JP6141641B2 - 電解銅箔及び電子デバイス - Google Patents
電解銅箔及び電子デバイス Download PDFInfo
- Publication number
- JP6141641B2 JP6141641B2 JP2013001895A JP2013001895A JP6141641B2 JP 6141641 B2 JP6141641 B2 JP 6141641B2 JP 2013001895 A JP2013001895 A JP 2013001895A JP 2013001895 A JP2013001895 A JP 2013001895A JP 6141641 B2 JP6141641 B2 JP 6141641B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- electrolytic copper
- foil
- electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/854—Arrangements for extracting light from the devices comprising scattering means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/20—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12431—Foil or filament smaller than 6 mils
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Photovoltaic Devices (AREA)
Description
窒素雰囲気中、200℃で60分間の熱処理を施した後における前記電解銅箔の0.2%耐力が250N/mm2以上であり、かつ、
前記電解銅箔の少なくとも一方の最表面に、JIS B 0601−2001に準拠して181μm×136μmの矩形領域に対して測定される、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvのPv/Pp比が1.2以上の凹部優位面を備えてなる、電解銅箔が提供される。
前記電極箔の前記超平坦面上に設けられる、半導体特性を有する半導体機能層と、
を備えた、電子デバイスが提供される。
本明細書において使用される用語の定義を以下に示す。
本発明による電解銅箔は電子デバイス用電極として用いられるものである。図1に本発明による電解銅箔の模式断面図を示す。図1に示される電解銅箔12は、銅又は銅合金からなり、表面12a及び裏面12bを有する。電解銅箔は比較的安価でありながら、強度、フレキシブル性、電気的特性等に優れる。電解銅箔12は、窒素雰囲気中、200℃で60分間の熱処理を施した後における0.2%耐力(以下、加熱後0.2%耐力ともいう)が250N/mm2以上のものである。そして、電解銅箔12の少なくとも一方の最表面(すなわち表面12a及び/又は裏面12b)は、JIS B 0601−2001に準拠して181μm×136μmの矩形領域に対して測定される、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvのPv/Pp比が1.2以上の凹部優位面となっている。すなわち、最大山高さPpは凸部の高さを表す一方、最大谷深さPvは凹部の深さを表す。したがって、1.2以上のPv/Pp比は、凹部を凸部よりも優先的に備えた特異的な表面プロファイルを意味する。このように加熱後0.2%耐力を高くし、かつ、凹部優位な表面プロファイルを付与することにより、電子デバイス用電極として極めて有用な電解銅箔を提供することができる。
本発明の電解銅箔は、箔単独の形態で、又は他の機能層を積層させた形態で、電極箔として使用されるのが好ましい。図2に電極箔10の一例の模式断面図を示す。図2に示される電極箔10は電解銅箔12を備えてなる。電極箔10は、所望により電解銅箔12の表面12aに直接、又は拡散防止層を介して設けられる反射層13を備えていてもよい。また、電極箔10は、所望により少なくとも電解銅箔12の超平坦面12a又は(存在する場合には)反射層13の表面13a上に直接設けられるバッファ層14を備えていてもよい。図2に示される電極箔10は電解銅箔12、反射層13及びバッファ層14を備えた3層構成であるが、本発明の電極箔はこれに限定されず、電解銅箔12の1層構成であってもよいし、電解銅箔12及び反射層13の2層構成であってもよい。あるいは、電解銅箔12の両面に反射層13及びバッファ層14を備えた5層構成であってもよい。
本発明による電解銅箔又はそれを用いた電極箔を用いることで、半導体特性を有する半導体機能層を電極箔の光散乱面上に備えた電子デバイスを提供することができる。半導体機能層は光散乱面に直接形成されるのが好ましい。半導体機能層は、電極上又は電極間で所望の機能を発現しうる半導体特性を有する層であればいかなる構成や材質のものであってもよいが、有機半導体、無機半導体又はそれらの混合物又は組合せを含むものであるのが好ましい。例えば、半導体機能層は、励起発光又は光励起発電の機能を有し、それにより電子デバイスが発光素子又は光電素子として機能するのが好ましい。また、発光素子や光電素子にあっては、半導体機能層上に透明又は半透明の対向電極が設けられるのが好ましい。本発明の電極箔は、半導体機能層の形成に際して、高分子材料や低分子材料をクロロベンゼン等の溶剤に溶解させて塗布するプロセスが好ましく適用可能であり、また、インライン式の真空プロセスも適用可能であり、生産性の向上に適する。前述したとおり、半導体機能層は電極箔の両面に設けられてもよい。
本発明による電極箔を反射電極として用いて、その光散乱面にトップエミッション型有機EL素子を備えた発光素子及び有機EL照明を構築することができる。
本発明による電極箔を反射電極として用いて、その光散乱面に光電素子を構築することができる。本発明の好ましい態様による光電素子は、電極箔と、電極箔の表面に直接設けられる半導体機能層としての光励起層と、光励起層の表面に直接設けられる対向電極としての透光電極とを備えてなる。光励起層としては、光電素子の半導体機能層として知られる種々の構成及び材料が使用可能である。
(1)試料の作製及び評価
種々の加熱後耐力及びPv/Pp比を有する電極箔試料A1〜A3の作製を行った。その際、各試料の表面性状の測定方法は以下のとおりとした。
走査型プローブ顕微鏡(Veeco社製、Nano Scope V)を用いてJIS B 0601−2001に準拠して各試料表面の算術平均粗さRaを測定した。この測定は、10μm平方の範囲について、Tapping Mode AFMにて行った。
非接触表面形状測定機(NewView5032、Zygo社製)を用いてJIS B 0601−2001に準拠して、181μm×136μmの矩形領域に対して、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvを測定し、Pv/Pp比を算出した。その際の測定条件及びフィルタリング条件は以下とした。
‐レンズ:50×
‐ImageZoom:0.8X
‐測定エリア:181×136μm
‐Filter High:Auto
‐Filter Low:Fixed(150μm)
ロール状電解銅箔から12.5mm×90mmのサイズの矩形状試験片を、その長辺及び短辺がロール状電解銅箔の長尺方向(MD方向)及び短尺方向(TD方向)とそれぞれ一致するように採取した。得られた矩形状試験片を用いて、引張試験機(インストロン社製、1122型)に長尺方向(MD方向)に引っ張られるようにセットして、JIS Z 2241(2011)に準拠して0.2%耐力を測定した。このとき、引張試験機に固定するための片側20mmのつかみ部を試験片の両端に確保することで、実質的な測定箇所の長さを50mmとした。
本発明の比較態様としての加熱後低耐力箔を次のようにして作製した。まず、硫酸濃度を140g/L及び銅濃度80g/Lの硫酸系硫酸銅水溶液を調製した。この硫酸銅水溶液を用いて、3−メルカプト−1−プロパンスルホン酸ナトリウム20ppm、膠10ppm及び塩素30ppmを含む電解液を調製した。この電解液の液温を60℃とし、電解電流密度40A/dm2で電解し、厚さ35μm、幅300mm及び長さ100mの電解銅箔を作製した。この電解銅箔の作製は、ドラム形状をしたチタン製の陰極と、その回転陰極の形状に沿って対向して配置される陽極電極との間に、上記硫酸系電解液を液ポンプで循環させながら電解電流を印加させることで、チタン製の回転ドラムに銅を析出させ、所定の厚さに達した銅箔を引き剥がして連続的に巻き取ることにより行った。この電解銅箔のメッキ面のRaは82nmであった。そして常態での0.2%耐力を測定したところ、396N/mm2であった。次に、この銅箔の表面を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:50rpm、荷重:170gf/cm2、液供給量:30cc/minの条件で60秒間行った。こうして銅箔表面を超平坦面とした。CMP処理後の試料A1のPv/Pp比は1.5、Raは3.1nmであった。試料A1を200℃で60分間、窒素雰囲気中で焼成した後の0.2%耐力を3回にわたって測定したところ、233、220及び204N/cm2であった。また、ロール・トゥ・ロール・プロセスで行われたCMP処理工程から搬出された電解銅箔を観察したところ、図6に示されるように箔中央部分にアンジュレーションが発生し、図7に示されるように箔の端部にフレアが発生していた。
本発明の加熱後高耐力箔を次のようにして作製した。まず、硫酸濃度140g/L及び銅濃度80g/Lの硫酸系硫酸銅水溶液を調製した。この硫酸銅水溶液を用いて、3−メルカプト−1−プロパンスルホン酸ナトリウム20ppm、ジアリルジメチルアンモニウムクロライド15ppm及び塩素30ppmを含む電解液を調製した。この電解液の液温を60℃とし、電解電流密度60A/dm2で電解し、厚さ35μm、幅300mm及び長さ100mの電解銅箔を試料A1と同様の手順で作製した。この電解銅箔のメッキ面のRaは44nmであった。そして常態での0.2%耐力を測定したところ、347N/mm2であった。次に、この銅箔の表面を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:80rpm、荷重:170gf/cm2、液供給量:30cc/minの条件で60秒間行った。こうして銅箔表面を超平坦面とした。CMP処理後のサンプルのPv/Pp比は1.3、Raは2.4nm、200℃で60分間、窒素雰囲気中で焼成した後の0.2%耐力を3回にわたって測定したところ、301、289及び261N/cm2であり、試料A1よりも加熱後0.2%耐力が高い箔が得られた。また、ロール・トゥ・ロール・プロセスで行われたCMP処理工程から搬出された電解銅箔を観察したところ、図8及び9に示されるとおり、アンジュレーション及びフレアはいずれも発生しなかった。
硫酸濃度を140g/L及び銅濃度80g/Lの硫酸系硫酸銅水溶液を用いて調製した、ビス(3−スルホプロピル)ジスルフィド60ppm、ジアリルジメチルアンモニウムクロライド90ppm、2−メルカプト−5−ベンズイミダゾールスルホン酸30ppm及び塩素45ppmを含む電解液を使用したこと以外は試料A2と同様にして電解銅箔を作製した。200℃で60分間、窒素雰囲気中で焼成した後の0.2%耐力は938N/mm2であった。この電解銅箔でも試料A2と同様の効果が得られることを確認した。すなわち、ロール・トゥ・ロール・プロセスで行われたCMP処理工程から搬出された電解銅箔を観察したところ、アンジュレーション及びフレアはいずれも発生しなかった。
以下に示す例B1〜B4は、表面及び/又は裏面を処理した電解銅箔について評価を行った参考例である。なお、以下の例において、参考例と称しているのは、0.2%耐力の評価を行っていないためである。
本発明の両面処理銅箔の作製を以下のとおり行った。まず、厚さ35μmの市販の電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。なお、以下の説明において、この電解銅箔のめっき面(Ra:57nm)を「表面」と称し、ドラム面(Ra:164nm)を「裏面」と称する。この銅箔の表面を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:50rpm、荷重:170gf/cm2、液供給量:30cc/minの条件で180秒間行った。こうして銅箔表面を超平坦面とした。
得られた両面処理銅箔の両面について、非接触表面形状測定機(NewView5032、Zygo社製)を用いてJIS B 0601−2001に準拠して、181μm×136μmの矩形領域に対して、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvを測定し、Pv/Pp比を算出した。同時に、JIS B 0601−2001に準拠して算術平均粗さRaをも測定した。具体的な測定条件及びフィルタリング条件は以下のとおりとした。
‐レンズ:50×
‐ImageZoom:0.8X
‐測定エリア:181×136μm
‐Filter High:Auto
‐Filter Low:Fixed(150μm)
両面処理銅箔をロール状態で大気中に2週間放置した。両面処理銅箔をロールから引き出し、その表面を観察したところ、図12に示されるとおりメタリックな光沢を有する外観を有していた。2週間放置後の銅箔表面の酸化状態の分析を、Cu−KLLオージェ電子スペクトルを測定することにより行った。この測定は、X線光電子分光装置(XPS)(Quantum2000、アルバック・ファイ(株)製)を用いて以下の条件で行った。
‐X線源:Al線
‐出力40W
‐測定ビーム径200umφ
‐測定エリア:300×900um(上記ビームをこの範囲でラスター)
‐サーベイ測定(定性用):測定範囲0〜1400eV、パスエネルギー58.7eV、ステップ1.0eV、積算時間20分
‐ナロー測定(状態用):
・Cu2pの場合:測定範囲925〜975eV、パスエネルギー23.5eV、ステップ0.1eV、積算回数3回
・CuKLLの場合:測定範囲560〜580eV、パスエネルギー23.5eV、ステップ0.1eV、積算回数3回
ロールから引き出した両面処理銅箔の表面における巻き傷の有無を確認すべくレーザー顕微鏡(オリンパス社製、OLS3000)にて観察をおこなったところ、図15に示される写真が得られた。同図において右下に存在するスケールバーの長さは200μmである。図15から明らかなように、本発明の両面処理銅箔の表面には目立った巻き傷は見られなかった。
銅箔裏面に対するCMP処理時間を60秒にしたこと以外は、例B1と同様にして両面処理銅箔の作製及び評価を行った。その結果、得られた両面処理銅箔の表面(超平坦面)のRaは1.698nm、Pv/Pp比は0.7127である一方、その裏面(凹部優位面)のRaは56.072nm、Pv/Pp比は2.3852であった。また、非接触表面形状測定機で得られた表面の三次元プロファイルは図10と同様であり、裏面の三次元プロファイルは図16に示される通りであった。ロール状態で2週間大気放置された両面処理銅箔の表面を観察したところ、例B1に関する図12と同様の外観を有していた。
銅箔裏面に対して何ら処理を行わなかったこと以外は例B1及びB2と同様にして、片面処理銅箔の作製及び評価を行った。得られた片面処理銅箔の表面(超平坦面)のRaは1.313nm、Pv/Pp比は1.3069である一方、その裏面のRaは164.387nm、Pv/Pp比は1.0711であった。また、非接触表面形状測定機で得られた表面の三次元プロファイルは図17に示されるとおりである一方、裏面の三次元プロファイルは図18に示される通りであった。ロール状態で2週間大気放置された片面処理銅箔の表面を観察したところ、図19に示されるとおりであり、酸化に起因する褐色の度合いが薄く、酸化抑制効果が確認された。ロールから引き出した片面処理銅箔の表面における巻き傷の有無を確認すべくレーザー顕微鏡(オリンパス社製、OLS3000)にて観察を行ったところ、図20に示される写真が得られた。同図において右下に存在するスケールバーの長さは200μmである。図20から明らかなように、本発明の片面処理銅箔の表面には巻き傷が散見された。
銅箔両面に対して何ら表面処理を行わなかったこと以外は例B1〜B3と同様にして、両面未処理銅箔の作製及び評価を行った。得られた両面未処理銅箔の表面のRaは57.213nm、Pv/Pp比は0.9856である一方、その裏面のRaは164.387nm、Pv/Pp比は1.0711であった。また、非接触表面形状測定機で得られた表面の三次元プロファイルは図21に示されるとおりである一方、裏面の三次元プロファイルは例B3に関する図18と同様であった。ロール状態で2週間大気放置された両面未処理銅箔の表面を観察したところ、図22に示されるとおりであり、酸化に起因する褐色系の変色が例B3の片面未処理銅箔よりも顕著であった。従って、両面未処理銅箔はロール状態でも極めて酸化し易いことが分かる。Cu−KLLオージェ電子スペクトルの結果は図13に示されるとおりであり、両面未処理銅箔はロール状態で2週間大気放置後、0価のCu(すなわち金属Cu)に起因するピークが観察されなかった。このように、両面未処理銅箔は酸化しやすいことが確認された。
以下に示す例C1〜C4は、Pv/Pp比が2.0以上であることの優位性を実証するための参考例である。なお、以下の例において、参考例と称しているのは、0.2%耐力の評価を行っていないためである。
(1)試料の作製
各種Pv/Pp比の電極箔試料C1〜C5の作製を行った。その際、各試料の表面性状の測定方法は以下のとおりとした。
走査型プローブ顕微鏡(Veeco社製、Nano Scope V)を用いてJIS B 0601−2001に準拠して各試料表面の算術平均粗さRaを測定した。この測定は、10μm平方の範囲について、Tapping Mode AFMにて行った。
非接触表面形状測定機(NewView5032、Zygo社製)を用いてJIS B 0601−2001に準拠して、181μm×136μmの矩形領域に対して、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvを測定し、Pv/Pp比を算出した。その際の測定条件及びフィルタリング条件は以下とした。
‐レンズ:50×
‐ImageZoom:0.8X
‐測定エリア:181×136μm
‐Filter High:Auto
‐Filter Low:Fixed(150μm)
比較のための標準反射膜を備えた試料C1を得るために、算術平均粗さRaが0.2nmの石英基板の表面上に、反射層として厚さ200nmのアルミニウム膜をスパッタリング法により形成した。このスパッタリングは、純度99.99%のAlターゲットをクライオ(Cryo)ポンプが接続されたマグネトロンスパッタ装置(MSL−464、トッキ株式会社製)に装着した後、投入パワー(DC):1000W(3.1W/cm2)、到達真空度:<5×10−5Pa、スパッタ圧力:0.5Pa、Ar流量:100sccm、基板温度:室温の条件で行った。こうして得られた試料C1の表面性状を測定したところ、算術平均粗さRaは0.8nmであり、Pv/Pp比は1.02であった。
Pv/Pp比が1.2以上2.0未満のPv/Pp比の試料C2の作製を以下のとおり行った。まず、金属箔として、厚さ35μmの市販の電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。この銅箔表面の算術平均粗さRaは16.5nmであった。この銅箔基板の表面を、化学研磨剤(三菱ガス化学社製、CPB−10)を用いて化学研磨した。この化学研磨は、化学研磨剤と水を1:2の重量割合で混合して希釈した溶液に、銅箔基板を室温で1分間浸漬させることにより行った。こうして処理された銅箔基板を純水で洗浄した後、0.1Nの希硫酸で洗浄を行い、純水で再度洗浄して、乾燥を行った。こうして研磨処理された表面上に、試料C1と同様の条件でアルミニウム反射層の形成を行った。得られた試料C2の表面の性状を試料C1と同様にして測定したところ、算術平均粗さRaは19.3nm、Pv/Pp比は1.86であった。
Pv/Pp比が2.0以上の試料C3の作製を以下のとおり行った。まず、金属箔として、厚さ35μmの市販の電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。この銅箔の表面を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:30rpm、荷重:200gf/cm2、液供給量:100cc/minの条件で40秒間行った。こうしてCMP処理された銅箔表面の算術平均粗さRaは6.2nmであった。流水式超音波洗浄機(本多電子社製)を用いて、高周波出力60Wで銅箔表面を20分間処理した。こうして研磨及び表面改質された表面上に、試料C1と同様の条件でアルミニウム反射層の形成を行った。得られた試料C3の表面の性状を測定したところ、算術平均粗さRaは16.2nm、Pv/Pp比は2.14であった。
Pv/Pp比が2.0以上の試料C4の作製を以下のとおり行った。まず、金属箔として、厚さ35μmの市販の電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。この銅箔の表面を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:30rpm、荷重:200gf/cm2、液供給量:100cc/minの条件で60秒間行った。こうしてCMP処理された銅箔表面の算術平均粗さRaは3.1nmであった。流水式超音波洗浄機(本多電子社製)を用いて、高周波出力60Wで銅箔表面を10分間処理した。こうして研磨及び表面改質された表面上に、試料C1と同様の条件でアルミニウム反射層の形成を行った。得られた試料C4の表面の性状を測定したところ、算術平均粗さRaは6.1nm、Pv/Pp比は2.54であった。
Pv/Pp比が2.0以上の試料C5の作製を以下のとおり行った。まず、金属箔として、厚さ35μmの市販の電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。この銅箔の表面を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:30rpm、荷重:200gf/cm2、液供給量:100cc/minの条件で40秒間行った。こうしてCMP処理された銅箔表面の算術平均粗さRaは6.8nmであった。流水式超音波洗浄機(本多電子社製)を用いて、高周波出力60Wで銅箔表面を10分間処理した。こうして研磨及び表面改質された表面上に、試料C1と同様の条件でアルミニウム反射層の形成を行った。得られた試料C5の表面の性状を測定したところ、算術平均粗さRaは13.7nm、Pv/Pp比は4.9であった。
試料C1〜C5について光散乱特性の測定を、分光光度計(日立ハイテクノロジーズ社製、U4100)を用いて行った。この測定は、図23に示されるように、各試料Sに対して所定の角度θで光を入射及び反射させて積分球74に導くように複数のミラー72a,72b,72c,72dを配置させてなる光学測定系70を用意して、測定波長域:250nm〜800nm(可視光域全域)、スキャン速度:300nm/minの条件で行った。この測定系70においては、試料Sによる光散乱が大きいほど、積分球74に取り込まれる光量が減少する。
例C1の試料C2〜C5に示される各種の条件を適宜変更して、図24に示される算術平均粗さRa及びPv/Pp比を有する各種の電極箔を作製した。これらの電極箔について例C1と同様にして光散乱特性を評価したところ、図24に示されるように、Pv/Pp比が2.0以上の試料はいずれも光散乱特性が1.2倍向上する一方、Pv/Pp比が2.0未満の試料はそのような高い光散乱性が得られなかった。また、これらの電極箔を用いて発光素子又は発電素子を作製したところ、図24に示されるように、Raが60nm以下の場合には対向電極との短絡を回避して初期の素子特性が得られた。したがって、Pv/Pp比が2.0以上で、かつ、Raが60nm以下の表面プロファイルが好ましいことが分かる。
(1)光電素子の作製
図30に示されるように、電極箔として例C2で得られた、銅箔82上にアルミニウム反射層83を備えた試料C6及びC7を用いて光電素子を作製した。まず、このアルミニウム反射層83に、スパッタリングによってZnOからなる厚さ20nmのn型半導体バッファ層84を形成した。このバッファ層84上に、プラズマCVD装置(サムコ社製、PD−2202L)を用いて、窒化ケイ素からなる層間絶縁膜を形成した。その際、厚さ0.1mm、幅2mm、長さ10mmの複数枚の薄ガラスを2mm幅で電極箔上に並べることにより、受光部となるべき個所を覆った。窒化ケイ素成膜後、薄ガラスを除去した。その後、電極箔80を、40〜50℃に加熱したイソプロピルアルコール溶液で洗浄し、窒素ガスを用いて乾燥させた。次に、クロロベンゼン溶液中にP3HT(ポリ−3−ヘキシルチオフェン)とPCBM((6,6)−フェニル−C61−ブチル酸メチルエステル)を各々10mg/ml浸漬させ、24時間で25℃前後の環境下で放置させ、完全に溶解させた。P3HTとPCBMが溶解した混合クロロベンゼン溶液を1500rpmで電極箔80にスピンコートし、P3HT:PCBM層86aが100nmの厚さになるように調整した。次に、PEDOT:PSS(ポリ(3,4−エチレンジオキシチオフェン/ポリ(4−スチレンスルホネート))分散溶液(1.3重量%)を5000rpmで電極箔にスピンコートした。コーティングを180℃で30分間、ホットプレート上で乾燥させて、PEDOT:PSS層86bを得た。金を真空蒸着装置にて約100nmの厚さになるように成膜して対向電極88aを得た。その際、受光部となるべき箇所は、櫛形のメタルマスクを用いて光を遮蔽しないようにした。その後、150℃で30分間、不活性雰囲気(窒素)下で焼成を行った。こうして図30に示される光電素子を得た。
得られた光電素子について、シミュレータ(三永電機製、XES−40S1)、IV測定器(ADCMT製、6241A)及びソフトウェア(サンライズ社製)を用いて太陽電池発電効率を、AM(エアマス):1.5(規準光)以下及び入射光強度:100mW/cm2の計測条件で測定した。測定結果は以下の表5及び図31に示されるとおりであった。
金属箔として厚さ35μmの市販の電解銅箔(三井金属鉱業社製、3EC−III)を用い、CMP処理を2分間行ったこと以外は、試料C2と同様にして電極箔の作製を行い、試料C8とした。この試料C8の光散乱面をSEM(1000倍)で観察したところ、図32に示されるように実質的に凹部のみを有する表面性状が観察された。また、試料C8について表面プロファイルを非接触表面形状測定機(NewView5032、Zygo社製)で測定したところ、図33及び34に示されるプロファイル画像が得られた。これらの結果から明らかなように、試料C8の光散乱面は凸部が実質的に除去され、実質的に凹部のみが形成された極めて望ましい表面プロファイルを有していた。観察した凹部の殆どが深さ1μm以下、長手方向長さ100μm以下のものであった。凹部の個数を、SEM1000倍視野(10000μm2)の視野においてカウントしたところ約170個であった。このような実質的に凹部のみが形成された電極箔にあっては、電極間の短絡をより一層確実に防止しながら、より優れた光散乱性を発揮することができ、それにより発光効率や発電効率が更に向上することが可能である。
例A1の試料A2の作製条件を適宜変更させて、表6に示されるRa及びPv/Pp比を表面に有する電解銅箔試料D1〜D3を作製し、有機EL発光素子を作製した。発光素子としての評価を行ったところ表6に示されるとおりであった。表6に示される結果から、Raが低く、かつ、Pv/Ppが1.2以上であると信頼性のある発光素子を得る上で好ましいといえる。試料D1、D2及びD3の表面プロファイルを非接触表面形状測定機(NewView5032、Zygo社製)で測定したところ、図35、36及び37に示されるプロファイル画像がそれぞれ得られた。
Claims (14)
- 電子デバイス用電極として用いられる、銅又は銅合金からなる電解銅箔であって、
窒素雰囲気中、200℃で60分間の熱処理を施した後における前記電解銅箔の0.2%耐力が250N/mm2以上であり、かつ、
前記電解銅箔の少なくとも一方の最表面に、JIS B 0601−2001に準拠して181μm×136μmの矩形領域に対して測定される、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvのPv/Pp比が1.2以上の凹部優位面を備えてなり、前記凹部優位面が、JIS B 0601−2001に準拠して測定される、10nm以下の算術平均粗さRaを有する、電解銅箔。 - 前記凹部優位面のPv/Pp比が1.5以上である、請求項1に記載の電解銅箔。
- 前記凹部優位面のPv/Pp比が2.0以上である、請求項1又は2に記載の電解銅箔。
- 前記凹部優位面が、JIS B 0601−2001に準拠して測定される、7.0nm以下の算術平均粗さRaを有する、請求項1〜3のいずれか一項に記載の電解銅箔。
- 前記電解銅箔の片面が前記凹部優位面を構成し、前記電解銅箔の他方の面がJIS B 0601−2001に準拠して測定される、10nm以下の算術平均粗さRaを有する、請求項1〜4のいずれか一項に記載の電解銅箔。
- 前記電解銅箔の両面が前記凹部優位面を構成する、請求項1〜4のいずれか一項に記載の電解銅箔。
- ロール・トゥ・ロール・プロセスによって製造される、請求項1〜6のいずれか一項に記載の電解銅箔。
- 前記電子デバイスがフレキシブル電子デバイスであり、該フレキシブル電子デバイスの支持基材を兼ねた電極として用いられる、請求項1〜7のいずれか一項に記載の電解銅箔。
- 前記電子デバイスが、発光素子又は光電素子である、請求項1〜8のいずれか一項に記載の電解銅箔。
- 前記電解銅箔上に反射層及び/又はバッファ層を更に備えた、請求項1〜9のいずれか一項に記載の電解銅箔。
- 請求項1〜9のいずれか一項に記載の電解銅箔で構成される電極箔と、
前記電極箔の前記超平坦面上に設けられる、半導体特性を有する半導体機能層と、
を備えた、電子デバイス。 - 前記電極箔と前記半導体機能層の間に反射層及び/又はバッファ層を更に備えた、請求項11に記載の電子デバイス。
- 前記半導体機能層が励起発光又は光励起発電の機能を有し、それにより前記電子デバイスが発光素子又は光電素子として機能する、請求項11又は12に記載の電子デバイス。
- 前記半導体機能層上に透明又は半透明の対向電極を備えた、請求項11〜13のいずれか一項に記載の電子デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001895A JP6141641B2 (ja) | 2013-01-09 | 2013-01-09 | 電解銅箔及び電子デバイス |
EP13871271.6A EP2945467B1 (en) | 2013-01-09 | 2013-07-02 | Electrolytic copper foil and electronic device |
US14/655,434 US9985238B2 (en) | 2013-01-09 | 2013-07-02 | Electrolytic copper foil and electronic device |
PCT/JP2013/068138 WO2014109081A1 (ja) | 2013-01-09 | 2013-07-02 | 電解銅箔及び電子デバイス |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001895A JP6141641B2 (ja) | 2013-01-09 | 2013-01-09 | 電解銅箔及び電子デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014135175A JP2014135175A (ja) | 2014-07-24 |
JP6141641B2 true JP6141641B2 (ja) | 2017-06-07 |
Family
ID=51166748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013001895A Active JP6141641B2 (ja) | 2013-01-09 | 2013-01-09 | 電解銅箔及び電子デバイス |
Country Status (4)
Country | Link |
---|---|
US (1) | US9985238B2 (ja) |
EP (1) | EP2945467B1 (ja) |
JP (1) | JP6141641B2 (ja) |
WO (1) | WO2014109081A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101500566B1 (ko) * | 2014-03-20 | 2015-03-12 | 일진머티리얼즈 주식회사 | 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지 |
KR101500565B1 (ko) * | 2014-03-20 | 2015-03-12 | 일진머티리얼즈 주식회사 | 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지 |
JP6014186B2 (ja) * | 2015-03-03 | 2016-10-25 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 電解銅箔、これを含む電気部品および電池 |
HUE059762T2 (hu) * | 2015-06-24 | 2022-12-28 | Sk Nexilis Co Ltd | Elektrolitos rézfólia, ugyanezen elektrolitos rézfóliát magában foglaló áramgyûjtõ, ugyanezen áramgyûjtõt magában foglaló elektród, ugyanezen elektródot magában foglaló másodlagos akkumulátor, és eljárás ugyanennek gyártására |
JP6204430B2 (ja) * | 2015-09-24 | 2017-09-27 | Jx金属株式会社 | 金属箔、離型層付き金属箔、積層体、プリント配線板、半導体パッケージ、電子機器及びプリント配線板の製造方法 |
WO2017139258A1 (en) * | 2016-02-08 | 2017-08-17 | University Of Central Florida Research Foundation, Inc. | An integrated energy harvesting and storage device |
US11365486B2 (en) * | 2018-10-16 | 2022-06-21 | Chang Chun Petrochemical Co., Ltd. | Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same |
US12170375B2 (en) * | 2019-10-30 | 2024-12-17 | Chang Chun Petrochemical Co., Ltd. | Copper foil having excellent heat resistance property |
KR20210056073A (ko) * | 2019-11-08 | 2021-05-18 | 에스케이넥실리스 주식회사 | 찢김 또는 주름 불량을 방지할 수 있는 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 |
CN113011001B (zh) * | 2021-02-20 | 2021-09-14 | 广东嘉元科技股份有限公司 | 水洗流量高值与低值计算方法、存储介质、生箔机 |
CN112964183B (zh) * | 2021-03-12 | 2022-04-12 | 四川涪盛科技有限公司 | 弧高测量方法 |
CN114182310B (zh) * | 2021-12-21 | 2023-08-22 | 深圳先进电子材料国际创新研究院 | 一种用于电解铜箔制造的电解液及其应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345460A (ja) * | 2000-03-29 | 2001-12-14 | Sanyo Electric Co Ltd | 太陽電池装置 |
JP4136799B2 (ja) | 2002-07-24 | 2008-08-20 | 富士フイルム株式会社 | El表示素子の形成方法 |
WO2005124897A1 (ja) * | 2004-06-15 | 2005-12-29 | Mitsubishi Chemical Corporation | 非水電解質二次電池とその負極 |
JP2008243772A (ja) | 2007-03-29 | 2008-10-09 | Seiko Epson Corp | 発光装置およびその製造方法 |
JP2009152113A (ja) | 2007-12-21 | 2009-07-09 | Rohm Co Ltd | 有機el素子 |
US8961713B2 (en) | 2008-05-16 | 2015-02-24 | Nippon Steel Materials Co, Ltd. | Stainless steel foil for flexible display use |
DE102008031531A1 (de) * | 2008-07-03 | 2010-01-07 | Osram Opto Semiconductors Gmbh | Organisches strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines organischen strahlungsemittierenden Bauelements |
JP2011222819A (ja) | 2010-04-12 | 2011-11-04 | Mitsubishi Chemicals Corp | 太陽電池 |
JP5010758B2 (ja) | 2010-06-04 | 2012-08-29 | 三井金属鉱業株式会社 | 電極箔および有機デバイス |
US8816338B2 (en) | 2010-06-04 | 2014-08-26 | Mitsui Mining & Smelting Co., Ltd. | Electrode foil and organic device |
KR101147988B1 (ko) * | 2010-07-13 | 2012-05-24 | 포항공과대학교 산학협력단 | 물리적 박리 방법을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판 |
TWI466367B (zh) | 2010-12-27 | 2014-12-21 | Furukawa Electric Co Ltd | A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil |
-
2013
- 2013-01-09 JP JP2013001895A patent/JP6141641B2/ja active Active
- 2013-07-02 EP EP13871271.6A patent/EP2945467B1/en active Active
- 2013-07-02 WO PCT/JP2013/068138 patent/WO2014109081A1/ja active Application Filing
- 2013-07-02 US US14/655,434 patent/US9985238B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2014109081A1 (ja) | 2014-07-17 |
EP2945467A4 (en) | 2016-09-07 |
EP2945467B1 (en) | 2017-08-30 |
US9985238B2 (en) | 2018-05-29 |
US20150340639A1 (en) | 2015-11-26 |
EP2945467A1 (en) | 2015-11-18 |
JP2014135175A (ja) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6141641B2 (ja) | 電解銅箔及び電子デバイス | |
US9029885B2 (en) | Electrode foil and electronic device | |
US8586976B2 (en) | Electrode foil and organic device | |
US9490440B2 (en) | Electrode foil and organic device | |
US8816338B2 (en) | Electrode foil and organic device | |
US20150001519A1 (en) | Electrode Foil and Electronic Device | |
JP6039540B2 (ja) | 電解銅箔及びその製造方法 | |
JP6134317B2 (ja) | 金属箔及び電子デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6141641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |