[go: up one dir, main page]

JP6159979B2 - Rotor structure of rotating electrical machine - Google Patents

Rotor structure of rotating electrical machine Download PDF

Info

Publication number
JP6159979B2
JP6159979B2 JP2015238305A JP2015238305A JP6159979B2 JP 6159979 B2 JP6159979 B2 JP 6159979B2 JP 2015238305 A JP2015238305 A JP 2015238305A JP 2015238305 A JP2015238305 A JP 2015238305A JP 6159979 B2 JP6159979 B2 JP 6159979B2
Authority
JP
Japan
Prior art keywords
insulating plate
side portion
field winding
upstream side
downstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238305A
Other languages
Japanese (ja)
Other versions
JP2017108479A (en
Inventor
正一 江島
正一 江島
光良 江尻
光良 江尻
優人 本間
優人 本間
小川 裕治
裕治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2015238305A priority Critical patent/JP6159979B2/en
Priority to PCT/JP2016/085998 priority patent/WO2017099027A1/en
Publication of JP2017108479A publication Critical patent/JP2017108479A/en
Application granted granted Critical
Publication of JP6159979B2 publication Critical patent/JP6159979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

本発明は、発熱した界磁巻線における局所的な高温部位を解消するようにした回転電機の回転子構造に関する。   The present invention relates to a rotor structure of a rotating electrical machine that eliminates a local high-temperature region in a heated field winding.

従来から、複数の磁極を外周部に有する突極形回転子を備えた回転電機が提供されている。このような突極形回転子においては、径方向外側に向けて突出する複数の磁極鉄心を、周方向において等間隔に配置しており、それらの磁極鉄心の外周には、界磁巻線が絶縁板を介して巻き付けられている。   2. Description of the Related Art Conventionally, there has been provided a rotating electrical machine including a salient pole type rotor having a plurality of magnetic poles on an outer peripheral portion. In such salient-pole rotors, a plurality of magnetic cores protruding outward in the radial direction are arranged at equal intervals in the circumferential direction, and field windings are arranged on the outer periphery of these magnetic cores. It is wound through an insulating plate.

そして、上述したような、従来の回転電機の回転子構造としては、例えば、特許文献1に開示されている。   And as a rotor structure of the conventional rotary electric machine as mentioned above, it is indicated by patent documents 1, for example.

特開平7−231592号公報Japanese Patent Laid-Open No. 7-231592

ここで、静止側の固定子に対して、突極形回転子を回転させるためには、界磁巻線に励磁電流を流して、当該界磁巻線の内側に磁界を発生させる必要がある。このように、界磁巻線に励磁電流が流されると、界磁巻線は、その電流の流れによって発熱する。これに対して、発熱した界磁巻線においては、冷却風等による外周面からの放熱や、磁極鉄心への熱伝達によって、冷却が行われている。   Here, in order to rotate the salient pole type rotor with respect to the stationary side stator, it is necessary to pass an exciting current through the field winding to generate a magnetic field inside the field winding. . Thus, when an exciting current is passed through the field winding, the field winding generates heat due to the flow of the current. On the other hand, the heated field winding is cooled by heat radiation from the outer peripheral surface by cooling air or the like, or by heat transfer to the magnetic pole core.

しかしながら、上述したように、磁極鉄心と界磁巻線との間には、絶縁板が介在されているため、発熱した界磁巻線から磁極鉄心への熱伝達が、効率的に行われない場合がある。これにより、界磁巻線には、局所的な高温部位が発生してしまうおそれがあり、このような、界磁巻線における局所的な高温部位は、機械の小型軽量化を妨げる要因となっている。   However, as described above, since an insulating plate is interposed between the magnetic core and the field winding, heat transfer from the generated field winding to the magnetic core is not efficiently performed. There is a case. As a result, there is a possibility that a local high-temperature portion may occur in the field winding, and such a local high-temperature portion in the field winding becomes a factor that hinders the reduction in size and weight of the machine. ing.

従って、本発明は上記課題を解決するものであって、界磁巻線からの熱伝達を効率的に行って、発熱した界磁巻線の温度上昇を抑えることにより、機械の小型軽量化を図ることができる回転電機の回転子構造を提供することを目的とする。   Therefore, the present invention solves the above-described problem, and efficiently reduces the temperature and weight of the machine by efficiently transferring heat from the field winding and suppressing the temperature rise of the generated field winding. An object of the present invention is to provide a rotor structure of a rotating electrical machine that can be realized.

上記課題を解決する第1の発明に係る回転電機の回転子構造は、
回転軸の外周部から径方向外側に向けて突出し、周方向において等間隔で配置される複数の磁極鉄心と、
前記磁極鉄心の外周に巻き付けられる界磁巻線と、
前記磁極鉄心の外周面と前記界磁巻線の内周面との間に介在される複数の絶縁板とを備え、
前記界磁巻線は、
回転方向上流側に形成される上流側辺部と、
回転方向下流側に形成される下流側辺部とを有し、
前記上流側辺部における最も高温となる部位に対接した前記絶縁板と、前記下流側辺部における最も高温となる部位に対接した前記絶縁板とのうち、少なくとも、前記上流側辺部における最も高温となる部位に対接した前記絶縁板を、全ての絶縁板の中で最も高い熱伝導率を有すると共に、残りの絶縁板に比較して強度の低い高熱伝導性絶縁板とし、
しかも、周方向において隣接した前記界磁巻線間に設けられ、回転方向上流側に配置された前記界磁巻線における前記下流側辺部の外周面、及び、回転方向下流側に配置された前記界磁巻線における前記上流側辺部の外周面を、周方向外側から押さえる押さえ部材を備え、
前記押さえ部材が前記外周面を押さえる押圧位置は、前記高熱伝導性絶縁板と径方向において対向しない位置とする
ことを特徴とする。
The rotor structure of the rotating electrical machine according to the first invention for solving the above-described problem is
A plurality of magnetic cores that protrude radially outward from the outer periphery of the rotating shaft and are arranged at equal intervals in the circumferential direction;
A field winding wound around the outer periphery of the magnetic core;
A plurality of insulating plates interposed between the outer peripheral surface of the magnetic core and the inner peripheral surface of the field winding;
The field winding is
An upstream side formed on the upstream side in the rotational direction;
A downstream side portion formed on the downstream side in the rotation direction,
Of the insulating plate in contact with the highest temperature portion in the upstream side portion and the insulating plate in contact with the highest temperature portion in the downstream side portion, at least in the upstream side portion The insulating plate that is in contact with the highest temperature portion has the highest thermal conductivity among all the insulating plates, and is a highly thermally conductive insulating plate having a lower strength than the remaining insulating plates ,
Moreover, it is provided between the field windings adjacent to each other in the circumferential direction, and is arranged on the outer peripheral surface of the downstream side portion of the field winding arranged on the upstream side in the rotational direction and on the downstream side in the rotational direction. A pressing member for pressing the outer peripheral surface of the upstream side portion of the field winding from the outer circumferential side;
The pressing position at which the pressing member presses the outer peripheral surface is a position that does not face the high thermal conductivity insulating plate in the radial direction .

上記課題を解決する第の発明に係る回転電機の回転子構造は、
前記高熱伝導性絶縁板は、
前記上流側辺部の回転軸方向中央部、及び、前記下流側辺部の回転軸方向中央部と対接して、介在される
ことを特徴とする。
The rotor structure of the rotating electrical machine according to the second invention for solving the above-described problem is
The high thermal conductivity insulating plate is
It is characterized by being interposed in contact with the central portion in the rotational axis direction of the upstream side portion and the central portion in the rotational axis direction of the downstream side portion.

上記課題を解決する第の発明に係る回転電機の回転子構造は、
前記高熱伝導性絶縁板は、
窒化アルミニウム、酸化アルミニウム、窒化ケイ素、窒化ホウ素のうち、少なくとも1つの材料を含む
ことを特徴とする。
The rotor structure of the rotating electrical machine according to the third invention for solving the above-described problem is
The high thermal conductivity insulating plate is
It contains at least one material selected from aluminum nitride, aluminum oxide, silicon nitride, and boron nitride.

従って、本発明に係る回転電機の回転子構造によれば、界磁巻線の上流側辺部及び下流側辺部における最も高温となる部位に対接した絶縁板を、全ての絶縁板の中で最も高い熱伝導率を有する高熱伝導性絶縁板とすることにより、界磁巻線における局所的な高温部位から磁極鉄心への熱伝達を、効率的に行うことができる。これにより、励磁電流によって発熱した界磁巻線の温度上昇を抑えることができ、このように、界磁巻線に対する冷却性能を向上させた分、機械の小型軽量化を図ることができる。   Therefore, according to the rotor structure of the rotating electrical machine according to the present invention, the insulating plates that are in contact with the highest temperature portions in the upstream side portion and the downstream side portion of the field winding are arranged in all the insulating plates. By using a high thermal conductivity insulating plate having the highest thermal conductivity, heat transfer from a local high temperature region in the field winding to the magnetic core can be performed efficiently. Thereby, the temperature rise of the field winding generated by the exciting current can be suppressed, and the size and weight of the machine can be reduced as much as the cooling performance for the field winding is improved.

本発明の一実施例に係る回転電機の回転子構造における縦断面図である。It is a longitudinal cross-sectional view in the rotor structure of the rotary electric machine which concerns on one Example of this invention. 図1のII−II矢視断面図である。It is II-II arrow sectional drawing of FIG. 突極形回転子の外観斜視図である。It is an external appearance perspective view of a salient pole rotor. 図3のIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3. 突極形回転子の磁極における分解斜視図である。It is a disassembled perspective view in the magnetic pole of a salient pole type rotor.

以下、本発明に係る回転電機の回転子構造について、図面を用いて詳細に説明する。   Hereinafter, a rotor structure of a rotating electrical machine according to the present invention will be described in detail with reference to the drawings.

図1及び図2に示すように、回転電機1は、静止側の固定子2と、回転側の突極形回転子3とから構成されている。   As shown in FIGS. 1 and 2, the rotating electrical machine 1 includes a stationary stator 2 and a rotating salient pole rotor 3.

固定子2は、円筒状をなしており、複数枚の磁性体鋼板(積層鋼板)を軸方向に積み重ねることにより形成されている。これに対して、突極形回転子3は、固定子2の径方向内側において、当該固定子2と同軸状に配置されると共に、ハウジング(図示省略)に対して回転可能に支持されている。   The stator 2 has a cylindrical shape and is formed by stacking a plurality of magnetic steel plates (laminated steel plates) in the axial direction. On the other hand, the salient pole rotor 3 is disposed coaxially with the stator 2 on the radially inner side of the stator 2 and is supported rotatably with respect to a housing (not shown). .

ここで、図1乃至図4に示すように、突極形回転子3は、回転軸部11、ファン12、回転子継鉄13、磁極鉄心14、磁極頭部15、界磁巻線17、及び、コイル押さえ部材18等から構成されている。   Here, as shown in FIGS. 1 to 4, the salient pole rotor 3 includes a rotating shaft portion 11, a fan 12, a rotor yoke 13, a magnetic pole core 14, a magnetic pole head 15, a field winding 17, And it is comprised from the coil pressing member 18 grade | etc.,.

回転軸部11は、突極形回転子3の回転中心となるものであって、その軸方向両端部が、軸受(図示省略)を介して、上記ハウジングに回転可能に支持されている。そして、回転軸部11における軸受よりも軸方向内側の軸方向両端部には、ファン12が同軸状に固定されている。つまり、ファン12は、回転軸部11が回転すると、その回転軸部11と共に回転する。   The rotating shaft portion 11 serves as the center of rotation of the salient pole rotor 3, and both axial end portions thereof are rotatably supported by the housing via bearings (not shown). And the fan 12 is coaxially fixed to the axial direction both ends of the axial direction inner side rather than the bearing in the rotating shaft part 11. As shown in FIG. That is, the fan 12 rotates together with the rotation shaft portion 11 when the rotation shaft portion 11 rotates.

また、回転軸部11の軸方向中央部には、回転子継鉄13が、回転軸部11の軸方向に沿って延在するように、一体的に形成されている。更に、回転子継鉄13の外周部には、複数の磁極鉄心14が形成されており、これらの磁極鉄心14は、回転子継鉄13の外周部から径方向外側に向けて突出すると共に、周方向において等間隔で配置されている。   Further, a rotor yoke 13 is integrally formed at the axial center of the rotating shaft portion 11 so as to extend along the axial direction of the rotating shaft portion 11. Further, a plurality of magnetic pole cores 14 are formed on the outer peripheral portion of the rotor yoke 13, and these magnetic pole cores 14 protrude radially outward from the outer peripheral portion of the rotor yoke 13, It arrange | positions at equal intervals in the circumferential direction.

なお、上述したように、回転軸部11、回転子継鉄13、及び、磁極鉄心14は、一体的に形成されており、塊状の磁性材料から切り出すことにより成形されている。   As described above, the rotating shaft 11, the rotor yoke 13, and the magnetic pole core 14 are integrally formed, and are formed by cutting out from a massive magnetic material.

そして、磁極鉄心14の外周には、界磁巻線(コイル)17が巻き付けられている。これにより、界磁巻線17は、径方向から見た平面視では、枠状で、且つ、矩形をなすこととなり、回転軸方向一端側に形成される回転軸方向一端側辺部(以下、一端側辺部と称す)17a、回転軸方向他端側に形成される回転軸方向他端側辺部(以下、他端側辺部と称す)17b、回転方向上流側に形成される回転方向上流側辺部(以下、上流側辺部と称す)17c、及び、回転方向下流側に形成される回転方向下流側辺部(以下、下流側辺部と称す)17dから構成されることになる。   A field winding (coil) 17 is wound around the outer periphery of the magnetic pole core 14. As a result, the field winding 17 has a frame shape and a rectangular shape in a plan view as viewed from the radial direction, and is formed on one end side of the rotation axis direction (hereinafter, referred to as a side of the rotation axis direction). 17a, the other end side in the rotation axis direction (hereinafter referred to as the other end side portion) 17b formed on the other end side in the rotation axis direction, and the rotation direction formed on the upstream side in the rotation direction. An upstream side portion (hereinafter referred to as upstream side portion) 17c and a rotational direction downstream side portion (hereinafter referred to as downstream side portion) 17d formed on the downstream side in the rotational direction are configured. .

これに対して、磁極鉄心14の径方向外側端面(頂面)には、磁極頭部15が複数のボルト16によって固定されている。この磁極頭部15の径方向外側端面(頂面)は、固定子2の内周面に沿うような、円弧状をなしており、当該固定子2の内周面との間において、径方向における所定量の隙間を有している。   On the other hand, a magnetic pole head 15 is fixed to a radially outer end face (top face) of the magnetic core 14 by a plurality of bolts 16. The radially outer end surface (top surface) of the magnetic pole head 15 has an arc shape along the inner peripheral surface of the stator 2, and the radial direction is between the inner peripheral surface of the stator 2. Has a predetermined amount of gap.

このとき、磁極頭部15は、界磁巻線17を径方向外側から覆うように設けられるため、その界磁巻線17は、回転子継鉄13と磁極頭部15とによって、径方向両側から挟持された状態となっている。これにより、突極形回転子3の回転に伴って発生する遠心力が、界磁巻線17に作用しても、この界磁巻線17は、磁極頭部15によって径方向内側に向けて押さえ付けられているため、当該界磁巻線17の磁極鉄心14からの逸脱を防止することができる。   At this time, the magnetic pole head 15 is provided so as to cover the field winding 17 from the outside in the radial direction, so that the field winding 17 is formed on both sides in the radial direction by the rotor yoke 13 and the magnetic pole head 15. It is in a state of being pinched. Thereby, even if the centrifugal force generated with the rotation of the salient pole rotor 3 acts on the field winding 17, the field winding 17 is directed radially inward by the magnetic pole head 15. Since it is pressed down, deviation of the field winding 17 from the magnetic core 14 can be prevented.

また、図1,2,4,5に示すように、磁極鉄心14の外周面と界磁巻線17の内周面との間には、複数の絶縁板31及び絶縁板(高熱伝導性絶縁板)32が、それらの外周面周方向及び内周面周方向に沿って、1枚ずつ介在されている。   In addition, as shown in FIGS. 1, 2, 4 and 5, a plurality of insulating plates 31 and insulating plates (high thermal conductive insulation) are provided between the outer peripheral surface of the magnetic core 14 and the inner peripheral surface of the field winding 17. Plate) 32 is interposed one by one along the circumferential direction of the outer circumferential surface and the circumferential direction of the inner circumferential surface.

磁極鉄心14と一端側辺部17aとの間には、2枚の絶縁板31が介在されている。同様に、磁極鉄心14と他端側辺部17bとの間には、2枚の絶縁板31が介在されている。   Two insulating plates 31 are interposed between the magnetic core 14 and the one end side portion 17a. Similarly, two insulating plates 31 are interposed between the magnetic pole core 14 and the other end side portion 17b.

一方、磁極鉄心14と上流側辺部17cとの間には、2枚の絶縁板31と1枚の絶縁板32が介在されている。同様に、磁極鉄心14と下流側辺部17dとの間には、2枚の絶縁板31と1枚の絶縁板32が介在されている。   On the other hand, two insulating plates 31 and one insulating plate 32 are interposed between the magnetic pole core 14 and the upstream side portion 17c. Similarly, two insulating plates 31 and one insulating plate 32 are interposed between the magnetic pole core 14 and the downstream side portion 17d.

この点について詳細に説明すると、上流側辺部17cの回転軸方向両側部には、絶縁板31が対接しており、上流側辺部17cの回転軸方向中央部には、絶縁板32が対接している。また、下流側辺部17dの回転軸方向両側部には、絶縁板31が対接しており、下流側辺部17dの回転軸方向中央部には、絶縁板32が対接している。   This will be described in detail. The insulating plates 31 are in contact with both sides of the upstream side portion 17c in the rotational axis direction, and the insulating plates 32 are opposed to the central portion of the upstream side portion 17c in the rotational axis direction. It touches. The insulating plate 31 is in contact with both sides of the downstream side portion 17d in the rotation axis direction, and the insulating plate 32 is in contact with the central portion of the downstream side portion 17d in the rotation axis direction.

ここで、絶縁板31,32は、例えば、エポキシ樹脂を用いて形成されており、絶縁板32の熱伝導率は、絶縁板31の熱伝導率よりも高くなっている。このように、絶縁板32の熱伝導率を絶縁板31の熱伝導率よりも向上させるためには、絶縁板32を形成するためのエポキシ樹脂に対して、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、窒化ホウ素等の高熱伝導性添加材(フィラー)のうち、少なくとも1つの添加材を添加することにより、可能となっている。   Here, the insulating plates 31 and 32 are formed using, for example, an epoxy resin, and the thermal conductivity of the insulating plate 32 is higher than the thermal conductivity of the insulating plate 31. Thus, in order to improve the thermal conductivity of the insulating plate 32 over the thermal conductivity of the insulating plate 31, the aluminum resin, the aluminum oxide, the silicon nitride, the epoxy resin for forming the insulating plate 32, It is possible by adding at least one additive among high thermal conductivity additives (fillers) such as boron nitride.

但し、材質に上述した高熱伝導性添加材が含まれると、その材料強度は低下してしまうため、絶縁板32の強度は、絶縁板31の強度よりも低くなってしまう。即ち、絶縁板32は、熱伝導率が絶縁板31の熱伝導率よりも高く、且つ、強度が絶縁板31の強度よりも低い絶縁板となっている。   However, if the high thermal conductivity additive described above is included in the material, the strength of the material is lowered, so that the strength of the insulating plate 32 is lower than the strength of the insulating plate 31. That is, the insulating plate 32 is an insulating plate having a thermal conductivity higher than that of the insulating plate 31 and a strength lower than that of the insulating plate 31.

このように、絶縁板31の熱伝導率よりも高い熱伝導率を有する絶縁板32を設けることにより、界磁巻線17における絶縁板32と対接した部分は、界磁巻線17における絶縁板31と対接した部分よりも、磁極鉄心14への熱伝導性が向上されている。   As described above, by providing the insulating plate 32 having a thermal conductivity higher than that of the insulating plate 31, the portion of the field winding 17 that is in contact with the insulating plate 32 is insulated in the field winding 17. The thermal conductivity to the magnetic pole core 14 is improved as compared with the portion in contact with the plate 31.

更に、図2乃至図4に示すように、周方向において隣接した各界磁巻線17間には、複数のコイル押さえ部材18が、回転軸方向に並んで設けられている。これらのコイル押さえ部材18は、楔状をなしており、ボルト19によって回転子継鉄13に固定されている。   Further, as shown in FIGS. 2 to 4, a plurality of coil pressing members 18 are provided side by side in the rotational axis direction between the field windings 17 adjacent in the circumferential direction. These coil pressing members 18 have a wedge shape and are fixed to the rotor yoke 13 by bolts 19.

つまり、コイル押さえ部材18は、周方向において隣接した2つの界磁巻線17のうち、回転方向上流側に配置された界磁巻線17における下流側辺部17dの外周面と、回転方向下流側に配置された界磁巻線17における上流側辺部17cの外周面とに、それぞれ対接した状態で、ボルト19によって径方向外側から径方向内側に向けて締め付け固定されている。   That is, the coil pressing member 18 includes the outer peripheral surface of the downstream side portion 17d of the field winding 17 disposed on the upstream side in the rotation direction, and the downstream side in the rotation direction, of the two field windings 17 adjacent in the circumferential direction. The bolts 19 are fastened and fixed from the radially outer side to the radially inner side in contact with the outer peripheral surface of the upstream side portion 17c of the field winding 17 arranged on the side.

このように、楔状をなすコイル押さえ部材18をボルト19によって固定すると、ボルト19の締め付け力は、コイル押さえ部材18に作用した後、当該コイル押さえ部材18の幅方向両側に配置された各界磁巻線17に対して、押圧力として働く。即ち、回転方向上流側に配置された界磁巻線17における下流側辺部17dの外周面と、回転方向下流側に配置された界磁巻線17における上流側辺部17cの外周面とは、それぞれ周方向外側から押さえ付けられている。   As described above, when the wedge-shaped coil pressing member 18 is fixed by the bolt 19, the tightening force of the bolt 19 acts on the coil pressing member 18, and then each field winding disposed on both sides in the width direction of the coil pressing member 18. It acts as a pressing force on the line 17. That is, the outer peripheral surface of the downstream side portion 17d in the field winding 17 disposed on the upstream side in the rotational direction and the outer peripheral surface of the upstream side portion 17c in the field winding 17 disposed on the downstream side in the rotational direction. These are pressed from the outside in the circumferential direction.

これにより、突極形回転子3の回転に伴って発生する遠心力が、界磁巻線17に作用しても、この界磁巻線17における上流側辺部17cの外周面及び下流側辺部17dの外周面が、コイル押さえ部材18によって押え付けられているため、上記遠心力の分力による界磁巻線17の変形(巻きずれ)を防止することができる。   Thereby, even if the centrifugal force generated with the rotation of the salient pole rotor 3 acts on the field winding 17, the outer peripheral surface and the downstream side of the upstream side portion 17 c in the field winding 17. Since the outer peripheral surface of the portion 17d is pressed by the coil pressing member 18, the field winding 17 can be prevented from being deformed (winding deviation) due to the component force of the centrifugal force.

このとき、コイル押さえ部材18が、回転方向上流側に配置された下流側辺部17dの外周面、及び、回転方向下流側に配置された上流側辺部17cの外周面を押さえ付ける押圧位置は、絶縁板32と径方向において対向しない位置となっており、絶縁板31と径方向において対向する位置となっている。   At this time, the pressing position where the coil pressing member 18 presses the outer peripheral surface of the downstream side portion 17d arranged on the upstream side in the rotation direction and the outer peripheral surface of the upstream side portion 17c arranged on the downstream side in the rotation direction is The insulating plate 32 is not opposed to the insulating plate 32 in the radial direction, and is opposed to the insulating plate 31 in the radial direction.

このように、コイル押さえ部材18の押圧位置を、絶縁板32と径方向おいて対向する位置とするのではなく、絶縁板31と径方向において対向する位置とすることにより、その押圧力による絶縁板32の破損を防止している。即ち、上述したように、絶縁板32に対する熱伝導性の向上を図るのに伴って、その強度が絶縁板31の強度よりも低くなってしまうため、絶縁板31,32のうち、比較してより強度が高くなる絶縁板31に対向して、コイル押さえ部材18を設けることにより、絶縁板32を保護するようにしている。 Thus, the pressing position of the coil holding member 18, instead of the position Oite facing the insulating plate 32 and radially, by a position facing the insulating plate 31 and the radial direction by the pressing force Damage to the insulating plate 32 is prevented. That is, as described above, as the thermal conductivity of the insulating plate 32 is improved, the strength of the insulating plate 31 is lower than that of the insulating plate 31. The insulating plate 32 is protected by providing the coil pressing member 18 so as to face the insulating plate 31 having higher strength.

また、周方向において隣接した各界磁巻線17間には、磁極鉄心14を突出部としたことによって、回転軸方向に延びる空間が、形成されることになる。このような、回転軸方向に延びる空間は、冷却風Fを回転軸方向に向けて流すための通風路20となっており、その冷却風Fは、ファン12が回転軸部11と共に回転することによって発生する。つまり、ファン12は、回転軸部11の軸方向両端部にそれぞれ設けられているため、そのファン12の回転によって発生した冷却風Fは、通風路20を、回転軸方向両側から回転軸方向中央部に向けて流れる。   Further, a space extending in the rotation axis direction is formed between the field windings 17 adjacent in the circumferential direction by using the magnetic core 14 as a protruding portion. Such a space extending in the direction of the rotation axis serves as a ventilation path 20 for flowing the cooling air F in the direction of the rotation axis, and the cooling air F is rotated by the fan 12 together with the rotation shaft 11. Caused by. That is, since the fans 12 are provided at both ends in the axial direction of the rotary shaft portion 11, the cooling air F generated by the rotation of the fan 12 passes through the ventilation path 20 from both sides in the rotary shaft direction to the center in the rotary shaft direction. It flows toward the part.

これにより、冷却風Fは、界磁巻線17における一端側辺部17aの外周面及び他端側辺部17bの外周面に衝突したり、通風路20内に進入して、その進入方向両側部(流れ方向両側部)に位置する上流側辺部17cの外周面及び下流側辺部17dの外周面に接触したりする。この結果、界磁巻線17は、励磁電流が流されることによって発熱することになるが、冷却風Fによる各外周面からの放熱よって、その温度上昇が抑制される。   Thereby, the cooling air F collides with the outer peripheral surface of the one end side part 17a and the outer peripheral surface of the other end side part 17b in the field winding 17, or enters the ventilation path 20 and both sides of the entering direction. In contact with the outer peripheral surface of the upstream side portion 17c and the outer peripheral surface of the downstream side portion 17d located at the portion (both sides in the flow direction). As a result, the field winding 17 generates heat when an exciting current is applied, but the temperature rise is suppressed by the heat radiation from each outer peripheral surface by the cooling air F.

しかしながら、通風路20を構成する上流側辺部17c及び下流側辺部17dにおける回転軸方向中央部は、冷却風Fの流れ方向最下流側に位置すると共に、コイル押さえ部材18によって、回転軸方向両側から挟まれた状態となっている。これにより、上流側辺部17cの回転軸方向中央部及び下流側辺部17dの回転軸方向中央部には、冷却風Fが到達し難くなっている。従って、それらの回転軸方向中央部に対する冷却効果は、その他の部位に対する冷却効果よりも低下するため、それらの回転軸方向中央部の温度は、その他の部位の温度よりも高くなる傾向にある。   However, the central portion in the rotation axis direction of the upstream side portion 17c and the downstream side portion 17d constituting the ventilation path 20 is located on the most downstream side in the flow direction of the cooling air F, and the rotation direction of the rotation axis is determined by the coil pressing member 18. It is sandwiched from both sides. As a result, the cooling air F hardly reaches the central portion in the rotational axis direction of the upstream side portion 17c and the central portion in the rotational axis direction of the downstream side portion 17d. Accordingly, since the cooling effect on the central portion in the rotation axis direction is lower than the cooling effect on other portions, the temperature at the central portion in the rotation axis direction tends to be higher than the temperature at other portions.

更に、突極形回転子3の回転時においては、その回転方向とは逆方向となる方向から、対向風を受けることになるが、1つの界磁巻線17の中でも、回転方向上流側の部位と、回転方向下流側の部位とを比較してみると、回転方向下流側の部位には、その対向風が接触する一方、回転方向上流側の部位には、その対向風が殆ど接触しない。これにより、回転方向上流側の部位は、回転方向下流側の部位よりも、冷却され難く、温度が高くなる傾向にある。   Further, when the salient pole rotor 3 is rotated, the counter wind is received from the direction opposite to the rotation direction. Among the field windings 17, the upstream side in the rotation direction is also received. Comparing the part and the downstream part in the rotational direction, the counter wind is in contact with the downstream part in the rotational direction, while the counter wind is hardly in contact with the upstream part in the rotational direction. . Thereby, the site | part of the rotation direction upstream is harder to cool than the site | part of the rotation direction downstream, and exists in the tendency for temperature to become high.

つまり、上流側辺部17c及び下流側辺部17dの中でも、回転軸方向中央部は、回転軸方向両側部よりも、温度が高くなる。更に、上流側辺部17cの回転軸方向中央部と、下流側辺部17dの回転方向中央部とを比べてみれば、上流側辺部17cの回転軸方向中央部は、下流側辺部17dの回転軸方向中央部よりも、温度が高くなる。   That is, among the upstream side portion 17c and the downstream side portion 17d, the temperature in the central portion in the rotation axis direction is higher than that in the both sides in the rotation axis direction. Further, comparing the central portion in the rotational axis direction of the upstream side portion 17c with the central portion in the rotational direction of the downstream side portion 17d, the central portion in the rotational axis direction of the upstream side portion 17c is the downstream side portion 17d. The temperature becomes higher than the central portion in the rotation axis direction.

なお、発熱した界磁巻線17内における温度分布については、図2及び図4に示すように、ドットの密度で表している。即ち、ドット密度が高くなるに従って、高温となることを示している。   The temperature distribution in the field winding 17 that has generated heat is represented by the density of dots as shown in FIGS. That is, as the dot density increases, the temperature increases.

そこで、本発明に係る回転子構造においては、高温となる上流側辺部17c及び下流側辺部17dの回転軸方向中央部に対して、熱伝導性の向上を図るため、それらの回転軸方向中央部と磁極鉄心14との間のみに、高熱伝導率となる材質で形成された絶縁板32を設けるようにしている。即ち、上流側辺部17cの回転軸方向中央部及び下流側辺部17dの回転軸方向中央部から磁極鉄心14への熱伝導を、効率的に行わせることにより、界磁巻線17の温度上昇を全体的に抑制する。   Therefore, in the rotor structure according to the present invention, in order to improve the thermal conductivity with respect to the central portion in the rotational axis direction of the upstream side portion 17c and the downstream side portion 17d that become high temperature, An insulating plate 32 made of a material having high thermal conductivity is provided only between the central portion and the magnetic pole core 14. That is, the temperature of the field winding 17 is improved by efficiently conducting heat conduction from the central portion in the rotational axis direction of the upstream side portion 17c and the central portion in the rotational axis direction of the downstream side portion 17d to the magnetic core 14. Suppress the overall increase.

但し、下流側辺部17dの回転軸方向中央部における温度の大きさによっては、その回転軸方向中央部と対接する絶縁板を、絶縁板31とし、上流側辺部17cの回転軸方向中央部と対接する絶縁板のみを、絶縁板32としても構わない。   However, depending on the temperature at the central portion in the rotational axis direction of the downstream side portion 17d, the insulating plate 31 that contacts the central portion in the rotational axis direction is the insulating plate 31, and the central portion in the rotational axis direction of the upstream side portion 17c. Only the insulating plate in contact with the insulating plate 32 may be used as the insulating plate 32.

また、上述した実施形態のように、ファン12を回転軸部11の軸方向両端部に設けるようにした、両側吸込み構造を採用する場合には、1つの界磁巻線17の中でも、上流側辺部17cの回転軸方向中央部及び下流側辺部17dの回転軸方向中央部が、冷却風Fが流れる最下流部となり、比較的に高温となるため、それらの回転軸方向中央部に対接する絶縁板のみを、絶縁板32としている。   Further, in the case where a double-sided suction structure in which the fan 12 is provided at both axial ends of the rotating shaft portion 11 as in the above-described embodiment, the upstream side of the single field winding 17 is used. The central portion in the rotational axis direction of the side portion 17c and the central portion in the rotational axis direction of the downstream side portion 17d are the most downstream portions through which the cooling air F flows and are relatively high in temperature. Only the insulating plate that comes into contact is the insulating plate 32.

これに対して、ファン12を、回転軸部11の軸方向一端部及び他端部のうち、軸方向一端部に設けるようにした、片側吸込み構造を採用する場合には、1つの界磁巻線17の中でも、上流側辺部17c及び下流側辺部17dにおけるファン12から遠くなる側の回転軸方向側部(ファン12と対向する回転軸方向側部の反対側の回転軸方向側部)が、冷却風が流れる最下流部となり、比較的に高温となるため、その回転軸方向側部に対接する絶縁板のみを、絶縁板32とすれば良い。   On the other hand, in the case of adopting the one-side suction structure in which the fan 12 is provided at one end in the axial direction among the one end and the other end in the axial direction of the rotating shaft 11, one field winding is used. Among the lines 17, the rotation side in the upstream side 17 c and the side 17 d on the downstream side away from the fan 12 in the direction of the rotation axis (the side in the direction of the rotation axis opposite to the side in the direction of the rotation axis facing the fan 12). However, since it becomes the most downstream part through which the cooling air flows and becomes relatively high in temperature, only the insulating plate that contacts the side portion in the rotation axis direction may be the insulating plate 32.

即ち、上流側辺部17c及び下流側辺部17dの中で、最も高温となる部位に対接する絶縁板を、絶縁板32とすれば良い。   In other words, the insulating plate 32 may be the insulating plate that contacts the part having the highest temperature in the upstream side portion 17c and the downstream side portion 17d.

以上より、界磁巻線17に励磁電流を流すことにより、当該界磁巻線17の内側に磁界を発生させることができる。そして、固定子2側において発生させた磁界(回転磁界)と、突極形回転子3側において発生させた上記磁界との間における、反発力及び吸引力を利用することにより、突極形回転子3を固定子2に対して回転させることができる。このとき、界磁巻線17は、励磁電流が流されることによって発熱する。   As described above, a magnetic field can be generated inside the field winding 17 by passing an exciting current through the field winding 17. Then, by utilizing the repulsive force and the attractive force between the magnetic field (rotating magnetic field) generated on the stator 2 side and the magnetic field generated on the salient pole rotor 3 side, salient pole rotation The child 3 can be rotated with respect to the stator 2. At this time, the field winding 17 generates heat by passing an exciting current.

これと同時に、回転軸部11の回転と共に、ファン12が回転することにより、当該ファン12の回転によって発生した冷却風Fは、通風路20の回転軸方向一端側及び他端側に向けてそれぞれ供給された後、その回転軸方向一端側及び他端側から進入して、当該通風路20の回転軸方向中央部に向けて流れる。   At the same time, as the rotating shaft 11 rotates, the fan 12 rotates, so that the cooling air F generated by the rotation of the fan 12 is directed toward one end side and the other end side of the ventilation path 20 in the rotating shaft direction. After being supplied, the air enters from one end side and the other end side in the rotation axis direction, and flows toward the center portion in the rotation axis direction of the ventilation path 20.

これにより、冷却風Fは、界磁巻線17における一端側辺部17aの外周面及び他端側辺部17bの外周面に衝突したり、界磁巻線17における上流側辺部17cの外周面及び下流側辺部17dの外周面に接触したりする。この結果、発熱した界磁巻線17の熱は、それらの外周面から放出される。   Thereby, the cooling air F collides with the outer peripheral surface of the one end side portion 17 a and the outer peripheral surface of the other end side portion 17 b in the field winding 17, or the outer periphery of the upstream side portion 17 c in the field winding 17. Or the outer peripheral surface of the surface and the downstream side portion 17d. As a result, the heat generated in the field windings 17 is released from the outer peripheral surface thereof.

このとき、2つのファン12による両側吸込みと、通風路20内における2つのコイル押さえ部材18の設置とによって、上流側辺部17cの回転軸方向中央部及び下流側辺部17dの回転軸方向中央部が、高温になるおそれがある。   At this time, due to the suction on both sides by the two fans 12 and the installation of the two coil pressing members 18 in the ventilation path 20, the central portion in the rotational axis direction of the upstream side portion 17c and the central portion in the rotational axis direction of the downstream side portion 17d. The part may become hot.

しかしながら、それらの局所的な高温部位と対接するように、絶縁板32を介在させているため、上流側辺部17cの回転軸方向中央部及び下流側辺部17dの回転軸方向中央部から磁極鉄心14への熱伝達が効率的に行われる。これにより、界磁巻線17の温度上昇が全体的に抑えられる。   However, since the insulating plate 32 is interposed so as to be in contact with those local high temperature portions, the magnetic poles are formed from the central portion in the rotational axis direction of the upstream side portion 17c and the central portion in the rotational axis direction of the downstream side portion 17d. Heat transfer to the iron core 14 is performed efficiently. Thereby, the temperature rise of the field winding 17 is suppressed as a whole.

なお、絶縁板31においても、界磁巻線17から磁極鉄心14への熱伝達が行われると共に、上記対向風の界磁巻線17への衝突によっても、その外周面から放熱が行われる。   In the insulating plate 31, heat is transferred from the field winding 17 to the magnetic pole core 14, and heat is also radiated from the outer peripheral surface of the insulating plate 31 due to the collision of the counter wind against the field winding 17.

従って、本発明に係る回転子構造によれば、界磁巻線17における局所的に高温となる高温部位に対接して、熱伝導率を高くした絶縁板32を設けることにより、その局所的な高温部位から磁極鉄心14への熱伝達を、効率的に行うことができるので、励磁電流によって発熱した界磁巻線17の温度上昇を全体的に抑えることができる。よって、界磁巻線17に対する冷却性能を向上させた分、突極形回転子3の径寸法を小さくすることができるので、回転電機1の小型軽量化を図ることができる。   Therefore, according to the rotor structure of the present invention, by providing the insulating plate 32 having a high thermal conductivity in contact with the high temperature portion of the field winding 17 that is locally high in temperature, Since heat transfer from the high temperature portion to the magnetic pole core 14 can be performed efficiently, the temperature rise of the field winding 17 generated by the exciting current can be suppressed as a whole. Therefore, the diameter of the salient pole rotor 3 can be reduced by the amount that the cooling performance for the field winding 17 is improved, so that the rotating electrical machine 1 can be reduced in size and weight.

1 回転電機
2 固定子
3 突極形回転子
11 回転軸部
12 ファン
13 回転子継鉄
14 磁極鉄心
15 磁極頭部
16 ボルト
17 界磁巻線
17a 回転軸方向一端側辺部
17b 回転軸方向他端側辺部
17c 回転方向上流側辺部
17d 回転方向下流側辺部
18 コイル押さえ部材
19 ボルト
20 通風路
31,32 絶縁板
F 冷却風
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine 2 Stator 3 Salient pole rotor 11 Rotating shaft part 12 Fan 13 Rotor yoke 14 Magnetic pole core 15 Magnetic pole head 16 Bolt 17 Field winding 17a Rotating shaft direction one side part 17b Rotating shaft direction etc End side portion 17c Rotating direction upstream side portion 17d Rotating direction downstream side portion 18 Coil pressing member 19 Bolt 20 Ventilation path 31, 32 Insulating plate F Cooling air

Claims (3)

回転軸の外周部から径方向外側に向けて突出し、周方向において等間隔で配置される複数の磁極鉄心と、
前記磁極鉄心の外周に巻き付けられる界磁巻線と、
前記磁極鉄心の外周面と前記界磁巻線の内周面との間に介在される複数の絶縁板とを備え、
前記界磁巻線は、
回転方向上流側に形成される上流側辺部と、
回転方向下流側に形成される下流側辺部とを有し、
前記上流側辺部における最も高温となる部位に対接した前記絶縁板と、前記下流側辺部における最も高温となる部位に対接した前記絶縁板とのうち、少なくとも、前記上流側辺部における最も高温となる部位に対接した前記絶縁板を、全ての絶縁板の中で最も高い熱伝導率を有すると共に、残りの絶縁板に比較して強度の低い高熱伝導性絶縁板とし、
しかも、周方向において隣接した前記界磁巻線間に設けられ、回転方向上流側に配置された前記界磁巻線における前記下流側辺部の外周面、及び、回転方向下流側に配置された前記界磁巻線における前記上流側辺部の外周面を、周方向外側から押さえる押さえ部材を備え、
前記押さえ部材が前記外周面を押さえる押圧位置は、前記高熱伝導性絶縁板と径方向において対向しない位置とする
ことを特徴とする回転電機の回転子構造。
A plurality of magnetic cores that protrude radially outward from the outer periphery of the rotating shaft and are arranged at equal intervals in the circumferential direction;
A field winding wound around the outer periphery of the magnetic core;
A plurality of insulating plates interposed between the outer peripheral surface of the magnetic core and the inner peripheral surface of the field winding;
The field winding is
An upstream side formed on the upstream side in the rotational direction;
A downstream side portion formed on the downstream side in the rotation direction,
Of the insulating plate in contact with the highest temperature portion in the upstream side portion and the insulating plate in contact with the highest temperature portion in the downstream side portion, at least in the upstream side portion The insulating plate that is in contact with the highest temperature portion has the highest thermal conductivity among all the insulating plates, and is a highly thermally conductive insulating plate having a lower strength than the remaining insulating plates ,
Moreover, it is provided between the field windings adjacent to each other in the circumferential direction, and is arranged on the outer peripheral surface of the downstream side portion of the field winding arranged on the upstream side in the rotational direction and on the downstream side in the rotational direction. A pressing member for pressing the outer peripheral surface of the upstream side portion of the field winding from the outer circumferential side;
The rotating structure of the rotating electrical machine according to claim 1 , wherein a pressing position where the pressing member presses the outer peripheral surface is a position that does not face the high thermal conductive insulating plate in a radial direction .
請求項1に記載の回転電機の回転子構造において、
前記高熱伝導性絶縁板は、
前記上流側辺部の回転軸方向中央部、及び、前記下流側辺部の回転軸方向中央部と対接して、介在される
ことを特徴とする回転電機の回転子構造。
The rotor structure of the rotating electrical machine according to claim 1 ,
The high thermal conductivity insulating plate is
A rotor structure of a rotating electrical machine, wherein the rotor side structure is interposed between and in contact with the central portion in the rotational axis direction of the upstream side portion and the central portion in the rotational axis direction of the downstream side portion.
請求項1または2に記載の回転電機の回転子構造において、
前記高熱伝導性絶縁板は、
窒化アルミニウム、酸化アルミニウム、窒化ケイ素、窒化ホウ素のうち、少なくとも1つの材料を含む
ことを特徴とする回転電機の回転子構造。
In the rotor structure of the rotating electrical machine according to claim 1 or 2 ,
The high thermal conductivity insulating plate is
A rotor structure for a rotating electrical machine, comprising at least one material selected from aluminum nitride, aluminum oxide, silicon nitride, and boron nitride.
JP2015238305A 2015-12-07 2015-12-07 Rotor structure of rotating electrical machine Active JP6159979B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015238305A JP6159979B2 (en) 2015-12-07 2015-12-07 Rotor structure of rotating electrical machine
PCT/JP2016/085998 WO2017099027A1 (en) 2015-12-07 2016-12-05 Rotor structure of rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238305A JP6159979B2 (en) 2015-12-07 2015-12-07 Rotor structure of rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2017108479A JP2017108479A (en) 2017-06-15
JP6159979B2 true JP6159979B2 (en) 2017-07-12

Family

ID=59013133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238305A Active JP6159979B2 (en) 2015-12-07 2015-12-07 Rotor structure of rotating electrical machine

Country Status (2)

Country Link
JP (1) JP6159979B2 (en)
WO (1) WO2017099027A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224511A (en) * 2019-06-28 2019-09-10 徐州逸腾机电科技有限公司 A kind of electric vehicle brushless motor rotor structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103544U (en) * 1982-12-27 1984-07-12 株式会社東芝 salient pole rotor
JP2004088876A (en) * 2002-08-26 2004-03-18 Tma Electric Corp Rotor for dynamo electric machine
JP2007189849A (en) * 2006-01-16 2007-07-26 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of salient pole electric rotating machine
JP2008283730A (en) * 2007-05-08 2008-11-20 Sumitomo Electric Ind Ltd Split stator for electric motor, stator for electric motor provided with this divided stator, electric motor provided with this stator for electric motor, and method for manufacturing divided stator for electric motor
US9419489B2 (en) * 2013-07-31 2016-08-16 General Electric Company Slot liner for an electric machine

Also Published As

Publication number Publication date
JP2017108479A (en) 2017-06-15
WO2017099027A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6312111B2 (en) Rotating electric machine
JP5904827B2 (en) Rotating electric machine
EP3157139B1 (en) Stator used for motor, motor and ventilation cooling method for motor
WO2015166772A1 (en) Dynamo-electric machine
JP5951131B2 (en) Rotating electric machine
JP6058062B2 (en) Rotating electric machine
CN106877579A (en) Electrical machine with thermal coupling of winding heads to stator support structure via ceramic rings
US20150042188A1 (en) Electric machine having a phase separator
CN203481946U (en) Rotating electric machine and rotor
JP6159979B2 (en) Rotor structure of rotating electrical machine
WO2019234967A1 (en) Dynamo-electric machine
CN105284032A (en) Electric motor
JP2009130958A (en) Rotating electric machine
FI20175653A1 (en) An electric machine
JP2018014827A (en) Rotary electric machine
JP6944418B2 (en) Rotating machine and rotor
JP6819103B2 (en) Cooling structure of salient rotor
JP6954270B2 (en) Insulation structure of salient rotor ventilator
JP2017050926A (en) Rotary electric machine
JP7590918B2 (en) Rotating electric machine and salient pole rotor
US856423A (en) Ventilating dynamo-electric machines.
CN104521111B (en) Winding for motor
JP2011055625A (en) Rotor of rotary electrical machine
JP6612102B2 (en) Rotating electric machine
US1239654A (en) Electrical apparatus.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6159979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150