JP6153119B2 - 光学測定装置及び光学系を備える装置 - Google Patents
光学測定装置及び光学系を備える装置 Download PDFInfo
- Publication number
- JP6153119B2 JP6153119B2 JP2015542590A JP2015542590A JP6153119B2 JP 6153119 B2 JP6153119 B2 JP 6153119B2 JP 2015542590 A JP2015542590 A JP 2015542590A JP 2015542590 A JP2015542590 A JP 2015542590A JP 6153119 B2 JP6153119 B2 JP 6153119B2
- Authority
- JP
- Japan
- Prior art keywords
- focal point
- mirror
- focal
- ellipsoidal
- spheroid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
- G01N21/474—Details of optical heads therefor, e.g. using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0605—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
- G02B17/0615—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors off-axis or unobscured systems in wich all of the mirrors share a common axis of rotational symmetry
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
- G02B17/0657—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0085—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with both a detector and a source
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N2021/556—Measuring separately scattering and specular
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0636—Reflectors
- G01N2201/0637—Elliptic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/065—Integrating spheres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
(1)焦点へ集光する光が拡大する問題(マグニフィケーション問題)
(2)検出器感度が空間的に一様でない問題
(3)検出器感度が入射角度に依存する問題
(4)光学素子によるビームの遮蔽の問題
(5)内部多重反射問題(インターリフレクション問題)
(6)ミスアライメント問題
(7)構造物によるビームの遮蔽の問題
(8)楕円面鏡の不完全性さや鏡面粗さの問題
BRDF=Is(θL,φL,θD,φD)/Q0
から求まる。
現状では、これら全半球反射率と空間配光を一度に測定できる装置はない。またゴニオ反射率計で試料のBRDF(双方向反射分布関数)を全空間で測定して、それらの測定値を積分することで全半球反射率を求めることができるが、測定時間が非常に長いことが問題である。
(1)本発明の光学測定装置により、試料の平面や曲面、研磨面や粗面、紙面や布面や皮膚等の構造を持った面からの反射光の空間分布測定、並びに正反射成分と完全拡散反射成分及び混合反射成分への分離測定を実現することができる。
(2)金属や半導体やガラス等の切削加工面やその研磨面の仕上がりを調べる装置として、鏡面研磨に近づくほど、正反射(正透過)成分が増加して、完全拡散反射(完全拡散透過)成分と混合反射(透過)成分は減少するので、精密な加工をコントロールできる。
(3)拡散板の性能評価装置として評価性能を向上させることができる。拡散板は強い指向性を持った光源からの光を広い空間に対して均一に照射する光を作り出す用途に使われる。例えば、屋外用の照明、後部プロジェクターテレビ、一般家庭用電子ディスプレイなどに使われている。本発明の装置による拡散板の性能評価法は、正反射(正透過)成分が減少して完全拡散成分が増加するほど性能の良い拡散板であると評価することができる。
(4)LEDやLED原料の発光分布測定や発光強度測定より、製品や原料の性能評価が可能になる。
(5)ラマン分光測定やルミネッセンス分光測定のために、本発明を使用し、検出系のCCDカメラの変わりに、光ファイバーバンドルの一端をオプティカルファイバーテーパーの小口径面に取り付け、他端を分光器へ導くことにより、角度分解のラマン分光測定等が可能になる。
基本構造体は2台の楕円面鏡で構成されることで、第1の物体から放射された光が2回楕円面鏡で反射して、第2の物体に達する。この時、第一の楕円面鏡の一つの焦点は、第二の楕円面鏡の一つの焦点と共通焦点を構成する。これを可能にする楕円面鏡の切断面は、子午面(図1の切断面1)と焦点直交面(図2の切断面2)だけである。2台の楕円面鏡の残りの2個の焦点は共通焦点に対して互いに反対側で一直線(焦点貫通軸)上になくてはならない。共通焦点はブランク(空)で、両端の焦点に第1の物体と第2の物体を配置する。第1の物体の表面が子午面に平行か、垂直のどちらかに配置させる。平行の時は、第1の物体の天頂角度0度の方向は焦点直交面内にあり、天頂角度90度の方向は極を含んでいる子午面内である。垂直の時は、第1の物体の天頂角度0度の方向は極であり、天頂角度90度の方向は焦点直交面内である。これらのことから、焦点に設置された第1の物体からの放射光を効率良く、焦点に設置された第2の物体に伝送するためには、楕円面鏡は極を含まなくてはならない。
極を含んだ楕円面鏡の2つの焦点の内、極に近い焦点をクローズ(Close、略してC焦点)焦点、極から遠い焦点をオープン(Open、略してO焦点)焦点と呼ぶ。ただし、半分形状楕円面鏡は両極を含むので、2つの焦点は同等である。この時は、右側の極から見て、極に近い焦点をクローズ(Close、略してC焦点)焦点、極から遠い焦点をオープン(Open、略してO焦点)焦点と呼ぶ。C焦点を通過する焦点直交面で切断した楕円面鏡には、接頭語の『マイナー』を、O焦点を通過する焦点直交面で切断した楕円面鏡には、接頭語の『メジャー』を付けて区別する。
基本構造体を構成する極を含んだ楕円面鏡は、基本エレメントと呼ぶ。この基本エレメントは、(1)『極を含んだ楕円面鏡と子午面で囲まれた楕円面鏡』(子午極包囲楕円面鏡群)、(2)『極を含んだ楕円面鏡とメジャーな焦点直交面で囲まれた楕円面鏡』(メジャー焦点極包囲楕円面鏡群)、(3)『極を含んだ楕円面鏡とマイナーな焦点直交面で囲まれた楕円面鏡』(マイナー焦点極包囲楕円面鏡群)、(4)『極を含んだ楕円面鏡と子午面とメジャーな焦点直交面で囲まれた楕円面鏡』(メジャー子午焦点包囲楕円面鏡群)、(5)『極を含んだ楕円面鏡と子午面とマイナーな焦点直交面で囲まれた楕円面鏡』(マイナー子午焦点包囲楕円面鏡群)の5種類からなる。次に、各楕円面鏡群に切断面を対応付けする。
(1)子午極包囲楕円面鏡群は、楕円面鏡を少なくとも図1の切断面1で切断した時の一方の楕円面鏡で、焦点直交面以外の切断面でさらに切断されていても良いので、末尾に『群』をつけた。以下同様に末尾に『群』をつける。(2)メジャー焦点極包囲楕円面鏡群は、楕円面鏡を少なくとも図2の切断面2で切断した時の大きい方の楕円面鏡で、子午面以外の切断面でさらに切断されてもよい。(3)マイナー焦点極包囲楕円面鏡群は、楕円面鏡を少なくとも図2の切断面2で切断した時の小さい方の楕円面鏡で、子午面以外の切断面でさらに切断されてもよい。(4)メジャー子午焦点包囲楕円面鏡群は、楕円面鏡を少なくとも図1の切断面1と図2の切断面2の両方の切断面で切断した時の大きい方の楕円面鏡で、さらに追加の切断面で切断されてもよい。(5)マイナー子午焦点包囲楕円面鏡群は、楕円面鏡を少なくとも図1の切断面1と図2の切断面2の両方の切断面で切断した時の小さい方の楕円面鏡で、さらに追加の切断面で切断されてもよい。
図4は、回転楕円体面鏡の場合の基本エレメントの幾つかの例であるが、楕円面鏡の場合も同じである。(1)子午極包囲楕円面鏡群の1つの例は、半分形状回転楕円体面鏡(図4(d))である。(2)メジャー焦点極包囲楕円面鏡群の2つの例は、帯形状回転楕円体面鏡(図4(b))や蛸壺形状楕円面鏡(図省略)である。(3)マイナー焦点極包囲楕円面鏡群の1つの例は、帽子形状楕円面鏡(図省略)である。(4)メジャー子午焦点包囲楕円面鏡群の2つの例は、四分の一形状回転楕円体面鏡(図4(a)で、以下QEと表記する。)と二分の一帯形状回転楕円体面鏡(図4(c)、以下BEと表記する。)である。(5)マイナー子午焦点包囲楕円面鏡群の2つの例は、マイナー四分の一形状楕円面鏡(図省略)とマイナー二分の一帯形状楕円面鏡(図省略)である。
2台の基本エレメントからなる基本構造体を形成するための結合様式を図6に示す。この図でQE(四分の一形状回転楕円体面鏡の略)と書いてある基本エレメントは、その他の基本エレメントで置きかえることができる。F0〜F4は基本エレメントの焦点である。
(I)C−C結合:2台の基本エレメントのC焦点とC焦点で共通焦点を構成し、残りの2つのO焦点がこの共通焦点に対して互いに反対側で一直線上に配列する結合様式で、この例が図6(a)である。2台の基本エレメントが同じ形状である場合は、第一の基本エレメントと第二の基本エレメントは共通焦点に対して点対称になるように配置されている。
(II)O−O結合:2台の基本エレメントのO焦点とO焦点で共通焦点を構成し、残りの2つのC焦点がこの共通焦点に対して互いに反対側で一直線上に配列する結合様式で、この例が図6(b)である。2台の基本エレメントが同じ形状である場合は、第一の基本エレメントと第二の基本エレメントは共通焦点に対して点対称になるように配置されている。
(III)C−O結合:2台の基本エレメントのC焦点とO焦点で共通焦点を構成し、残りの2つのO焦点とC焦点がこの共通焦点に対して互いに反対側で一直線上に配列する結合様式で、この1例が図6(c)である。これら3個の結合様式が可能である。この中で、C−O結合は、第1の物体の放射光を第2の物体へ伝搬する時の効率が悪いので、C−C結合とO−O結合がより優れている。これらのC−C結合とO−O結合で結合されている楕円面鏡の組を、それぞれC−C結合体とO−O結合体と呼ぶ。
基本エレメントは立体であるので、O−O結合やC−C結合をさせるときに、2台の楕円面鏡が衝突したり、相手方の楕円面鏡の影になったりするので、以下では、これらを除いた物理的に結合できる相手を重複しないように列挙する。
(1)子午極包囲楕円面鏡群のC−C結合の相手は、子午極包囲楕円面鏡群、メジャー子午焦点包囲楕円面鏡群とマイナー子午焦点包囲楕円面鏡群の3種類である。(2)メジャー焦点極包囲楕円面鏡群のC−C結合の相手は、存在しない。(3)マイナー焦点極包囲楕円面鏡群のC−C結合の相手は、存在しない。(4)メジャー子午焦点包囲楕円面鏡群のC−C結合の相手は、メジャー子午焦点包囲楕円面鏡群とマイナー子午焦点包囲楕円面鏡群の2種類である。(5)マイナー子午焦点包囲楕円面鏡群のC−C結合の相手は、マイナー子午焦点包囲楕円面鏡群の1種類である。(6)子午極包囲楕円面鏡群のO−O結合の相手は、マイナー焦点極包囲楕円面鏡群、メジャー子午焦点包囲楕円面鏡群とマイナー子午焦点包囲楕円面鏡群の3種類である。(7)メジャー焦点極包囲楕円面鏡群のO−O結合の相手は、メジャー焦点極包囲楕円面鏡群、マイナー焦点極包囲楕円面鏡群、メジャー子午焦点包囲楕円面鏡群とマイナー子午焦点包囲楕円面鏡群の4種類である。(8)マイナー焦点極包囲楕円面鏡群のO−O結合の相手は、マイナー焦点極包囲楕円面鏡群、メジャー子午焦点包囲楕円面鏡群とマイナー子午焦点包囲楕円面鏡群の3種類である。(9)メジャー子午焦点包囲楕円面鏡群のO−O結合の相手は、メジャー子午焦点包囲楕円面鏡群とマイナー子午焦点包囲楕円面鏡群の2種類である。(10)マイナー子午焦点包囲楕円面鏡群のO−O結合の相手は、マイナー子午焦点包囲楕円面鏡群の1種類である。
以上から、C−C結合からなる基本構造体は6種類で、O−O結合からなる基本構造体は13種類で、基本構造体は合計19種類である。
19種類の基本構造体の中の数種類の例を次に示す。図6(a)は2台のメジャー子午焦点包囲楕円面鏡群のC−C結合体で、特に2台のメジャー子午焦点包囲楕円面鏡が同形の時補償構造体と呼ぶ。図6(b)は2台のメジャー子午焦点包囲楕円面鏡群のO−O結合体である。
一方、図12に、図6(e)のO−O−C−C−O−O構造について示す。図12は、図10と同様の断面図であり、試料有りの透過配置である。ただし、焦点貫通軸の周りで一方のO−O結合体を他方のO−O結合体に対して回転させようとすると、楕円体面鏡BE2とQE3が衝突してしまい反射測定はできない。
本実施の形態を図を参照して以下説明する。図14は、本実施の形態の光学測定装置の概略図である。本実施の形態の装置は、図13(a)を実現したものである。本実施の形態の装置は、図6(a)のように、2台の四分の一形状回転楕円体面鏡(QE3とQE4)をC−C型結合させて集光側回転楕円面鏡として、両端の焦点の一方(F0)に試料1を配置し、他方(F2)に検出系を配置する。入射側光学系は光源9とレンズ8を一体として、ゴニオメトリックに半空間を移動させながらF0焦点の試料を照射することで、特定の入射角度(θ:入射角度は天頂角度と同等)と方位角度(φ)に対する、試料からの発光、拡散反射光、拡散透過光等の空間分布と光量を検出系で測定する。本実施の形態の装置では、検出系は、四分の一空間(π空間)の放射光を測定できる。
本実施の形態を図を参照して以下説明する。図15は、本実施の形態の光学測定装置の概略図である。本実施の形態の光学測定装置は、4台の四分の一形状回転楕円体面鏡(QE1、QE2、QE3、QE4)からなり、それぞれ2台ずつ四分の一形状回転楕円体面鏡をC−C結合させ、このようにしてできた2組のC−C結合体をさらにO−O結合させたものである。一方のC−C結合体は他方のC−C結合体に対して焦点貫通軸の周りで回転可能な構造である。このO−O結合の共通焦点(F0)に試料を配置し、両端面の焦点(F1,F2)にそれぞれ検出系を配置して、試料からの放射光の空間分布と光量を測定する。試料は、自己発光試料、或いは外部からの電気的刺激や光励起等により発光する試料である。各々のC−C結合体は四分の一空間(π空間)の放射光分布を測定できるので、本実施の形態の装置は半球(2π)空間の放射光分布を一度に測定できる。
本実施の形態を図を参照して以下説明する。図16は、本実施の形態の光学測定装置の概略図である。本実施の形態の装置は、図16のように、集光側は、2台の四分の一形状回転楕円体面鏡をC−C結合(QE3とQE4で集光側回転楕円体面鏡を構成)させる。この結合面を副子午面と呼ぶ。入射側は、2台の二分の一帯形状回転楕円体面鏡をC−C結合(BE1とBE2で入射側回転楕円体面鏡を構成)させる。この2組のC−C結合体をO−O結合させて散乱計を構成する。焦点は全部で5個あり、これらは一直線上に並んでいる。この直線を焦点貫通軸と呼ぶ。5個の焦点に入射側からF1、F3、F0、F4、F2と命名する。F1焦点が北極で、F1焦点に回転ミラー3(RM1)を設置する。F2焦点が南極で、F2焦点に検出系を設置する。F3、F0とF4は共通焦点で、F0に試料1を配置する。F3とF4焦点はブランク(空)である。主子午面は焦点貫通軸を含み副子午面と直交する。
C−C結合された四分の一形状回転楕円体面鏡に対して、C−C結合された二分の一帯形状回転楕円体面鏡は焦点貫通軸の周りで360度以上回転可能(χ)である。また、C−C結合された四分の一形状回転楕円体面鏡は、C−C結合された二分の一帯形状回転楕円体面鏡に対して独立に自由に焦点貫通軸の周りで360度以上回転可能(η)である。このχの回転は試料への入射ビームの方位角度を変えることになる。この回転とは独立にF1焦点のRM1回転ミラーも、F1焦点の回りで360度以上回転可能(ψ)である。このψの回転により試料への入射角度を0〜90度まで連続的に変えることができる。なお、図では、回転楕円体面鏡の回転機構を省略してある。本実施の形態では、F1焦点の回転ミラー(RM1ミラー)3に外部から光を入射させ、RM1回転ミラー3で反射した光が二分の一帯形状回転楕円体面鏡2台(BE1とBE2)で2回反射されてF0焦点の試料を照射する。特定の入射角度(θ:入射角度は天頂角度と同等)に対する、試料からの発光、拡散反射光、拡散透過光等は、四分の一形状回転楕円体面鏡2台(QE3とQE4)で2回反射して、F2焦点に集光される。F2焦点に設置した検出系は、空間分布と光量を測定する。本実施の形態の検出器は、四分の一空間(π空間)の放射光分布を測定できる。この光学系は、θ/π測定系(図13(a))である。
本実施の形態を図を参照して以下説明する。図17は、本実施の形態の光学測定装置の概略図である。本実施の形態の装置は、4台の二分の一帯形状回転楕円体面鏡(BE1、BE2、BE3、BE4)からなり、それぞれ2台ずつ二分の一帯形状回転楕円体面鏡をC−C結合させ、このようにしてできた2組のC−C結合体をさらにO−O結合させたものである。O−O結合の共通焦点(F0)に試料1を配置し、両端の焦点のうち入射側回転楕円面鏡の焦点(F1)に回転ミラー(RM1)3を配置し、他方の集光側回転楕円面鏡の焦点(F2)に検出系或いは回転ミラー(RM2)23を配置する。この回転ミラー3を含んだ入射側回転楕円面鏡は、集光側回転楕円面鏡に対して焦点貫通軸の周りに360度以上回転できる構造である。また、集光側回転楕円面鏡も入射側回転楕円面鏡に対して360度以上自由に独立に回転できる構造である。F1焦点の回転ミラー(RM1ミラー)3に光源9からレンズ8を介して光を入射させ、回転ミラー3で反射した光が二分の一帯形状回転楕円体面鏡2台(BE1とBE2)で2回反射されてF0焦点の試料1を照射する。特定の入射角度(θ:入射角度は天頂角度と同等)と方位角度(φ)に対応する、試料1からの発光、正反射光、正透過光等は集光側回転楕円体面鏡2台(BE3とBE4)で2回反射して、F2焦点に集光される。F2焦点に直接設置した検出系或いはRM2ミラー23やレンズ28を介して検出器2で、光量を測定する。この装置では検出器2は、特定方向の放射光を測定できる。
第1及び第3の実施の形態は、θ/π測定系(図13(a))である。さらに、検出系と入射系(光源、レンズと回転ミラーからなる系)をそれぞれ入れ替えることで、π/θ測定系(図13(b))も可能である。
第3及び第4の実施の形態で、F1焦点の回転ミラーは、直接光源と置き換えることも可能である。しかし、楕円体面鏡内部での多重反射の影響(例えば、光源と試料の間の多重反射)を減らすためには、F1焦点には回転ミラーを置くことが有利である。これにより、F1焦点と試料の間での多重反射を減らせる。
第1、第2及び第3の実施の形態で、F2焦点の検出系に関しては、特許文献1と同様の構成を用いることができる。図18及び図5(b)に検出系の例を示す。F2焦点にアパーチャー(AP)14を取り付けた半球レンズ(HSL)4の中心を一致させて、さらにこのレンズ結像面にオプティカルファイバーテーパー(OFT)5の大口径面を一致させ、オプティカルファイバーテーパー5の小口径面をCCDカメラ6の画素面に一致させる(なお図5(a)(b)では戻り光を説明するためにOFTの小口径面とCCDカメラの面とをあえて離して図示している)。これにより試料からの散乱光の空間配光とその強度を測定する。
第1、第2及び第3の実施の形態で測定された測定結果から、図19に全半球反射率を正反射成分と拡散反射成分と混合反射成分へ分離する方法を示す。図19で、(a)はバックグラウンド測定、(b)は反射測定、(c)は反射測定にバックグラウンド測定を調整して合体工程、(d)は正反射成分と混合反射成分、(e)は完全拡散反射成分の分離、(f)は正反射成分の分離、(g)は混合反射成分の分離を説明する図である。試料無しのバックグラウンド配置(図11の配置で試料が無いとき)と試料有りの反射(透過)配置(図10と図11)の場合の空間分布と各点の強度を、CCDカメラ等でそれぞれ測定する。それぞれの場合のCCDカメラの各画素の全和(それぞれ、QBとQR)の比から、試料の全半球反射率(THR=QR/QB)を、まず求める。次に、すでにCCDカメラで測定した画像から、図19に模式的に示すように、バックグラウンドの配光分布と試料からの配光分布の差から、この全半球反射率を正反射率(RR)と完全拡散反射率(DR)と混合反射率(MR)に分離する。同様にして、試料の全半球透過率(THT)を、正透過率(RT)と完全拡散透過率(DT)と混合透過率(MT)に分離する。
第1乃至第4の本実施の形態では、迷光ノイズを従来と比較して格段に低減できる。従来の正反射・透過率計(図26)では、例えば透明な試料の反射率測定のときに、図26中の検出器2位置に配置されるRM2ミラーはこの反射光を検出器へ送る向きになる。しかし、試料を透過した透過光が、図26の帯形状回転楕円体面鏡の内部に存在する。反射測定の時に、この透過光が迷光となってノイズになる。本発明の補償構造体を集光側光学系に用いることは、図10と図11から明らかなように、反射測定配置の時には余分な透過光はQE4の背面で反射されて自由空間に逃げ、透過測定配置の時にも余分な反射光はQE4の背面で反射されて自由空間に逃げるので、迷光が発生しない。
第1、第2及び第3の実施の形態では、検出系として図5(b)、図18の検出系を用い、試料からπ空間に放射された光の分布と各方向での強度を測定する。散乱計にこれらの検出系を配置する時は、半球レンズ(HSL)の平面の中心にアパーチャー(AP)を取り付けて、その中心がF2焦点に一致して、このアパーチャーが副子午面と平行であるように配置する。このために、検出系がビームを遮蔽しないので、楕円面鏡の問題点(4)「光学素子によるビームの遮蔽の問題」を解決することができる。
第1乃至第4の本実施の形態で採用している補償構造体の対称性について考える。図20は補償構造体の対称性を説明するための図である。補償構造体はその共通焦点(F4)に関して点対称である。次に、焦点貫通軸(X軸方向の単位ベクトルx)と試料のF0焦点から任意方向に放射された光の進行方向(単位ポインティングベクトルk)の「2つのベクトルが作る平面」を考える。F0焦点を放射された光は回転楕円面鏡QE3で反射(この反射点をPと名付ける。)したのち、必ずF4焦点に達する。F4焦点はベクトルx上にあるので、P点とF4を結ぶ直線は「2つのベクトルが作る平面」上に乗っている。F4焦点を通過した光は、回転楕円体面鏡QE4で反射(この反射点をQと名付ける。)したのち、必ずF2焦点に達する。F2焦点はベクトルx上にあるので、Q点とF2を結ぶ直線は「2つのベクトルが作る平面」上に乗っている。その結果、光線F0Pと光線PF4Qと光線QF2は「2つのベクトルが作る平面」上に乗っている。この平面上で、角度PF4F0と角度QF4F2は対角であるので互いに等しい。QE3とQE4は、同等な回転楕円面鏡でF4を共通焦点としているので、辺F0F4と辺F2F4の長さが等しい。共通焦点F4は点対称な点であるので辺PF4と辺QF4は長さが等しい。よって、三角形F0PF4と三角形F2QF4は合同になり、角度F4F0Pと角度F4F2Qが等しくなるので、光線QF2の単位ポインティングベクトルは、最初にF0から放射された光線F0Pと同じ、単位ポインティングベクトルkになる。この結果、F2点はF0点と同等で、F0点での試料からの空間への光の分布は、F2点で測定される空間への光の分布と同等になっている。
第1乃至第4の本実施の形態では、マグニフィケーション問題が解決されることを、具体的に説明する。試料から検出系の間で散乱光が、図3の楕円面鏡の拡大領域と縮小領域で同数回反射される構造の例が、本発明の基本構造体である。実際の計算は第3の実施の形態の散乱計に関しておこなうが、全ての実施形態に当てはまる。主子午面内で最初のF1焦点に直径2mmの平行光線が主子午面に平行に入射した時の全ての焦点の副子午面内で焦点貫通軸方向のビームの大きさを計算した結果を、図21に示す。横軸はF1焦点へ入射する平行光線の天頂(入射)角度である。図中の太い実線は入射ビームの直径である。図中の点線は、F1焦点でのビームの大きさで、副子午面にビームが垂直入射すれば、その大きさは2mmであるが、入射角度が大きくなる(斜入射)に従い副子午面内でビームは長円形(図7)になり、この長径の変化を表している。図中の破線と実線は、それぞれF0焦点とF2焦点でのビームの大きさを計算で求めた結果を表している。さらに、図中の一点鎖線と二点鎖線は、それぞれF3とF4焦点でのビームの大きさを計算で求めた結果を表している。F1のビームの長径とF0とF2焦点でのビームの長径はほぼ同じ変化をしている。この結果は、楕円面鏡の問題点(1)の「マグニフィケーション問題」を解決している。一方、F3焦点とF4焦点でのビーム径は、F1焦点のビーム径の変化(点線)と全く異なっている。F3焦点とF4焦点に達した光は、第3の実施の形態を構成する回転楕円体面鏡で、奇数回しか反射していない。F3焦点とF4焦点ではマグニフィケーションが発生している。
上述の計算では、主子午面内で最初のF1焦点に直径2mmの平行光線が主子午面に平行に入射した時の全ての焦点の副子午面内で焦点貫通軸方向のビームの大きさの変化を調べた。次に、同じ主子午面内で最初のF1焦点に直径2mmの平行光線が主子午面に平行に入射した時の全ての焦点の副子午面内で焦点貫通軸に垂直方向(図7参照)のマグニフィケーションによる副子午面内のビームの長径の変化を調べた。この結果によれば、第3の実施の形態では全ての天頂(入射角度)でマグニフィケーションは発生していない。
楕円面鏡を用いた散乱計におけるF2焦点での像の歪の原因は、(原因1) 楕円面鏡の各点での曲率が異なるための歪と、(原因2) 楕円面鏡のマグニフィケーションによる歪、であると考えられる。
第1、第2及び第3の実施の形態での原因1による像の歪を、従来の特許文献1の散乱計(図27参照)の場合と比較して考察する。まず、主子午面内での像の歪を考える。像の歪を評価するためには、試料のF0焦点から任意の方向に放射されたビーム(θs)に対して、その前後±1度離れたビーム(θs−1とθs+1)が、F2焦点でどのように広がるか(或いは、狭まるか)を計算で求めればよい。ここで考えている3本のビームは共に、F0焦点から放射されたビームであるので、これらのビームは楕円面で反射されて必ずF2焦点に届く。この時、楕円の極座標表示でのF0焦点とF2焦点の間の角度の関係式を使うことで、基準のビームからの開き角度を計算する。楕円面積の各点の曲率が異なるための像の歪みの主子午面での計算の結果を図22に示す。従来の特許文献1の散乱計の場合の歪み率を、図22中の黒丸で示す。同様にして計算した第3の実施の形態の散乱計の場合の歪み率を、図22中の白丸で示す。特許文献1(図27)の散乱計では、試料からの散乱光の天頂角度(θs)が大きくなるに従い、像が拡大(歪み率が正であることは像が拡大)されている。一方、第3の実施の形態の散乱計では、像は歪まない。これは、上述の(補償構造体の対称性とF2焦点で観測される空間配光について)で考察したように、同形の子午焦点包囲楕円面鏡群から構成されるC−C結合体では、F2焦点で観測される像が一対一の正立像であることからも明らかである。
次に、赤道面に平行な面内での像の歪みを考える。主子午面に直行する方向では、特許文献1の散乱計と、第3の実施の形態の散乱計の両方において、像は歪まない。
この結果、従来の特許文献1(図27)の散乱計は、主子午面内では像が歪むが、直交方向では像は歪まない。一方、第1乃至第3の本実施の形態の散乱計では、両方向で像が歪まないことが分かった。
第1、第2及び第3の実施の形態では、本発明の補償構造体を用いているので、焦点近傍の光線に関してはマグニフィケーション問題を解消している。その結果、像の歪は発生しない。一方、従来の装置では、楕円面鏡のマグニフィケーションによる像の歪が発生している。
第1、第2及び第3の実施の形態の検出系の例として示した、半球レンズ、オプティカルファイバーテーパーとCCDカメラからなる検出系の場合(図5(b))における、反射光(図中の点線)の発生する可能性を調べる。半球レンズの平面Iに入射するビーム(PF2)は、QE4回転楕円体面鏡の点Pからの反射光である。半球レンズの平面Iでの反射光はQE4回転楕円体面鏡とは反対側に正反射されるので、QE4へ戻ることは無い。検出系の次の反射面は半球のドーム面IIからであるが、この面からの反射光の一部は半球レンズの平面Iを透過してQE4に戻る。このドーム面には無反射コーティング等を施すことで、ドーム面IIの反射光を減らすことができる。第3の反射面はオプティカルファイバーテーパーの大口径面IIIであるが、この部分からの反射光は鏡胴(アパーチャー、半球レンズ、オプティカルファイバーテーパー、CCDカメラを一体の構造体に作り上げている構造物)に向かう。仮に半球レンズのドーム面IIに達しても多くは鏡胴側に反射される。この第3の反射面からの反射光がQE4へ戻る量は小さい。第4の反射面はオプティカルファイバーテーパーの小口径面IVであるが、ここで反射された光はオプティカルファイバーテーパー中を戻って大口径面IIIを通過して半球レンズのドーム面IIで反射されることになり、多くは鏡胴側に反射されるので第4の反射面かの反射光がQE4へ戻る量は小さい。最後の反射面はCCDカメラの画素面(V)である。この部分からの反射は拡散反射的であると考えられ、仮にオプティカルファイバーテーパーを通過してもドーム面IIで多くは鏡胴側に反射されるのでその影響は小さい。これにより、上述の楕円面鏡の問題点(5)の「内部多重反射問題」を解決している。
第1乃至第4の本実施の形態で、2台の子午焦点包囲楕円体面鏡をC−C結合させていることで、アライメントに必要な3個の焦点(F0,F1,F2)は、図1及び2に示すようにすべて楕円面鏡の切断面1若しくは切断面5と切断面2の交線上にあり、長さを測定すること(一次元上の長さ測定)により、これらの焦点位置を、より容易に正確に同定できる。一方、従来は2次元の平面内で長さ測定をして焦点を探していたので、焦点位置の同定は困難であった。これにより、上述の楕円面鏡の問題点(6)の「ミスアライメント問題」を解決している。
(1)像の歪の測定
第3の実施の形態の光学測定装置を使用して、試料として「工学的手法による拡散板」(ソーラボ社製)でその拡散透過光がライン形状になるDE1−L4100を選び、光源はハロゲンランプの白色光で、その像を測定した。試料は副子午面に平行で、その散乱光が赤道面と平行になる配置で固定して行った。散乱板による像は、良いライン形状が観測できた。入射角度を変えて拡散板の像の縦横の長さ比を測定した。入射角度が40度を超えると像が圧縮されているが、これは検出系の周辺部の像の圧縮のためである。この結果から、第3の実施の形態の光学測定装置で測定した像に関しては、周辺部の像の圧縮を考慮して処理することで、試料からの配光分布を測定できることが解る。
図18の検出系では、試料からの散乱光を分光することなくCCDカメラで配光分布とそのときの強度を測定している。CCDカメラを取り除いて、オプティカルファイバーテーパーの小口径面に光ファイバーバンドルの一端を取り付けて、他端を分光器の入射スリットのところにレンズ等を介して取り付けることで、散乱光の分光測定が可能になる。この配置では、試料からπ空間に放射された散乱光を全て分光測定したことになる。一方、試料からある特定の方向に放射された散乱光(例えば、後方散乱、前方散乱、90度方向散乱)だけを分光したいときは、ライン状の光ファイバーバンドルを使って、小口径面上の特定の方向だけを集光すればよい。
上述の実施の形態で示した光学系の応用例について具体的に説明する。基本構造体の例として示した図6(a)のように、2台のメジャー子午焦点包囲楕円面鏡群のC−C結合体で、特に2台のメジャー子午焦点包囲楕円面鏡が同形の時補償構造体の例で説明する。図6に示した他の構造でも適宜応用できる。
図23に、本発明の光学系を半導体の露光装置の先端部分に設置した例を示す。従来、半導体露光装置の縮小投影レンズ先端とウェハの間は、約1mm程度に近接している。液浸露光技術では、この隙間に、液体(純粋等)を満たしている。液浸露光技術では、特に液体の扱いが困難である。例えば、ウェハを搭載するステージは露光動作時に高速で移動と急停止を繰り返している。このような状況でも液体を理想的静止状態に保たなくてはならない。また、液体の蒸発による気化熱が液体の温度を下げ露光の精度に誤差を生じさせるから、これも回避する手段を考えなくてはならない。上述のC−C結合体の光学系の、等倍率正立像を結像できる能力を利用して、図23のように、半導体の露光装置の先端部分に、C−C結合体の光学系を設置する。半導体露光装置の先端部の一例として、コンデンサーレンズ35とレチクル34と縮小投影レンズ33からなる部分を図23に示す。従来は縮小投影レンズ33の結像面に半導体ウェハを置いていたが、本発明の光学系では、縮小投影レンズ33と半導体のウェハ31の間に、本発明の光学系を入れる。図において、光学系は、2台の四分の一形状回転楕円体面鏡(QE3とQE4)をC−C型結合させて、両端の焦点の一方(F0)にウェハ31を配置し、他端の焦点F2を縮小投影レンズの結像面に一致させる。液浸をさせる場合には、ダミーの試料として石英板をF2焦点に置く。これによりウェハは、露光装置と切り離され、以前よりウェハの扱いが楽になる。さらにウェハ周りに広い作業空間ができるので、ウェハに対して追加のアプローチが可能になる。
図24に、本発明の光学系を顕微鏡の先端部分に設置した例を示す。顕微鏡においては、対物レンズと試料の間は近いほど、明るく大きな拡大率を実現できるが、近くすることが困難な場合も多い。図において、光学系は、2台の四分の一形状回転楕円体面鏡(QE3とQE4)をC−C型結合させて、両端の焦点の一方(F0)に試料1を配置する。顕微鏡の先端部分を構成する接眼レンズ44と視野絞り43と対物レンズ42において、対物レンズ42と試料1の間に、本光学系を入れる。回転楕円体面鏡の組は、F0焦点の物体の等倍率正立像をF2焦点に結像できる。顕微鏡の対物レンズ42の焦点はF2焦点に一致させれば、試料の拡大像を接眼レンズを通して観測できる。この構造から明らかなように、試料周りに広い作業空間(顕微鏡では数ミリであるが、この光学系では100mm以上)を確保できる。試料に対して外部からのアプローチが容易になる。例えば、医療機関で、手術部位をF0焦点に置き、医師は顕微鏡システムで拡大された画像を見ながら細かい血管や神経の縫合を行なうことができる。また、本光学系は、開口数が大きいので非常に明るく、さらに焦点深度が浅いので、試料の深さ方向の空間分解能が、従来より1桁高分解能になる。
図25に、本発明の光学系をカメラのレンズ系の代わりに利用した例を示す。図において、光学系は、2台の四分の一形状回転楕円体面鏡(QE3とQE4)をC−C型結合させて、両端の焦点の一方(F0)又はF4焦点に絞り手段を設置し、他方の焦点(F2)又はその近傍に、記録装置52(フィルム、CCDカメラのセンサー部分、又は追加のレンズ系)を置くと、F0焦点の外部の4分の1空間を撮影できるカメラになる。楕円面鏡と記録媒体は暗箱に入れる。絞りを通して撮影できる範囲は、本図で焦点貫通軸のF0を原点として光学系から離れる方向をX方向、焦点貫通軸に直交する上方向をZ方向とするとき、X>0かつZ<0の領域(斜線部分)、つまり4分の1空間である。
本光学系は、上述のように広い視野を持つので、本光学系とそのF2焦点の検出器部分にCCDカメラを備えた系を、車体の側面や背面に取付けることで、従来死角となっていた空間も死角なしでモニターできる。
2 検出器
3、7、23 ミラー
4 半球レンズ
5 オプティカルファイバーテーパー
6 CCDカメラ
8、28 レンズ
9 光源
11 帯状回転楕円体面鏡
12 四分の一形状回転楕円体面鏡
14 アパーチャー
31 ウェハ
32 石英版
33 縮小投影レンズ
34 レチクル
35 コンデンサーレンズ
42 対物レンズ
43 視野絞り
44 接眼レンズ
52 記録装置
QE 四分の一形状回転楕円体面鏡
BE 二分の一帯形状回転楕円体面鏡
Claims (5)
- 第1の楕円面鏡と第2の楕円面鏡とを備える光学測定装置であって、
第1及び第2の楕円面鏡は、
それぞれ、2つの焦点を含む子午面と、該楕円の2つの焦点を結ぶ長軸に垂直で1つの焦点を通る焦点直交面を備え、
該楕円面鏡の長軸上の頂点から遠い焦点を第1焦点、近い焦点を第2焦点とするとき、
第1の楕円面鏡の第2焦点と、第2の楕円面鏡の第2焦点とが一致して第1共通焦点をなすように配置され、一致しない第1の楕円面鏡の第1焦点及び第2の楕円面鏡の第1焦点と前記第1共通焦点とが直線上になるように配置されることを特徴とする光学測定装置。 - 第1の回転楕円体面鏡と第2の回転楕円体面鏡とを備える光学測定装置であって、
第1及び第2の回転楕円体面鏡は、それぞれ、2つの焦点を含む子午面と、該楕円の2つの焦点を結ぶ長軸に垂直で1つの焦点を通る焦点直交面を備え、
該回転楕円体面鏡の長軸上の頂点から遠い焦点を第1焦点、近い焦点を第2焦点とするとき、
第1の回転楕円体面鏡の第2焦点と、第2の回転楕円体面鏡の第2焦点とが一致して第1共通焦点をなすように配置され、一致しない第1の回転楕円体面鏡の第1焦点及び第2の回転楕円体面鏡の第1焦点と前記第1共通焦点とが直線上になるように配置されることを特徴とする光学測定装置。 - 前記第1及び第2の回転楕円体面鏡は、四分の一形状回転楕円体面鏡又は二分の一帯形状回転楕円体面鏡であることを特徴とする請求項2記載の光学測定装置。
- 前記第1の回転楕円体面鏡と前記第2の回転楕円体面鏡と第3の回転楕円体面鏡と第4の回転楕円体面鏡とを備え、
第3及び第4の回転楕円体面鏡は、それぞれ、2つの焦点を含む子午面と、該楕円の2つの焦点を結ぶ長軸に垂直で1つの焦点を通る焦点直交面を備え、
該回転楕円体面鏡の長軸上の頂点から遠い焦点を第3焦点、近い焦点を第4焦点とするとき、
第3の回転楕円体面鏡の第4焦点と、第4の回転楕円体面鏡の第4焦点とが一致して第2共通焦点をなすように配置され、
第3の回転楕円体面鏡の第3焦点と第1又は第2の回転楕円体面鏡の第1焦点とが一致して第3共通焦点をなすように配置され、
すべての焦点が直線上になるように焦点貫通軸上に配置されていることを特徴とする請求項2記載の光学測定装置。 - 第1の楕円面鏡と第2の楕円面鏡とを備える装置であって、
第1及び第2の楕円面鏡は、
それぞれ、2つの焦点を含む子午面と、該楕円の2つの焦点を結ぶ長軸に垂直で1つの焦点を通る焦点直交面を備え、
該楕円面鏡の長軸上の頂点から遠い焦点を第1焦点、近い焦点を第2焦点とするとき、
第1の楕円面鏡の第2焦点と、第2の楕円面鏡の第2焦点とが一致して第1共通焦点をなすように配置され、一致しない第1の楕円面鏡の第1焦点及び第2の楕円面鏡の第1焦点と前記第1共通焦点とが直線上になるように配置される光学系を備えることを特徴とする装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013214920 | 2013-10-15 | ||
JP2013214920 | 2013-10-15 | ||
PCT/JP2014/077088 WO2015056628A1 (ja) | 2013-10-15 | 2014-10-09 | 光学測定装置及び光学系を備える装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015056628A1 JPWO2015056628A1 (ja) | 2017-03-09 |
JP6153119B2 true JP6153119B2 (ja) | 2017-06-28 |
Family
ID=52828074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015542590A Expired - Fee Related JP6153119B2 (ja) | 2013-10-15 | 2014-10-09 | 光学測定装置及び光学系を備える装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160252451A1 (ja) |
EP (1) | EP3059574A4 (ja) |
JP (1) | JP6153119B2 (ja) |
WO (1) | WO2015056628A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102038518B1 (ko) * | 2018-10-31 | 2019-10-31 | 주식회사 비욘드아이즈 | 광 경로 연장 장치 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101486282B1 (ko) * | 2014-01-07 | 2015-01-27 | 한국표준과학연구원 | 고속 측각 분광복사계 및 그 측정방법 |
DE102016107336B4 (de) * | 2016-04-20 | 2017-11-02 | Carl Zeiss Industrielle Messtechnik Gmbh | Koordinatenmessgerät, Verfahren zur Herstellung eines Koordinatenmessgeräts und Verfahren zur Messung eines optischen Filters |
EP3385685A1 (en) * | 2017-04-06 | 2018-10-10 | ASML Netherlands B.V. | Radiation receiving system |
JP6843778B2 (ja) * | 2018-01-15 | 2021-03-17 | 株式会社東芝 | 物体の表面検査装置 |
DE102018215587A1 (de) * | 2018-09-13 | 2020-03-19 | Osram Opto Semiconductors Gmbh | Strahlleitende kavitätsstrukur, gassensor und verfahren zum herstellen der derselben |
FR3095517B1 (fr) * | 2019-04-25 | 2021-05-14 | Elichens | Capteur de gaz compact |
JP7277264B2 (ja) * | 2019-06-05 | 2023-05-18 | キヤノン株式会社 | 判別装置及び画像形成装置 |
US11499817B2 (en) * | 2020-05-29 | 2022-11-15 | Mitutoyo Corporation | Coordinate measuring machine with vision probe for performing points-from-focus type measurement operations |
CN112146770B (zh) * | 2020-09-24 | 2021-09-28 | 华北电力大学 | 一种基于共焦点反射原理的被动式辐射测温装置及方法 |
CN114486790B (zh) | 2020-10-28 | 2023-10-20 | 旭化成微电子株式会社 | 气体检测装置 |
WO2023283742A1 (en) * | 2021-07-14 | 2023-01-19 | Westboro Photonics Inc. | Imager and spot sampler with translatable stage |
WO2023186538A1 (en) * | 2022-03-30 | 2023-10-05 | ams Sensors Germany GmbH | Optical arrangement for optoelectronic reflective measurement |
CN114813645A (zh) * | 2022-04-27 | 2022-07-29 | 泉州装备制造研究所 | 一种基于光散射的光学检测方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2819649A (en) * | 1956-02-01 | 1958-01-14 | Eastman Kodak Co | Reflecting condenser system for projectors |
US4095905A (en) * | 1975-08-20 | 1978-06-20 | Hitachi, Ltd. | Surface-defect detecting device |
US4189236A (en) * | 1978-03-20 | 1980-02-19 | Coulter Electronics, Inc. | Ellipsoid-conic radiation collector and method |
JPH0756474B2 (ja) * | 1989-10-12 | 1995-06-14 | 日立電線株式会社 | 線材表面欠陥検出器 |
US5210418A (en) | 1991-09-19 | 1993-05-11 | Harrick Scientific Corp. | Ultra-small sample analyzer for internal reflection spectroscopy |
DE69830598T2 (de) * | 1997-01-31 | 2006-05-18 | The Horticulture And Food Research Institute Of New Zealand Limited | Optische vorrichtung und methode |
JP4168543B2 (ja) * | 1998-10-08 | 2008-10-22 | 株式会社ニコン | 光学特性測定ユニット |
US7513630B2 (en) * | 2000-03-27 | 2009-04-07 | Wavien, Inc. | Compact dual ellipsoidal reflector (DER) system having two molded ellipsoidal modules such that a radiation receiving module reflects a portion of rays to an opening in the other module |
JP2002162350A (ja) * | 2000-11-22 | 2002-06-07 | Hitachi Ltd | 蛍光測定装置 |
JP2002277394A (ja) * | 2001-03-15 | 2002-09-25 | Mitsuo Takeda | 誘電体物質の光物性定数の光学的測定方法及びその装置並びにその装置を組み込んだ製造システム |
JP3637393B2 (ja) | 2002-07-09 | 2005-04-13 | 独立行政法人産業技術総合研究所 | 入射角度可変の絶対反射率と絶対透過率測定光学系 |
DE102005003557A1 (de) * | 2005-01-26 | 2006-08-17 | Carl Zeiss Smt Ag | Optisches Element für eine Mikrolithographieeinrichtung zur Erzeugung von 0,05 µm-Strukturen |
JP5263783B2 (ja) * | 2009-05-26 | 2013-08-14 | 独立行政法人産業技術総合研究所 | 光学特性測定装置及び測定方法 |
JP5721070B2 (ja) * | 2011-03-08 | 2015-05-20 | 国立研究開発法人産業技術総合研究所 | 光学特性測定装置 |
JP2013002966A (ja) * | 2011-06-16 | 2013-01-07 | Ngk Spark Plug Co Ltd | 非分散型赤外ガスセンサ |
-
2014
- 2014-10-09 WO PCT/JP2014/077088 patent/WO2015056628A1/ja active Application Filing
- 2014-10-09 US US15/028,990 patent/US20160252451A1/en not_active Abandoned
- 2014-10-09 JP JP2015542590A patent/JP6153119B2/ja not_active Expired - Fee Related
- 2014-10-09 EP EP14854271.5A patent/EP3059574A4/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102038518B1 (ko) * | 2018-10-31 | 2019-10-31 | 주식회사 비욘드아이즈 | 광 경로 연장 장치 |
Also Published As
Publication number | Publication date |
---|---|
US20160252451A1 (en) | 2016-09-01 |
JPWO2015056628A1 (ja) | 2017-03-09 |
EP3059574A1 (en) | 2016-08-24 |
WO2015056628A1 (ja) | 2015-04-23 |
EP3059574A4 (en) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6153119B2 (ja) | 光学測定装置及び光学系を備える装置 | |
JP5721070B2 (ja) | 光学特性測定装置 | |
CN102124299B (zh) | 形状、倾斜度检测和/或计测光学装置和方法及其关联装置 | |
CN101566499B (zh) | 一种测量表面双向反射分布的系统 | |
JP5263783B2 (ja) | 光学特性測定装置及び測定方法 | |
Meyen et al. | A new instrument for measuring the reflectance distribution function of solar reflector materials | |
TWI649535B (zh) | Optical element characteristic measuring device | |
CN110702682A (zh) | 一种干涉-散射增强模式下的暗场显微镜 | |
JPH04353800A (ja) | 軟x線顕微鏡 | |
CN209043571U (zh) | 机载三光轴一致性测试组件及测试系统 | |
CN103698897B (zh) | 一种红外/可见双波段光电自准直系统 | |
CN105181303B (zh) | 无限远共轭距显微物镜杂散光测试仪及测试精度调节方法 | |
Kawate et al. | New scatterometer for spatial distribution measurements of light scattering from materials | |
Zou et al. | Synchronous measurement method of a multi-angle scattered light field | |
CN210894137U (zh) | 一种干涉-散射增强模式下的暗场显微镜 | |
CN107830992A (zh) | 一种用于点源透射比测试的光陷阱系统 | |
JP2006047780A (ja) | 赤外顕微鏡 | |
JP2007508532A (ja) | 物体からの光強度を測定する携帯型装置とそのような装置の用途 | |
CN206223209U (zh) | 光学机构和光学测量仪 | |
CN103235409B (zh) | 基于光栅衍射的大口径望远镜装置 | |
CN102901048A (zh) | 反射罩、照明装置、检测/测量装置及检测/测量方法 | |
RU2547891C1 (ru) | Осветительный узел малогабаритного спектрофотометра | |
CN118149967B (zh) | 采用双光轴平行光管的辐射光谱仪同光轴装调系统及方法 | |
CN109580183A (zh) | 大数值孔径显微物镜波像差测量系统和测量方法 | |
JP2515893B2 (ja) | 結像型x線顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6153119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |