JP6187464B2 - Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing separator for lithium ion secondary battery, and for lithium ion secondary battery Electrode manufacturing method - Google Patents
Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing separator for lithium ion secondary battery, and for lithium ion secondary battery Electrode manufacturing method Download PDFInfo
- Publication number
- JP6187464B2 JP6187464B2 JP2014529562A JP2014529562A JP6187464B2 JP 6187464 B2 JP6187464 B2 JP 6187464B2 JP 2014529562 A JP2014529562 A JP 2014529562A JP 2014529562 A JP2014529562 A JP 2014529562A JP 6187464 B2 JP6187464 B2 JP 6187464B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- ion secondary
- secondary battery
- separator
- porous film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 138
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 127
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 127
- 238000004519 manufacturing process Methods 0.000 title claims description 82
- 239000012528 membrane Substances 0.000 title claims description 63
- -1 carbodiimide compound Chemical class 0.000 claims description 94
- 229920000642 polymer Polymers 0.000 claims description 80
- 239000003431 cross linking reagent Substances 0.000 claims description 69
- 239000002245 particle Substances 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 56
- 239000002562 thickening agent Substances 0.000 claims description 45
- 238000001035 drying Methods 0.000 claims description 34
- 125000000524 functional group Chemical group 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 22
- 239000011230 binding agent Substances 0.000 claims description 21
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 15
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 15
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 14
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 14
- 239000008151 electrolyte solution Substances 0.000 claims description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 8
- 229920002125 Sokalan® Polymers 0.000 claims description 7
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 7
- 239000004584 polyacrylic acid Substances 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 6
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 235000010981 methylcellulose Nutrition 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 58
- 229910001868 water Inorganic materials 0.000 description 58
- 239000000178 monomer Substances 0.000 description 50
- 239000007787 solid Substances 0.000 description 45
- 239000002904 solvent Substances 0.000 description 41
- 150000001875 compounds Chemical class 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 28
- 239000010410 layer Substances 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- 229920001228 polyisocyanate Polymers 0.000 description 21
- 239000005056 polyisocyanate Substances 0.000 description 21
- 239000006185 dispersion Substances 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 16
- 235000019441 ethanol Nutrition 0.000 description 16
- 238000006116 polymerization reaction Methods 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 229940105329 carboxymethylcellulose Drugs 0.000 description 13
- 239000007774 positive electrode material Substances 0.000 description 13
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 12
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 8
- 239000012948 isocyanate Substances 0.000 description 8
- 150000002513 isocyanates Chemical group 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- 229920003169 water-soluble polymer Polymers 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 125000005442 diisocyanate group Chemical group 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000003125 aqueous solvent Substances 0.000 description 6
- 150000001718 carbodiimides Chemical class 0.000 description 6
- 239000006258 conductive agent Substances 0.000 description 6
- 239000002612 dispersion medium Substances 0.000 description 6
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 238000006011 modification reaction Methods 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 4
- 239000003115 supporting electrolyte Substances 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910001593 boehmite Inorganic materials 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000011146 organic particle Substances 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 241001455273 Tetrapoda Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000001334 alicyclic compounds Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920003050 poly-cycloolefin Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- DDKMFQGAZVMXQV-UHFFFAOYSA-N (3-chloro-2-hydroxypropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CCl DDKMFQGAZVMXQV-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical compound CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 1
- MAIIXYUYRNFKPL-UPHRSURJSA-N (z)-4-(2-hydroxyethoxy)-4-oxobut-2-enoic acid Chemical compound OCCOC(=O)\C=C/C(O)=O MAIIXYUYRNFKPL-UPHRSURJSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- QSOFJLDXOMMNNK-UHFFFAOYSA-N 2-(hydroxymethyl)-2-methylpropane-1,3-diol 3-sulfanylbutanoic acid Chemical compound CC(S)CC(O)=O.CC(S)CC(O)=O.CC(S)CC(O)=O.OCC(C)(CO)CO QSOFJLDXOMMNNK-UHFFFAOYSA-N 0.000 description 1
- BDLXTDLGTWNUFM-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxy]ethanol Chemical compound CC(C)(C)OCCO BDLXTDLGTWNUFM-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- WBEKRAXYEBAHQF-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;3-sulfanylbutanoic acid Chemical compound CC(S)CC(O)=O.CC(S)CC(O)=O.CC(S)CC(O)=O.CCC(CO)(CO)CO WBEKRAXYEBAHQF-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- IEVADDDOVGMCSI-UHFFFAOYSA-N 2-hydroxybutyl 2-methylprop-2-enoate Chemical compound CCC(O)COC(=O)C(C)=C IEVADDDOVGMCSI-UHFFFAOYSA-N 0.000 description 1
- TVONJMOVBKMLOM-UHFFFAOYSA-N 2-methylidenebutanenitrile Chemical compound CCC(=C)C#N TVONJMOVBKMLOM-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- JHYNEQNPKGIOQF-UHFFFAOYSA-N 3,4-dihydro-2h-phosphole Chemical class C1CC=PC1 JHYNEQNPKGIOQF-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- GCTWZXLKCMVCKS-NSCUHMNNSA-N 4-o-(2-hydroxyethyl) 1-o-methyl (e)-but-2-enedioate Chemical compound COC(=O)\C=C\C(=O)OCCO GCTWZXLKCMVCKS-NSCUHMNNSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- VTLHIRNKQSFSJS-UHFFFAOYSA-N [3-(3-sulfanylbutanoyloxy)-2,2-bis(3-sulfanylbutanoyloxymethyl)propyl] 3-sulfanylbutanoate Chemical compound CC(S)CC(=O)OCC(COC(=O)CC(C)S)(COC(=O)CC(C)S)COC(=O)CC(C)S VTLHIRNKQSFSJS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical class CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005910 alkyl carbonate group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- SMPWDQQFZPIOGD-UPHRSURJSA-N bis(2-hydroxyethyl) (z)-but-2-enedioate Chemical compound OCCOC(=O)\C=C/C(=O)OCCO SMPWDQQFZPIOGD-UPHRSURJSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005443 coulometric titration Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- JMVIPXWCEHBYAH-UHFFFAOYSA-N cyclohexanone;ethyl acetate Chemical compound CCOC(C)=O.O=C1CCCCC1 JMVIPXWCEHBYAH-UHFFFAOYSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- ZWWQRMFIZFPUAA-UHFFFAOYSA-N dimethyl 2-methylidenebutanedioate Chemical compound COC(=O)CC(=C)C(=O)OC ZWWQRMFIZFPUAA-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- MDNFYIAABKQDML-UHFFFAOYSA-N heptyl 2-methylprop-2-enoate Chemical compound CCCCCCCOC(=O)C(C)=C MDNFYIAABKQDML-UHFFFAOYSA-N 0.000 description 1
- SCFQUKBBGYTJNC-UHFFFAOYSA-N heptyl prop-2-enoate Chemical compound CCCCCCCOC(=O)C=C SCFQUKBBGYTJNC-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012690 ionic polymerization Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 229940074369 monoethyl fumarate Drugs 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- LKEDKQWWISEKSW-UHFFFAOYSA-N nonyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCOC(=O)C(C)=C LKEDKQWWISEKSW-UHFFFAOYSA-N 0.000 description 1
- MDYPDLBFDATSCF-UHFFFAOYSA-N nonyl prop-2-enoate Chemical compound CCCCCCCCCOC(=O)C=C MDYPDLBFDATSCF-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001254 oxidized starch Substances 0.000 description 1
- 235000013808 oxidized starch Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- ATZHWSYYKQKSSY-UHFFFAOYSA-N tetradecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C(C)=C ATZHWSYYKQKSSY-UHFFFAOYSA-N 0.000 description 1
- XZHNPVKXBNDGJD-UHFFFAOYSA-N tetradecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C=C XZHNPVKXBNDGJD-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- AFFZTFNQQHNSEG-UHFFFAOYSA-N trifluoromethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)F AFFZTFNQQHNSEG-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
本発明は、リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、リチウムイオン二次電池、リチウムイオン二次電池用セパレータの製造方法及びリチウムイオン二次電池用電極の製造方法に関するものである。 The present invention relates to a porous membrane composition for a lithium ion secondary battery, a separator for a lithium ion secondary battery, an electrode for a lithium ion secondary battery, a lithium ion secondary battery, a method for producing a separator for a lithium ion secondary battery, and lithium ion The present invention relates to a method for manufacturing a secondary battery electrode.
小型で軽量、且つエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン二次電池などの二次電池は、環境対応からも今後の需要の拡大が見込まれている。リチウムイオン二次電池は、エネルギー密度が大きく携帯電話やノート型パーソナルコンピュータなどの分野で利用されている。また、二次電池は、用途の拡大や発展に伴い、低抵抗化、大容量化、長寿命化(サイクル特性の向上)および高レートでの充放電容量の維持率(レート特性)の向上等、より一層の性能向上が求められている。 The demand for secondary batteries such as lithium ion secondary batteries that are small and light, have high energy density, and can be repeatedly charged and discharged is expected to increase in the future from the environmental viewpoint. Lithium ion secondary batteries have a high energy density and are used in fields such as mobile phones and notebook personal computers. In addition, with the expansion and development of applications, secondary batteries have reduced resistance, increased capacity, extended life (improved cycle characteristics), improved charge / discharge capacity maintenance rate (rate characteristics) at high rates, etc. Therefore, further improvement in performance is required.
サイクル特性の向上を目的として、リチウムイオン二次電池の電極やセパレータ等の構成要素を形成する際のバインダーとして、水系のバインダーを含む二次電池用組成物が用いられている。水系バインダーは、活物質の表面のすべてを覆わず、適度に覆うため、リチウムイオンの挿入脱離反応を妨げない。そのため、リチウムイオン二次電池においては電池の内部抵抗が減少し、サイクル特性が向上する。 For the purpose of improving cycle characteristics, a secondary battery composition containing a water-based binder is used as a binder when forming components such as electrodes and separators of lithium ion secondary batteries. The water-based binder does not cover the entire surface of the active material, but covers it appropriately, so that it does not hinder the lithium ion insertion / release reaction. Therefore, in the lithium ion secondary battery, the internal resistance of the battery is reduced and the cycle characteristics are improved.
例えば、特許文献1には、負極活物質に合金を用いる場合に、酸量が多い水系の負極バインダーが用いることが記載され、特許文献2においては、集電体との密着力を高めるためにフッ素系のバインダーを用いることが記載されている。 For example, Patent Document 1 describes that, when an alloy is used for the negative electrode active material, a water-based negative electrode binder with a large amount of acid is used. In Patent Document 2, in order to increase the adhesion with the current collector, The use of a fluorine-based binder is described.
ここで、通常、リチウムイオン二次電池に用いられるセパレータとしては、例えばポリオレフィン系樹脂から成る微多孔膜が使用されている。セパレータは、電池内部の温度が130℃近傍になった場合、溶融して微多孔を塞ぐことで、リチウムイオンの移動を防ぎ、電流を遮断させるシャットダウン機能により、リチウムイオン二次電池の安全性を保持する役割を担っている。しかしながら、瞬間的な発熱によって電池温度が、例えば150℃を超えると、セパレータは急激に収縮して、正極及び負極が直接接触し、短絡する箇所が拡大することがある。この場合、電池温度は数百℃以上にまで異常過熱された状態に至ることがある。 Here, as a separator normally used for a lithium ion secondary battery, for example, a microporous film made of a polyolefin resin is used. When the temperature inside the battery reaches around 130 ° C, the separator melts and closes the micropores, thereby preventing the movement of lithium ions and shutting down the current, thereby reducing the safety of the lithium ion secondary battery. Have a role to hold. However, when the battery temperature exceeds, for example, 150 ° C. due to instantaneous heat generation, the separator contracts rapidly, and the positive electrode and the negative electrode may be in direct contact with each other, thereby expanding the location where a short circuit occurs. In this case, the battery temperature may reach a state where it is abnormally overheated to several hundred degrees Celsius or higher.
このため、ポリエチレン微多孔膜等のセパレータの表面上に、耐熱性のある多孔膜層を積層した非水系セパレータ等が検討されている。多孔膜層は、内部に多数の連結された微細孔構造を有する膜のことであり、非導電性粒子、非導電性粒子同士及び非導電性粒子とセパレータや集電体とを結着させるためバインダーを含有する。また多孔膜層は、電極に積層して用いたり、セパレータそのものとして用いることもできる。 For this reason, non-aqueous separators in which a heat-resistant porous membrane layer is laminated on the surface of a separator such as a polyethylene microporous membrane have been studied. The porous membrane layer is a membrane having a large number of linked micropore structures inside, and for binding non-conductive particles, non-conductive particles to each other, and non-conductive particles to a separator or a current collector. Contains a binder. Further, the porous membrane layer can be used by being laminated on an electrode, or can be used as a separator itself.
ここで、リチウムイオン二次電池のさらなる性能向上の観点からは、リチウムイオン二次電池におけるガス発生を抑制し、セルの膨らみを抑制すること、多孔膜層を積層したセパレータや電極における多孔膜層の密着強度を向上させることが求められる。 Here, from the viewpoint of further improving the performance of the lithium ion secondary battery, the gas generation in the lithium ion secondary battery is suppressed, the swelling of the cell is suppressed, and the porous film layer in the separator or electrode in which the porous film layer is laminated. It is required to improve the adhesion strength.
本発明の目的は、含有水分量が少なく、密着強度に優れた多孔膜層を得ることができるリチウムイオン二次電池用多孔膜組成物、このリチウムイオン二次電池用多孔膜組成物を用いて得られるリチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極及びリチウムイオン二次電池を提供すること、また、上記リチウムイオン二次電池用多孔膜組成物を用いたリチウムイオン二次電池用セパレータの製造方法及びリチウムイオン二次電池用電極の製造方法を提供することである。 An object of the present invention is to use a porous membrane composition for a lithium ion secondary battery, which can obtain a porous membrane layer having a low water content and excellent adhesion strength, and using this porous membrane composition for a lithium ion secondary battery. Providing a separator for a lithium ion secondary battery, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery, and a lithium ion secondary battery using the porous membrane composition for a lithium ion secondary battery It is providing the manufacturing method of a separator, and the manufacturing method of the electrode for lithium ion secondary batteries.
本発明者は、鋭意検討の結果、バインダーに加えて特定の水溶性増粘剤及びカルボジイミド化合物を含む組成物を用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found that the above object can be achieved by using a composition containing a specific water-soluble thickener and a carbodiimide compound in addition to the binder, and has completed the present invention.
即ち、本発明によれば、
(1) 非導電性粒子と、水酸基または/およびカルボキシル基を含有する水溶性増粘剤(A)と、カルボジイミド化合物架橋剤(B)と、粒子状重合体(C)とを含むリチウムイオン二次電池用多孔膜組成物であって、前記粒子状重合体(C)は、前記カルボジイミド化合物架橋剤(B)と反応する官能基を有するリチウムイオン二次電池用多孔膜組成物、
(2) 前記水溶性増粘剤(A)が、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリアクリル酸もしくはこれらの塩、からなる群から選択される少なくとも1種である、(1)に記載のリチウムイオン二次電池用多孔膜組成物、
(3) 前記粒子状重合体(C)中の前記カルボジイミド化合物架橋剤(B)と反応する官能基が、カルボキシル基、水酸基、グリシジルエーテル基、及びチオール基からなる群から選択される少なくとも1種である(1)または(2)に記載のリチウムイオン二次電池用多孔膜組成物、
(4) 前記非導電性粒子100重量部に対して、前記水溶性増粘剤(A)を0.2〜15重量部、前記カルボジイミド化合物架橋剤(B)を0.01〜10重量部、前記粒子状重合体(C)を1〜15重量部をそれぞれ含有する(1)〜(3)の何れかに記載のリチウムイオン二次電池用多孔膜組成物、
(5) (1)〜(4)の何れかに記載のリチウムイオン二次電池用多孔膜組成物を、基板上に塗布し、乾燥して得られるリチウムイオン二次電池用セパレータ、
(6) (1)〜(4)の何れかに記載のリチウムイオン二次電池用多孔膜組成物を、極板上に塗布し、乾燥して得られるリチウムイオン二次電池用電極、
(7) 正極、負極、電解液、並びにセパレータを備えるリチウムイオン二次電池であって、前記セパレータが(5)に記載のリチウムイオン二次電池用セパレータであるリチウムイオン二次電池、
(8) 正極、負極、電解液、並びにセパレータを備えるリチウムイオン二次電池であって、前記正極または/および前記負極が(6)に記載のリチウムイオン二次電池用電極であるリチウムイオン二次電池、
(9) (1)〜(4)の何れかに記載のリチウムイオン二次電池用多孔膜組成物を、基板上に塗布し、乾燥して得られるリチウムイオン二次電池用セパレータの製造方法であって、前記リチウムイオン二次電池用多孔膜組成物を基板上に塗布する工程と、50〜200℃で乾燥する工程とを有するリチウムイオン二次電池用セパレータの製造方法、
(10) (1)〜(4)の何れかに記載のリチウムイオン二次電池用多孔膜組成物を、極板上に塗布し、乾燥して得られるリチウムイオン二次電池用電極の製造方法であって、前記リチウムイオン二次電池用多孔膜組成物を極板上に塗布する工程と、50〜200℃で乾燥する工程とを有するリチウムイオン二次電池用電極の製造方法
が提供される。That is, according to the present invention,
(1) Lithium ion secondary containing non-conductive particles, a water-soluble thickener (A) containing a hydroxyl group or / and a carboxyl group, a carbodiimide compound crosslinking agent (B), and a particulate polymer (C) A porous membrane composition for a secondary battery, wherein the particulate polymer (C) has a functional group that reacts with the carbodiimide compound crosslinking agent (B),
(2) The water-soluble thickener (A) is at least one selected from the group consisting of carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, polyacrylic acid or salts thereof. The porous membrane composition for a lithium ion secondary battery according to (1),
(3) The functional group that reacts with the carbodiimide compound crosslinking agent (B) in the particulate polymer (C) is at least one selected from the group consisting of a carboxyl group, a hydroxyl group, a glycidyl ether group, and a thiol group. The porous membrane composition for a lithium ion secondary battery according to (1) or (2),
(4) The water-soluble thickener (A) is 0.2 to 15 parts by weight, the carbodiimide compound crosslinking agent (B) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the non-conductive particles. The porous membrane composition for a lithium ion secondary battery according to any one of (1) to (3), containing 1 to 15 parts by weight of the particulate polymer (C),
(5) A separator for a lithium ion secondary battery obtained by applying the porous film composition for a lithium ion secondary battery according to any one of (1) to (4) on a substrate and drying,
(6) An electrode for a lithium ion secondary battery obtained by applying the porous film composition for a lithium ion secondary battery according to any one of (1) to (4) on an electrode plate and drying the composition,
(7) A lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the separator is a separator for a lithium ion secondary battery according to (5),
(8) A lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the positive electrode and / or the negative electrode is an electrode for a lithium ion secondary battery according to (6) battery,
(9) By the manufacturing method of the separator for lithium ion secondary batteries obtained by apply | coating the porous film composition for lithium ion secondary batteries in any one of (1)-(4) on a board | substrate, and drying. A method for producing a separator for a lithium ion secondary battery, comprising: a step of applying the porous film composition for a lithium ion secondary battery on a substrate; and a step of drying at 50 to 200 ° C.
(10) A method for producing an electrode for a lithium ion secondary battery obtained by applying the porous membrane composition for a lithium ion secondary battery according to any one of (1) to (4) on an electrode plate and drying the composition. And the manufacturing method of the electrode for lithium ion secondary batteries which has the process of apply | coating the said porous membrane composition for lithium ion secondary batteries on an electrode plate, and the process of drying at 50-200 degreeC is provided. .
本発明に係るリチウムイオン二次電池用多孔膜組成物によれば、含有水分量が少なく、密着強度に優れた多孔膜層を得ることができる。また、本発明によれば上記リチウムイオン二次電池用多孔膜組成物を用いたリチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極及びリチウムイオン二次電池、リチウムイオン二次電池用多孔膜組成物を用いたリチウムイオン二次電池用セパレータの製造方法及びリチウムイオン二次電池用電極の製造方法を提供することができる。 According to the porous membrane composition for a lithium ion secondary battery according to the present invention, it is possible to obtain a porous membrane layer having a low water content and excellent adhesion strength. Further, according to the present invention, a separator for a lithium ion secondary battery, an electrode for a lithium ion secondary battery and a lithium ion secondary battery, and a porous for a lithium ion secondary battery using the porous membrane composition for a lithium ion secondary battery. The manufacturing method of the separator for lithium ion secondary batteries using a membrane composition, and the manufacturing method of the electrode for lithium ion secondary batteries can be provided.
以下、本発明の実施の形態に係るリチウムイオン二次電池用多孔膜組成物について説明する。本発明のリチウムイオン二次電池用多孔膜組成物は、非導電性粒子と、水酸基または/およびカルボキシル基を含有する水溶性増粘剤(A)と、カルボジイミド化合物架橋剤(B)と、粒子状重合体(C)とを含むリチウムイオン二次電池用多孔膜組成物であって、前記粒子状重合体(C)は、前記カルボジイミド化合物架橋剤(B)と反応する官能基を有する。 Hereinafter, a porous membrane composition for a lithium ion secondary battery according to an embodiment of the present invention will be described. The porous membrane composition for a lithium ion secondary battery of the present invention comprises non-conductive particles, a water-soluble thickener (A) containing a hydroxyl group and / or a carboxyl group, a carbodiimide compound crosslinking agent (B), and particles. It is a porous membrane composition for lithium ion secondary batteries containing a particulate polymer (C), and the particulate polymer (C) has a functional group that reacts with the carbodiimide compound crosslinking agent (B).
(非導電性粒子)
本発明のリチウムイオン二次電池用多孔膜組成物(以下、「多孔膜組成物」ということがある。)に用いる非導電性粒子を構成する材料としては、リチウムイオン二次電池の使用環境下で安定に存在し、電気化学的にも安定であることが望まれる。例えば各種の非導電性の無機粒子、有機粒子を使用することができる。(Non-conductive particles)
The material constituting the non-conductive particles used in the porous membrane composition for a lithium ion secondary battery of the present invention (hereinafter sometimes referred to as “porous membrane composition”) is the operating environment of the lithium ion secondary battery. It is desirable that it be stable and electrochemically stable. For example, various non-conductive inorganic particles and organic particles can be used.
無機粒子の材料としては、電気化学的に安定であり、また、他の材料、例えば後述する粘度調整剤などと混合して多孔膜組成物を調製するのに適した材料が好ましい。このような観点から、無機粒子としては、酸化アルミニウム(アルミナ)、酸化アルミニウムの水和物(ベーマイト(AlOOH)、ギブサイト(Al(OH)3)、ベークライト、酸化マグネシウム、水酸化マグネシウム、酸化鉄、酸化ケイ素、酸化チタン(チタニア)、酸化カルシウムなどの酸化物、窒化アルミニウム、窒化ケイ素等の窒化物、シリカ、硫酸バリウム、フッ化バリウム、フッ化カルシウム等が用いられる。これらの中でも、電解液中での安定性と電位安定性の観点から酸化物が好ましく、中でも吸水性が低く耐熱性(例えば180℃以上の高温に対する耐性)に優れる観点から酸化チタン、アルミナ、ベーマイト、酸化マグネシウム及び水酸化マグネシウムが好ましく、アルミナ、ベーマイト、酸化マグネシウム及び水酸化マグネシウムが特に好ましい。As the material of the inorganic particles, a material that is electrochemically stable and suitable for preparing a porous film composition by mixing with other materials, for example, a viscosity adjusting agent described later is preferable. From this point of view, the inorganic particles include aluminum oxide (alumina), aluminum oxide hydrate (boehmite (AlOOH), gibbsite (Al (OH) 3 ), bakelite, magnesium oxide, magnesium hydroxide, iron oxide, Silicon oxide, titanium oxide (titania), oxides such as calcium oxide, nitrides such as aluminum nitride and silicon nitride, silica, barium sulfate, barium fluoride, calcium fluoride, etc. Among these, in electrolyte Oxides are preferred from the standpoint of stability and potential stability at high temperatures, and titanium oxide, alumina, boehmite, magnesium oxide and magnesium hydroxide are particularly preferred from the standpoint of low water absorption and excellent heat resistance (eg, resistance to high temperatures of 180 ° C. or higher). Alumina, boehmite, magnesium oxide and water Magnesium reduction is particularly preferred.
有機粒子としては、通常はポリマー(重合体)の粒子を用いる。有機粒子は、その表面の官能基の種類及び量を調整することにより、水に対する親和性を制御でき、ひいては本発明の多孔膜に含まれる水分量を制御できる。非導電性粒子の有機材料として好ましい例を挙げると、ポリスチレン、ポリエチレン、ポリイミド、メラミン樹脂、フェノール樹脂など各種高分子化合物などが挙げられる。粒子を形成する上記高分子化合物は、単独重合体でも共重合体でもよく、共重合体の場合は、ブロック共重合体、ランダム共重合体、グラフト共重合体、交互共重合体のいずれも使用できる。さらに、少なくとも一部が変性されたものや架橋物であってもよい。そして、これらの混合物であってもよい。架橋物である場合の架橋剤としては、ジビニルベンゼンなどの芳香族環を持つ架橋体、エチレングリコールジメタクリレートなどの多官能アクリレート架橋体、グリシジルアクリレート、グリシジルメタクリレートなどのエポキシ基を有する架橋体などが挙げられる。 As the organic particles, polymer (polymer) particles are usually used. By adjusting the type and amount of functional groups on the surface of the organic particles, the affinity for water can be controlled, and thus the amount of water contained in the porous membrane of the present invention can be controlled. Preferred examples of the organic material for the non-conductive particles include various polymer compounds such as polystyrene, polyethylene, polyimide, melamine resin, and phenol resin. The polymer compound forming the particles may be a homopolymer or a copolymer. In the case of a copolymer, any of a block copolymer, a random copolymer, a graft copolymer, and an alternating copolymer is used. it can. Furthermore, it may be at least partially modified or a crosslinked product. And a mixture of these may be sufficient. In the case of a cross-linked product, the cross-linking agent includes a cross-linked product having an aromatic ring such as divinylbenzene, a polyfunctional acrylate cross-linked product such as ethylene glycol dimethacrylate, and a cross-linked product having an epoxy group such as glycidyl acrylate and glycidyl methacrylate. Can be mentioned.
前記非導電性粒子は、必要に応じて、元素置換、表面処理、固溶体化等が施されていてもよい。また、非導電性粒子は、1つの粒子の中に、前記の材料のうち1種類を単独で含むものであってもよく、2種類以上を任意の比率で組み合わせて含むものであってもよい。さらに、非導電性粒子は、異なる材料で形成された2種類以上の粒子を組み合わせて用いてもよい。 The non-conductive particles may be subjected to element substitution, surface treatment, solid solution, or the like, if necessary. Further, the non-conductive particles may include one kind of the above materials alone in one particle, or may contain two or more kinds in combination at an arbitrary ratio. . Further, the non-conductive particles may be used in combination of two or more kinds of particles formed of different materials.
非導電性粒子の体積平均粒子径D50は、多孔膜の厚みが薄くても、均一な多孔膜を得ることができるので、リチウムイオン二次電池の容量を高くすることができる観点から、好ましくは0.1〜5μm、より好ましくは0.2μm〜2μm以下、さらに好ましくは0.2〜1μmである。ここで体積平均粒子径D50は、レーザー回折法で測定された粒度分布において、小粒子径側から計算した累積体積が50%となる粒子径を表す。 The volume average particle diameter D50 of the non-conductive particles is preferably from the viewpoint of increasing the capacity of the lithium ion secondary battery because a uniform porous film can be obtained even if the porous film is thin. It is 0.1-5 micrometers, More preferably, it is 0.2-2 micrometers or less, More preferably, it is 0.2-1 micrometers. Here, the volume average particle diameter D50 represents the particle diameter at which the cumulative volume calculated from the small particle diameter side becomes 50% in the particle size distribution measured by the laser diffraction method.
また、これらの非導電性粒子のBET比表面積は、粒子の凝集を抑制し、多孔膜組成物の流動性を好適化する観点から、具体的には、0.9〜200m2/gであることが好ましく、1.5〜150m2/gであることがより好ましい。非導電性粒子のBET比表面積は、比表面積測定装置(ジェミニ2310:島津製作所社製)を用いて、非導電性粒子に窒素ガスを吸着させ、BET測定法で測定する。Further, the BET specific surface area of these non-conductive particles is specifically 0.9 to 200 m 2 / g from the viewpoint of suppressing particle aggregation and optimizing the fluidity of the porous membrane composition. It is preferably 1.5 to 150 m 2 / g. The BET specific surface area of the nonconductive particles is measured by a BET measurement method by adsorbing nitrogen gas to the nonconductive particles using a specific surface area measuring device (Gemini 2310: manufactured by Shimadzu Corporation).
本発明において、非導電性粒子の形状は、例えば、球状、楕円球状、多角形状、テトラポッド(登録商標)状、板状、鱗片状などが挙げられる。中でも、多孔膜の空隙率を高くして多孔膜セパレータによるイオン伝導度の低下を抑制する観点では、テトラポッド(登録商標)状、板状、鱗片状が好ましい。 In the present invention, examples of the shape of the nonconductive particles include a spherical shape, an elliptical spherical shape, a polygonal shape, a tetrapod (registered trademark) shape, a plate shape, and a scale shape. Among these, from the viewpoint of increasing the porosity of the porous membrane and suppressing the decrease in ionic conductivity due to the porous membrane separator, a tetrapod (registered trademark) shape, a plate shape, and a scale shape are preferable.
(水溶性増粘剤(A))
本発明のリチウムイオン二次電池用多孔膜組成物に用いる水溶性増粘剤(A)は、水酸基または/およびカルボキシル基を含有する。本発明に用いる水溶性増粘剤(A)とは、25℃において、増粘剤0.5gを100gの水に溶解した際に、不溶分が1.0重量%未満の増粘剤をいう。(Water-soluble thickener (A))
The water-soluble thickener (A) used in the porous membrane composition for a lithium ion secondary battery of the present invention contains a hydroxyl group and / or a carboxyl group. The water-soluble thickener (A) used in the present invention is a thickener having an insoluble content of less than 1.0% by weight when 25 g of the thickener is dissolved in 100 g of water at 25 ° C. .
水溶性増粘剤(A)としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリアクリル酸もしくはこれらの塩を用いることが好ましく、カルボキシメチルセルロース、ポリアクリル酸を用いることがより好ましい。 As the water-soluble thickener (A), carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, polyvinyl alcohol, polyacrylic acid or a salt thereof is preferably used, and carboxymethyl cellulose or polyacrylic acid is used. More preferred.
本発明の多孔膜組成物における水溶性増粘剤(A)の含有割合は、非導電性粒子100重量部に対して、好ましくは0.2〜15重量部、より好ましくは0.5〜10重量部、さらに好ましくは0.5〜8重量部である。水溶性増粘剤(A)の含有割合が大きすぎると、多孔膜を得る際の乾燥速度が遅くなる傾向となる。また、水溶性増粘剤(A)の含有割合が小さすぎると、多孔膜の密着強度が低下する傾向となる。 The content ratio of the water-soluble thickener (A) in the porous film composition of the present invention is preferably 0.2 to 15 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the non-conductive particles. Part by weight, more preferably 0.5 to 8 parts by weight. If the content ratio of the water-soluble thickener (A) is too large, the drying rate when obtaining the porous membrane tends to be slow. Moreover, when the content rate of a water-soluble thickener (A) is too small, it will become the tendency for the adhesive strength of a porous film to fall.
(カルボジイミド化合物架橋剤(B))
本発明のリチウムイオン二次電池用多孔膜組成物に用いるカルボジイミド化合物架橋剤(B)は、後述する粒子状重合体(C)が有する官能基と反応する。(Carbodiimide compound crosslinking agent (B))
The carbodiimide compound crosslinking agent (B) used in the porous membrane composition for a lithium ion secondary battery of the present invention reacts with a functional group possessed by the particulate polymer (C) described later.
カルボジイミド化合物は、分子中に一般式(1):−N=C=N−・・・(1)で表されるカルボジイミド基を有し、水溶性増粘剤(A)間、水溶性増粘剤(A)と粒子状重合体(C)との間、および、粒子状重合体(C)間に架橋構造を形成し得る架橋性化合物であれば特に限定されない。そして、このようなカルボジイミド化合物架橋剤(B)としては、例えば、カルボジイミド基を2つ以上有する化合物、具体的には、一般式(2):−N=C=N−R1・・・(2)[一般式(2)中、R1は2価の有機基を示す。]で表される繰返し単位を有するポリカルボジイミドおよび/または変性ポリカルボジイミドが好適に挙げられる。なお、本明細書において変性ポリカルボジイミドとは、ポリカルボジイミドに対して、後述する反応性化合物を反応させることによって得られる樹脂をいう。The carbodiimide compound has a carbodiimide group represented by the general formula (1): -N = C = N- (1) in the molecule, and the water-soluble thickener between the water-soluble thickener (A). There is no particular limitation as long as it is a crosslinkable compound capable of forming a crosslinked structure between the agent (A) and the particulate polymer (C) and between the particulate polymers (C). And as such a carbodiimide compound crosslinking agent (B), for example, a compound having two or more carbodiimide groups, specifically, a general formula (2): -N = C = N-R 1. 2) [In General Formula (2), R 1 represents a divalent organic group. Suitable examples include polycarbodiimides and / or modified polycarbodiimides having a repeating unit represented by the formula: In addition, in this specification, a modified polycarbodiimide means resin obtained by making the reactive compound mentioned later react with polycarbodiimide.
(ポリカルボジイミドの合成)
ポリカルボジイミドの合成法は特に限定されるものではないが、例えば、有機ポリイソシアネートを、イソシアネート基のカルボジイミド化反応を促進する触媒(以下「カルボジイミド化触媒」という。)の存在下で反応させることにより、ポリカルボジイミドを合成することができる。また、一般式(2)で表される繰り返し単位を有するポリカルボジイミドは、有機ポリイソシアネートを反応させて得たオリゴマー(カルボジイミドオリゴマー)と、当該オリゴマーと共重合可能な単量体とを共重合させることによっても合成することができる。なお、このポリカルボジイミドの合成に用いられる有機ポリイソシアネートとしては、有機ジイソシアネートが好ましい。(Synthesis of polycarbodiimide)
The method for synthesizing the polycarbodiimide is not particularly limited. For example, the organic polyisocyanate is reacted in the presence of a catalyst for promoting the carbodiimidization reaction of the isocyanate group (hereinafter referred to as “carbodiimidization catalyst”). Polycarbodiimide can be synthesized. The polycarbodiimide having a repeating unit represented by the general formula (2) is a copolymer of an oligomer obtained by reacting an organic polyisocyanate (carbodiimide oligomer) and a monomer copolymerizable with the oligomer. Can also be synthesized. In addition, as organic polyisocyanate used for the synthesis | combination of this polycarbodiimide, organic diisocyanate is preferable.
ポリカルボジイミドの合成に用いられる有機ジイソシアネートとしては、例えば特開2005−49370号公報に記載のものが挙げられる。中でも、カルボジイミド化合物架橋剤(B)としてポリカルボジイミドを含む多孔膜組成物の保存安定性の観点から、特に2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネートが好ましい。有機ジイソシアネートは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the organic diisocyanate used for the synthesis of polycarbodiimide include those described in JP-A-2005-49370. Among these, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate are particularly preferable from the viewpoint of storage stability of a porous film composition containing polycarbodiimide as the carbodiimide compound crosslinking agent (B). An organic diisocyanate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
また、上述の有機ジイソシアネートとともに、イソシアネート基を3つ以上有する有機ポリイソシアネート(3官能以上の有機ポリイソシアネート)や、3官能以上の有機ポリイソシアネートの化学量論的過剰量と2官能以上の多官能性活性水素含有化合物との反応により得られる末端イソシアネートプレポリマー(以下、上記3官能以上の有機ポリイソシアネートと、上記末端イソシアネートプレポリマーとを併せて「3官能以上の有機ポリイソシアネート類」という。)を用いてもよい。このような3官能以上の有機ポリイソシアネート類としては、例えば特開2005−49370号公報に記載のものが挙げられる。3官能以上の有機ポリイソシアネート類は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ポリカルボジイミドの合成反応における、3官能以上の有機ポリイソシアネート類の使用量は、有機ジイソシアネート100重量部当たり、好ましくは40重量部以下、より好ましくは20重量部以下である。 In addition to the above organic diisocyanates, organic polyisocyanates having three or more isocyanate groups (trifunctional or higher functional organic polyisocyanates), and stoichiometric excesses of trifunctional or higher organic polyisocyanates and difunctional or higher polyfunctionality. Terminal isocyanate prepolymer obtained by reaction with a reactive active hydrogen-containing compound (hereinafter, the trifunctional or higher functional organic polyisocyanate and the terminal isocyanate prepolymer are collectively referred to as “trifunctional or higher functional organic polyisocyanates”). May be used. Examples of such trifunctional or higher functional organic polyisocyanates include those described in JP-A-2005-49370. Trifunctional or higher functional organic polyisocyanates may be used alone or in combination of two or more at any ratio. The amount of the trifunctional or higher functional organic polyisocyanate used in the polycarbodiimide synthesis reaction is preferably 40 parts by weight or less, more preferably 20 parts by weight or less per 100 parts by weight of the organic diisocyanate.
さらに、ポリカルボジイミドの合成に際しては、必要に応じて有機モノイソシアネートを添加することもできる。有機モノイソシアネートを添加することで、有機ポリイソシアネートが3官能以上の有機ポリイソシアネート類を含有する場合、得られるポリカルボジイミドの分子量を適切に規制することができ、また有機ジイソシアネートを有機モノイソシアネートと併用することにより、比較的分子量の小さいポリカルボジイミドを得ることができる。このような有機モノイソシアネートとしては、例えば特開2005−49370号公報に記載のものが挙げられる。有機モノイソシアネートは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ポリカルボジイミドの合成反応における、有機モノイソシアネートの使用量は、得られるポリカルボジイミドに求める分子量、3官能以上の有機ポリイソシアネート類の使用の有無等にも依るが、全有機ポリイソシアネート(有機ジイソシアネートと3官能以上の有機ポリイソシアネート類)成分100重量部当たり、好ましくは40重量部以下、より好ましくは20重量部以下である。 Furthermore, in the synthesis of polycarbodiimide, an organic monoisocyanate can be added as necessary. By adding an organic monoisocyanate, when the organic polyisocyanate contains organic polyisocyanates having a functionality of 3 or more, the molecular weight of the resulting polycarbodiimide can be appropriately regulated, and the organic diisocyanate is used in combination with the organic monoisocyanate. By doing so, a polycarbodiimide having a relatively small molecular weight can be obtained. Examples of such organic monoisocyanates include those described in JP-A-2005-49370. An organic monoisocyanate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of the organic monoisocyanate used in the synthesis reaction of the polycarbodiimide depends on the molecular weight required for the polycarbodiimide to be obtained and the presence or absence of the use of trifunctional or higher functional organic polyisocyanates. It is preferably 40 parts by weight or less, more preferably 20 parts by weight or less per 100 parts by weight of the functional or higher organic polyisocyanate) component.
また、カルボジイミド化触媒としてはホスホレン化合物、金属カルボニル錯体、金属のアセチルアセトン錯体、燐酸エステルを挙げることができる。これらの具体例はそれぞれ、例えば、特開2005−49370号公報に示されている。カルボジイミド化触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。カルボジイミド化触媒の使用量は、全有機イソシアネート(有機モノイソシアネート、有機ジイソシアネート、および、3官能以上の有機ポリイソシアネート類)成分100重量部当たり、好ましくは0.001〜30重量部、より好ましくは0.01〜10重量部である。 Examples of the carbodiimidization catalyst include phospholene compounds, metal carbonyl complexes, metal acetylacetone complexes, and phosphate esters. Specific examples of these are disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-49370. A carbodiimidization catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of the carbodiimidization catalyst used is preferably 0.001 to 30 parts by weight, more preferably 0, per 100 parts by weight of the total organic isocyanate (organic monoisocyanate, organic diisocyanate, and trifunctional or higher organic polyisocyanate) component. 0.01 to 10 parts by weight.
有機ポリイソシアネートのカルボジイミド化反応は、無溶媒下でも適当な溶媒中でも実施することができる。溶媒中で合成反応を実施する場合の溶媒としては、合成反応中の加熱により生成したポリカルボジイミドまたはカルボジイミドオリゴマーを溶解しうる限り特に限定されるものではなく、ハロゲン化炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒、芳香族炭化水素系溶媒、アミド系溶媒、非プロトン性極性溶媒、アセテート系溶媒を挙げることができる。これらの具体例はそれぞれ、例えば、特開2005−49370号公報に示されている。これらの溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ポリカルボジイミドの合成反応における溶媒の使用量は、全有機イソシアネート成分の濃度が、好ましくは0.5〜60重量%、より好ましくは5〜50重量%以下となる量である。溶媒中の全有機イソシアネート成分の濃度が高過ぎると、生成されるポリカルボジイミドまたはカルボジイミドオリゴマーが合成反応中にゲル化する虞がある。また、溶媒中の全有機イソシアネート成分の濃度が低過ぎると、反応速度が遅くなり、生産性が低下する傾向となる。 The carbodiimidization reaction of the organic polyisocyanate can be carried out in the absence of a solvent or in a suitable solvent. The solvent for carrying out the synthesis reaction in the solvent is not particularly limited as long as it can dissolve the polycarbodiimide or carbodiimide oligomer generated by heating during the synthesis reaction, and is a halogenated hydrocarbon solvent, ether solvent. , Ketone solvents, aromatic hydrocarbon solvents, amide solvents, aprotic polar solvents, and acetate solvents. Specific examples of these are disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-49370. These solvents may be used alone or in combination of two or more at any ratio. The amount of the solvent used in the polycarbodiimide synthesis reaction is such that the concentration of the total organic isocyanate component is preferably 0.5 to 60% by weight, more preferably 5 to 50% by weight. If the concentration of the total organic isocyanate component in the solvent is too high, the resulting polycarbodiimide or carbodiimide oligomer may gel during the synthesis reaction. Moreover, when the density | concentration of all the organic isocyanate components in a solvent is too low, reaction rate will become slow and it will become the tendency for productivity to fall.
有機ポリイソシアネートのカルボジイミド化反応の温度は、有機イソシアネート成分やカルボジイミド化触媒の種類に応じて適宜選定されるが、好ましくは20〜200℃である。有機ポリイソシアネートのカルボジイミド化反応に際して、有機イソシアネート成分は、反応前に全量を添加しても、あるいはその一部または全部を反応中に、連続的あるいは段階的に添加してもよい。また本発明においては、イソシアネート基と反応しうる化合物を、有機ポリイソシアネートのカルボジイミド化反応の初期から後期に至る適宜の反応段階で添加して、ポリカルボジイミドの末端イソシアネート基を封止し、得られるポリカルボジイミドの分子量を調節することもできる。また、有機ポリイソシアネートのカルボジイミド化反応の後期に添加して、得られるポリカルボジイミドの分子量を所定値に規制することもできる。このようなイソシアネート基と反応しうる化合物としては、例えば、メタノール、エタノール、i−プロパノール、シクロヘキサノール等のアルコール類;ジメチルアミン、ジエチルアミン、ベンジルアミン等のアミン類を挙げることができる。 The temperature of the carbodiimidization reaction of the organic polyisocyanate is appropriately selected according to the type of the organic isocyanate component and the carbodiimidization catalyst, but is preferably 20 to 200 ° C. In the carbodiimidization reaction of the organic polyisocyanate, the organic isocyanate component may be added in the whole amount before the reaction, or a part or the whole thereof may be added continuously or stepwise during the reaction. Further, in the present invention, a compound capable of reacting with an isocyanate group is added at an appropriate reaction stage from the initial stage to the late stage of the carbodiimidization reaction of the organic polyisocyanate, and the terminal isocyanate group of the polycarbodiimide is sealed. The molecular weight of the polycarbodiimide can also be adjusted. Further, the molecular weight of the resulting polycarbodiimide can be regulated to a predetermined value by adding in the latter stage of the carbodiimidization reaction of the organic polyisocyanate. Examples of such a compound that can react with an isocyanate group include alcohols such as methanol, ethanol, i-propanol, and cyclohexanol; and amines such as dimethylamine, diethylamine, and benzylamine.
また、カルボジイミドオリゴマーと共重合可能な単量体としては、2価以上のアルコール、2価以上のアルコールを単量体として用いて得たオリゴマーおよびそのエステル、例えば、エチレングリコールやプロピレングリコール等の2価のアルコール、或いは、ポリアルキレンオキサイド、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレートが好ましい。 Moreover, as a monomer copolymerizable with a carbodiimide oligomer, an oligomer obtained by using a dihydric or higher alcohol, a dihydric or higher alcohol as a monomer, and an ester thereof, for example, 2 such as ethylene glycol and propylene glycol A hydric alcohol, polyalkylene oxide, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polyethylene glycol monoacrylate, or polypropylene glycol monoacrylate is preferred.
例えば分子鎖の両末端に水酸基を有する2価のアルコールをカルボジイミドオリゴマーと既知の方法で共重合させることにより、ポリカルボジイミド基と、2価のアルコール由来の単量体単位とを有するポリカルボジイミドを合成することができる。このように、カルボジイミド化合物架橋剤(B)としてのポリカルボジイミドが2価以上のアルコール由来の単量体単位、好ましくは2価のアルコール由来の単量体単位を有する場合、該ポリカルボジイミドを含む多孔膜組成物から形成される多孔膜の電解液に対する濡れ性が向上し、該負極を備える二次電池の製造における、電解液の注液性を向上させることができる。また、上述したアルコールを共重合させると、ポリカルボジイミドの水溶性を増加させることができるとともに、水中でポリカルボジイミドが自己ミセル化する(疎水性のカルボジイミド基の周りが親水性のエチレングリコール鎖で覆われる構造をとる)ため、化学的安定性を向上させることができる。 For example, polycarbodiimide having a polycarbodiimide group and a monomer unit derived from a divalent alcohol is synthesized by copolymerizing a divalent alcohol having a hydroxyl group at both ends of the molecular chain with a carbodiimide oligomer by a known method. can do. Thus, when the polycarbodiimide as the carbodiimide compound cross-linking agent (B) has a monomer unit derived from a divalent or higher alcohol, preferably a monomer unit derived from a divalent alcohol, a porous material containing the polycarbodiimide is contained. The wettability with respect to the electrolytic solution of the porous film formed from the membrane composition is improved, and the pouring property of the electrolytic solution in the production of the secondary battery including the negative electrode can be improved. In addition, when the above-mentioned alcohol is copolymerized, the water solubility of the polycarbodiimide can be increased, and the polycarbodiimide is self-micelleized in water (the hydrophobic carbodiimide group is covered with a hydrophilic ethylene glycol chain). Therefore, chemical stability can be improved.
上述したポリカルボジイミド化合物架橋剤は、溶液としてあるいは溶液から分離した固体として、本発明の多孔膜組成物の調製に使用される。ポリカルボジイミドを溶液から分離する方法としては、例えば、ポリカルボジイミド溶液を、該ポリカルボジイミドに対して不活性な非溶媒中に添加し、生じた沈澱物あるいは油状物をろ過またはデカンテーションにより分離・採取する方法;噴霧乾燥により分離・採取する方法;得られたポリカルボジイミドの合成に用いた溶媒に対する温度による溶解度変化を利用して分離・採取する方法、即ち、合成直後は該溶媒に溶解しているポリカルボジイミドが系の温度を下げることにより析出する場合、その混濁液からろ過等により分離・採取する方法等を挙げることができ、さらに、これらの分離・採取方法を適宜組合せて行うこともできる。本発明におけるポリカルボジイミドのゲルパーミエーションクロマトグラフィー(GPC)により求めたポリスチレン換算数平均分子量(以下、「Mn」という。)は、水溶性増粘剤(A)との架橋速度を速める観点から、好ましくは1,000〜200,000、より好ましくは2,000〜100,000以下である。 The polycarbodiimide compound crosslinking agent described above is used for preparing the porous membrane composition of the present invention as a solution or as a solid separated from the solution. As a method for separating polycarbodiimide from a solution, for example, a polycarbodiimide solution is added to a non-solvent inert to the polycarbodiimide, and the resulting precipitate or oil is separated and collected by filtration or decantation. A method of separating and collecting by spray drying; a method of separating and collecting by using a change in solubility with respect to the temperature of the solvent used in the synthesis of the obtained polycarbodiimide, that is, immediately after the synthesis, the solvent is dissolved in the solvent In the case where polycarbodiimide is precipitated by lowering the temperature of the system, a method of separating and collecting from the turbid liquid by filtration or the like can be exemplified, and further, these separation and collecting methods can be appropriately combined. From the viewpoint of increasing the crosslinking rate with the water-soluble thickener (A), the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) obtained by gel permeation chromatography (GPC) of polycarbodiimide in the present invention is as follows. Preferably it is 1,000-200,000, More preferably, it is 2,000-100,000 or less.
(変性ポリカルボジイミドの合成)
次に、変性ポリカルボジイミドの合成法について説明する。変性ポリカルボジイミドは、一般式(2)で表される繰返し単位を有するポリカルボジイミドの少なくとも1種に、反応性化合物の少なくとも1種を、適当な触媒の存在下あるいは不存在下で、適宜温度で反応(以下、「変性反応」という。)させることによって合成することができる。(Synthesis of modified polycarbodiimide)
Next, a method for synthesizing the modified polycarbodiimide will be described. The modified polycarbodiimide is prepared by adding at least one reactive compound to at least one polycarbodiimide having a repeating unit represented by the general formula (2) at an appropriate temperature in the presence or absence of a suitable catalyst. It can be synthesized by reaction (hereinafter referred to as “denaturation reaction”).
変性ポリカルボジイミドの合成に使用される反応性化合物は、その分子中に、ポリカルボジイミドとの反応性を有する基(以下、単に「反応性基」という。)を1つと、さらに他の官能基を有する化合物をいう。この反応性化合物は、芳香族化合物、脂肪族化合物あるいは脂環族化合物であることができ、また芳香族化合物および脂環族化合物における環構造は、炭素環でも複素環でもよい。反応性化合物における反応性基としては、活性水素を有する基であればよく、例えば、カルボキシル基あるいは第一級もしくは第二級のアミノ基を挙げることができる。そして、反応性化合物は、その分子中に、1つの反応性基に加えて、さらに他の官能基を有する。反応性化合物が有する、他の官能基としては、ポリカルボジイミドおよび/または変性ポリカルボジイミドの架橋反応を促進する作用を有する基や、反応性化合物1分子中における2つ目以降の(即ち、上述した反応性基とは別の)、上述の活性水素を有する基も含まれ、例えば、カルボン酸無水物基および第三級アミノ基のほか、活性水素を有する基として例示したカルボキシル基および第一級もしくは第二級のアミノ基等を挙げることができる。これらの他の官能基としては、反応性化合物1分子中に同一のあるいは異なる基が2個以上存在することができる。 The reactive compound used for the synthesis of the modified polycarbodiimide has one group having reactivity with the polycarbodiimide (hereinafter, simply referred to as “reactive group”) in the molecule, and another functional group. The compound which has. This reactive compound can be an aromatic compound, an aliphatic compound or an alicyclic compound, and the ring structure in the aromatic compound and the alicyclic compound may be a carbocyclic ring or a heterocyclic ring. The reactive group in the reactive compound may be a group having active hydrogen, and examples thereof include a carboxyl group or a primary or secondary amino group. And a reactive compound has another functional group in addition to one reactive group in the molecule | numerator. Other functional groups possessed by the reactive compound include groups having an action of promoting the crosslinking reaction of polycarbodiimide and / or modified polycarbodiimide, and the second and subsequent groups in one molecule of the reactive compound (that is, as described above). In addition to reactive groups, the above-mentioned groups having active hydrogen are also included. For example, carboxyl groups and primary groups exemplified as groups having active hydrogen in addition to carboxylic anhydride groups and tertiary amino groups. Or a secondary amino group etc. can be mentioned. As these other functional groups, two or more identical or different groups may exist in one molecule of the reactive compound.
反応性化合物としては、例えば特開2005−49370号公報に記載のものが挙げられる。中でも、トリメリット酸無水物、ニコチン酸が好ましい。反応性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the reactive compound include those described in JP-A-2005-49370. Of these, trimellitic anhydride and nicotinic acid are preferable. A reactive compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
変性ポリカルボジイミドを合成するための変性反応における反応性化合物の使用量は、ポリカルボジイミドや反応性化合物の種類、得られる変性ポリカルボジイミドに求められる物性等に応じて適宜調節されるが、ポリカルボジイミドの一般式(2)で表される繰返し単位1モルに対する反応性化合物中の反応性基の割合が、好ましくは0.01モル以上、さらに好ましくは0.02モル以上となる量であり、好ましくは1モル以下、更に好ましくは0.8モル以下となる量である。上記割合が0.01モル未満であると、変性ポリカルボジイミドを含む多孔膜組成物の保存安定性が低下する虞がある。一方、上記割合が1モルを超えると、ポリカルボジイミド本来の特性が損なわれる虞がある。 The amount of the reactive compound used in the modification reaction for synthesizing the modified polycarbodiimide is appropriately adjusted according to the type of polycarbodiimide and reactive compound, the physical properties required of the resulting modified polycarbodiimide, etc. The ratio of the reactive group in the reactive compound to 1 mol of the repeating unit represented by the general formula (2) is preferably 0.01 mol or more, more preferably 0.02 mol or more, preferably The amount is 1 mol or less, more preferably 0.8 mol or less. There exists a possibility that the storage stability of the porous film composition containing a modified polycarbodiimide may fall that the said ratio is less than 0.01 mol. On the other hand, when the ratio exceeds 1 mol, the original properties of polycarbodiimide may be impaired.
また、変性反応においては、反応性化合物中の反応性基とポリカルボジイミドの一般式(2)で表される繰返し単位との反応は定量的に進行し、該反応性化合物の使用量に見合う官能基が変性ポリカルボジイミド中に導入される。変性反応は、無溶媒下でも実施することができるが、適当な溶媒中で実施することが好ましい。このような溶媒は、ポリカルボジイミドおよび反応性化合物に対して不活性であり、かつこれらを溶解しうる限り、特に限定されるものではなく、その例としては、上述のポリカルボジイミドの合成に使用することができるエーテル系溶媒、アミド系溶媒、ケトン系溶媒、芳香族炭化水素系溶媒、非プロトン性極性溶媒等を挙げることができる。これらの溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また変性反応に、ポリカルボジイミドの合成時に使用された溶媒が使用できるときは、その合成により得られるポリカルボジイミド溶液をそのまま使用することもできる。変性反応における溶媒の使用量は、反応原料の合計100重量部当たり、好ましくは10〜10,000重量部、好ましくは50〜5,000重量部である。 In the modification reaction, the reaction between the reactive group in the reactive compound and the repeating unit represented by the general formula (2) of the polycarbodiimide proceeds quantitatively, and the functionality corresponding to the amount of the reactive compound used. Groups are introduced into the modified polycarbodiimide. The modification reaction can be carried out in the absence of a solvent, but is preferably carried out in a suitable solvent. Such a solvent is not particularly limited as long as it is inactive with respect to polycarbodiimide and a reactive compound and can dissolve them. Examples thereof are used for the synthesis of the above-mentioned polycarbodiimide. And ether solvents, amide solvents, ketone solvents, aromatic hydrocarbon solvents, aprotic polar solvents, and the like. These solvents may be used alone or in combination of two or more at any ratio. Moreover, when the solvent used at the time of the synthesis | combination of polycarbodiimide can be used for modification | denaturation reaction, the polycarbodiimide solution obtained by the synthesis | combination can also be used as it is. The amount of the solvent used in the modification reaction is preferably 10 to 10,000 parts by weight, preferably 50 to 5,000 parts by weight per 100 parts by weight of the total reaction raw material.
変性反応の温度は、ポリカルボジイミドや反応性化合物の種類に応じて適宜選定されるが、好ましくは−10〜100℃以下、より好ましくは−10〜80℃である。本発明における変性ポリカルボジイミドのMnは、水溶性増粘剤(A)との架橋速度を速める観点から、好ましくは1,000〜200,000、より好ましくは2,000〜400,000である。 The temperature of the modification reaction is appropriately selected according to the type of polycarbodiimide or reactive compound, but is preferably −10 to 100 ° C. or less, more preferably −10 to 80 ° C. Mn of the modified polycarbodiimide in the present invention is preferably 1,000 to 200,000, more preferably 2,000 to 400,000 from the viewpoint of increasing the crosslinking rate with the water-soluble thickener (A).
ここで、カルボジイミド化合物の、カルボジイミド基(−N=C=N−)1モル当たりの化学式量(NCN当量)は、好ましくは300〜600、より好ましくは400〜500である。カルボジイミド化合物のNCN当量が小さすぎると、多孔膜組成物の保存安定性が低下する。また、カルボジイミド化合物のNCN当量が大きすぎると、架橋反応の進行が十分ではなくなる。 Here, the chemical formula amount (NCN equivalent) per mole of the carbodiimide group (—N═C═N—) of the carbodiimide compound is preferably 300 to 600, more preferably 400 to 500. When the NCN equivalent of the carbodiimide compound is too small, the storage stability of the porous membrane composition is lowered. On the other hand, if the NCN equivalent of the carbodiimide compound is too large, the crosslinking reaction will not proceed sufficiently.
なお、カルボジイミド化合物のNCN当量は、例えば、GPC(ゲル浸透クロマトグラフィー)を用いてカルボジイミド化合物のポリスチレン換算数平均分子量を求めると共に、IR(赤外分光法)を用いてカルボジイミド化合物1分子当たりのカルボジイミド基の数を定量分析し、下記式を用いて算出することができる。
NCN当量=(カルボジイミド化合物のポリスチレン換算数平均分子量)/(カルボジイミド化合物1分子当たりのカルボジイミド基の数)The NCN equivalent of the carbodiimide compound is obtained, for example, by obtaining the polystyrene-equivalent number average molecular weight of the carbodiimide compound using GPC (gel permeation chromatography) and carbodiimide per molecule of the carbodiimide compound using IR (infrared spectroscopy). The number of groups can be quantitatively analyzed and calculated using the following formula.
NCN equivalent = (Number average molecular weight in terms of polystyrene of carbodiimide compound) / (Number of carbodiimide groups per molecule of carbodiimide compound)
(カルボジイミド化合物架橋剤(B)の性状等)
ここで、上述したカルボジイミド化合物架橋剤(B)の1重量%水溶液の粘度は、多孔膜の密着強度を優れたものとすることができる観点から、好ましくは5000mPa・s以下、より好ましくは700mPa・s以下、特に好ましくは150mPa・s以下である。なお、カルボジイミド化合物架橋剤(B)の1重量%水溶液の粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。(Properties of carbodiimide compound crosslinking agent (B))
Here, the viscosity of the 1% by weight aqueous solution of the carbodiimide compound crosslinking agent (B) described above is preferably 5000 mPa · s or less, more preferably 700 mPa · s, from the viewpoint that the adhesion strength of the porous film can be improved. s or less, particularly preferably 150 mPa · s or less. The viscosity of the 1% by weight aqueous solution of the carbodiimide compound crosslinking agent (B) is a value when measured at 25 ° C. and a rotation speed of 60 rpm using a B-type viscometer.
また、カルボジイミド化合物架橋剤(B)は水溶性であることが好ましい。カルボジイミド化合物架橋剤(B)が水溶性であることで、水系の多孔膜組成物中でカルボジイミド化合物架橋剤(B)が偏在するのを防ぎ、得られる多孔膜においてが好適な架橋構造を形成することができる。従って、得られるリチウムイオン二次電池における多孔膜の密着強度を確保すると共に、初期クーロン効率、初期抵抗、サイクル特性などの電気的特性を向上させ、加えて、サイクル後の抵抗上昇を抑制することができる。さらに、多孔膜の耐水性を向上させることができる。 The carbodiimide compound crosslinking agent (B) is preferably water-soluble. The water-soluble carbodiimide compound crosslinking agent (B) prevents the carbodiimide compound crosslinking agent (B) from being unevenly distributed in the aqueous porous film composition, and forms a suitable crosslinked structure in the resulting porous film. be able to. Therefore, the adhesion strength of the porous film in the obtained lithium ion secondary battery is ensured, and electrical characteristics such as initial coulomb efficiency, initial resistance, cycle characteristics are improved, and in addition, resistance increase after cycling is suppressed. Can do. Furthermore, the water resistance of the porous membrane can be improved.
ここで、本明細書において、カルボジイミド化合物架橋剤(B)が「水溶性」であるとは、イオン交換水100重量部当たり架橋剤1重量部(固形分相当)を添加し、攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつpH3以上12以下(pH調整にはNaOH水溶液及び/またはHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整し、250メッシュのスクリーンを通過させた際に、スクリーンを通過せずにスクリーン上に残る残渣の固形分の重量が、添加した架橋剤の固形分に対して50重量%を超えないことをいう。なお、カルボジイミド化合物架橋剤(B)と水との混合物が、静置した場合に二相に分離するエマルジョン状態であっても、上記定義を満たせば、そのカルボジイミド化合物架橋剤(B)は水溶性であるとする。なお、架橋構造の形成反応を良好に進行させ、多孔膜の密着強度、得られるリチウムイオン二次電池のサイクル特性を向上させる観点からは、上記カルボジイミド化合物架橋剤(B)と水との混合物は、二相に分離しない(一相水溶状態である)こと、即ちカルボジイミド化合物架橋剤(B)は一相水溶性であることがより好ましい。 Here, in this specification, that the carbodiimide compound crosslinking agent (B) is “water-soluble” is obtained by adding 1 part by weight of the crosslinking agent (corresponding to solid content) per 100 parts by weight of ion-exchanged water and stirring. The mixture obtained is adjusted to at least one of the conditions within a temperature range of 20 ° C. to 70 ° C. and within a range of pH 3 to 12 (pH adjustment uses NaOH aqueous solution and / or HCl aqueous solution). The solid content of the residue remaining on the screen without passing through the screen when passing through a 250 mesh screen does not exceed 50% by weight with respect to the solid content of the added crosslinking agent. Even if the mixture of the carbodiimide compound crosslinking agent (B) and water is in an emulsion state that separates into two phases when allowed to stand, the carbodiimide compound crosslinking agent (B) is water-soluble as long as the above definition is satisfied. Suppose that In addition, from the viewpoint of promoting the formation reaction of the crosslinked structure and improving the adhesion strength of the porous film and the cycle characteristics of the obtained lithium ion secondary battery, the mixture of the carbodiimide compound crosslinking agent (B) and water is More preferably, the carbodiimide compound cross-linking agent (B) does not separate into two phases (in a one-phase water-soluble state), that is, the carbodiimide compound crosslinking agent (B) is one-phase water-soluble.
また、カルボジイミド化合物架橋剤(B)の水溶率は、上述した、架橋剤が水溶性であることが好ましい理由と同様の理由で、80重量%以上が好ましく、90重量%以上がより好ましい。なお、カルボジイミド化合物架橋剤(B)の「水溶率」とは、イオン交換水100重量部当たり架橋剤1重量部(固形分相当)を添加し、攪拌して得られる混合物を25℃、pH7に調整して250メッシュのスクリーンを通過させた際に、スクリーンを通過せずにスクリーン上に残る残渣の固形分の重量の、添加した架橋剤の固形分の重量に対する割合をX重量%とした場合に以下の式で定義される。
水溶率=(100−X)重量%Further, the water content of the carbodiimide compound crosslinking agent (B) is preferably 80% by weight or more, and more preferably 90% by weight or more for the same reason as described above that the crosslinking agent is preferably water-soluble. The “water solubility” of the carbodiimide compound crosslinking agent (B) means that the mixture obtained by adding 1 part by weight of the crosslinking agent (corresponding to solid content) per 100 parts by weight of ion-exchanged water and stirring the mixture to 25 ° C. and pH 7 When the weight of the solid content of the residue remaining on the screen without passing through the screen is adjusted to be X wt% when adjusted and passed through the 250 mesh screen Is defined by the following formula.
Water solubility = (100−X) wt%
本発明の多孔膜組成物におけるカルボジイミド化合物架橋剤(B)の含有割合は、非導電性粒子100重量部に対して、好ましくは0.01〜10重量部、より好ましくは0.01〜5重量部、さらに好ましくは0.01〜1重量部である。カルボジイミド化合物架橋剤(B)の含有割合が大きすぎると、多孔膜の密着強度が低下し、得られるリチウムイオン二次電池のサイクル特性が低下する傾向となる。また、カルボジイミド化合物架橋剤(B)の含有割合が小さすぎると、多孔膜の密着強度が低下する傾向となる。 The content ratio of the carbodiimide compound crosslinking agent (B) in the porous film composition of the present invention is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the non-conductive particles. Part, more preferably 0.01 to 1 part by weight. When the content ratio of the carbodiimide compound crosslinking agent (B) is too large, the adhesion strength of the porous film is lowered, and the cycle characteristics of the obtained lithium ion secondary battery tend to be lowered. Moreover, when the content rate of a carbodiimide compound crosslinking agent (B) is too small, it will become the tendency for the adhesive strength of a porous film to fall.
(粒子状重合体(C))
本発明に用いる粒子状重合体(C)は、カルボジイミド化合物架橋剤(B)と反応する官能基を有する。また、粒子状重合体(C)は、(メタ)アクリル酸エステルモノマーの重合単位を含んでなるものが好ましい。なお、本明細書において、「(メタ)アクリル」は「アクリル」及び「メタクリル」を意味する。(Particulate polymer (C))
The particulate polymer (C) used in the present invention has a functional group that reacts with the carbodiimide compound crosslinking agent (B). The particulate polymer (C) preferably comprises a polymer unit of a (meth) acrylic acid ester monomer. In the present specification, “(meth) acryl” means “acryl” and “methacryl”.
(メタ)アクリル酸エステルモノマーの重合単位としては、例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステルが挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As a polymerization unit of (meth) acrylic acid ester monomer, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate Alkyl acrylates such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate , Heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, methacrylic acid alkyl esters such as stearyl methacrylate. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
また、粒子状重合体(C)におけるカルボジイミド化合物架橋剤(B)と反応する官能基としては、カルボキシル基、水酸基、グリシジルエーテル基、チオール基が好ましく、カルボキシル基とグリシジルエーテル基とを組み合わせて用いることがより好ましい。 Moreover, as a functional group which reacts with the carbodiimide compound crosslinking agent (B) in a particulate polymer (C), a carboxyl group, a hydroxyl group, a glycidyl ether group, and a thiol group are preferable, and it uses combining a carboxyl group and a glycidyl ether group. It is more preferable.
カルボジイミド化合物架橋剤(B)と反応する官能基として、カルボン酸基を有する粒子状重合体(C)の製造に使用し得る単量体としては、エチレン性不飽和カルボン酸単量体が挙げられる。エチレン性不飽和カルボン酸単量体の具体例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸およびジカルボン酸、並びに、その無水物などが挙げられる。中でも、多孔膜組成物の安定性の観点から、エチレン性不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸およびイタコン酸が好ましい。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As a functional group that reacts with the carbodiimide compound crosslinking agent (B), examples of the monomer that can be used in the production of the particulate polymer (C) having a carboxylic acid group include an ethylenically unsaturated carboxylic acid monomer. . Specific examples of the ethylenically unsaturated carboxylic acid monomer include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof. . Among these, acrylic acid, methacrylic acid and itaconic acid are preferable as the ethylenically unsaturated carboxylic acid monomer from the viewpoint of the stability of the porous film composition. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
カルボジイミド化合物架橋剤(B)と反応する官能基として、水酸基を有する粒子状重合体(C)の製造に使用し得る単量体としては、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、2−ヒドロキシエチルメチルフマレートなどが挙げられる。中でも、2−ヒドロキシエチルアクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As a functional group that reacts with the carbodiimide compound crosslinking agent (B), examples of the monomer that can be used in the production of the particulate polymer (C) having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, Hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate and the like can be mentioned. Among these, 2-hydroxyethyl acrylate is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
カルボジイミド化合物架橋剤(B)と反応する官能基としてグリシジルエーテル基を有する粒子状重合体(C)の製造に使用し得るグリジシジルエーテル基を有する不飽和単量体としては、例えば、グリシジルアクリレート、グリシジルメタクリレートなどが挙げられる。中でも、グリシジルメタクリレートが好ましい。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the unsaturated monomer having a glycidyl ether group that can be used in the production of the particulate polymer (C) having a glycidyl ether group as a functional group that reacts with the carbodiimide compound crosslinking agent (B) include glycidyl acrylate. And glycidyl methacrylate. Of these, glycidyl methacrylate is preferred. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
カルボジイミド化合物架橋剤(B)と反応する官能基としてチオール基を有する粒子状重合体(C)の製造に使用し得るチオール基を有する単量体単位としては、たとえば、ペンタエリスリトールテトラキス(3−メルカプトブチレート)、トリメチロールプロパン トリス(3−メルカプトブチレート)、トリメチロールエタン トリス(3−メルカプトブチレート)などが挙げられる。中でも、ペンタエリスリトールテトラキス(3−メルカプトブチレート)が好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the monomer unit having a thiol group that can be used in the production of the particulate polymer (C) having a thiol group as a functional group that reacts with the carbodiimide compound crosslinking agent (B) include pentaerythritol tetrakis (3-mercapto). Butyrate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolethane tris (3-mercaptobutyrate), and the like. Among these, pentaerythritol tetrakis (3-mercaptobutyrate) is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
粒子状重合体(C)中の、カルボジイミド化合物架橋剤(B)と反応する官能基は、上述のようなカルボジイミド化合物架橋剤(B)と反応する官能基を含む単量体を重合に用いることにより導入してもよいが、例えば、カルボジイミド化合物架橋剤(B)と反応する官能基を有しない粒子状重合体を重合した後、該粒子状重合体中の官能基を、カルボジイミド化合物架橋剤(B)と反応する官能基に一部または全部置換することにより導入して、粒子状重合体(C)を調製してもよい。なお、このように導入された「カルボジイミド化合物架橋剤(B)と反応する官能基」を有する粒子状重合体(C)中の繰り返し単位についても、「カルボジイミド化合物架橋剤(B)と反応する官能基を含む単量体単位」に含めるものとする。 The functional group that reacts with the carbodiimide compound cross-linking agent (B) in the particulate polymer (C) is a monomer containing a functional group that reacts with the carbodiimide compound cross-linking agent (B) as described above. For example, after polymerizing a particulate polymer that does not have a functional group that reacts with the carbodiimide compound crosslinking agent (B), the functional group in the particulate polymer is converted to a carbodiimide compound crosslinking agent ( The particulate polymer (C) may be prepared by introducing a part or all of the functional groups that react with B) by substitution. The repeating unit in the particulate polymer (C) having the “functional group that reacts with the carbodiimide compound cross-linking agent (B)” introduced in this way also has a “functionality that reacts with the carbodiimide compound cross-linking agent (B)”. It shall be included in the “monomer unit containing a group”.
そして、粒子状重合体(C)におけるカルボジイミド化合物架橋剤(B)と反応する官能基を含む単量体単位の含有割合は、特に限定されないが、得られる粒子状重合体(C)の機械的安定性、化学的安定性に優れる観点から、0.5〜10重量%が好ましく、1.0〜8重量%がより好ましく、1.5〜5重量%がさらに好ましい。 And although the content rate of the monomer unit containing the functional group which reacts with the carbodiimide compound crosslinking agent (B) in a particulate polymer (C) is not specifically limited, Mechanical of the obtained particulate polymer (C) From the viewpoint of excellent stability and chemical stability, 0.5 to 10% by weight is preferred, 1.0 to 8% by weight is more preferred, and 1.5 to 5% by weight is even more preferred.
また、粒子状重合体(C)は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体としては、例えば、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、不飽和カルボン酸アミド単量体などが挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, the particulate polymer (C) may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired. Examples of the monomer corresponding to the arbitrary repeating unit include a vinyl cyanide monomer, an unsaturated carboxylic acid alkyl ester monomer, and an unsaturated carboxylic acid amide monomer. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
粒子状重合体(C)における任意の繰り返し単位に対応する単量体の含有割合は、特に限定されないが、合計量で0.5〜10重量%が好ましく、1.0〜8重量%がより好ましく、1.5〜5重量%がさらに好ましい。 Although the content rate of the monomer corresponding to the arbitrary repeating units in the particulate polymer (C) is not particularly limited, the total amount is preferably 0.5 to 10% by weight, more preferably 1.0 to 8% by weight. Preferably, 1.5 to 5% by weight is more preferable.
シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリルなどが挙げられる。中でも、アクリロニトリル、メタクリロニトリルが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile and the like. Of these, acrylonitrile and methacrylonitrile are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2−エチルヘキシルアクリレートなどが挙げられる。中でも、メチルメタクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, monomethyl Examples thereof include fumarate, monoethyl fumarate, 2-ethylhexyl acrylate and the like. Of these, methyl methacrylate is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N−ジメチルアクリルアミドなどが挙げられる。中でも、アクリルアミド、メタクリルアミドが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like. Of these, acrylamide and methacrylamide are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
さらに、粒子状重合体(C)は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデンなどの通常の乳化重合において使用される単量体を用いて製造してもよい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Furthermore, the particulate polymer (C) may be produced using monomers used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, and the like. . In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
粒子状重合体(C)における、脂肪族共役ジエン単量体単位、芳香族ビニル単量体単位、架橋剤(B)と反応する官能基を含む単量体単位以外の他の単量体単位の含有割合は、特に限定されないが、合計量で0.5〜10重量%が好ましく、1.0〜8重量%がより好ましく、1.5〜5重量%がさらに好ましい。 In the particulate polymer (C), other monomer units other than an aliphatic conjugated diene monomer unit, an aromatic vinyl monomer unit, and a monomer unit containing a functional group that reacts with the crosslinking agent (B) The content ratio of is not particularly limited, but is preferably 0.5 to 10% by weight in total, more preferably 1.0 to 8% by weight, and still more preferably 1.5 to 5% by weight.
そして、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体などからなる粒子状重合体(C)は、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより製造される。
ここで、単量体組成物中の各単量体の含有割合は、通常、所望の粒子状重合体(C)における繰り返し単位の含有割合と同様にする。And the particulate polymer (C) consisting of a copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is, for example, a monomer composition containing the above-mentioned monomer. It is produced by polymerization in an aqueous solvent.
Here, the content ratio of each monomer in the monomer composition is usually the same as the content ratio of the repeating unit in the desired particulate polymer (C).
水系溶媒は粒子状重合体(C)が粒子状態で分散可能なものであれば格別限定されることはなく、常圧における沸点が好ましくは80〜350℃、より好ましくは100〜300℃の水系溶媒から選ばれる。 The aqueous solvent is not particularly limited as long as the particulate polymer (C) can be dispersed in a particle state, and the aqueous solvent preferably has a boiling point at normal pressure of 80 to 350 ° C, more preferably 100 to 300 ° C. Selected from solvents.
具体的には、水系溶媒としては、例えば、水;ダイアセトンアルコール、γ−ブチロラクトンなどのケトン類;エチルアルコール、イソプロピルアルコール、ノルマルプロピルアルコールなどのアルコール類;プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、エチレングリコールターシャリーブチルエーテル、ブチルセロソルブ、3−メトキシ−3メチル−1−ブタノール、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテルなどのグリコールエーテル類;1,3−ジオキソラン、1,4−ジオキソラン、テトラヒドロフランなどのエーテル類;などが挙げられる。中でも水は可燃性がなく、粒子状重合体(C)の粒子の分散体が容易に得られやすいという観点から特に好ましい。なお、主溶媒として水を使用して、粒子状重合体(C)の粒子の分散状態が確保可能な範囲において上記の水以外の水系溶媒を混合して用いてもよい。 Specifically, examples of the aqueous solvent include water; ketones such as diacetone alcohol and γ-butyrolactone; alcohols such as ethyl alcohol, isopropyl alcohol, and normal propyl alcohol; propylene glycol monomethyl ether, methyl cellosolve, and ethyl cellosolve. , Glycol ethers such as ethylene glycol tertiary butyl ether, butyl cellosolve, 3-methoxy-3methyl-1-butanol, ethylene glycol monopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether; 1,3 -Ethers such as dioxolane, 1,4-dioxolane and tetrahydrofuran; Among these, water is particularly preferable from the viewpoint that it is not flammable and a dispersion of particles of the particulate polymer (C) can be easily obtained. In addition, you may use water as a main solvent, and mix and use aqueous solvents other than said water in the range which can ensure the dispersion state of the particle | grains of a particulate polymer (C).
重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。なお、高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明の多孔膜組成物の製造に供することができることなど、製造効率の観点からは、乳化重合法が特に好ましい。
なお、乳化重合は、常法に従い行うことができる。The polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. In addition, it is easy to obtain a high molecular weight, and since the polymer is obtained in a state of being dispersed in water as it is, redispersion treatment is unnecessary, and it can be used for production of the porous membrane composition of the present invention as it is. From the viewpoint of production efficiency, the emulsion polymerization method is particularly preferable.
The emulsion polymerization can be performed according to a conventional method.
そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。また重合に際しては、シード粒子を採用してシード重合を行ってもよい。また、重合条件も、重合方法および重合開始剤の種類などにより任意に選択することができる。 And generally used emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used is also generally used. In the polymerization, seed polymerization may be performed using seed particles. The polymerization conditions can also be arbitrarily selected depending on the polymerization method and the type of polymerization initiator.
ここで、上述した重合方法によって得られる粒子状重合体(C)の粒子の水系分散体は、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNH4Clなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液を用いて、pHが好ましくは5〜10、より好ましくは5〜9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、多孔膜の密着強度を向上させるので、好ましい。Here, the aqueous dispersion of particulate polymer (C) particles obtained by the above-described polymerization method is, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium. Using a basic aqueous solution containing a compound (for example, NH 4 Cl), an organic amine compound (for example, ethanolamine, diethylamine, etc.), the pH is preferably in the range of 5 to 10, more preferably 5 to 9. You may adjust. Among these, pH adjustment with an alkali metal hydroxide is preferable because it improves the adhesion strength of the porous film.
(粒子状重合体(C)の性状)
通常、粒子状重合体(C)は、非水溶性である。したがって、通常、粒子状重合体(C)は、水系の多孔膜組成物において粒子状となっており、その粒子形状を維持したまま、多孔膜に含まれる。(Properties of particulate polymer (C))
Usually, the particulate polymer (C) is water-insoluble. Therefore, the particulate polymer (C) is usually in the form of particles in the aqueous porous membrane composition, and is contained in the porous membrane while maintaining the particle shape.
また、粒子状重合体(C)の個数平均粒子径は、好ましくは50〜500nm、より好ましくは70〜400nmである。なお、個数平均粒子径は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。 The number average particle size of the particulate polymer (C) is preferably 50 to 500 nm, more preferably 70 to 400 nm. The number average particle diameter can be easily measured by a transmission electron microscope method, a Coulter counter, a laser diffraction scattering method, or the like.
本発明の多孔膜組成物における粒子状重合体(C)の含有割合は、非導電性粒子100重量部に対して、好ましくは1〜15重量部、より好ましくは2〜15重量部、さらに好ましくは2〜10重量部である。粒子状重合体(C)の含有割合が大きすぎると、多孔膜の密着強度が低下し、得られるリチウムイオン二次電池のサイクル特性が低下する傾向となる。また、粒子状重合体(C)の含有割合が小さすぎると、多孔膜の密着強度が低下する傾向となる。 The content ratio of the particulate polymer (C) in the porous film composition of the present invention is preferably 1 to 15 parts by weight, more preferably 2 to 15 parts by weight, further preferably 100 parts by weight of non-conductive particles. Is 2 to 10 parts by weight. When the content ratio of the particulate polymer (C) is too large, the adhesion strength of the porous film is lowered, and the cycle characteristics of the obtained lithium ion secondary battery tend to be lowered. Moreover, when the content rate of a particulate polymer (C) is too small, it will become the tendency for the adhesive strength of a porous film to fall.
(多孔膜組成物)
本発明の多孔膜組成物は、非導電性粒子と、水酸基または/およびカルボキシル基を含有する水溶性増粘剤(A)と、カルボジイミド化合物架橋剤(B)と、粒子状重合体(C)とを含み、これらの成分と分散媒とを混合して得られる。(Porous membrane composition)
The porous membrane composition of the present invention comprises non-conductive particles, a water-soluble thickener (A) containing a hydroxyl group or / and a carboxyl group, a carbodiimide compound crosslinking agent (B), and a particulate polymer (C). It is obtained by mixing these components and a dispersion medium.
混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。 The mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
本発明の多孔膜組成物では、分散媒として水を用いることが好ましい。なお、本発明においては、多孔膜組成物の分散安定性を損なわない範囲であれば、分散媒として水に親水性の溶媒を混ぜたものを使用してもよい。親水性の溶媒としては、メタノール、エタノール、N−メチルピロリドンなどがあげられ、水に対して5重量%以下であることが好ましい。 In the porous film composition of the present invention, it is preferable to use water as a dispersion medium. In the present invention, a dispersion medium in which a hydrophilic solvent is mixed may be used as long as the dispersion stability of the porous film composition is not impaired. Examples of the hydrophilic solvent include methanol, ethanol, N-methylpyrrolidone and the like, and it is preferably 5% by weight or less based on water.
また、多孔膜組成物の固形分濃度は10〜65重量%であることが好ましい。固形分濃度が高すぎると、多孔膜組成物の塗工性が低下する傾向となる。また、固形分濃度が低すぎると、多孔膜から水が抜けにくくなるため、水分量を低減させ難い傾向となる。 The solid content concentration of the porous membrane composition is preferably 10 to 65% by weight. When the solid content concentration is too high, the coating property of the porous membrane composition tends to be lowered. On the other hand, if the solid content concentration is too low, it is difficult for water to escape from the porous membrane, and thus the moisture content tends to be difficult to reduce.
また、多孔膜組成物の粘度は15〜500mPa・sであることが好ましい。なお、多孔膜組成物の粘度は、B型粘度計を用いて温度25℃、回転数60rpmにて測定した値である。 Moreover, it is preferable that the viscosity of a porous film composition is 15-500 mPa * s. The viscosity of the porous film composition is a value measured using a B-type viscometer at a temperature of 25 ° C. and a rotation speed of 60 rpm.
(二次電池用多孔膜)
上述した多孔膜組成物を基材上に塗布し、乾燥することにより二次電池用多孔膜(以下、「多孔膜」ということがある。)を得ることができる。(Porous membrane for secondary battery)
A porous film for a secondary battery (hereinafter sometimes referred to as “porous film”) can be obtained by applying the porous film composition described above onto a substrate and drying it.
多孔膜は、有機セパレータや電極に積層して用いてもよいし、有機セパレータそのものとして用いてもよい。なお、二次電池セパレータ多孔膜用結着樹脂組成物により形成される多孔膜は、有機セパレータに積層して用いてもよいし、また、有機セパレータそのものとして用いてもよい。また、二次電池電極多孔膜用結着樹脂組成物により形成される多孔膜は、電極に積層して用いることができる。 The porous film may be used by being laminated on an organic separator or an electrode, or may be used as the organic separator itself. The porous film formed from the binder resin composition for a secondary battery separator porous film may be used by being laminated on an organic separator, or may be used as the organic separator itself. Moreover, the porous film formed with the binder resin composition for secondary battery electrode porous films can be laminated | stacked and used for an electrode.
(二次電池用多孔膜の製造方法)
二次電池用多孔膜を製造する方法としては、(I)上記の非導電性粒子、水溶性増粘剤(A)、カルボジイミド化合物架橋剤(B)、粒子状重合体(C)、分散媒を含む多孔膜組成物を所定の基材(正極用の極板、負極用の極板または有機セパレータ)上に塗布し、次いで乾燥する方法;(II)上記の非導電性粒子、水溶性増粘剤(A)、カルボジイミド化合物架橋剤(B)、粒子状重合体(C)、分散媒及び任意の成分を含む多孔膜組成物を基材(正極用の極板、負極用の極板または有機セパレータ)に浸漬後、これを乾燥する方法;(III)上記の非導電性粒子、水溶性増粘剤(A)、カルボジイミド化合物架橋剤(B)、粒子状重合体(C)、分散媒及び任意の成分を含む多孔膜組成物を、剥離フィルム上に塗布、成膜し、得られた多孔膜を所定の基材(正極用の極板、負極用の極板または有機セパレータ)上に転写する方法;が挙げられる。この中でも、(I)多孔膜組成物を基材(正極用の極板、負極用の極板または有機セパレータ)に塗布し、次いで乾燥する方法が、多孔膜の膜厚を制御しやすいことから最も好ましい。
本発明の多孔膜は、上述の(I)〜(III)の方法で製造されるが、その詳細な製造方法を以下に説明する。(Method for producing porous film for secondary battery)
As a method for producing a porous membrane for a secondary battery, (I) the above non-conductive particles, water-soluble thickener (A), carbodiimide compound crosslinking agent (B), particulate polymer (C), dispersion medium A method of applying a porous film composition comprising a predetermined substrate (a positive electrode plate, a negative electrode plate or an organic separator) and then drying; A porous film composition containing a sticking agent (A), a carbodiimide compound crosslinking agent (B), a particulate polymer (C), a dispersion medium and an optional component is used as a base material (a positive electrode plate, a negative electrode plate or (III) The above non-conductive particles, water-soluble thickener (A), carbodiimide compound crosslinking agent (B), particulate polymer (C), dispersion medium And a porous film composition containing an optional component is applied to a release film and formed into a film. And the like; a porous membrane a given substrate (electrode plate for the positive electrode, the electrode plate or an organic separator for the negative electrode) method of transferring onto. Among these, (I) the method of applying a porous film composition to a substrate (a positive electrode plate, a negative electrode plate or an organic separator) and then drying is easy to control the film thickness of the porous film. Most preferred.
The porous membrane of the present invention is manufactured by the above-described methods (I) to (III), and the detailed manufacturing method will be described below.
(I)の方法では、多孔膜組成物を、所定の基材(正極用の極板、負極用の極板または有機セパレータ)上に塗布し、乾燥することで本発明の多孔膜は製造される。 In the method (I), the porous film composition of the present invention is produced by applying the porous film composition onto a predetermined substrate (positive electrode plate, negative electrode plate or organic separator) and drying. The
多孔膜組成物を基材上に塗布する方法は特に制限されず、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。中でも、均一な多孔膜が得られる点でグラビア法が好ましい。 The method for applying the porous film composition onto the substrate is not particularly limited, and examples thereof include a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. Among these, the gravure method is preferable in that a uniform porous film can be obtained.
乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥温度は、50〜200℃であることが好ましい。 Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying temperature is preferably 50 to 200 ° C.
(II)の方法では、多孔膜組成物を基材(正極用の極板、負極用の極板または有機セパレータ)に浸漬し、乾燥することで本発明の多孔膜は製造される。該多孔膜組成物を基材に浸漬する方法は特に制限されず、例えば、ディップコーター等でディップコーティングすることで浸漬することができる。
乾燥方法としては、上述の(I)の方法での乾燥方法と同じ方法が挙げられる。In the method (II), the porous film composition of the present invention is produced by immersing the porous film composition in a substrate (positive electrode plate, negative electrode plate or organic separator) and drying. The method for immersing the porous film composition in the substrate is not particularly limited, and for example, the porous film composition can be immersed by dip coating with a dip coater or the like.
Examples of the drying method include the same methods as the drying method in the method (I) described above.
(III)の方法では、多孔膜組成物を剥離フィルム上に塗布、成膜し、剥離フィルム上に形成された多孔膜を製造する。次いで、得られた多孔膜は基材(正極用の極板、負極用の極板または有機セパレータ)上に転写される。
塗布方法としては、上述の(I)の方法での塗布方法と同じ方法が挙げられる。転写方法は特に限定されない。In the method (III), the porous film composition is applied on a release film and formed into a film, thereby producing a porous film formed on the release film. Next, the obtained porous film is transferred onto a substrate (a positive electrode plate, a negative electrode plate, or an organic separator).
As the coating method, the same method as the coating method in the above-mentioned method (I) can be mentioned. The transfer method is not particularly limited.
(I)〜(III)の方法で得られた多孔膜は、次いで、必要に応じ、金型プレスやロールプレスなどを用い、加圧処理により基材(正極用の極板、負極用の極板または有機セパレータ)と多孔膜との密着性を向上させることもできる。ただし、この際、過度に加圧処理を行うと、多孔膜の空隙率が損なわれることがあるため、圧力および加圧時間を適宜に制御する。 The porous membrane obtained by the methods (I) to (III) is then subjected to pressure treatment using a die press or a roll press, if necessary, by a base material (electrode plate for positive electrode, electrode for negative electrode). The adhesion between the plate or the organic separator) and the porous film can also be improved. However, at this time, if the pressure treatment is excessively performed, the porosity of the porous film may be impaired, so the pressure and the pressure time are controlled appropriately.
多孔膜の膜厚は、特に限定はされず、多孔膜の用途あるいは適用分野に応じて適宜に設定されるが、薄すぎると均一な膜を形成できず、逆に厚すぎると電池内での体積(重量)あたりの容量(capacity)が減ることから、0.5〜50μmが好ましく、0.5〜10μmがより好ましい。 The film thickness of the porous film is not particularly limited and is appropriately set according to the use or application field of the porous film. However, if the film is too thin, a uniform film cannot be formed. Since the capacity per volume (weight) decreases, 0.5 to 50 μm is preferable, and 0.5 to 10 μm is more preferable.
本発明の多孔膜は、基材(正極用の極板、負極用の極板または有機セパレータ)の表面に成膜され、後述する電極活物質層の保護膜あるいはセパレータとして特に好ましく用いられる。本発明の多孔膜は、二次電池正極、二次電池負極または有機セパレータの何れの表面に成膜されてもよく、正極、負極および有機セパレータの全てに成膜されてもよい。 The porous film of the present invention is formed on the surface of a substrate (a positive electrode plate, a negative electrode plate or an organic separator), and is particularly preferably used as a protective film or separator for an electrode active material layer described later. The porous film of the present invention may be formed on any surface of the secondary battery positive electrode, the secondary battery negative electrode or the organic separator, or may be formed on all of the positive electrode, the negative electrode and the organic separator.
(基材)
(正極用の極板)
正極用の極板は、正極活物質、正極用の結着剤、極板の作製に用いる溶媒、必要に応じて用いられる導電剤、増粘剤等を含む正極用組成物を集電体の表面に塗布し、乾燥させることにより得られる。即ち、集電体の表面に正極活物質層を形成することにより得ることができる。(Base material)
(Electrode plate for positive electrode)
The positive electrode plate is composed of a positive electrode composition containing a positive electrode active material, a positive electrode binder, a solvent used for preparing the electrode plate, a conductive agent used as necessary, a thickener, and the like. It is obtained by applying to the surface and drying. That is, it can be obtained by forming a positive electrode active material layer on the surface of the current collector.
正極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。 Examples of the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions. Examples of the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate. In addition, the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
正極用の結着剤としては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体等が挙げられる。なお、結着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the binder for the positive electrode include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, and polyacrylonitrile derivatives. And other resins; soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, vinyl soft polymers, and the like. In addition, a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
極板の作製に用いる溶媒としては、は、水及び有機溶媒のいずれを使用してもよい。有機溶媒としては、例えば、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN−メチルピロリドン(NMP)が好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、溶媒としては水を用いることが好ましい。 As a solvent used for producing the electrode plate, either water or an organic solvent may be used. Examples of the organic solvent include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and γ-butyrolactone Esters such as ε-caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N Amides such as -methylpyrrolidone and N, N-dimethylformamide; among them, N-methylpyrrolidone (NMP) is preferred. In addition, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Of these, water is preferably used as the solvent.
溶媒の量は、正極用組成物の粘度が塗布に好適な粘度になるように調整すればよい。具体的には、正極用組成物の固形分の濃度が、好ましくは30〜90重量%、より好ましくは40〜80重量%であり、好ましくは、より好ましくはとなる量に調整して用いられる。 What is necessary is just to adjust the quantity of a solvent so that the viscosity of the composition for positive electrodes may become a viscosity suitable for application | coating. Specifically, the concentration of the solid content of the positive electrode composition is preferably 30 to 90% by weight, more preferably 40 to 80% by weight, and more preferably, the amount is adjusted to an amount of .
導電剤の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックがより好ましい。これらの導電剤は、単独でまたは二種類以上組み合わせて用いることができる。 Specific examples of the conductive agent include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and furnace black are more preferable. These conductive agents can be used alone or in combination of two or more.
増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル−ブタジエン共重合体水素化物などが挙げられる。なお、本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味する。 Examples of thickeners include cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Examples include polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, and the like. In the present invention, “(modified) poly” means “unmodified poly” or “modified poly”.
集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、アルミニウムが好ましい。集電体の形状は特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものが好ましい。集電体は、正極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、正極活物質層の接着強度や導電性を高めるために、集電体表面に導電性接着剤層等の中間層を形成してもよい。 The current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material, but is preferably a metal material because of its heat resistance, for example, iron, copper, aluminum, nickel, stainless steel. Examples include steel, titanium, tantalum, gold, and platinum. Among these, aluminum is preferable. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength with the positive electrode active material layer, the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Moreover, in order to improve the adhesive strength and electroconductivity of a positive electrode active material layer, you may form intermediate | middle layers, such as a conductive adhesive layer, on the collector surface.
正極用組成物を集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。 The method for applying the positive electrode composition to the surface of the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は好ましくは5分〜30分であり、乾燥温度は好ましくは40℃〜180℃である。 Examples of the drying method include drying with warm air, hot air, and low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is preferably 5 to 30 minutes, and the drying temperature is preferably 40 to 180 ° C.
また、集電体の表面に正極用組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、正極活物質層に加圧処理を施すことが好ましい。加圧処理により、正極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5〜30%、より好ましくは7%〜20%である。空隙率が低すぎると、高い体積容量が得難く、また、正極活物質層が集電体から剥がれ易い傾向となる。また、空隙率が高すぎると、十分な充電効率及び放電効率を得難い傾向となる。
さらに、正極活物質層が硬化性の重合体を含む場合は、正極活物質層の形成後に重合体を硬化させることが好ましい。Further, after applying and drying the positive electrode composition on the surface of the current collector, the positive electrode active material layer is preferably subjected to pressure treatment using, for example, a die press or a roll press as necessary. By the pressure treatment, the porosity of the positive electrode active material layer can be lowered. The porosity is preferably 5 to 30%, more preferably 7% to 20%. When the porosity is too low, it is difficult to obtain a high volume capacity, and the positive electrode active material layer tends to be peeled off from the current collector. Moreover, when the porosity is too high, it tends to be difficult to obtain sufficient charge efficiency and discharge efficiency.
Furthermore, when the positive electrode active material layer includes a curable polymer, it is preferable to cure the polymer after the positive electrode active material layer is formed.
(負極用の極板)
負極用の極板は、負極活物質、負極用の結着剤、極板の作製に用いる溶媒、必要に応じて用いられる増粘剤、導電剤等を含む負極用組成物を上述の集電体の表面に塗布し、乾燥させることにより得ることができる。即ち、集電体の表面に負極活物質層を形成することにより得ることができる。(Electrode plate for negative electrode)
For the negative electrode plate, the negative electrode composition containing the negative electrode active material, the binder for the negative electrode, the solvent used for preparing the electrode plate, the thickener used as necessary, the conductive agent, etc. It can be obtained by applying to the surface of the body and drying. That is, it can be obtained by forming a negative electrode active material layer on the surface of the current collector.
負極活物質としては、たとえば、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物等が挙げられる。なお、上記にて例示した負極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。 Examples of the negative electrode active material include graphitizable carbon, non-graphitizable carbon, pyrolytic carbon and other low crystalline carbon (amorphous carbon), graphite (natural graphite, artificial graphite), tin, silicon, and the like. Examples include alloy materials, oxides such as silicon oxide, tin oxide, and lithium titanate. In addition, the negative electrode active material illustrated above may be used independently according to a use suitably, and multiple types may be mixed and used for it.
負極用の結着剤としては、特に制限されず公知のものを用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
また、極板の作製に用いる溶媒、増粘剤及び導電剤は上述の正極用の極板に用いることができるものと同様のものを用いることができる。
また、集電体についても上述の正極用の極板に用いることができるものと同様のものを用いることができる。
負極用の極板は、正極用の極板と同様の要領で製造することができる。The binder for the negative electrode is not particularly limited, and known ones can be used. For example, resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.
Moreover, the solvent, the thickener, and the electrically conductive agent which are used for preparation of an electrode plate can use the thing similar to what can be used for the electrode plate for positive electrodes mentioned above.
Moreover, the same thing as what can be used for the above-mentioned electrode plate for positive electrodes can also be used also about a collector.
The electrode plate for the negative electrode can be produced in the same manner as the electrode plate for the positive electrode.
(有機セパレータ)
有機セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製や芳香族ポリアミド樹脂製の微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。(Organic separator)
As the organic separator, known ones such as a microporous film or non-woven fabric made of polyolefin such as polyethylene or polypropylene or an aromatic polyamide resin; a porous resin coat containing inorganic ceramic powder; For example, polyolefin (polyethylene, polypropylene, polybutene, polyvinyl chloride), and microporous membranes made of resins such as mixtures or copolymers thereof, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide , A microporous membrane made of a resin such as polyaramid, polycycloolefin, nylon, polytetrafluoroethylene, or a woven polyolefin-based fiber, or a nonwoven fabric thereof, an aggregate of insulating substance particles, or the like.
(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、正極、負極、セパレータ及び電解液を含み、正極、負極及びセパレータうちの少なくとも1つは、多孔膜組成物により得られる多孔膜を備える。(Lithium ion secondary battery)
The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode, the negative electrode, and the separator includes a porous film obtained from the porous film composition.
なお、上記多孔膜を有しない正極を用いる場合には、上述の正極用の極板を正極として用いることができる。また、上記多孔膜を有しない負極を用いる場合には、上述の負極用の極板を負極として用いることができる。また、上記多孔膜を有しないセパレータを用いる場合には、上述の有機セパレータを用いることができる。 In addition, when using the positive electrode which does not have the said porous film, the above-mentioned electrode plate for positive electrodes can be used as a positive electrode. Moreover, when using the negative electrode which does not have the said porous film, the above-mentioned electrode plate for negative electrodes can be used as a negative electrode. Moreover, when using the separator which does not have the said porous film, the above-mentioned organic separator can be used.
(電解液)
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。(Electrolyte)
As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
支持電解質の量は、電解液に対して、好ましくは1〜30重量%、より好ましくは5〜20重量%である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。 The amount of the supporting electrolyte is preferably 1 to 30% by weight, more preferably 5 to 20% by weight with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.
電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Examples of the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); Examples include esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide. In addition, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Moreover, you may make an electrolyte solution contain an additive as needed. As the additive, for example, carbonate compounds such as vinylene carbonate (VC) are preferable. In addition, an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、Li3Nなどの無機固体電解質;などを挙げることができる。Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
(二次電池の製造方法)
本発明の二次電池の製造方法は、特に限定されない。例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。(Method for manufacturing secondary battery)
The manufacturing method of the secondary battery of the present invention is not particularly limited. For example, the negative electrode and the positive electrode may be overlapped via a separator, and this may be wound or folded according to the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed. Furthermore, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
また、上述の多孔膜を、正極又は負極の電極活物質層表面に形成する場合には、リチウムイオン二次電池の製造の際にセパレータを用いなくても、多孔膜がセパレータとしての機能を果たすことができ、低コストでリチウムイオン二次電池の作製が可能になる。また、リチウムイオン二次電池の製造の際にセパレータを用いた場合においても、セパレータ表面に形成されている孔を埋めることがないため、より高いレート特性を発現することができる。さらに、多孔膜を電極活物質層表面に形成することにより、セパレータが熱による収縮を起こしても、正極・負極間の短絡を起こすことがなく、高い安全性を保つことができる。 Moreover, when forming the above-mentioned porous film on the electrode active material layer surface of a positive electrode or a negative electrode, even if it does not use a separator at the time of manufacture of a lithium ion secondary battery, a porous film fulfill | performs the function as a separator. Therefore, it is possible to manufacture a lithium ion secondary battery at low cost. Further, even when a separator is used in the manufacture of a lithium ion secondary battery, since the holes formed on the separator surface are not filled, higher rate characteristics can be expressed. Furthermore, by forming the porous film on the surface of the electrode active material layer, even if the separator is contracted by heat, a short circuit between the positive electrode and the negative electrode is not caused, and high safety can be maintained.
本発明の多孔膜組成物によれば、含有水分量が少なく、密着強度に優れた多孔膜層を得ることができる。 According to the porous film composition of the present invention, it is possible to obtain a porous film layer having a low water content and excellent adhesion strength.
以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。
実施例及び比較例において、ピール強度、水分量、低温出力特性、セル膨らみ及びサイクル特性の評価はそれぞれ以下のように行った。EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily changed without departing from the gist and equivalent scope of the present invention. Can be implemented. In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified.
In Examples and Comparative Examples, peel strength, moisture content, low-temperature output characteristics, cell swelling, and cycle characteristics were evaluated as follows.
(ピール強度)
実施例及び比較例において製造したセパレータを、長さ100mm、幅10mmの長方形に切り出して試験片とし、電解液(1.0mol/LのLiPF6/EC+DEC(EC/DEC=1/2体積比))に60℃、72時間浸漬した後に乾燥した。乾燥した試験片を、多孔膜の表面を下にして、多孔膜の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度10mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値を求めて、当該平均値をピール強度とし、表1及び表2に示した。測定されたピール強度が大きいほど、多孔膜と有機セパレータとの結着力が大きいことを示す。すなわち、測定されたピール強度が大きいほど、密着強度が大きいことを示す。(Peel strength)
The separators produced in the examples and comparative examples were cut into rectangles having a length of 100 mm and a width of 10 mm to form test pieces, and an electrolyte (1.0 mol / L LiPF 6 / EC + DEC (EC / DEC = 1/2 volume ratio)) ) And then dried at 60 ° C. for 72 hours. Cellophane tape was affixed on the surface of the porous film with the dried test piece facing down. At this time, a cellophane tape defined in JIS Z1522 was used. The cellophane tape was fixed on a horizontal test bench. Thereafter, the stress was measured when one end of the current collector was pulled vertically upward and pulled off at a pulling speed of 10 mm / min. This measurement was performed 3 times, the average value of stress was calculated | required, and the said average value was made into peel strength, and it showed in Table 1 and Table 2. It shows that the binding strength of a porous membrane and an organic separator is so large that the measured peel strength is large. That is, it shows that adhesion strength is so large that the measured peel strength is large.
(水分量)
実施例及び比較例で製造したセパレータ(多孔膜付有機セパレータ)を幅10cm×長さ10cmの大きさで切り出し、試験片とする。試験片を温度25℃、湿度50%で24時間放置し、その後、電量滴定式水分計を用い、カールフィッシャー法(JIS K−0068(2001)水分気化法、気化温度150℃)により試験片の水分量(W1)を測定した。
次に、温度25℃、露点−60℃、湿度0.05%で24時間放置した試験片を上記と同様にして水分量(W2)を測定した。(amount of water)
The separator (organic separator with a porous film) manufactured in the examples and comparative examples was cut out in a size of 10 cm wide × 10 cm long to obtain a test piece. The test piece was allowed to stand for 24 hours at a temperature of 25 ° C. and a humidity of 50%, and then the test piece was subjected to Karl Fischer method (JIS K-0068 (2001) water vaporization method, vaporization temperature 150 ° C.) using a coulometric titration moisture meter. The water content (W1) was measured.
Next, the moisture content (W2) was measured in the same manner as described above for a test piece that was allowed to stand for 24 hours at a temperature of 25 ° C., a dew point of −60 ° C., and a humidity of 0.05%.
測定された水分量W1及びW2から、比(W1/W2)を算出し、下記の基準により評価した。W1とW2の差が小さいほど、多孔膜の水分量が少ないことを表す。多孔膜の水分量が少ないと、電池製造を行うドライルーム内でのセパレータのカールを抑制できる。また、多孔膜の水分量が少ないほど、水分による二次電池内での副反応を起こさず、高温サイクル特性等の電池特性を低下させないため、好ましい。
A:W1/W2が、2.0未満
B:W1/W2が、2.0以上2.5未満
C:W1/W2が、2.5以上3.0未満
D:W1/W2が、3.0以上A ratio (W1 / W2) was calculated from the measured water contents W1 and W2, and evaluated according to the following criteria. The smaller the difference between W1 and W2, the smaller the moisture content of the porous membrane. When the water content of the porous film is small, curling of the separator in the dry room where the battery is manufactured can be suppressed. Further, it is preferable that the amount of water in the porous film is small because side reactions in the secondary battery due to moisture do not occur and battery characteristics such as high-temperature cycle characteristics do not deteriorate.
A: W1 / W2 is less than 2.0 B: W1 / W2 is 2.0 or more and less than 2.5 C: W1 / W2 is 2.5 or more and less than 3.0 D: W1 / W2 is 3. 0 or more
(低温出力特性)
実施例および比較例における800mAh捲回型のリチウムイオン二次電池を作製し、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、0.1C、5時間の充電の操作を行い、その時の電圧V0を測定した。その後、−10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。低温出力特性は、ΔV=V0−V1で示す電圧降下にて評価し、この値が小さいほど低温出力特性に優れることを示す。(Low temperature output characteristics)
An 800 mAh wound type lithium ion secondary battery in Examples and Comparative Examples was prepared and allowed to stand for 24 hours in an environment at 25 ° C., and then 4.2 V, 0.1 C, 5 in an environment at 25 ° C. The time charging operation was performed, and the voltage V0 at that time was measured. Thereafter, a discharge operation was performed at a discharge rate of 1 C in a -10 ° C environment, and the voltage V1 15 seconds after the start of discharge was measured. The low temperature output characteristic is evaluated by a voltage drop represented by ΔV = V0−V1, and the smaller this value, the better the low temperature output characteristic.
(セル膨らみ)
実施例および比較例における800mAh捲回型セルのリチウムイオン二次電池を作製し、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.35V、0.1Cの充電、2.75V、0.1Cの放電にて充放電の操作を行った。その後、捲回型セルを流動パラフィンに浸漬し、その体積V0を測定した。さらに、60℃環境下で、充放電を繰り返し、1000サイクル後の捲回型セルを流動パラフィンに浸漬し、その体積V1を測定した。セルの膨らみは、ΔV(%)=(V1−V0)/V0×100で表されるセルの体積変化率にて評価した。この値が小さいほどガス発生抑制に優れていることを示す。(Cell bulge)
An 800 mAh wound cell lithium ion secondary battery in Examples and Comparative Examples was prepared and allowed to stand in an environment at 25 ° C. for 24 hours, and then at 4.35 V and 0.1 C in an environment at 25 ° C. Charging and discharging operations were performed by charging at 2.75 V and discharging at 0.1 C. Thereafter, the wound cell was immersed in liquid paraffin, and its volume V0 was measured. Furthermore, charging and discharging were repeated under an environment of 60 ° C., the wound cell after 1000 cycles was immersed in liquid paraffin, and its volume V1 was measured. The swelling of the cell was evaluated by the volume change rate of the cell represented by ΔV (%) = (V1−V0) / V0 × 100. It shows that it is excellent in gas generation | occurrence | production suppression, so that this value is small.
(サイクル特性)
実施例および比較例における800mAh捲回型セルのリチウムイオン二次電池を作製し、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.35V、0.1Cの充電、2.75V、0.1Cの放電にて充放電の操作を行い、初期容量C0を測定した。さらに、60℃環境下で、充放電を繰り返し、1000サイクル後の容量C1を測定した。高温サイクル特性は、ΔC=C1/C0×100(%)で示す容量維持率にて評価した。この値が高いほど寿命特性に優れることを示す。(Cycle characteristics)
An 800 mAh wound cell lithium ion secondary battery in Examples and Comparative Examples was prepared and allowed to stand in an environment at 25 ° C. for 24 hours, and then at 4.35 V and 0.1 C in an environment at 25 ° C. Charging and discharging operations were performed by charging and discharging at 2.75 V and 0.1 C, and the initial capacity C0 was measured. Furthermore, charging / discharging was repeated under an environment of 60 ° C., and the capacity C1 after 1000 cycles was measured. The high-temperature cycle characteristics were evaluated by a capacity retention rate represented by ΔC = C1 / C0 × 100 (%). It shows that it is excellent in a lifetime characteristic, so that this value is high.
(実施例1)
(1.セパレータ)
[1.1.アルミナ粒子の製造]
バイヤー法で得られた体積平均粒子径2.8μmの水酸化アルミニウムを、0.61g/cm3の仕込み密度で箱型匣鉢に仕込んだ。この箱型匣鉢を、定置型電気炉(シリコニット高熱工業株式会社製「シリコニット炉」)の炉内に設置し、焼成温度1180℃で10時間焼成した。その後、生成したαアルミナの粒子を炉内から取り出した。Example 1
(1. Separator)
[1.1. Production of alumina particles]
Aluminum hydroxide having a volume average particle diameter of 2.8 μm obtained by the Bayer method was charged into a box-shaped mortar at a charging density of 0.61 g / cm 3 . This box-shaped mortar was placed in a furnace of a stationary electric furnace (“Siliconit Furnace” manufactured by Siliconit Takao Kogyo Co., Ltd.) and fired at a firing temperature of 1180 ° C. for 10 hours. Thereafter, the produced α-alumina particles were taken out of the furnace.
6リットルのポット内に直径15mmのアルミナボール7.8kgが収容された振動ボールミル(中央化工機株式会社製「振動ミル」)を用意した。そのポット内に、前記のαアルミナの粒子1.0kgとエタノール15gとを充填し、36時間粉砕して、体積平均粒子径0.6μmのαアルミナ粒子を得た。 A vibrating ball mill (“Vibrating Mill” manufactured by Chuo Kako Co., Ltd.) in which 7.8 kg of alumina balls having a diameter of 15 mm were accommodated in a 6-liter pot was prepared. The pot was filled with 1.0 kg of the above α-alumina particles and 15 g of ethanol and pulverized for 36 hours to obtain α-alumina particles having a volume average particle diameter of 0.6 μm.
[1.2.水溶性増粘剤(A)の製造]
水溶性増粘剤(A)として、カルボキシメチルセルロース(ダイセル化学工業株式会社製ダイセル1220、エーテル化度0.8〜1.0、1%水溶液粘度10〜20mPa・s、以下、「CMC」ということがある。)、及び、ポリアクリル酸ナトリウムD1(重量平均分子量25000、1%水溶液粘度3000mPa・s)を用いた。水50部に対して、それぞれ固形分が1.5部、0.1部となるよう添加した。[1.2. Production of water-soluble thickener (A)]
As the water-soluble thickener (A), carboxymethyl cellulose (Daicel Chemical Industries, Ltd. Daicel 1220, etherification degree 0.8-1.0, 1% aqueous solution viscosity 10-20 mPa · s, hereinafter referred to as “CMC” And sodium polyacrylate D1 (weight average molecular weight 25000, 1% aqueous solution viscosity 3000 mPa · s). It added so that solid content might be 1.5 parts and 0.1 part with respect to 50 parts of water, respectively.
[1.3.カルボジイミド化合物架橋剤(B)]
カルボジイミド化合物架橋剤(B)としては、ポリカルボジイミド(日清紡ケミカル社製、製品名:カルボジライト(登録商標)SV−02、NCN当量429、一相水溶性)を使用した。[1.3. Carbodiimide compound crosslinking agent (B)]
As the carbodiimide compound crosslinking agent (B), polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite (registered trademark) SV-02, NCN equivalent 429, one-phase water-soluble) was used.
[1.4.粒子状重合体(C)の製造]
以下のように、粒子状重合体(C)を製造した。
撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、並びに過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。[1.4. Production of particulate polymer (C)]
A particulate polymer (C) was produced as follows.
In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 part of sodium lauryl sulfate (product name “Emal 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier, and 0.5 part of ammonium persulfate, The gas phase portion was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
一方、別の容器でイオン交換水50部、分散剤としてドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、重合性単量体として、ブチルアクリレート(以下、「BA」ということがある。)94部、アクリロニトリル(以下、「AN」ということがある。)2部、アクリルアミド(以下、「AAm」ということがある。)1部、メタクリル酸(以下、「MMA」ということがある。)2部及びアリルグリシジルエーテル(以下、「AGE」ということがある。)1部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、多孔膜用のバインダーとして(メタ)アクリル重合体を含む水分散液を製造した。
得られた(メタ)アクリル重合体の体積平均粒子径D50は0.36μm、ガラス転移温度は−45℃であった。On the other hand, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, and 94 parts of butyl acrylate (hereinafter sometimes referred to as “BA”) as a polymerizable monomer. , Acrylonitrile (hereinafter sometimes referred to as “AN”) 2 parts, acrylamide (hereinafter sometimes referred to as “AAm”) 1 part, methacrylic acid (hereinafter sometimes referred to as “MMA”) 2 parts, and 1 part of allyl glycidyl ether (hereinafter sometimes referred to as “AGE”) was mixed to obtain a monomer mixture. This monomer mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was performed at 60 ° C. After completion of the addition, the reaction was further terminated by stirring at 70 ° C. for 3 hours to produce an aqueous dispersion containing a (meth) acrylic polymer as a binder for the porous membrane.
The obtained (meth) acrylic polymer had a volume average particle diameter D50 of 0.36 μm and a glass transition temperature of −45 ° C.
[1.5.非導電性粒子の分散体の調製]
前記工程[1.1]で得たαアルミナ粒子100部、前記工程[1.3]で得た水溶性増粘剤(A)の水溶液を1.6部混合し、更に電気伝導度が10μS/cmの水を添加して固形分濃度を50重量%に調整することにより、非導電性粒子の分散体を得た。[1.5. Preparation of dispersion of non-conductive particles]
100 parts of the α-alumina particles obtained in the step [1.1] and 1.6 parts of the aqueous solution of the water-soluble thickener (A) obtained in the step [1.3] are mixed, and the electric conductivity is 10 μS. A dispersion of non-conductive particles was obtained by adding / cm water to adjust the solid content concentration to 50% by weight.
[1.6.非導電性粒子の分散体の分散]
前記工程[1.5.]で得た非導電性粒子の分散体を、メディアレス分散装置(IKA社製、インライン型粉砕機MKO)によって4000回転、5.4Wh/kgのエネルギーで1時間分散させた。[1.6. Dispersion of dispersion of non-conductive particles]
Step [1.5. The dispersion of non-conductive particles obtained in the above was dispersed for 1 hour at an energy of 4000 rpm and 5.4 Wh / kg by a medialess dispersion apparatus (manufactured by IKA, in-line type pulverizer MKO).
[1.7.多孔膜組成物の製造]
前記工程[1.6.]で得た非導電性粒子の分散体に、カルボジイミド化合物架橋剤(B)を0.05部、粒子状重合体(C)を6部加えた。さらに、ポリエチレングリコール型界面活性剤(サンノプコSNウェット366)0.2部を混合し、固形分濃度40%、粘度160mPa・s(B型粘度計を用いて温度25℃、回転数60rpmにて測定した値、以下において同様)の多孔膜組成物を製造した。[1.7. Production of porous film composition]
The step [1.6. ] 0.05 parts of carbodiimide compound crosslinking agent (B) and 6 parts of particulate polymer (C) were added to the dispersion of non-conductive particles obtained in the above. Furthermore, 0.2 part of polyethylene glycol type surfactant (San Nopco SN wet 366) is mixed, solid content concentration is 40%, viscosity is 160 mPa · s (measured at a temperature of 25 ° C. and a rotation speed of 60 rpm using a B type viscometer). (The same applies below), and a porous membrane composition was produced.
[1.8.二次電池用セパレータの製造]
ポリエチレン製の多孔基材(PE基材)からなる有機セパレータ(厚み16μm、ガーレー値210s/100cc)を用意した。用意した有機セパレータの両面に、上記多孔膜組成物を塗布し、50℃で3分間乾燥させた。これにより、片面厚み3μmの多孔膜を備えるセパレータを得た。得られたセパレータについて、上記方法によりピール強度及び水分量を測定した。[1.8. Production of secondary battery separator]
An organic separator (thickness 16 μm, Gurley value 210 s / 100 cc) made of a polyethylene porous substrate (PE substrate) was prepared. The porous membrane composition was applied to both surfaces of the prepared organic separator and dried at 50 ° C. for 3 minutes. Thereby, a separator provided with a porous film having a thickness of 3 μm on one side was obtained. About the obtained separator, the peeling strength and the moisture content were measured by the said method.
(2.負極)
[2.1.負極用の結着剤の製造]
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2−ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。(2. Negative electrode)
[2.1. Production of binder for negative electrode]
In a 5 MPa pressure vessel with a stirrer, 33.5 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 62 parts of styrene, 1 part of 2-hydroxyethyl acrylate, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, ion exchange After adding 150 parts of water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a particulate binder (SBR). After adding 5% aqueous sodium hydroxide solution to the mixture containing the particulate binder and adjusting the pH to 8, the unreacted monomer is removed by heating under reduced pressure, and then cooled to 30 ° C. or lower to obtain a desired content. An aqueous dispersion containing a particulate binder was obtained.
[2.2.負極用組成物の製造]
人造黒鉛(平均粒子径:15.6μm)100部、増粘剤としてカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部、イオン交換水で固形分濃度68%に調製した後、25℃60分間混合した。さらにイオン交換水で固形分濃度62%に調製した後、さらに25℃15分間混合した。上記混合液に、上記の粒子状バインダーを固形分相当量で1.5部、及びイオン交換水を入れ、最終固形分濃度52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用組成物を得た。[2.2. Production of composition for negative electrode]
100 parts of artificial graphite (average particle size: 15.6 μm), 1 part of a 2% aqueous solution of carboxymethylcellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) as a thickener, solid content equivalent with ion exchange water After adjusting to 68%, the mixture was mixed at 25 ° C. for 60 minutes. Further, the solid content was adjusted to 62% with ion-exchanged water, and further mixed at 25 ° C. for 15 minutes. The above-mentioned mixed binder was mixed with 1.5 parts of the particulate binder in an amount corresponding to the solid content and ion-exchanged water, adjusted to a final solid content concentration of 52%, and further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode composition having good fluidity.
[2.3.負極の製造]
上記で得られた負極用組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmのプレス後の負極を得た。[2.3. Production of negative electrode]
The negative electrode composition obtained above was applied onto a copper foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode active material layer having a thickness of 80 μm.
[3.正極]
[3.1.正極用組成物の製造]
正極活物質として体積平均粒子径12μmのLiCoO2を100部、導電剤としてアセチレンブラック(電気化学工業社製「HS−100」)を2部、正極用の結着剤としてPVDF(クレハ社製、#7208)を固形分相当で2部と、NMPとを混合し全固形分濃度が70%となる量とした。これらをプラネタリーミキサーにより混合し、正極用組成物を調製した。[3. Positive electrode]
[3.1. Production of composition for positive electrode]
100 parts of LiCoO 2 having a volume average particle diameter of 12 μm as the positive electrode active material, 2 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive agent, PVDF (manufactured by Kureha Co., Ltd.) as the binder for the positive electrode # 7208) was mixed with 2 parts corresponding to the solid content and NMP to make the total solid content concentration 70%. These were mixed by a planetary mixer to prepare a positive electrode composition.
[3.2.正極の製造]
上記[3.1.]の正極用組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。[3.2. Production of positive electrode]
[3.1. The composition for a positive electrode was applied on a 20 μm-thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.
[4.リチウムイオン二次電池の製造]
プレス後の正極を49×5cm2に切り出した。切り出された正極の正極活物質層上に、55×5.5cm2に切り出したセパレータを配置した。さらに、プレス後の負極を50×5.2cm2の正方形に切り出し、この切り出された負極を前記セパレータの正極とは反対側に、負極活物質層側の表面がセパレータに向かい合うよう配置した。これを捲回機によって捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし、扁平体とした。この扁平体を、電池の外装としてのアルミニウム包材外装で包み、電解液(溶媒:EC/DEC/VC=68.5/30/1.5体積比、電解質:濃度1MのLiPF6)を空気が残らないように注入した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口した。これにより、800mAhの捲回型リチウムイオン二次電池を製造した。[4. Production of lithium ion secondary battery]
The pressed positive electrode was cut out to 49 × 5 cm 2 . A separator cut out to 55 × 5.5 cm 2 was disposed on the positive electrode active material layer of the cut out positive electrode. Furthermore, the negative electrode after pressing was cut into a square of 50 × 5.2 cm 2 , and the cut negative electrode was arranged on the side opposite to the positive electrode of the separator so that the surface on the negative electrode active material layer side faced the separator. This was wound by a winding machine to obtain a wound body. The wound body was pressed at 60 ° C. and 0.5 MPa to obtain a flat body. This flat body is wrapped with an aluminum wrapping case as a battery case, and an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30 / 1.5 volume ratio, electrolyte: LiPF 6 with a concentration of 1 M) is air. Injected so as not to remain. Further, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior. Thus, an 800 mAh wound type lithium ion secondary battery was manufactured.
こうして得られたリチウムイオン二次電池について、上述した方法で、低温出力特性、セル膨らみ及びサイクル特性を評価した。 About the lithium ion secondary battery obtained in this way, the low-temperature output characteristic, cell swelling, and cycling characteristics were evaluated by the method mentioned above.
(実施例2)
上記[1.2.水溶性増粘剤(A)の製造]において、用いるポリアクリル酸ナトリウムの種類をポリアクリル酸ナトリウムD2(重量平均分子量10000、1%水溶液粘度1200mPa・s)とした以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。(Example 2)
Above [1.2. In the production of water-soluble thickener (A)], the same as Example 1 except that the type of sodium polyacrylate used was sodium polyacrylate D2 (weight average molecular weight 10,000, 1% aqueous solution viscosity 1200 mPa · s) In addition, a separator and a lithium ion secondary battery were manufactured.
(実施例3)
上記[1.2.水溶性増粘剤(A)の製造]において、用いるポリアクリル酸ナトリウムの種類をポリアクリル酸ナトリウムD3(重量平均分子量70000、1%水溶液粘度8400mPa・s)とした以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。(Example 3)
Above [1.2. In the production of water-soluble thickener (A)], the same as Example 1 except that the type of sodium polyacrylate used was sodium polyacrylate D3 (weight average molecular weight 70000, 1% aqueous solution viscosity 8400 mPa · s) In addition, a separator and a lithium ion secondary battery were manufactured.
(実施例4)
上記[1.1.アルミナ粒子の製造]に代えて、有機化合物からなる非導電性微粒子の製造を行った。Example 4
[1.1. Instead of production of alumina particles, nonconductive fine particles made of an organic compound were produced.
[有機化合物からなる非導電性微粒子の製造]
撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.06部、過硫酸アンモニウムを0.2部、及びイオン交換水を100部入れて混合して混合物N1とし、80℃に昇温した。[Production of non-conductive fine particles made of organic compounds]
In a reactor equipped with a stirrer, 0.06 part of sodium dodecyl sulfate, 0.2 part of ammonium persulfate, and 100 parts of ion-exchanged water were mixed to obtain a mixture N1, and the temperature was raised to 80 ° C.
一方、別の容器中で、単量体としてアクリル酸ブチル98部及びメタクリル酸2.0部、ドデシル硫酸ナトリウム0.1部、並びにイオン交換水100部を混合して、単量体混合物M1の分散体を調製した。 On the other hand, in another container, 98 parts of butyl acrylate and 2.0 parts of methacrylic acid, 0.1 part of sodium dodecyl sulfate, and 100 parts of ion-exchanged water were mixed as monomers, A dispersion was prepared.
この単量体混合物M1の分散体を、4時間かけて、混合物N1に連続的に添加して重合させた。単量体混合物M1の分散体の連続的な添加中は、反応系の温度を80℃に維持して、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。
これにより、個数平均粒子径360nmのシードポリマー粒子S1の水分散体を得た。The dispersion of the monomer mixture M1 was continuously added to the mixture N1 over 4 hours to be polymerized. During continuous addition of the dispersion of the monomer mixture M1, the reaction was carried out while maintaining the temperature of the reaction system at 80 ° C. After completion of the continuous addition, the reaction was further continued at 90 ° C. for 3 hours.
Thereby, an aqueous dispersion of seed polymer particles S1 having a number average particle diameter of 360 nm was obtained.
撹拌機を備えた反応器に、前述で得たシードポリマー粒子S1の水分散体を固形分基準(即ち、シードポリマー粒子S1の重量基準)で20部、単量体としてエチレングリコールジメタクリレート(共栄社化学株式会社「ライトエステルEG」)を99部、及びアクリル酸を1.0部、乳化剤としてドデシルベンゼンスルホン酸ナトリウムを1.0部、重合開始剤としてt−ブチルパーオキシ−2−エチルヘキサノエート(日油株式会社「パーブチルO」)を4.0部、並びにイオン交換水を200部入れた。これを、35℃で12時間撹拌することで、シードポリマー粒子S1に単量体及び重合開始剤を完全に吸収させた。その後、これを90℃で5時間重合させた。その後、スチームを導入して未反応の単量体および開始剤分解生成物を除去し、有機化合物からなる非導電性微粒子を得た。 In a reactor equipped with a stirrer, 20 parts of the aqueous dispersion of the seed polymer particles S1 obtained above on a solid basis (that is, based on the weight of the seed polymer particles S1) and ethylene glycol dimethacrylate as a monomer (Kyoeisha) Chemical Co., Ltd. “Light Ester EG”) 99 parts, acrylic acid 1.0 parts, emulsifier sodium dodecylbenzenesulfonate 1.0 parts, polymerization initiator t-butylperoxy-2-ethylhexano 4.0 parts of Eat (Nippon Oil Corporation "Perbutyl O") and 200 parts of ion-exchanged water were added. By stirring this at 35 ° C. for 12 hours, the monomer and polymerization initiator were completely absorbed by the seed polymer particles S1. Thereafter, this was polymerized at 90 ° C. for 5 hours. Thereafter, steam was introduced to remove unreacted monomers and initiator decomposition products, and non-conductive fine particles made of an organic compound were obtained.
αアルミナに代えて、上記有機化合物からなる非導電性微粒子を用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は25%、粘度は50mPa・sであった。A separator and a lithium ion secondary battery were manufactured in the same manner as in Example 1 except that non-conductive fine particles made of the organic compound were used instead of α-alumina.
The above [1.7. The production of the porous film composition] had a solid content concentration of 25% and a viscosity of 50 mPa · s.
(実施例5)
上記[1.2.水溶性増粘剤(A)の製造]においてカルボキシメチルセルロースに代えて、ポリビニルアルコール(以下、「PVOH」ということがある。)を用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は42%、粘度は150mPa・sであった。(Example 5)
Above [1.2. Production of water-soluble thickener (A)] In the same manner as in Example 1 except that polyvinyl alcohol (hereinafter sometimes referred to as “PVOH”) was used instead of carboxymethylcellulose, production of a separator and lithium ion A secondary battery was manufactured.
The above [1.7. The production of the porous film composition] had a solid content concentration of 42% and a viscosity of 150 mPa · s.
(実施例6)
上記[1.2.水溶性増粘剤(A)の製造]においてポリアクリル酸ナトリウムを用いずに、水50部に対してカルボキシメチルセルロースを1.6部用いて水溶性増粘剤(A)を製造した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は41%、粘度は140mPa・sであった。(Example 6)
Above [1.2. In the production of water-soluble thickener (A)], without using sodium polyacrylate, water-soluble thickener (A) was produced using 1.6 parts of carboxymethylcellulose with respect to 50 parts of water. In the same manner as in Example 1, a separator and a lithium ion secondary battery were manufactured.
The above [1.7. The production of the porous film composition] had a solid content concentration of 41% and a viscosity of 140 mPa · s.
(実施例7)
上記[1.2.水溶性増粘剤(A)の製造]において、カルボキシメチルセルロース及びポリアクリル酸ナトリウムを水50部に対して、それぞれ固形分が0.4部、0.1部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は47%、粘度は150mPa・sであった。(Example 7)
Above [1.2. Production of water-soluble thickener (A)], except that carboxymethyl cellulose and sodium polyacrylate were added to 50 parts of water so that the solid content was 0.4 parts and 0.1 parts, respectively. In the same manner as in Example 1, a separator and a lithium ion secondary battery were manufactured.
The above [1.7. The production of the porous film composition] had a solid content concentration of 47% and a viscosity of 150 mPa · s.
(実施例8)
上記[1.2.水溶性増粘剤(A)の製造]において、カルボキシメチルセルロース及びポリアクリル酸ナトリウムを水50部に対して、それぞれ固形分が1.5部、6.5部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は32%、粘度は160mPa・sであった。(Example 8)
Above [1.2. Production of water-soluble thickener (A)], except that carboxymethyl cellulose and sodium polyacrylate were added to 50 parts of water so that the solid content was 1.5 parts and 6.5 parts, respectively. In the same manner as in Example 1, a separator and a lithium ion secondary battery were manufactured.
The above [1.7. The production of the porous film composition] had a solid content concentration of 32% and a viscosity of 160 mPa · s.
(実施例9)
上記[1.3.カルボジイミド化合物架橋剤(B)]においてカルボジイミド化合物架橋剤(B)として、ポリカルボジイミド(日清紡ケミカル社製、製品名:カルボジライト(登録商標)V−02、NCN当量600、一相水溶性)を使用した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は40%、粘度は160mPa・sであった。Example 9
[1.3. In the carbodiimide compound crosslinking agent (B)], polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite (registered trademark) V-02, NCN equivalent 600, single-phase water-soluble) was used as the carbodiimide compound crosslinking agent (B). Except for the above, separators and lithium ion secondary batteries were manufactured in the same manner as in Example 1.
The above [1.7. The production of the porous film composition] had a solid content concentration of 40% and a viscosity of 160 mPa · s.
(実施例10)
上記[1.3.カルボジイミド化合物架橋剤(B)]においてカルボジイミド化合物架橋剤(B)として、ポリカルボジイミド(日清紡ケミカル社製、製品名:カルボジライト(登録商標)V−04、NCN当量335、一相水溶性)を使用した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は39%、粘度は165mPa・sであった。(Example 10)
[1.3. In the carbodiimide compound crosslinking agent (B)], polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite (registered trademark) V-04, NCN equivalent 335, one-phase water-soluble) was used as the carbodiimide compound crosslinking agent (B). Except for the above, separators and lithium ion secondary batteries were manufactured in the same manner as in Example 1.
The above [1.7. The production of the porous membrane composition] had a solid content concentration of 39% and a viscosity of 165 mPa · s.
(実施例11)
前記[1.7.多孔膜組成物の製造]において、加えるカルボジイミド化合物架橋剤(B)の量を0.01部とした以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。得られた多孔膜組成物の固形分濃度は40%、粘度は160mPa・sであった。(Example 11)
[1.7. In the production of the porous film composition], the separator and the lithium ion secondary battery were produced in the same manner as in Example 1 except that the amount of the carbodiimide compound crosslinking agent (B) added was 0.01 parts. The obtained porous film composition had a solid content concentration of 40% and a viscosity of 160 mPa · s.
(実施例12)
前記[1.7.多孔膜組成物の製造]において、加えるカルボジイミド化合物架橋剤(B)の量を1部とした以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。得られた多孔膜組成物の固形分濃度は38%、粘度は160mPa・sであった。(Example 12)
[1.7. In production of porous film composition], a separator and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the amount of the carbodiimide compound crosslinking agent (B) added was 1 part. The resulting porous film composition had a solid content concentration of 38% and a viscosity of 160 mPa · s.
(実施例13)
攪拌機付き5MPa耐圧容器に、アクリル酸エチル67.5部、メタクリル酸30部、トリフルオロメチルメタクリレート2.5部、ドデシルベンゼンスルホン酸ナトリウム1・0部、イオン交換水150部及び過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して水溶性重合体を含む水溶液を得た。こうして得られた水溶性重合体を含む水溶液に、10%アンモニア水を添加してpH8に調整し、所望の水溶性重合体を含む水溶液を得た。この水溶性重合体の重量平均分子量は128000、1%水溶液の粘度は1500mPa・sであった。(Example 13)
In a 5 MPa pressure vessel equipped with a stirrer, 67.5 parts of ethyl acrylate, 30 parts of methacrylic acid, 2.5 parts of trifluoromethyl methacrylate, 1.0 part of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water and 0. After 5 parts were added and sufficiently stirred, the polymerization was started by heating to 60 ° C. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain an aqueous solution containing a water-soluble polymer. The aqueous solution containing the water-soluble polymer thus obtained was adjusted to pH 8 by adding 10% ammonia water to obtain an aqueous solution containing the desired water-soluble polymer. The water-soluble polymer had a weight average molecular weight of 128,000 and a 1% aqueous solution having a viscosity of 1500 mPa · s.
上記[1.2.水溶性増粘剤(A)の製造]において、カルボキシメチルセルロース及びポリアクリル酸ナトリウムに代えて、上記水溶性重合体を水50部に対して、固形分が1.6部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は39%、粘度は160mPa・sであった。Above [1.2. Production of water-soluble thickener (A)] In place of carboxymethylcellulose and sodium polyacrylate, the water-soluble polymer was added to 50 parts of water so that the solid content was 1.6 parts. Except for the above, separators and lithium ion secondary batteries were manufactured in the same manner as in Example 1.
The above [1.7. The production of the porous film composition] had a solid content concentration of 39% and a viscosity of 160 mPa · s.
(実施例14)
上記[1.2.水溶性増粘剤(A)の製造]において、水50部に対して、カルボキシメチルセルロース及び実施例13で製造した水溶性重合体の固形分がそれぞれ0.8部、0.8部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は40%、粘度は200mPa・sであった。(Example 14)
Above [1.2. Production of water-soluble thickener (A)] In 50 parts of water, the solid content of carboxymethyl cellulose and the water-soluble polymer produced in Example 13 was 0.8 parts and 0.8 parts, respectively. A separator and a lithium ion secondary battery were produced in the same manner as in Example 1 except for adding to the above.
The above [1.7. The production of the porous film composition] had a solid content concentration of 40% and a viscosity of 200 mPa · s.
(実施例15)
上記[1.2.水溶性増粘剤(A)の製造]において、水50部に対して、ポリアクリル酸ナトリウムD1及び実施例13で製造した水溶性重合体の固形分がそれぞれ0.1部、1.6部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は38%、粘度は160mPa・sであった。(Example 15)
Above [1.2. Production of water-soluble thickener (A)] In 50 parts of water, the solid content of sodium polyacrylate D1 and the water-soluble polymer produced in Example 13 was 0.1 parts and 1.6 parts, respectively. A separator and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the addition was performed.
The above [1.7. The production of the porous film composition] had a solid content concentration of 38% and a viscosity of 160 mPa · s.
(実施例16)
上記[1.2.水溶性増粘剤(A)の製造]において、水50部に対して、カルボキシメチルセルロース、ポリアクリル酸ナトリウムD1及び実施例13で製造した水溶性重合体の固形分がそれぞれ0.8部、0.1部、0.8部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は39%、粘度は195mPa・sであった。(Example 16)
Above [1.2. Production of water-soluble thickener (A)] In 50 parts of water, carboxymethylcellulose, sodium polyacrylate D1 and the solid content of the water-soluble polymer produced in Example 13 were 0.8 parts and 0 parts, respectively. A separator and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the amount was 0.1 parts and 0.8 parts.
The above [1.7. The production of the porous film composition] had a solid content concentration of 39% and a viscosity of 195 mPa · s.
(実施例17)
上記[1.4.粒子状重合体(C)の製造]において、重合性単量体として、ブチルアクリレート95部、アクリロニトリル2部、アクリルアミド1部、2−ヒドロキシエチルアクリレート(以下、「β−HEA」と記載することがある。)1部及びアリルグリシジルエーテル1部を用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は39%、粘度は160mPa・sであった。(Example 17)
[1.4. In the production of the particulate polymer (C)], 95 parts of butyl acrylate, 2 parts of acrylonitrile, 1 part of acrylamide, 2-hydroxyethyl acrylate (hereinafter referred to as “β-HEA”) may be described as polymerizable monomers. There was a separator manufactured and a lithium ion secondary battery manufactured in the same manner as in Example 1 except that 1 part and 1 part of allyl glycidyl ether were used.
The above [1.7. The production of the porous film composition] had a solid content concentration of 39% and a viscosity of 160 mPa · s.
(実施例18)
上記[1.4.粒子状重合体(C)の製造]において、重合性単量体として、ブチルアクリレート94部、アクリロニトリル2部、アクリルアミド1部、メタクリル酸1部及び2−エチルヘキシルアクリレート2部を用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は39%、粘度は160mPa・sであった。(Example 18)
[1.4. Production of particulate polymer (C)], except that 94 parts of butyl acrylate, 2 parts of acrylonitrile, 1 part of acrylamide, 1 part of methacrylic acid and 2 parts of 2-ethylhexyl acrylate were used as polymerizable monomers. In the same manner as in Example 1, a separator and a lithium ion secondary battery were manufactured.
The above [1.7. The production of the porous film composition] had a solid content concentration of 39% and a viscosity of 160 mPa · s.
(実施例19)
上記[1.8.二次電池用セパレータの製造]において、ポリエチレン製の多孔基材からなる有機セパレータに代えて、ポリプロピレン製の多孔基材(PP基材)からなる有機セパレータを用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。(Example 19)
[1.8. Production of secondary battery separator], except that an organic separator made of a polypropylene porous substrate (PP substrate) was used instead of an organic separator made of a polyethylene porous substrate. In addition, a separator and a lithium ion secondary battery were manufactured.
(実施例20)
上記[1.8.二次電池用セパレータの製造]において、ポリエチレン製の多孔基材からなる有機セパレータに代えて、不織布基材の有機セパレータを用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。(Example 20)
[1.8. In the production of a separator for a secondary battery], a separator and a lithium ion secondary were produced in the same manner as in Example 1 except that a non-woven fabric organic separator was used instead of an organic separator made of a polyethylene porous substrate. The battery was manufactured.
(実施例21)
上記[1.8.二次電池用セパレータの製造]を省略し、上記(2.負極)で得られた負極の負極活物質層側の面に上記多孔膜組成物を塗布し、50℃で3分間乾燥させた。これにより、厚み3μmの多孔膜を備える負極を得た。(Example 21)
[1.8. [Manufacture of Separator for Secondary Battery] was omitted, and the porous film composition was applied to the negative electrode active material layer side surface of the negative electrode obtained in (2. Negative Electrode) and dried at 50 ° C. for 3 minutes. Thereby, a negative electrode provided with a porous film having a thickness of 3 μm was obtained.
また、上記[4.リチウムイオン二次電池の製造]において、負極の多孔膜が形成された表面と正極の表面とが向かい合うように配置して、捲回機によって捲回した以外は、実施例1と同様にリチウムイオン二次電池の製造を行った。 The above [4. Lithium ion secondary battery] in the same manner as in Example 1 except that the surface on which the negative electrode porous film was formed and the surface of the positive electrode were placed so as to face each other and wound using a winding machine. A secondary battery was manufactured.
(比較例1)
上記[1.7.多孔膜組成物の製造]において、カルボジイミド化合物架橋剤(B)を加えずに多孔膜組成物を製造し、さらに粒子状重合体(C)の添加量を5部とした以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は40%、粘度は160mPa・sであった。(Comparative Example 1)
Above [1.7. Production of porous film composition] in Example 1 except that the porous film composition was produced without adding the carbodiimide compound crosslinking agent (B), and the addition amount of the particulate polymer (C) was 5 parts. The separator and the lithium ion secondary battery were manufactured in the same manner as described above.
The above [1.7. The production of the porous film composition] had a solid content concentration of 40% and a viscosity of 160 mPa · s.
(比較例2)
上記[1.2.水溶性増粘剤(A)の製造]において、カルボキシメチルセルロース及びポリアクリル酸ナトリウムに代えて、上記ポリエチレンオキサイド(分子量1000)を水50部に対して、固形分が1.5部となるように添加した以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は40%、粘度は120mPa・sであった。(Comparative Example 2)
Above [1.2. Production of water-soluble thickener (A)] In place of carboxymethylcellulose and sodium polyacrylate, the polyethylene oxide (molecular weight 1000) is 50 parts of water so that the solid content is 1.5 parts. A separator and a lithium ion secondary battery were produced in the same manner as in Example 1 except for the addition.
The above [1.7. The production of the porous film composition] had a solid content concentration of 40% and a viscosity of 120 mPa · s.
(比較例3)
上記[1.4.粒子状重合体(C)の製造]において、重合性単量体として、ブチルアクリレート97部及びアクリロニトリル3部を用いた以外は、実施例1と同様にセパレータの製造及びリチウムイオン二次電池の製造を行った。
なお、上記[1.7.多孔膜組成物の製造]において得られる多孔膜組成物の固形分濃度は40%、粘度は170mPa・sであった。(Comparative Example 3)
[1.4. In the production of the particulate polymer (C)], a separator and a lithium ion secondary battery were produced in the same manner as in Example 1 except that 97 parts of butyl acrylate and 3 parts of acrylonitrile were used as the polymerizable monomers. Went.
The above [1.7. The production of the porous film composition] had a solid content concentration of 40% and a viscosity of 170 mPa · s.
表1及び表2に示すように、非導電性粒子と、水酸基または/およびカルボキシル基を含有する水溶性増粘剤(A)と、カルボジイミド化合物架橋剤(B)と、粒子状重合体(C)とを含む多孔膜組成物であって、粒子状重合体(C)は、カルボジイミド化合物架橋剤(B)と反応する官能基を有する多孔膜組成物を用いて得られる多孔膜のピール強度は良好であり、水分量は低減された。また、この多孔膜組成物を用いて得られるリチウムイオンン時電池の低温出力特性、セルの膨らみ、サイクル特性は良好であった。 As shown in Table 1 and Table 2, non-conductive particles, a water-soluble thickener (A) containing a hydroxyl group or / and a carboxyl group, a carbodiimide compound crosslinking agent (B), and a particulate polymer (C The peel strength of the porous film obtained by using the porous film composition having a functional group that reacts with the carbodiimide compound crosslinking agent (B) is It was good and the water content was reduced. Moreover, the low-temperature output characteristics, cell swelling and cycle characteristics of the lithium ion battery obtained using this porous film composition were good.
Claims (10)
カルボキシル基を含有する水溶性増粘剤(A)と、
カルボジイミド化合物架橋剤(B)と、
バインダーとしての粒子状重合体(C)と
を含むリチウムイオン二次電池用多孔膜組成物であって、
前記粒子状重合体(C)は、前記カルボジイミド化合物架橋剤(B)と反応する官能基を有し、
前記カルボジイミド化合物架橋剤(B)と反応する官能基が、カルボキシル基、水酸基、グリシジルエーテル基およびチオール基のうちの少なくとも1つであるリチウムイオン二次電池用多孔膜組成物。 Non-conductive particles;
A water-soluble thickener (A) containing a carboxyl group;
A carbodiimide compound crosslinking agent (B);
A porous membrane composition for a lithium ion secondary battery comprising a particulate polymer (C) as a binder ,
The particulate polymer (C) has a functional group that reacts with the carbodiimide compound crosslinking agent (B),
The porous membrane composition for a lithium ion secondary battery, wherein the functional group that reacts with the carbodiimide compound crosslinking agent (B) is at least one of a carboxyl group, a hydroxyl group, a glycidyl ether group, and a thiol group.
前記リチウムイオン二次電池用多孔膜組成物を基板上に塗布する工程と、
50〜200℃で乾燥する工程と
を有するリチウムイオン二次電池用セパレータの製造方法。 It is a manufacturing method of the separator for lithium ion secondary batteries obtained by apply | coating the porous film composition for lithium ion secondary batteries as described in any one of Claims 1-4 on a board | substrate, and drying,
Applying the porous membrane composition for a lithium ion secondary battery on a substrate;
The manufacturing method of the separator for lithium ion secondary batteries which has a process dried at 50-200 degreeC.
前記リチウムイオン二次電池用多孔膜組成物を極板上に塗布する工程と、
50〜200℃で乾燥する工程と
を有するリチウムイオン二次電池用電極の製造方法。 It is a manufacturing method of the electrode for lithium ion secondary batteries obtained by apply | coating the porous film composition for lithium ion secondary batteries as described in any one of Claims 1-4 on an electrode plate, and drying. ,
Applying the porous membrane composition for a lithium ion secondary battery on an electrode plate;
The manufacturing method of the electrode for lithium ion secondary batteries which has a process dried at 50-200 degreeC.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012178714 | 2012-08-10 | ||
JP2012178714 | 2012-08-10 | ||
JP2012184071 | 2012-08-23 | ||
JP2012184071 | 2012-08-23 | ||
PCT/JP2013/071552 WO2014024991A1 (en) | 2012-08-10 | 2013-08-08 | Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing separator for lithium ion secondary battery, and method for producing electrode for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014024991A1 JPWO2014024991A1 (en) | 2016-07-25 |
JP6187464B2 true JP6187464B2 (en) | 2017-08-30 |
Family
ID=50068211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014529562A Active JP6187464B2 (en) | 2012-08-10 | 2013-08-08 | Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing separator for lithium ion secondary battery, and for lithium ion secondary battery Electrode manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6187464B2 (en) |
KR (1) | KR102047339B1 (en) |
WO (1) | WO2014024991A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180109740A (en) | 2017-03-28 | 2018-10-08 | 아라까와 가가꾸 고교 가부시끼가이샤 | Thermal crosslinking type slurry for lithium ion battery and method for producing same, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode layered product for lithium ion battery and lithium ion battery |
WO2021141132A1 (en) | 2020-01-08 | 2021-07-15 | 旭化成株式会社 | Inorganic coating layer crosslinked separator |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6340826B2 (en) * | 2014-02-26 | 2018-06-13 | 日本ゼオン株式会社 | Secondary battery porous membrane slurry, manufacturing method, secondary battery porous membrane, and secondary battery |
JP6233131B2 (en) * | 2014-03-26 | 2017-11-22 | 日本ゼオン株式会社 | Secondary battery porous membrane composition, secondary battery porous membrane and secondary battery |
JP6221885B2 (en) * | 2014-03-26 | 2017-11-01 | 日本ゼオン株式会社 | Method for producing porous membrane for lithium secondary battery |
JP6536900B2 (en) * | 2016-01-13 | 2019-07-03 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
KR101827135B1 (en) | 2016-07-27 | 2018-02-07 | 현대자동차주식회사 | Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same |
JP2018060606A (en) * | 2016-09-30 | 2018-04-12 | 日立オートモティブシステムズ株式会社 | Lithium ion secondary battery and power storage device |
JP7010627B2 (en) * | 2017-08-21 | 2022-01-26 | 積水化学工業株式会社 | Electrode, lithium ion secondary battery |
WO2021153670A1 (en) * | 2020-01-31 | 2021-08-05 | 日本ゼオン株式会社 | Binder composition for non-aqueous secondary battery and production method therefor, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US12107297B2 (en) * | 2020-03-20 | 2024-10-01 | Samsung Sdi Co., Ltd. | Composition for coating layer including heat-resistant binder, hydroxy-containing polyimide particle, and silane crosslinker, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same |
JPWO2022004148A1 (en) | 2020-07-01 | 2022-01-06 | ||
WO2022138323A1 (en) * | 2020-12-24 | 2022-06-30 | 昭和電工株式会社 | Separator binder for nonaqueous secondary batteries, separator for nonaqueous secondary batteries, method for producing separator slurry for nonaqueous secondary batteries, and nonaqueous secondary battery |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101536223B (en) * | 2006-11-15 | 2012-02-22 | 松下电器产业株式会社 | Current collector for nonaqueous electrolyte secondary battery, method for producing same, method for producing electrode, and nonaqueous electrolyte secondary battery |
JP2010146870A (en) | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | Binder for secondary-battery electrode |
KR101499284B1 (en) * | 2008-12-26 | 2015-03-05 | 제온 코포레이션 | Separator for lithium ion secondary battery, and lithium ion secondary battery |
JP5259721B2 (en) * | 2009-03-13 | 2013-08-07 | 日立マクセル株式会社 | Battery separator and non-aqueous electrolyte battery using the same |
WO2010114119A1 (en) * | 2009-04-03 | 2010-10-07 | 東洋インキ製造株式会社 | Binder composition for non-aqueous secondary battery electrode |
JP5673545B2 (en) | 2009-09-25 | 2015-02-18 | 日本ゼオン株式会社 | Lithium ion secondary battery negative electrode and lithium ion secondary battery |
JP5350168B2 (en) * | 2009-10-09 | 2013-11-27 | 古河電池株式会社 | Method for producing lithium ion secondary battery |
JP5552310B2 (en) * | 2009-12-24 | 2014-07-16 | 日清紡ホールディングス株式会社 | Resin crosslinking agent |
KR101980368B1 (en) | 2010-10-07 | 2019-05-20 | 제온 코포레이션 | Slurry for secondary battery porous membrane, secondary battery porous membrane, secondary battery electrode, secondary battery separator, and secondary battery |
-
2013
- 2013-08-08 JP JP2014529562A patent/JP6187464B2/en active Active
- 2013-08-08 KR KR1020147035702A patent/KR102047339B1/en active IP Right Grant
- 2013-08-08 WO PCT/JP2013/071552 patent/WO2014024991A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180109740A (en) | 2017-03-28 | 2018-10-08 | 아라까와 가가꾸 고교 가부시끼가이샤 | Thermal crosslinking type slurry for lithium ion battery and method for producing same, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode layered product for lithium ion battery and lithium ion battery |
WO2021141132A1 (en) | 2020-01-08 | 2021-07-15 | 旭化成株式会社 | Inorganic coating layer crosslinked separator |
KR20220108791A (en) | 2020-01-08 | 2022-08-03 | 아사히 가세이 가부시키가이샤 | Inorganic Coated Layer Crosslinked Separator |
Also Published As
Publication number | Publication date |
---|---|
KR102047339B1 (en) | 2019-11-21 |
JPWO2014024991A1 (en) | 2016-07-25 |
WO2014024991A1 (en) | 2014-02-13 |
KR20150043247A (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6187464B2 (en) | Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing separator for lithium ion secondary battery, and for lithium ion secondary battery Electrode manufacturing method | |
CN108666499B (en) | Thermally crosslinked slurry for lithium ion battery, electrode, separator/electrode laminate, and lithium ion battery | |
JP6481609B2 (en) | Secondary battery binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, and secondary battery | |
JP6451732B2 (en) | Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery | |
JP6070570B2 (en) | Lithium ion secondary battery electrode, lithium ion secondary battery and slurry composition, and method for producing lithium ion secondary battery electrode | |
KR102253883B1 (en) | Slurry composition for secondary-battery negative electrode, secondary-battery negative electrode, and secondary battery | |
JP6311331B2 (en) | Lithium ion secondary battery porous membrane composition, lithium ion secondary battery porous membrane, and lithium ion secondary battery | |
JP6052290B2 (en) | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6191471B2 (en) | Binder composition for lithium ion secondary battery, production method thereof, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
CN105027325A (en) | Slurry for lithium-ion secondary battery porous membrane, method for producing same, separator for lithium-ion secondary battery, and lithium-ion secondary battery | |
WO2012026462A1 (en) | Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negative electrode | |
CN107925037B (en) | Nonaqueous secondary battery, functional layer, composition for functional layer, and binder composition | |
WO2013031690A1 (en) | Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery | |
WO2017038067A1 (en) | Composition for non-aqueous secondary cell functional layer, functional layer for non-aqueous secondary cell, and non-aqueous secondary cell | |
JP5978837B2 (en) | Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6547630B2 (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6236964B2 (en) | Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6233131B2 (en) | Secondary battery porous membrane composition, secondary battery porous membrane and secondary battery | |
JP7031657B2 (en) | Slurry composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery | |
JP6295687B2 (en) | Lithium ion secondary battery porous membrane composition, lithium ion secondary battery porous membrane, and lithium ion secondary battery | |
WO2018155712A1 (en) | Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device | |
JP2015041570A (en) | Porous membrane composition for lithium ion secondary battery, porous membrane for lithium ion secondary battery, lithium ion secondary battery, and method for producing porous membrane for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170717 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6187464 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |