構成を取り上げたが、ワンウェイクラッチ127に代えて、リングギヤ126とアースボディ(車両121に固定的に設けられた部材)との間に、アースボディからリングギヤ126への動力の伝達を許容し、リングギヤ126からアースボディへの動力の伝達を阻止する構成のワンウェイクラッチが介装されてもよい。ただし、ロックアップクラッチ46が継合された状態では、前者の構成では、ワンウェイクラッチ127の両側の回転数差が相対的に小さいので、ワンウェイクラッチ127による引き摺り損が相対的に小さいのに対し、後者の構成では、ワンウェイクラッチの両側の回転数差が相対的に大きいので、ワンウェイクラッチによる引き摺り損が相対的に大きくなる。よって、前者の構成では、後者の構成よりも、燃費を向上させることができる。
また、逆方向減速機構122は、図9に示される逆方向減速機構112と比較して、E/G出力軸31に沿う方向に小型化が可能である。
図17は、本発明の第5実施形態に係る動力伝達機構が組み込まれた車両131の駆動系統の構成を概念的に示す図である。図17において、図16に示される各部に相当する部分には、それらの各部と同一の参照符号が付されている。また、図17に示される構成について、図16に示される構成との相違点のみを説明する。
図17に示される構成では、トルコン出力軸42とトルコンカバー43との間に、ワンウェイクラッチ132が介装されている。ワンウェイクラッチ132は、トルコンカバー43からトルコン出力軸42への動力の伝達を許容し、トルコン出力軸42からトルコンカバー43への動力の伝達を阻止する。
ワンウェイクラッチ132が設けられていることにより、車両1のコースト走行時に、トルクコンバータ4のロックアップクラッチ46が継合されていても、トルコン出力軸42の動力がトルコンカバー43を介してキャリア125に伝達されることを阻止することができ、トルコン出力軸42の動力を逆方向減速機構122により減速してエンジン2に伝達することができる。その結果、コースト走行の開始時に、ロックアップクラッチ46の切断によるロックアップ解除が不要になるので、ロックアップ解除によるショックの発生を防止でき、また、エンジン2の回転数を速やかに低下させることができる。
なお、ワンウェイクラッチ132が設けられる場合、車両131の停止(停車)中におけるエンジン2の始動の際には、トルクコンバータ4のロックアップクラッチ46を継合する必要がある。
図18は、本発明の第6実施形態に係る動力伝達機構が組み込まれた車両141の駆動系統の構成を概念的に示す図である。図18において、図9に示される各部に相当する部分には、それらの各部と同一の参照符号が付されている。また、図18に示される構成について、図9に示される構成との相違点のみを説明する。
図18に示される構成では、逆方向減速機構112は、トルコン入力軸41とトルコン出力軸42との間に介装されて、ロックアップクラッチ46と直列に設けられている。
具体的には、トルコンカバー43は、ポンプインペラ44およびロックアップクラッチ46を収容する第1カバー部142と、第1カバー部142に対して変速機3側に一体に設けられた第2カバー部143とを有している。第2カバー部143は、ワンウェイクラッチ144を介してトルコン出力軸42に連結されている。ワンウェイクラッチ144は、第2カバー部143からトルコン出力軸42への動力の伝達を許容し、トルコン出力軸42から第2カバー部143への動力の伝達を阻止する。逆方向減速機構112は、第2カバー部143内に収容されている。第1ギヤ113は、第2カバー部143と回転軸線が一致するように配置され、第2カバー部143に保持されている。第4ギヤ116は、第1カバー部142と回転軸線が一致するように配置され、第1カバー部142に保持されている。
この構成によれば、車両1のコースト走行時に、トルクコンバータ4のロックアップクラッチ46が継合されていても、トルコン出力軸42の動力は、第1カバー部142を介することなく、逆方向減速機構112により減速されて、第2カバー部143に伝達され、第2カバー部143からトルコン入力軸41を介してエンジン2に伝達される。そのため、コースト走行の開始時に、ロックアップクラッチ46の切断によるロックアップ解除が不要になるので、ロックアップ解除によるショックの発生を防止でき、また、エンジン2の回転数を速やかに低下させることができる。
なお、この構成では、車両141の停止(停車)中におけるエンジン2の始動の際には、トルクコンバータ4のロックアップクラッチ46を継合する必要がある。
以上、本発明のいくつかの実施形態について説明したが、本発明は、さらに他の形態で実施することもできる。
たとえば、前述の実施形態では、Vベルト式の無段変速機の構成を有する変速機3を例示したが、変速機3は、Vベルト式以外の型式の無段変速機の構成を有していてもよいし、無段変速機に限らず、有段変速機の構成を有していてもよい。また、自動変速機に限らず、手動変速機の構成を有していてもよい。
また、前述の実施形態では、コースト走行時のロックアップクラッチ46の切断を前提としているが、道路状態(短時間コースト走行、登坂中のコースト走行)や、車両状態(電池満充電で回生できない状態)に応じて、適宜、ロックアップクラッチ46の切断要否を判断して制御を行ってもよい。
その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。