JP6160581B2 - Resistance spot welding method - Google Patents
Resistance spot welding method Download PDFInfo
- Publication number
- JP6160581B2 JP6160581B2 JP2014166496A JP2014166496A JP6160581B2 JP 6160581 B2 JP6160581 B2 JP 6160581B2 JP 2014166496 A JP2014166496 A JP 2014166496A JP 2014166496 A JP2014166496 A JP 2014166496A JP 6160581 B2 JP6160581 B2 JP 6160581B2
- Authority
- JP
- Japan
- Prior art keywords
- energization
- current value
- spot welding
- resistance spot
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 51
- 239000010959 steel Substances 0.000 claims description 51
- 238000007747 plating Methods 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 11
- 239000008397 galvanized steel Substances 0.000 description 11
- 239000012212 insulator Substances 0.000 description 9
- 230000020169 heat generation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Landscapes
- Resistance Welding (AREA)
Description
本発明は、重ね抵抗溶接法の一種である抵抗スポット溶接方法に関し、特に被処理材中に、引張強度が780MPa以上の高強度亜鉛めっき鋼板を含む場合、さらには鋼板間に意図しない隙間(板隙ともいう)が存在する場合であっても、散りなどの発生なしに適正な大きさの溶融部(ナゲット)の形成を図ろうとするものである。 The present invention relates to a resistance spot welding method which is a kind of lap resistance welding method, and in particular, when a high-strength galvanized steel sheet having a tensile strength of 780 MPa or more is included in the material to be treated, and further, an unintended gap (plate) between the steel sheets Even when there is a gap), an attempt is made to form a melted portion (nugget) of an appropriate size without occurrence of scattering.
近年、車体の信頼性向上と、大気汚染物質削減のための車体重量の軽減とを併せて達成するために、鋼板の高強度化が進められている。かような高強度鋼板の採用により、車体が薄肉化、軽量化されても同程度の車体剛性が得られるようになった。しかし、いくつかの課題も指摘されている。その一つが、車体組立における溶接部の品質が、高強度化するにつれて低下するというものである。 In recent years, steel sheets have been increased in strength in order to achieve the improvement of the reliability of the vehicle body and the reduction of the vehicle body weight for reducing air pollutants. By adopting such a high-strength steel sheet, the same level of vehicle body rigidity can be obtained even if the vehicle body is made thinner and lighter. However, some issues have been pointed out. One of them is that the quality of the welded part in the vehicle body assembly decreases as the strength increases.
抵抗スポット溶接は、図1に示すように、重ね合わせた2枚以上の鋼板(ここでは、下の鋼板1と上の鋼板2の2枚組)の板組3を、上下一対の電極(下の電極4と上の電極5、以下電極対という)で挟み、加圧、通電することによって接触部を溶融させ、必要サイズのナゲット6を形成して、溶接継手を得るものである。
As shown in FIG. 1, resistance spot welding is performed by attaching a
このようにして得られた継手の品質は、ナゲット径の大きさ、あるいはせん断引張強度(継手のせん断方向に引張試験をしたときの強さ)や十字引張強度(継手の剥離方向に引張試験をしたときの強さ)、疲労強度の大きさなどで評価されている。 The quality of the joint obtained in this way is the size of the nugget diameter, or the shear tensile strength (strength when the tensile test is performed in the shear direction of the joint) and the cross tensile strength (tensile test in the peeling direction of the joint). Strength) and fatigue strength.
高強度鋼板を使用した場合に継手強度を確保するための手段としては、溶接法の観点からは、打点数を増やしたり、ナゲット径を拡大することが考えられる。しかし、打点数を増加させると分流の影響が大きくなる。さらには作業時間の増加につながり生産性を悪化させる。また、ナゲット径を拡大するには、電極を大きくしたり、溶接金属の飛散(散り)を防ぐために加圧力を増加しなければならない。これは、装置的な制約が大きいだけでなく、さらには熱影響部が拡大するため母材性状が損なわれる。
特に自動車に適用する場合には、鋼板の表面に、防錆を目的として、亜鉛を主成分とする亜鉛めっき処理が行われる。そして、かような亜鉛めっき層を有する場合には、一層散りが発生し易くなることから、ナゲットの形成に悪影響を及ぼすことが知られている。
As means for securing the joint strength when using a high-strength steel sheet, it is conceivable to increase the number of hit points or increase the nugget diameter from the viewpoint of the welding method. However, if the number of hit points is increased, the influence of the diversion increases. Furthermore, it leads to an increase in work time and deteriorates productivity. Further, in order to enlarge the nugget diameter, it is necessary to increase the applied pressure in order to enlarge the electrode or prevent the weld metal from scattering (scattering). This is not only a large restriction on the apparatus, but also the heat affected zone is enlarged, so that the properties of the base material are impaired.
In particular, when applied to automobiles, the surface of the steel sheet is subjected to galvanization treatment mainly containing zinc for the purpose of rust prevention. And when it has such a galvanization layer, since it becomes easy to generate | occur | produce further, it is known that it has a bad influence on formation of a nugget.
従来技術として、特許文献1には、3枚重ねの鋼板においてナゲットを形成する方法が開示されている。この方法によれば、一段の溶接を行ったのち、二段目以降を冷却・通電のパルセーション状とすることによって、薄板・厚板・厚板といった三枚重ねの板組においても十分なナゲット径を形成できるとしている。
As a conventional technique,
また、特許文献2では、Feを原子数比で50%以上80%以下含有する合金化アルミめっき層を有する鋼板を溶接するにあたり、アップスロープおよび一定の電流で維持する時間を板厚によって規定することで、安定的なナゲットが形成できるとしている。
Moreover, in
さらに、特許文献3では、亜鉛系めっき鋼板において予備的な通電とナゲット形成の時間比を限定することによって、一定の大きさのナゲットを確保することができるとしている。
Furthermore,
特許文献4では、亜鉛系めっき鋼板において、予備的な通電を行ったのち、その電流値よりも高い電流値で冷却・通電を繰り返すことによって、一定の大きさのナゲットを確保することができるとしている。
In
しかしながら、実際の自動車組立における溶接現場では、部材位置は必ずしも安定しておらず、鋼板の加圧状態が一定となっているとは限らない。この点、特許文献1〜4に記載の方法は、板組が電極によって十分に加圧・接触している状態を前提としているため、鋼板間に意図しない隙間(板隙)が存在していた場合には、散りが発生し、満足いくナゲット径の確保が難しいという問題があった。
However, at actual welding sites in automobile assembly, the member positions are not always stable, and the pressed state of the steel sheet is not always constant. In this respect, the methods described in
本発明は、上記の問題を有利に解決するもので、板組の一部に、散りが発生し易い高張力亜鉛めっき鋼板を含み、さらに鋼板間に板隙が存在して一層散りが発生し易い状態であっても、散りの発生なしに、安定して十分な径のナゲットを形成することのできる抵抗スポット溶接方法を提供することを目的とする。 The present invention advantageously solves the above problems, and includes a high-strength galvanized steel sheet that is prone to scatter in part of the plate assembly, and further scatter occurs due to the presence of sheet gaps between the steel sheets. An object of the present invention is to provide a resistance spot welding method capable of stably forming a nugget having a sufficient diameter without occurrence of scattering even in an easy state.
さて、発明者らは、上記の課題を解決するために、高張力亜鉛めっき鋼板を含む板組の抵抗スポット溶接における板隙の影響について検討を重ねた。
すなわち、板隙を模擬し、図2に示すように、鋼板1,2間の片側に絶縁体7を挟み込んで、各電流値での溶接試験およびそのときの数値解析を行った。
Now, in order to solve the above-mentioned problems, the inventors have repeatedly studied the influence of the plate gap in resistance spot welding of a plate set including a high-tensile galvanized steel plate.
That is, the gap was simulated, and as shown in FIG. 2, the insulator 7 was sandwiched between one side of the
その結果、板隙が大きく、十分に加圧・接触していない状態では、通電初期に高い電流値を印加したとしても、その通電時間が短ければ、散りは発生せず、電極直下で急激に発熱して鋼板が軟化するという現象が見られた。これは、特に通電初期では、鋼板温度は室温か、他の溶接点からの影響を受けたとしても十分に低いため、固有抵抗が低く、電流密度による発熱が主となるためであると考えられる。
一方、板隙がなく、十分に加圧されている状態で、通電初期に高い電流値を印加した場合には、逆に散りが発生することもあった。これは、電極による接触部に電流が集中することによって、急激に溶融し、散りとなって飛散したことが原因と考えられる。
As a result, in a state where the plate gap is large and not sufficiently pressed and contacted, even if a high current value is applied at the initial stage of energization, if the energization time is short, no scattering occurs, and abruptly occurs immediately below the electrode. A phenomenon was observed in which the steel sheet softened due to heat generation. This is considered to be because, in the initial stage of energization, the steel sheet temperature is room temperature or sufficiently low even if it is affected by other welding points, so that the specific resistance is low and the heat generation due to the current density is the main factor. .
On the other hand, when a high current value is applied at the initial stage of energization in a state where there is no gap and the pressure is sufficiently applied, scattering may occur on the contrary. This is considered to be caused by the fact that the current is concentrated on the contact portion by the electrode, so that it melts rapidly and is scattered as a scatter.
そこで、次に発明者らは、上記の現象を活用し、ナゲットを形成するための本通電に先立ち、特定の電流を印加することで(初期通電)、散りの発生なしに鋼板間の接触を確保できないかについて検討を行った。その際、現場施工を考慮して、板隙の影響は電極間距離として置き換えて、鋼板の板厚に対する比で検討した。
供試鋼板としては、引張強さが780〜1180MPa、板厚が1.0〜1.6mmの高張力溶融亜鉛めっき鋼板を用いた。また、鋼板間距離もしくは電極間距離を調整するために、図2に示すように所定の厚みを有する直方体状の絶縁物7を鋼板1,2間に挟み込んで、実験を行った。
Therefore, the inventors next utilized the above phenomenon and applied a specific current (initial energization) prior to the main energization to form the nugget, thereby making contact between the steel plates without occurrence of scattering. We examined whether it could be secured. At that time, considering the on-site construction, the effect of the sheet gap was replaced with the distance between the electrodes, and the ratio to the sheet thickness of the steel sheet was examined.
As the test steel plate, a high-tensile galvanized steel plate having a tensile strength of 780 to 1180 MPa and a plate thickness of 1.0 to 1.6 mm was used. Further, in order to adjust the distance between the steel plates or the distance between the electrodes, a rectangular parallelepiped insulator 7 having a predetermined thickness was sandwiched between the
図3に、ナゲットを形成するための本通電における電流値Imに対する初期通電の電流値Isの比について検討した結果を示す。ここに、Isは、本通電の電流値Imよりも電流値が上回っている時間帯における初期通電の電流値の平均値を意味する。また、図中、Lは初期通電開始時の電極対の中心間の距離、tは鋼板の合計厚みであり、散りの発生がなかった場合を○、散りが発生した場合を×,また散りが発生したとしてもその程度の小さいものを△として整理した。なお、初期通電における電流時間は60ms、本通電における電流時間は280msの一定とした。 Figure 3 shows the result of investigation for the ratio of the current value I s of the initial energization of the current value I m in this energized to form a nugget. Here, I s denotes an average value of the current value of the initial energization in the time zone in which the current value is above than the current value I m of the current. In the figure, L is the distance between the centers of the electrode pair at the start of initial energization, t is the total thickness of the steel sheet, ○ when no scattering occurs, × when scattering occurs, and scattering Even if it occurred, the small ones were arranged as △. The current time in initial energization was fixed at 60 ms, and the current time in main energization was constant at 280 ms.
図3に示したとおり、L/t比を調整した上で、Is/Im比を適正に調整することにより、散り発生の防止に関し顕著な効果が得られることが判明した。
本発明は、上記の知見に立脚するものである。
As shown in FIG. 3, it has been found that by adjusting the I s / I m ratio appropriately after adjusting the L / t ratio, a remarkable effect can be obtained in terms of preventing the occurrence of scattering.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.表面に亜鉛を主成分とするめっき層を有する母材引張強さが780MPa以上の亜鉛めっき高張力鋼板を少なくとも1枚含む、複数枚の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接において、本通電とそれに先立つ初期通電にて構成され、
(1) 重ね合わせた各鋼板の合計厚みをt、電極対の中心間の距離をLとしたとき、当該tとLが、次の関係式
0.9×t ≦ L ≦ 1.1×t
を満足する状態で初期通電を開始すること、および
(2) 上記初期通電において本通電よりも高い電流値を印加する
ことを特徴とする抵抗スポット溶接方法。
That is, the gist configuration of the present invention is as follows.
1. Including at least one galvanized high-tensile steel sheet having a base metal tensile strength of 780 MPa or more having a plating layer mainly composed of zinc on the surface, sandwiched by a pair of electrodes, a pair of electrodes, In resistance spot welding that is energized and joined while applying pressure, it consists of main energization and initial energization preceding it,
(1) When the total thickness of the stacked steel plates is t and the distance between the centers of the electrode pairs is L, the t and L are expressed by the following relational expression: 0.9 × t ≦ L ≦ 1.1 × t
Starting initial energization in a condition that satisfies
(2) A resistance spot welding method, wherein a higher current value is applied in the initial energization than in the main energization.
2.前記初期通電の電流値が前記本通電の電流値よりも上回っている時間をTsとしたとき、このTsが次式
10ms ≦ Ts ≦ 100ms
の範囲を満足することを特徴とする前記1に記載の抵抗スポット溶接方法。
2. When T s is the time during which the initial energization current value exceeds the main energization current value, this T s is expressed by the following equation: 10 ms ≦ T s ≦ 100 ms
2. The resistance spot welding method according to 1 above, wherein the following range is satisfied.
3.前記本通電の電流値よりも上回っている時間帯における初期通電の電流値の平均をIsとしたとき、このIsが本通電における電流値Imとの関係で、次式
Im ×1.1 ≦ Is ≦ 15.0kA
の範囲を満足することを特徴とする前記1または2に記載の抵抗スポット溶接方法。
3. When the average of the current value of the initial conduction in a time zone wherein exceeds than the current value of the current was set to I s, the relationship between the current value I m this I s is in the energized following formula I m × 1 .1 ≦ I s ≦ 15.0kA
3. The resistance spot welding method according to 1 or 2 above, wherein the range is satisfied.
4.前記初期通電の前に、さらに予備通電を施すものとし、該予備通電における電流値Ip,通電時間Tpがそれぞれ、次式
10ms ≦ Tp ≦ 100ms
Im ×0.6 ≦ Ip ≦ Im×0.95
の範囲を満足することを特徴とする前記1〜3のいずれかに記載の抵抗スポット溶接方法。
4). It is assumed that preliminary energization is further performed before the initial energization, and the current value I p and energization time T p in the preliminary energization are respectively expressed by the following expressions: 10 ms ≦ T p ≦ 100 ms
I m × 0.6 ≦ I p ≦ I m × 0.95
The resistance spot welding method according to any one of the
本発明によれば、高張力亜鉛めっき鋼板を少なくとも1枚含む、複数枚の鋼板を重ね合わせた板組に対して抵抗スポット溶接方法を施すに際し、たとえ板組間に板隙が生じていた場合であっても、散りの発生なしに十分な径のナゲットを形成することができ、産業上極めて有用である。 According to the present invention, when a resistance spot welding method is applied to a plate assembly including a plurality of steel plates, including at least one high-tensile galvanized steel plate, even if a plate gap is generated between the plate assemblies. Even so, it is possible to form a nugget with a sufficient diameter without occurrence of scattering, which is extremely useful in the industry.
以下、本発明の一実施形態を図面に基づいて説明する。
本発明の抵抗スポット溶接方法は、図1に示したように、亜鉛めっき鋼板や高張力鋼板を含む複数枚の鋼板を重ね合わせた(ここでは、下の鋼板1と上の鋼板2の2枚のうち、鋼板1が高張力亜鉛めっき鋼板である)板組3を、上下一対の電極4,5(電極対)で挟み、加圧しながら通電して、必要サイズのナゲット6を形成して溶接継手を得るものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the resistance spot welding method of the present invention, as shown in FIG. 1, a plurality of steel plates including a galvanized steel plate and a high-tensile steel plate are overlapped (here, two steel plates, a
本発明において、板組のうち少なくとも1枚を高張力亜鉛めっき鋼板としたのは、高張力亜鉛めっき鋼板は、通常の鋼板に比べると、散りが発生しやすく、ましてや板隙があるとさらに散りが発生しやすい鋼板だからである。 In the present invention, at least one of the plate sets is made of a high-strength galvanized steel sheet. The high-tensile galvanized steel sheet is more likely to scatter compared to a normal steel sheet, and even more if there is a gap between the sheets. This is because the steel plate is prone to occur.
かかるスポット溶接の実施に供して好適な溶接装置は、上下一対の電極を備え、一対の電極で溶接する部分を挟んで、加圧、通電でき、また溶接中に加圧力および溶接電流をそれぞれ任意に制御可能な加圧力制御装置および溶接電流制御装置を有していれば、加圧機構(エアシリンダやサーボモータ等や、電流制御機構(交流や直流等)、形式(定置式、ロボットガン等)等はとくに限定されない。 A welding apparatus suitable for carrying out such spot welding is provided with a pair of upper and lower electrodes, and can be pressurized and energized with a portion to be welded between the pair of electrodes, and any pressure and welding current can be arbitrarily set during welding. Pressurization mechanism (air cylinder, servo motor, etc.), current control mechanism (AC, DC, etc.), type (stationary, robot gun, etc.) ) Etc. are not particularly limited.
本発明では、通電開始時に、図4に示す重ね合わせた各鋼板の合計厚みtと上下電極の中心間距離Lとが、次式
0.9×t ≦ L ≦ 1.1×t
の関係を満足する状態にしておくことが重要である。
L/tが0.9を下回ると電極接触部が広い状態であり、通電による発熱効果が小さくなり、一方1.1を上回ると発熱による軟化を生じさせたとしても板組間の接触部を確保出来ないという不都合が生じる。好ましくは0.9×t≦L≦1.0×tの範囲である。
上記の設定は、鋼板間に板隙が存在している場合を想定しているが、かかる板隙の原因としては、例えば車体においては形状不整合によるフランジの板隙などが考えられる。
ただし、1.1≧L/t>1.0の範囲は,溶接点近傍に鋼板の接触部あるいは既溶接点、または部材全体が導体であるなどの何がしかの電流経路があることを前提としている。電流経路が存在しない場合は通電出来ないため、本発明によっても溶接することは困難である。
In the present invention, at the start of energization, the total thickness t of the superposed steel plates shown in FIG. 4 and the center-to-center distance L between the upper and lower electrodes are as follows: 0.9 × t ≦ L ≦ 1.1 × t
It is important to keep the relationship satisfied.
When L / t is less than 0.9, the electrode contact portion is in a wide state, and the heat generation effect due to energization is reduced. On the other hand, when L / t is greater than 1.1, the contact portion between the plate assemblies is reduced even if softening due to heat generation occurs. The inconvenience that it cannot be secured occurs. Preferably, the range is 0.9 × t ≦ L ≦ 1.0 × t.
The above setting assumes a case in which a gap exists between the steel plates. As a cause of such a gap, for example, a gap in the flange due to shape mismatch in the vehicle body can be considered.
However, the range of 1.1 ≧ L / t> 1.0 is based on the premise that there is some current path in the vicinity of the welding point, such as the contact portion of the steel plate or the existing welding point, or the entire member being a conductor. It is said. In the absence of a current path, current cannot be applied, so that it is difficult to carry out welding according to the present invention.
一方、通電開始後のL/tについては、特に制限はないが、通常は、通電による鋼板の軟化に伴ってL/tは次第に低下して行き、通電後半では形成された溶融部(ナゲット)の拡大に起因してL/tは幾分大きくなる過程を経る。なお、かような通電期間中におけるL/tの好適範囲は0.9×t≦L≦1.0×tである。
また、通電開始時に付加される加圧力は、通常、2.0〜7.0kN程度である。
On the other hand, there is no particular limitation on L / t after the start of energization, but normally L / t gradually decreases with the softening of the steel sheet by energization, and the melted portion (nugget) formed in the latter half of energization. Due to the expansion of L / t, L / t goes through a process of increasing somewhat. In addition, the suitable range of L / t during such an energization period is 0.9 * t <= L <= 1.0 * t.
Further, the pressure applied at the start of energization is usually about 2.0 to 7.0 kN.
そして、初期通電を開始する。初期通電では、本通電に先立ち接触面積を十分確保させる。その後の本通電にて、適正径のナゲットを形成させる。
ここに、初期通電においては、本通電におけるよりも高い電流値を印加することが重要である。
というのは、ナゲットを形成するのに必要な電流値より相対的に高い電流値を短時間通電することにより、電極直下に電流密度による発熱が起こるため、鋼板が軟化して、電極間の距離を大幅に縮めることができるからである。
Then, initial energization is started. In the initial energization, a sufficient contact area is ensured prior to the main energization. Subsequent energization forms a nugget with an appropriate diameter.
Here, in the initial energization, it is important to apply a higher current value than in the main energization.
This is because when a current value relatively higher than the current value necessary for forming the nugget is applied for a short time, heat generation due to the current density occurs immediately below the electrodes, so the steel sheet softens and the distance between the electrodes This is because it is possible to significantly reduce
かかる実施形態における電流波形を図5に示す。
同図に示したように、本発明では、通電時間Tm、通電電流Imからなる本通電に先立ち、本通電の電流値よりも上回っている通電時間Ts、その時間帯における平均電流値Isからなる初期通電を施す。ここで平均値とは、TsをN等分した際に,開始点(0番目)からN番目までのN+1個の各時点における電流値を2乗したのち合算し、N+1で割り、平方根をとった値を意味する。
本発明に従う電流制御は、例えば、設定電流に到達する前に、設定電流よりも高くなるような、言い換えればオーバーシュートを起こすように溶接機の設定を行うか、多段の電流制御が可能であればそれを用いることによって実現することができる。
The current waveform in this embodiment is shown in FIG.
As shown in the figure, in the present invention, the energization time T m, electric current prior to the energization consisting I m, the energizing time exceeds than the current value of the current T s, the average current value in the time period performing initial energization consisting of I s. Here, the average value is obtained by dividing the current value at each of N + 1 time points from the starting point (0th) to the Nth when the T s is equally divided into N, and then adding up and dividing by N + 1 to calculate the square root. Means the value taken.
The current control according to the present invention is, for example, configured so that the welding machine is set to be higher than the set current, in other words, overshoot before reaching the set current, or multistage current control is possible. It can be realized by using it.
ここに、初期通電における通電時間Tsは
10ms ≦ Ts ≦ 100ms
の範囲とすることが好ましい。
Tsが10msに満たないと電流密度による十分な発熱が得られず、一方100msを超えると、亜鉛めっき鋼板では散り発生のおそれが大きくなる。
Tsのより好適な範囲は、10ms≦Ts≦60msである。
Here, the energization time T s in the initial energization is 10 ms ≦ T s ≦ 100 ms.
It is preferable to set it as the range.
If T s is less than 10 ms, sufficient heat generation due to current density cannot be obtained. On the other hand, if T s exceeds 100 ms, the risk of occurrence of scattering increases in the galvanized steel sheet.
More preferred range of T s is 10 ms ≦ T s ≦ 60 ms.
また、初期通電の通電時間Tsにおける平均電流値Isは、本通電における電流値Imとの関係で、次式
Im ×1.1 ≦ Is ≦ 15.0kA
の範囲を満足させることが好ましい。
初期通電の通電時間Tsにおける平均電流値Isが、Im ×1.1に満たないと電流密度による十分な発熱が得られず、一方15.0kAを超えると、高張力亜鉛めっき鋼板では散りの発生が避けられない。入熱過剰を抑制するという観点からは、好適にはIm≦I1≦12.0kAの範囲である。なお、本通電が2段以上の電流値制御を行う場合には、本通電における電流値Imはそれらの平均値とする。
Further, the average current value I s at energization time T s of the initial energization, in relation to the current value I m in this current, the following formula I m × 1.1 ≦ I s ≦ 15.0kA
It is preferable to satisfy this range.
Average current value I s in the initial energization of the energization time T s is not sufficient exotherm obtained with respect to current density when less than I m × 1.1, whereas when it exceeds 15.0KA, with high-tensile galvanized steel sheet Scattering is inevitable. From the viewpoint of suppressing excessive heat input, the range is preferably I m ≦ I 1 ≦ 12.0 kA. In the case where the energization performs current value control for two or more stages, the current value I m in this energization and their average value.
さらに、本発明では、上記した初期通電の前に、L/t比を調整する手段として予備通電を施すことができる。かかる予備通電における電流値Ipおよび通電時間Tpはそれぞれ、次式
10ms ≦ Tp ≦ 100ms
Im ×0.6 ≦ Ip ≦ Im×0.95
の範囲を満足させることが好適である。
Furthermore, in the present invention, preliminary energization can be performed as means for adjusting the L / t ratio before the above-described initial energization. The current value I p and energization time T p in the preliminary energization are respectively expressed by the following expressions: 10 ms ≦ T p ≦ 100 ms
I m × 0.6 ≦ I p ≦ I m × 0.95
It is preferable to satisfy this range.
なお、本発明において、亜鉛を主成分とするめっき層とは、従来から公知の亜鉛めっき層をすべて意味し、溶融亜鉛めっき層や電気亜鉛めっき層を初めとして、Zn−Alめっき層やZn−Niめっき層等を含むものである。その他、Alを主成分とするようなめっき層であればいずれもが適用可能である。 In addition, in this invention, the plating layer which has zinc as a main component means all the conventionally well-known zinc plating layers, including a hot dip galvanization layer and an electrogalvanization layer, Zn-Al plating layer, Zn- A Ni plating layer and the like are included. In addition, any plating layer having Al as a main component can be applied.
(実施例1)
本発明の実施例として、前述の図1に示したように、2枚の鋼板(下の鋼板1、上の鋼板2)を重ねた板組3について、Cガンに取付けられたサーボモータ加圧式で直流電源を有する抵抗溶接機を用いて抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。
この時の通電は、図5に示したような電流波形とし、表1に示す条件で行った。なお、加圧力は4.5kN、本通電時間Tmは14サイクル(280ms)の一定とした。また、実験に際しては、溶接点から見て25mm離れた位置に直方体状の絶縁体を挿入し、電極間距離が所定の距離となるように調整した。なお、絶縁体を挿入した箇所は一カ所のみである。
また、電極としては、先端の曲率半径R40、先端径6mmのアルミナ分散銅のDR型電極を用いた。さらに、試験片としては、793MPaから1530MPaまでの1mmから2mmの高張力亜鉛めっき鋼板を使用した。
表1に、溶接を行った際の散り発生の有無、およびナゲット形状について調べた結果を示す。なお、ナゲット径は、切断断面のエッチング組織で評価した。ナゲット径の評価は、絶縁体を挿入せず板隙の無い板組に対して、本通電のみを印可したときのナゲット径に比べて、同じかそれを超えていれば○、それ未満であれば×とした。
Example 1
As an embodiment of the present invention, as shown in FIG. 1 described above, a servo motor pressurization type attached to a C gun for a plate set 3 in which two steel plates (
The energization at this time was carried out under the conditions shown in Table 1 with a current waveform as shown in FIG. The applied pressure was 4.5 kN, and the main energization time Tm was constant at 14 cycles (280 ms). In the experiment, a rectangular parallelepiped insulator was inserted at a position 25 mm away from the welding point, and the distance between the electrodes was adjusted to a predetermined distance. There is only one place where the insulator is inserted.
As the electrode, a DR-type electrode of alumina-dispersed copper having a radius of curvature R40 at the tip and a tip diameter of 6 mm was used. Further, as the test piece, using high-tensile
Table 1 shows the results of examining the occurrence of scattering and the nugget shape when welding is performed. In addition, the nugget diameter was evaluated by the etching structure of the cut section. The evaluation of the nugget diameter should be ○ if it is the same or larger than the nugget diameter when only the main current is applied to a plate assembly without inserting an insulator and having no gap. X.
表1に示したとおり、本発明に従い抵抗スポット溶接を行った場合は、比較例に比べると、散りの発生がなく、また適正径のナゲットが形成されていることが分かる。 As shown in Table 1, when resistance spot welding is performed according to the present invention, it can be seen that there is no occurrence of scattering and a nugget with an appropriate diameter is formed as compared with the comparative example.
(実施例2)
実施例1と同様にして抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。
但し、この際の通電は、図6に示したように、初期通電の前に予備通電を付加した電流波形とし、表2に示す条件で行った。なお、加圧力は4.5kN、本通電時間Tmは14サイクル(280ms)の一定とした。そして、鋼板間に絶縁体を挿入し、電極間距離が所定の距離となるように調整した。
ここで、電極間距離Lはレーザ変位計を用いてその場で計測し、予備通電前および予備通電後(初期通電前)のLをそれぞれ計測できるようにした。そして、予備通電前のL/tをR1、予備通電後のL/tをR2とした。使用した電極および鋼板は実施例1の場合と同じである。
(Example 2)
Resistance spot welding was performed in the same manner as in Example 1 to produce a resistance spot welded joint.
However, the energization at this time was performed under the conditions shown in Table 2 with a current waveform with preliminary energization added before the initial energization, as shown in FIG. The applied pressure was 4.5 kN, and the main energization time Tm was constant at 14 cycles (280 ms). And the insulator was inserted between the steel plates, and it adjusted so that the distance between electrodes might become predetermined distance.
Here, the inter-electrode distance L was measured on the spot using a laser displacement meter so that L before the pre-energization and after the pre-energization (before the initial energization) could be measured. Then, L / t before the pre-energization was R1, and L / t after the pre-energization was R2. The electrodes and steel plates used were the same as in Example 1.
表2に、溶接を行った際の散り発生の有無、およびナゲット径について調べた結果を示す。なお、図7に示すように、ナゲット径は、絶縁体を垂直に横切るように鋼板を切断した際の断面(A断面)と、その面に対して鉛直な方向に切断した際の断面(B断面)のそれぞれについて、エッチング組織で評価した。ナゲット径の評価は、板隙の無い板組に対して本通電のみを印可したときのナゲット径と比べて、A断面の径が同じかそれを超えていれば○、それ未満であれば×とした。さらに、○のうち、B断面の径/A断面の径が0.9〜1.0の間に入っているものを◎とした。 Table 2 shows the results of examining the occurrence of scattering and the nugget diameter when welding was performed. In addition, as shown in FIG. 7, the nugget diameter has a cross section (A cross section) when the steel sheet is cut so as to cross the insulator vertically, and a cross section (B cross section) when cut in a direction perpendicular to the surface. Each (cross section) was evaluated with an etching structure. The evaluation of the nugget diameter is ○ if the diameter of the A cross section is the same or exceeds the nugget diameter when only main energization is applied to a plate assembly without a gap, and × It was. Further, among the circles, those having a diameter of the B cross section / diameter of the A cross section in the range of 0.9 to 1.0 are marked with.
表2に示したとおり、本発明に従い抵抗スポット溶接を行った場合は、比較例に比べると、散りの発生がなく、また適正径のナゲットが形成されていることが分かる。
また、予備通電を行わなかった実施例1に比べると、予備通電前に、より大きい板隙が存在していたとしても、散りの発生なく溶接が可能であるだけでなく、予備通電により本通電前の密着状態が改善され、より真円に近いナゲットを形成できる点で優れている。
As shown in Table 2, when resistance spot welding is performed according to the present invention, it can be seen that there is no occurrence of scattering and a nugget having an appropriate diameter is formed as compared with the comparative example.
Further, compared to Example 1 in which the preliminary energization was not performed, even if a larger gap exists before the preliminary energization, not only the welding is possible without occurrence of scattering, but the main energization is performed by the preliminary energization. The front contact state is improved, and it is excellent in that a nugget closer to a perfect circle can be formed.
1,2 鋼板
3 板組
4,5 電極
6 ナゲット
7 絶縁体
1, 2
Claims (4)
(1) 重ね合わせた各鋼板の合計厚みをt、電極対の中心間の距離をLとしたとき、当該tとLが、次の関係式
0.9×t ≦ L ≦ 1.1×t
を満足する状態で初期通電を開始すること、および
(2) 上記初期通電において本通電よりも高い電流値を印加する
ことを特徴とする抵抗スポット溶接方法。 Matrix tensile strength having a plating layer composed mainly of zinc on the front surface comprises at least one or more of the galvanized high tensile steel 780 MPa, the plate group obtained by superimposing a plurality of steel plates, sandwiched by a pair of electrodes In resistance spot welding that is energized and joined while applying pressure, it consists of main energization and initial energization preceding it,
(1) When the total thickness of the stacked steel plates is t and the distance between the centers of the electrode pairs is L, the t and L are expressed by the following relational expression: 0.9 × t ≦ L ≦ 1.1 × t
Starting initial energization in a condition that satisfies
(2) A resistance spot welding method, wherein a higher current value is applied in the initial energization than in the main energization.
10ms ≦ Ts ≦ 100ms
の範囲を満足することを特徴とする請求項1に記載の抵抗スポット溶接方法。 When T s is the time during which the initial energization current value exceeds the main energization current value, this T s is expressed by the following expression: 10 ms ≦ T s ≦ 100 ms
The resistance spot welding method according to claim 1, wherein the following range is satisfied.
Im ×1.1 ≦ Is ≦ 15.0kA
の範囲を満足することを特徴とする請求項1または2に記載の抵抗スポット溶接方法。 When the average of the current value of the initial conduction in a time zone wherein exceeds than the current value of the current was set to I s, the relationship between the current value I m this I s is in the energized following formula I m × 1 .1 ≦ I s ≦ 15.0 kA
The resistance spot welding method according to claim 1 or 2, wherein the following range is satisfied.
10ms ≦ Tp ≦ 100ms
Im ×0.6 ≦ Ip ≦ Im×0.95
ここで、I m は本通電における電流値
の範囲を満足することを特徴とする請求項1〜3のいずれかに記載の抵抗スポット溶接方法。 It is assumed that preliminary energization is further performed before the initial energization, and the current value I p and energization time T p in the preliminary energization are respectively expressed by the following expressions: 10 ms ≦ T p ≦ 100 ms
I m × 0.6 ≦ I p ≦ I m × 0.95
Here, I m is the resistance spot welding method according to any one of claims 1 to 3, characterized by satisfying the range of the current value <br/> in the energization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014166496A JP6160581B2 (en) | 2014-08-19 | 2014-08-19 | Resistance spot welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014166496A JP6160581B2 (en) | 2014-08-19 | 2014-08-19 | Resistance spot welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016041441A JP2016041441A (en) | 2016-03-31 |
JP6160581B2 true JP6160581B2 (en) | 2017-07-12 |
Family
ID=55591536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014166496A Active JP6160581B2 (en) | 2014-08-19 | 2014-08-19 | Resistance spot welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6160581B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106583956A (en) * | 2016-12-20 | 2017-04-26 | 柳州振业焊接机电设备制造有限公司 | Welding process of automobile galvanized steel sheet |
CN106624312A (en) * | 2016-12-31 | 2017-05-10 | 广州三五汽车部件有限公司 | Method for determining spot welding process parameters of multilayer aluminium plating steel plate |
JP2020082104A (en) | 2018-11-19 | 2020-06-04 | 株式会社神戸製鋼所 | Joint structure and joint structure manufacturing method |
KR102589429B1 (en) * | 2019-04-24 | 2023-10-13 | 제이에프이 스틸 가부시키가이샤 | Resistance spot welding method, manufacturing method of resistance spot welding seam |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841113A (en) * | 1987-10-20 | 1989-06-20 | Honda Giken Kogyo Kabushiki Kaisha | Welding control apparatus and method |
JPH07115207B2 (en) * | 1987-10-20 | 1995-12-13 | 本田技研工業株式会社 | Power control method for welding gun |
JPH0825060A (en) * | 1994-07-07 | 1996-01-30 | Nkk Corp | Welding method for aluminum sheet metal and aluminum alloy sheet metal covered by organic matter |
PT1253991E (en) * | 2000-02-09 | 2004-02-27 | Reu Schweisstechnik Gmbh | DEVICE AND PROCESS OF RESISTIVE WELDING COMMAND BY POINTS |
JP2002096178A (en) * | 2000-09-21 | 2002-04-02 | Toyota Auto Body Co Ltd | Spot welding device |
JP3922263B2 (en) * | 2004-03-17 | 2007-05-30 | Jfeスチール株式会社 | Method of manufacturing resistance spot welded joint |
JP5045238B2 (en) * | 2007-05-23 | 2012-10-10 | Jfeスチール株式会社 | Resistance spot welding method |
MX349461B (en) * | 2013-12-05 | 2017-07-31 | Jfe Steel Corp | Resistance spot welding method. |
-
2014
- 2014-08-19 JP JP2014166496A patent/JP6160581B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016041441A (en) | 2016-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6108030B2 (en) | Resistance spot welding method | |
CN105358284B (en) | Resistance spot welding method | |
JP5854172B2 (en) | Resistance spot welding method | |
CN104661784B (en) | The spot welding method of the excellent high-strength steel sheet of strength of joint | |
JP5999293B1 (en) | Resistance spot welding method and resistance spot welding joint manufacturing method | |
JP6079934B2 (en) | Resistance spot welding equipment | |
JP6278154B2 (en) | Resistance spot welding method and manufacturing method of welded member | |
JP6471841B1 (en) | Resistance spot welding method and manufacturing method of welded member | |
JP6079935B2 (en) | Resistance spot welding method | |
JP6160581B2 (en) | Resistance spot welding method | |
CN110475642B (en) | Method for manufacturing resistance spot-welded joint | |
JP2021112773A (en) | Resistance spot welding method, method for manufacturing welding member, and welding apparatus | |
JP6969649B2 (en) | Resistance spot welding method and welding member manufacturing method | |
JP6658992B1 (en) | Resistance spot welding method and method for manufacturing welded member | |
CN107848061B (en) | Resistance spot welding method | |
JP7522977B2 (en) | Resistance Spot Welding Method | |
JP6856181B1 (en) | Resistance spot welding method and welding member manufacturing method | |
JP7296985B2 (en) | Resistance spot welding method and method for manufacturing resistance spot welded joints | |
JP6658993B1 (en) | Resistance spot welding method and method for manufacturing welded member | |
WO2023008263A1 (en) | Resistance spot welding method | |
KR102589429B1 (en) | Resistance spot welding method, manufacturing method of resistance spot welding seam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170529 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6160581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |