JP6149528B2 - Lead material - Google Patents
Lead material Download PDFInfo
- Publication number
- JP6149528B2 JP6149528B2 JP2013126447A JP2013126447A JP6149528B2 JP 6149528 B2 JP6149528 B2 JP 6149528B2 JP 2013126447 A JP2013126447 A JP 2013126447A JP 2013126447 A JP2013126447 A JP 2013126447A JP 6149528 B2 JP6149528 B2 JP 6149528B2
- Authority
- JP
- Japan
- Prior art keywords
- copper plate
- conductor
- lead member
- less
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title description 5
- 229910052802 copper Inorganic materials 0.000 claims description 62
- 239000010949 copper Substances 0.000 claims description 62
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 61
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 61
- 239000004020 conductor Substances 0.000 claims description 36
- 229910052759 nickel Inorganic materials 0.000 claims description 30
- 230000003746 surface roughness Effects 0.000 claims description 23
- 238000005096 rolling process Methods 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 239000011247 coating layer Substances 0.000 claims description 15
- 239000008151 electrolyte solution Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 238000003466 welding Methods 0.000 description 12
- 238000007747 plating Methods 0.000 description 9
- 239000011255 nonaqueous electrolyte Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
- H01M50/557—Plate-shaped terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本発明は、非水電解液蓄電デバイスに使用されるリード部材に関する。 The present invention relates to a lead member used for a nonaqueous electrolyte storage device.
電子機器の小型化と共に電源としての電池の小型化、軽量化が求められている。また、高エネルギー密度化、高エネルギー効率化に対する要求もあり、このような要求を満たすものとして、リチウムイオン電池などの非水電解質電池への期待が高まっている。 Along with downsizing of electronic devices, downsizing and lightening of a battery as a power source are required. In addition, there are also demands for higher energy density and higher energy efficiency, and expectations for non-aqueous electrolyte batteries such as lithium ion batteries are increasing to meet such demands.
図3は、従来の非水電解質電池の構成例を示す斜視図である。図3(A)は積層電極群を外装ケースから取り外した状態を示した図で、図3(B)は積層電極群を外装ケースに装着した状態を示した図である。非水電解質電池101は、積層電極群102、正極リード103、負極リード104、樹脂フィルム(樹脂シート)105,106、並びに外包体としての外装ケース107を備える。
FIG. 3 is a perspective view showing a configuration example of a conventional nonaqueous electrolyte battery. FIG. 3A is a view showing a state in which the laminated electrode group is removed from the outer case, and FIG. 3B is a view showing a state in which the laminated electrode group is attached to the outer case. The
上記の負極リード104として、例えば、銅板にニッケル被覆層が形成された導体を有し、導体の両面に絶縁樹脂フィルムを貼り合わし、さらに、ニッケル被覆層の表面粗さRaを0.03〜0.5μmとしたものが知られている(例えば、特許文献1参照)。これにより、導体と絶縁樹脂フィルムとの密着性を向上させることができる。
For example, the
上記の非水電解質電池は、例えば、電気自動車の車載用電源として用いられる場合、大きな電流が必要となるため、通常、単電池同士を電気的に接続して構成される。すなわち、複数の単電池の正極リード同士及び負極リード同士がそれぞれ超音波溶接などの方法により接続される。 For example, when the non-aqueous electrolyte battery is used as a vehicle-mounted power source for an electric vehicle, a large current is required, and thus, the cells are usually configured by electrically connecting the cells. That is, the positive electrode leads and the negative electrode leads of the plurality of single cells are connected by a method such as ultrasonic welding.
車載用途では、振動や熱などが断続的に加わる過酷な環境で使用されるため、より高い信頼性が要求される。特に、電気的な接点となる銅板同士の溶接強度を表す超音波溶接性(単に溶接性ともいう)は重要となる。この溶接性(溶接強度)を改善する一つの方法として、表面粗さを小さくする(つまり、表面の平滑性を高める)ことが有効であると考えられる。 For in-vehicle use, higher reliability is required because it is used in a harsh environment in which vibration or heat is intermittently applied. In particular, ultrasonic weldability (also simply referred to as weldability) representing the welding strength between copper plates that serve as electrical contacts is important. As one method for improving the weldability (weld strength), it is considered effective to reduce the surface roughness (that is, increase the smoothness of the surface).
しかしながら、上記特許文献1に記載の技術では、銅板の表面粗さは0.1μmで比較的大きく、銅板に施されたニッケル被覆層の表面粗さRaも0.03〜0.5μmで比較的大きい。銅板の表面粗さRaが比較的大きい場合には、平滑性を得るために、ニッケル被覆層をある程度厚くする必要がある。また、銅板の表面が硬いほど溶接強度が向上するため望ましいが、特許文献1には、このような鋼板の表面硬度について何ら開示されていない。 However, in the technique described in Patent Document 1, the surface roughness of the copper plate is relatively large at 0.1 μm, and the surface roughness Ra of the nickel coating layer applied to the copper plate is also relatively 0.03 to 0.5 μm. large. When the surface roughness Ra of the copper plate is relatively large, in order to obtain smoothness, it is necessary to thicken the nickel coating layer to some extent. In addition, although the harder the surface of the copper plate is, the better the welding strength is. However, Patent Document 1 does not disclose any surface hardness of such a steel plate.
本発明は、上述のような実情に鑑みてなされたもので、ニッケル被覆層を厚くすることなく、溶接性(溶接強度)等に優れたリード部材を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a lead member having excellent weldability (welding strength) and the like without increasing the thickness of the nickel coating layer.
本発明によるリード部材は、銅板にニッケル被覆層が形成された導体を有し、導体の両面に絶縁樹脂フィルムを貼り合わせてなるリード部材であって、銅板の表面粗さRaが、圧延の長さ方向に0.03μm以下で且つ圧延の幅方向に0.05μm以下であり、銅板の表面のビッカース硬度が、60HV以上であり、ニッケル被覆層の厚さが、3.0μm以下である。 A lead member according to the present invention is a lead member having a conductor in which a nickel coating layer is formed on a copper plate, and having an insulating resin film bonded to both sides of the conductor, and the surface roughness Ra of the copper plate has a long rolling length. It is 0.03 μm or less in the length direction and 0.05 μm or less in the width direction of rolling, the Vickers hardness of the surface of the copper plate is 60 HV or more, and the thickness of the nickel coating layer is 3.0 μm or less.
また、銅板の表面粗さRaが、圧延の長さ方向及び圧延の幅方向共に、0.02μm以上であることが好ましい。
また、銅板の表面のビッカース硬度が、該銅板の内部のビッカース硬度よりも5HV以上大きいことが好ましい。
また、銅板の表面のビッカース硬度が、100HV以下であることが好ましい。
また、導体の厚さが、0.1mm以上であることが好ましい。
Further, the surface roughness Ra of the copper plate is preferably 0.02 μm or more in both the rolling length direction and the rolling width direction.
Moreover, it is preferable that the Vickers hardness of the surface of a copper plate is 5HV or more larger than the Vickers hardness inside this copper plate.
Moreover, it is preferable that the Vickers hardness of the surface of a copper plate is 100 HV or less.
Moreover, it is preferable that the thickness of a conductor is 0.1 mm or more.
本発明によれば、銅板の表面粗さRaを、圧延の長さ方向に0.03μm以下で且つ圧延の幅方向に0.05μm以下とし、銅板表面のビッカース硬度を、60HV以上とし、ニッケル被覆層の厚さを、3.0μm以下とすることにより、ニッケル被覆層を厚くすることなく、溶接性(溶接強度)等を向上させることができる。 According to the present invention, the surface roughness Ra of the copper plate is 0.03 μm or less in the rolling length direction and 0.05 μm or less in the rolling width direction, the Vickers hardness of the copper plate surface is 60 HV or more, and the nickel coating By setting the layer thickness to 3.0 μm or less, weldability (welding strength) and the like can be improved without increasing the thickness of the nickel coating layer.
以下、添付図面を参照しながら、本発明のリード部材に係る好適な実施の形態について説明する。
図1は、本発明によるリード部材の一例を示す図である。図中、1はリード部材、2は導体、3は絶縁樹脂フィルム、4は外装ケース、5は多層フィルムを示す。このリード部材1は、非水電解質電池に用いられる負極側のタブリードとして例示され、銅板(銅箔)にニッケル被覆層(ニッケルメッキ)が形成された平形の導体2を有し、図1(A),(B)に示すように、導体2の両面に絶縁樹脂フィルム3を貼り合わせてなる。
Hereinafter, preferred embodiments of the lead member of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a view showing an example of a lead member according to the present invention. In the figure, 1 is a lead member, 2 is a conductor, 3 is an insulating resin film, 4 is an exterior case, and 5 is a multilayer film. This lead member 1 is exemplified as a tab lead on the negative electrode side used in a nonaqueous electrolyte battery, and has a
非水電解質電池の導体は、正極板及び負極板にそれぞれ接続され外部への接続導体となる。図1の導体2は、上記したように、負極側に接続されるもので、電解質(例えば、リチウム化合物)の過充電等で析出したリチウムに腐食されず、リチウムとの合金を形成されにくく、且つ高電位で溶解されにくい電極板と同じニッケルメッキ銅で形成される。なお、正極側に接続される導体は、電解液との接触により溶解が生じないように、電極板と同じアルミあるいはその合金で形成される。
The conductor of the nonaqueous electrolyte battery is connected to the positive electrode plate and the negative electrode plate, respectively, and serves as a connection conductor to the outside. As described above, the
絶縁樹脂フィルム3は、リード部材1が外装ケース4にヒートシールされて封着される部分に設けられ、1層または2層の樹脂層を有する樹脂フィルムを導体2の両面を挟むように接着または融着により貼り付けて形成される。この絶縁樹脂フィルム3としては、例えば、マレイン酸変性ポリオレフィンの樹脂フィルムが用いられる。また、絶縁樹脂フィルム3が2層で形成される場合、図1(B)に示すように、導体2と接する内側の接着層3aに低融点の材質、外側の絶縁層3bに外装ケース4とのヒートシールの際に溶融しない高融点の材質が用いられる。
The
外装ケース4は、図1(C)に示すように、最内層のフィルム5aと最外層のフィルム5bとの間に金属箔層5cをサンドイッチ状に貼り合わせた密封性の高い多層フィルム5を袋状にして形成されている。多層フィルム5は、アルミ、銅、ステンレス等の金属からなる金属箔層5cを含む3〜5層の積層体で形成される。最内層のフィルム5aは、電解液で溶解されず封着部分から電解液が漏出しないように、例えば、絶縁樹脂フィルム3と同様のマレイン酸変性ポリオレフィンの樹脂フィルムが用いられる。また、最外層のフィルム5bは、金属箔層5cを外傷等から保護するためのもので、ポリエチレンテレフタレート(PET)等で形成されている。
As shown in FIG. 1 (C), the outer case 4 is a bag having a highly sealed multilayer film 5 in which a
本発明の主たる目的は、ニッケル被覆層を厚くすることなく、溶接性(溶接強度)等に優れたリード部材を提供することにある、このための構成として、本発明のリード部材1は、導体2の銅板(ニッケル被覆前の銅板)の表面粗さRaが、圧延の長さ方向(以下、MD方向という)に0.03μm以下で且つ圧延の幅方向(以下、TD方向という)に0.05μm以下であり、銅板(ニッケル被覆前の銅板)の表面のビッカース硬度が、60HV以上であり、ニッケル被覆層の厚さが、3.0μm以下とした。この銅板は、バフ研磨またはスキンパス等の方法による表面処理を含む圧延加工により生成される。 The main object of the present invention is to provide a lead member excellent in weldability (welding strength) and the like without increasing the thickness of the nickel coating layer. As a configuration for this purpose, the lead member 1 of the present invention is a conductor. The surface roughness Ra of the copper plate 2 (copper plate before nickel coating) is 0.03 μm or less in the rolling length direction (hereinafter referred to as MD direction) and 0.03 in the width direction of rolling (hereinafter referred to as TD direction). The Vickers hardness of the surface of the copper plate (copper plate before nickel coating) was 60 HV or more, and the thickness of the nickel coating layer was 3.0 μm or less. This copper plate is produced by a rolling process including surface treatment by a method such as buffing or skin pass.
なお、本発明でいうMD(Machine Direction)方向とは、圧延ロールの回転(長さ)方向(銅板の長手方向)であり、TD(Transverse Direction)方向とは、圧延ロールの幅方向(銅板の幅方向)である。また、表面粗さRaは、JIS B0601で定義される算術平均粗さである。 The MD (Machine Direction) direction referred to in the present invention is the rotation (length) direction of the rolling roll (longitudinal direction of the copper plate), and the TD (Transverse Direction) direction is the width direction of the rolling roll (copper plate direction). Width direction). The surface roughness Ra is an arithmetic average roughness defined by JIS B0601.
上記構成によれば、ニッケル被覆前の銅板の表面粗さRaを小さくすることで、ニッケル被覆層を厚くしなくても導体表面の平滑性が良好となるため、導体同士の溶接強度を向上させることができる。また、銅板表面のビッカース硬度を大きくすることで、さらに、導体同士の溶接強度の向上を図ることができる。また、導体表面を平滑にすることで、絶縁樹脂フィルムが密着し易くなるため、毛細管現象により電解液が吸い上がりにくく、耐電解液性の向上を図ることができる。 According to the above configuration, by reducing the surface roughness Ra of the copper plate before nickel coating, the smoothness of the conductor surface is improved without increasing the thickness of the nickel coating layer, thereby improving the welding strength between the conductors. be able to. Further, by increasing the Vickers hardness of the copper plate surface, it is possible to further improve the welding strength between the conductors. In addition, since the insulating resin film is easily adhered by smoothing the conductor surface, the electrolytic solution is hardly sucked up by the capillary phenomenon, and the resistance to the electrolytic solution can be improved.
また、銅板の表面粗さRaは、MD方向及びTD方向共に、0.02μm以上であることが好ましい。表面粗さRaを小さくするには圧延ローラ目を細かくすればよい。しかしながら、表面粗さRaを0.02μmより小さくする場合、圧延処理に加え、さらに、エッチング等の他の処理を追加する必要があるため現実的には難しい。従って、表面粗さRaを0.02μm以上とすることで、圧延ローラ目の調整だけですみ、他の追加処理が不要となる。 Further, the surface roughness Ra of the copper plate is preferably 0.02 μm or more in both the MD direction and the TD direction. In order to reduce the surface roughness Ra, the rolling roller may be made finer. However, when the surface roughness Ra is made smaller than 0.02 μm, it is practically difficult because it is necessary to add another process such as etching in addition to the rolling process. Therefore, by setting the surface roughness Ra to 0.02 μm or more, it is only necessary to adjust the rolling roller mesh, and no other additional processing is required.
また、銅板の表面のビッカース硬度が、銅板の内部のビッカース硬度よりも5HV以上大きいことが好ましい。具体的には、銅板として、焼きなまし処理を施したO材(ビッカース硬度45〜55HV)を用いており、表面だけが60HV以上のビッカース硬度となるように、加工している。ここで、銅板の表面硬度は、圧延による加工率を変化させることで制御することができる。低い加工率では表層部のみが硬化するため、表面だけが60HV以上となるように加工率を設定すればよい。 Moreover, it is preferable that the Vickers hardness of the surface of a copper plate is 5HV or more larger than the Vickers hardness inside a copper plate. Specifically, an annealed O material (Vickers hardness of 45 to 55 HV) is used as the copper plate, and processing is performed so that only the surface has a Vickers hardness of 60 HV or higher. Here, the surface hardness of the copper plate can be controlled by changing the processing rate by rolling. Since only the surface layer portion is cured at a low processing rate, the processing rate may be set so that only the surface is 60 HV or higher.
また、銅板の表面硬度を100HVより大きくすることも可能であるが、圧延の加工率を上げて表面硬度を上げ過ぎると、内部硬度も上がり、銅板としてO材の仕様を満足することができなくなる。このため、銅板の表面のビッカース硬度は、100HV以下であることが好ましい。 Also, the surface hardness of the copper plate can be made larger than 100 HV. However, if the surface hardness is increased by increasing the rolling processing rate, the internal hardness also increases, and the copper plate cannot satisfy the specifications of the O material. . For this reason, it is preferable that the Vickers hardness of the surface of a copper plate is 100 HV or less.
また、図1において、導体2の厚さ、つまり、銅板の厚さとニッケル被覆層の厚さとを合計した厚さが、0.1mm以上であることが好ましく、より好ましくは、0.15mm以上である。これは、車載用途の場合、前述したように、高い信頼性が要求されるため、導体をある程度厚くする必要があるためである。
Further, in FIG. 1, the thickness of the
図2は、本発明によるリード部材の溶接性及び耐電解液性の評価試験の結果を示す図である。以下では、リード部材の導体(ニッケルメッキ銅板)について、実施例1〜3、比較例1の各試料を作製し、溶接性(溶接強度)及び耐電解液性を評価した。実施例1の導体は、銅板の表面粗さRaがMD方向に0.02μm、TD方向に0.03μm、銅板の表面硬度が60HV、銅板自体の硬度(銅板内部の硬度)が55HVである。実施例2の導体は、銅板の表面粗さRaがMD方向に0.03μm、TD方向に0.05μm、銅板の表面硬度が65HV、銅板自体の硬度(銅板内部の硬度)が55HVである。実施例3の導体は、銅板の表面粗さRaがMD方向に0.02μm、TD方向に0.03μm、銅板の表面硬度が100HVである。また、比較例1の導体は、銅板の表面粗さRaがMD及びTD共に0.07μm、銅板の表面硬度が50HV、銅板自体の硬度(銅板内部の硬度)も50HVである。 FIG. 2 is a diagram showing the results of an evaluation test of weldability and electrolytic solution resistance of a lead member according to the present invention. Below, about the conductor (nickel plating copper plate) of a lead member, each sample of Examples 1-3 and the comparative example 1 was produced, and weldability (welding strength) and electrolyte solution resistance were evaluated. In the conductor of Example 1, the surface roughness Ra of the copper plate is 0.02 μm in the MD direction, 0.03 μm in the TD direction, the surface hardness of the copper plate is 60 HV, and the hardness of the copper plate itself (the hardness inside the copper plate) is 55 HV. In the conductor of Example 2, the surface roughness Ra of the copper plate is 0.03 μm in the MD direction, 0.05 μm in the TD direction, the surface hardness of the copper plate is 65 HV, and the hardness of the copper plate itself (the hardness inside the copper plate) is 55 HV. In the conductor of Example 3, the surface roughness Ra of the copper plate is 0.02 μm in the MD direction, 0.03 μm in the TD direction, and the surface hardness of the copper plate is 100 HV. In the conductor of Comparative Example 1, the surface roughness Ra of the copper plate is 0.07 μm for both MD and TD, the surface hardness of the copper plate is 50 HV, and the hardness of the copper plate itself (the hardness inside the copper plate) is 50 HV.
(溶接性試験)
厚さ0.15mmの導体(ニッケルメッキ銅板)と、厚さ0.15mmのニッケル板(ニッケル箔)とを超音波溶接した各試料に対して、180°剥離試験を行った。剥離されたときの力(剥離力)を測定し、剥離力が80N以上であれば合格を示す「○」、80N未満であれば不合格を示す「×」とした。本試験では、実施例1のニッケルメッキの厚みは1.0μm、実施例2のニッケルメッキの厚みは2.0μm、実施例3のニッケルメッキの厚みは1.0μm、比較例1のニッケルメッキの厚みは2.0μmとした。
(Weldability test)
A 180 ° peel test was performed on each sample obtained by ultrasonic welding a 0.15 mm thick conductor (nickel plated copper plate) and a 0.15 mm thick nickel plate (nickel foil). When peeled, the force (peeling force) was measured. If the peeling force was 80 N or more, “◯” was shown, and if it was less than 80 N, “X” was shown. In this test, the nickel plating thickness of Example 1 was 1.0 μm, the nickel plating thickness of Example 2 was 2.0 μm, the nickel plating thickness of Example 3 was 1.0 μm, and the nickel plating thickness of Comparative Example 1 was The thickness was 2.0 μm.
なお、試験には、ブランソン社製の超音波溶着機(モデル名:2000Xdt 20:2.5/20MA−Xaed stand、公称周波数:20kHz、最大出力:2500W)を使用した。また、試験条件は、溶接時間:0.1秒、振幅:75%、溶接圧力:0.2MPaとした。 For the test, an ultrasonic welder (model name: 2000Xdt 20: 2.5 / 20MA-Xaed stand, nominal frequency: 20 kHz, maximum output: 2500 W) manufactured by Branson was used. The test conditions were welding time: 0.1 second, amplitude: 75%, welding pressure: 0.2 MPa.
(耐電解液性試験)
厚さ0.15mmの導体(ニッケルメッキ銅板)と、厚さ0.10mmの絶縁樹脂フィルムとを接着した各試料を、電解液(水添加、電解液濃度:1000ppm)に浸漬し、大気下で65℃の恒温槽に4週間保管した後に、180°剥離試験を行った。剥離されたときの力(剥離力)を測定し、4週間後の剥離力が初期の70%以上であれば合格を示す「○」、70%未満であれば不合格を示す「×」とした。本試験では、実施例1〜3及び比較例1のニッケルメッキの厚みは全て2.3μmとした。
(Electrolytic solution resistance test)
Each sample in which a conductor (nickel-plated copper plate) having a thickness of 0.15 mm and an insulating resin film having a thickness of 0.10 mm are bonded is immersed in an electrolytic solution (water added, electrolytic solution concentration: 1000 ppm), and in the atmosphere. After storing in a 65 ° C. constant temperature bath for 4 weeks, a 180 ° peel test was performed. The force when peeled (peeling force) is measured, and if the peel force after 4 weeks is 70% or more of the initial value, “O” indicates pass, and if it is less than 70%, it indicates “fail”. did. In this test, the thicknesses of the nickel platings of Examples 1 to 3 and Comparative Example 1 were all 2.3 μm.
なお、絶縁樹脂フィルムとしては、厚さ0.5mmのポリエチレンからなる接着層と、厚さ0.5mmの無水マレイン酸変性ポリプロピレンからなる絶縁層とが架橋接着されたものを使用した。また、電解液としては、エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の溶液に、六フッ化リン酸リチウム塩を1mol添加したものを使用した。 As the insulating resin film, a film in which an adhesive layer made of polyethylene having a thickness of 0.5 mm and an insulating layer made of maleic anhydride-modified polypropylene having a thickness of 0.5 mm were crosslinked and used was used. Moreover, as electrolyte solution, what added 1 mol of lithium hexafluorophosphate to the solution of ethylene carbonate: diethyl carbonate: dimethyl carbonate = 1: 1: 1 was used.
(評価結果)
本発明による導体は、銅板の表面粗さRaが、圧延の長さ方向(MD方向)に0.03μm以下で且つ圧延の幅方向(TD方向)に0.05μm以下であり、銅板の表面のビッカース硬度が、60HV以上であり、ニッケルメッキの厚さが、3.0μm以下とした。実施例1〜3の導体は、これらの条件を全て満たしており、溶接性及び耐電解液性共に良好である。一方、比較例1の導体は、ニッケルメッキの厚みは3.0μm以下であるが、銅板の表面粗さRaはMD方向に0.03μmより大きく且つTD方向に0.05μmより大きく、銅板の表面のビッカース硬度は60HVより小さい。このため、溶接性及び耐電解液性共に不良となっている。
(Evaluation results)
In the conductor according to the present invention, the surface roughness Ra of the copper plate is 0.03 μm or less in the rolling length direction (MD direction) and 0.05 μm or less in the rolling width direction (TD direction). The Vickers hardness was 60 HV or more, and the nickel plating thickness was 3.0 μm or less. The conductors of Examples 1 to 3 satisfy all of these conditions, and both the weldability and the electrolytic solution resistance are good. On the other hand, the conductor of Comparative Example 1 has a nickel plating thickness of 3.0 μm or less, but the surface roughness Ra of the copper plate is larger than 0.03 μm in the MD direction and larger than 0.05 μm in the TD direction. Vickers hardness of less than 60 HV. For this reason, both weldability and electrolyte solution resistance are poor.
1…リード部材、2…導体、3…絶縁樹脂フィルム、3a…接着層、3b…絶縁層、4…外装ケース、5…多層フィルム、5a…最内層フィルム、5b…最外層フィルム、5c…金属箔層。 DESCRIPTION OF SYMBOLS 1 ... Lead member, 2 ... Conductor, 3 ... Insulating resin film, 3a ... Adhesive layer, 3b ... Insulating layer, 4 ... Exterior case, 5 ... Multilayer film, 5a ... Innermost layer film, 5b ... Outermost layer film, 5c ... Metal Foil layer.
Claims (5)
前記銅板の表面粗さRaが、圧延の長さ方向に0.03μm以下で且つ圧延の幅方向に0.05μm以下であり、
前記銅板の表面のビッカース硬度が、60HV以上であり、
前記ニッケル被覆層の厚さが、3.0μm以下であるリード部材。 A lead member having a conductor in which a nickel coating layer is formed on a copper plate, and an insulating resin film bonded to both sides of the conductor,
The surface roughness Ra of the copper plate is 0.03 μm or less in the rolling length direction and 0.05 μm or less in the rolling width direction,
Vickers hardness of the surface of the copper plate is 60HV or more,
A lead member having a thickness of the nickel coating layer of 3.0 μm or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013126447A JP6149528B2 (en) | 2013-06-17 | 2013-06-17 | Lead material |
CN201410270204.7A CN104241581B (en) | 2013-06-17 | 2014-06-17 | Lead component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013126447A JP6149528B2 (en) | 2013-06-17 | 2013-06-17 | Lead material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015002099A JP2015002099A (en) | 2015-01-05 |
JP6149528B2 true JP6149528B2 (en) | 2017-06-21 |
Family
ID=52229274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013126447A Active JP6149528B2 (en) | 2013-06-17 | 2013-06-17 | Lead material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6149528B2 (en) |
CN (1) | CN104241581B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005006615B4 (en) * | 2004-02-24 | 2009-08-13 | Yugenkaisha Shinjo Seisakusho | Piercing nut |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6766330B2 (en) | 2015-09-11 | 2020-10-14 | 日立金属株式会社 | Battery lead material and battery lead material manufacturing method |
JP6493352B2 (en) * | 2016-10-13 | 2019-04-03 | トヨタ自動車株式会社 | Secondary battery |
KR102098096B1 (en) | 2016-11-14 | 2020-04-07 | 주식회사 엘지화학 | Battery Cell Comprising Tab and Lead Having Compact Joined Structure |
DE102016225252A1 (en) * | 2016-12-16 | 2018-06-21 | Robert Bosch Gmbh | Electrical energy storage, in particular battery cell, with space-optimized electrode interconnection |
WO2018123865A1 (en) * | 2016-12-27 | 2018-07-05 | 日立金属株式会社 | Lead material for negative electrodes and method for producing lead material for negative electrodes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005123499A (en) * | 2003-10-20 | 2005-05-12 | Sumitomo Electric Ind Ltd | Bonding wire and integrated circuit device using the same |
JP5011586B2 (en) * | 2005-09-30 | 2012-08-29 | Dowaメタルテック株式会社 | Copper alloy sheet with improved bending workability and fatigue characteristics and its manufacturing method |
JP4197718B2 (en) * | 2006-11-17 | 2008-12-17 | 株式会社神戸製鋼所 | High strength copper alloy sheet with excellent oxide film adhesion |
JP4157898B2 (en) * | 2006-10-02 | 2008-10-01 | 株式会社神戸製鋼所 | Copper alloy sheet for electrical and electronic parts with excellent press punchability |
JP5684462B2 (en) * | 2008-12-22 | 2015-03-11 | 昭和電工パッケージング株式会社 | Positive electrode tab lead and battery |
JP4972115B2 (en) * | 2009-03-27 | 2012-07-11 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP4608025B1 (en) * | 2010-06-03 | 2011-01-05 | 三菱伸銅株式会社 | Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion |
JP5562176B2 (en) * | 2010-08-24 | 2014-07-30 | 藤森工業株式会社 | Electrode lead wire member for non-aqueous battery |
JP2012174335A (en) * | 2011-02-17 | 2012-09-10 | Sumitomo Electric Ind Ltd | Lead member |
-
2013
- 2013-06-17 JP JP2013126447A patent/JP6149528B2/en active Active
-
2014
- 2014-06-17 CN CN201410270204.7A patent/CN104241581B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005006615B4 (en) * | 2004-02-24 | 2009-08-13 | Yugenkaisha Shinjo Seisakusho | Piercing nut |
Also Published As
Publication number | Publication date |
---|---|
CN104241581A (en) | 2014-12-24 |
JP2015002099A (en) | 2015-01-05 |
CN104241581B (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6149528B2 (en) | Lead material | |
JP6629514B2 (en) | Manufacturing method of laminate exterior material | |
CN108574059B (en) | Outer packaging material for electricity storage device and electricity storage device | |
CN105552250B (en) | External packaging materials for electrical storage equipment and electrical storage equipment | |
KR102275359B1 (en) | Resin film, metal terminal member, and secondary cell | |
JP2012022821A (en) | Metal terminal coating resin film for secondary battery | |
JP5082170B2 (en) | Lithium ion battery tab | |
CN106920915B (en) | Lead parts and batteries using the same | |
JP5849433B2 (en) | Secondary battery electrode terminals | |
JP5899880B2 (en) | Electrochemical cell packaging material and electrochemical cell using the same | |
JP6738189B2 (en) | Exterior material for power storage device and power storage device | |
JP2017168342A (en) | Sheath material for power storage device and power storage device | |
KR20140116795A (en) | Tab lead | |
JP5769467B2 (en) | Thin film primary battery | |
JP6405856B2 (en) | Lead member and lead member manufacturing method | |
JP2007095423A (en) | Lithium ion battery tab, its manufacturing method, and lithium ion battery using the same | |
JP5194922B2 (en) | Packaging materials for electrochemical cells | |
JP5668785B2 (en) | Battery packaging materials | |
CN202817068U (en) | Lead component | |
JP5463846B2 (en) | Lead member for nonaqueous electrolyte power storage device and nonaqueous electrolyte power storage device | |
JP2024503457A (en) | Electrode lead for electrochemical device and electrochemical device equipped with the same | |
JP5414832B2 (en) | Method for producing composite packaging material for polymer battery | |
JP5948893B2 (en) | Battery case packaging and non-aqueous electrolyte secondary battery | |
JP2001243939A (en) | Thin type secondary battery, lead terminal for thin type secondary battery and their manufacturing method | |
JP6331315B2 (en) | Method for manufacturing battery exterior body and battery manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160526 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6149528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |