JP6136589B2 - Compound, liquid crystal composition, and display element - Google Patents
Compound, liquid crystal composition, and display element Download PDFInfo
- Publication number
- JP6136589B2 JP6136589B2 JP2013115481A JP2013115481A JP6136589B2 JP 6136589 B2 JP6136589 B2 JP 6136589B2 JP 2013115481 A JP2013115481 A JP 2013115481A JP 2013115481 A JP2013115481 A JP 2013115481A JP 6136589 B2 JP6136589 B2 JP 6136589B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- phase
- liquid crystal
- synthesis
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Crystal Substances (AREA)
Description
本発明は、テルフェニル構造を有する化合物、前記化合物を含む液晶組成物、及び前記液晶組成物を含む表示素子に関する。 The present invention relates to a compound having a terphenyl structure, a liquid crystal composition including the compound, and a display element including the liquid crystal composition.
液晶表示素子(LCD)は、液晶テレビ、携帯電話、コンピューター、時計、電卓、広告表示板、プリンター、各種測定機器、自動車用パネル、電子手帳など、民生用途から産業用途まで広く使用されている。
液晶表示素子の表示方式としては、TN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いた垂直配向(VA)型、IPS(インプレーンスイッチング)型等がある。
Liquid crystal display elements (LCDs) are widely used from consumer applications to industrial applications such as liquid crystal televisions, mobile phones, computers, watches, calculators, advertisement display boards, printers, various measuring instruments, automotive panels, and electronic notebooks.
As a display method of the liquid crystal display element, there are TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment (VA) type using TFT (thin film transistor), IPS (in-plane switching) type, etc. is there.
液晶表示素子に使用される液晶組成物としては、誘電率異方性(Δε)が正の液晶組成物や、Δεが負の液晶組成物がある。TN型やSTN型等の水平配向型ディスプレイではΔεが正の液晶組成物が、垂直配向型ではΔεが負の液晶組成物が用いられる。IPS型では、Δεが正又は負の液晶組成物が使用される。液晶組成物は個々の表示素子にとって誘電率異方性(Δε)、屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物から構成されている。
一般に液晶組成物に用いられる化合物として、構造的に中心骨格(コア)と両側の側方基(2つの側鎖、又は1つの側鎖と1つの極性基)から形成されたものが多く知られている。
Examples of the liquid crystal composition used in the liquid crystal display element include a liquid crystal composition having a positive dielectric anisotropy (Δε) and a liquid crystal composition having a negative Δε. In a TN type or STN type horizontal alignment type display, a liquid crystal composition having a positive Δε is used, and in a vertical alignment type, a liquid crystal composition having a negative Δε is used. In the IPS type, a liquid crystal composition having a positive or negative Δε is used. The liquid crystal composition is composed of several to several tens of kinds of compounds in order to optimize dielectric anisotropy (Δε), refractive index anisotropy (Δn), etc. for individual display elements.
In general, many compounds used in liquid crystal compositions are structurally formed from a central skeleton (core) and side groups on both sides (two side chains, or one side chain and one polar group). ing.
液晶デバイスに求められる特性は多いが、その中でも応答時間は最も重要な特性である。ネマチック液晶を用いる現在のデバイスでは、応答時間はおよそ数m秒(ミリ秒)程度であり、限界はおよそ1m秒程度と考えられる。そのため、パネルメーカーは少しでも高速なネマチック液晶材料を求めている。
一方、スメクチック液晶を用いる強誘電性液晶(FLC)デバイスは、原理的に高速な応答が可能であり、0.1m秒程度の高速な応答を実現できる。しかしながら、これまでFLC材料として主に用いられてきた材料は、フェニルベンゾアート構造(phenyl benzoate)をもつエステル、もしくはフェニルピリミジン化合物が一般的であり、TFTデバイスで用いることが困難であった。
There are many characteristics required for liquid crystal devices, but response time is the most important characteristic among them. In a current device using a nematic liquid crystal, the response time is about several milliseconds (milliseconds), and the limit is considered to be about 1 millisecond. Therefore, panel manufacturers are looking for nematic liquid crystal materials that are as fast as possible.
On the other hand, a ferroelectric liquid crystal (FLC) device using a smectic liquid crystal is capable of a high-speed response in principle and can realize a high-speed response of about 0.1 msec. However, materials that have been mainly used as FLC materials so far are generally esters having a phenyl benzoate structure or phenyl pyrimidine compounds, which are difficult to use in TFT devices.
スメクチック液晶を実現しうる化合物としてテルフェニル化合物が提案されている(特許文献1)。しかしながら、広い温度範囲で使用可能なFLCデバイスを実現するためにはスメクチックC相(SmC相)が存在する上限温度を高くすること、SmC相の温度幅を広くすること、SmC相の傾き角(チルト角)を大きくすることが可能な液晶化合物が求められている。 A terphenyl compound has been proposed as a compound capable of realizing a smectic liquid crystal (Patent Document 1). However, in order to realize an FLC device that can be used in a wide temperature range, the upper limit temperature at which the smectic C phase (SmC phase) exists is increased, the temperature range of the SmC phase is increased, the inclination angle of the SmC phase ( There is a demand for a liquid crystal compound capable of increasing the tilt angle.
本発明は、上記事情に鑑みてなされたものであり、SmC相が存在する上限温度を高められる、SmC相の温度幅を拡大できる、又はSmC相の傾き角を拡大できる化合物、前記化合物を含む液晶組成物、前記液晶組成物を含む表示素子の提供を課題とする。 This invention is made | formed in view of the said situation, The compound which can raise the upper limit temperature in which a SmC phase exists, can expand the temperature range of a SmC phase, or can enlarge the inclination angle of a SmC phase, The said compound is included. An object is to provide a liquid crystal composition and a display element including the liquid crystal composition.
本発明者らが鋭意検討した結果、従来のテルフェニル化合物の末端に嵩高い置換基を導入することにより、優れた特性を有する液晶化合物が得られることを見いだし、本発明を完成させた。 As a result of intensive studies by the present inventors, it was found that a liquid crystal compound having excellent characteristics can be obtained by introducing a bulky substituent at the terminal of a conventional terphenyl compound, and the present invention was completed.
本発明の第一の態様は、下記一般式(i)で表される化合物のうち、後述の一般式(i−1)、一般式(i−2)及び一般式(i−3)で表される化合物である。ただし、前記一般式(i−1)のmは2〜10の整数を表す。 A first aspect of the present invention is represented by the following general formula (i-1), general formula (i-2) and general formula (i-3) among the compounds represented by the following general formula (i). It is a compound . However, m of the said general formula (i-1) represents the integer of 2-10.
本発明の第二の態様は、第一の態様の化合物を用いた液晶組成物である。
本発明の第三の態様は、第二の態様の液晶組成物を用いた表示素子である。
The second aspect of the present invention is a liquid crystal composition using the compound of the first aspect.
The third aspect of the present invention is a display device using the liquid crystal composition of the second aspect.
本発明にかかる化合物によれば、当該化合物が含まれる液晶組成物のSmC相が存在可能な上限温度を引き上げること、当該液晶組成物のSmC相の温度幅を広くすること、又は当該液晶組成物の傾き角を大きくすることができる。したがって、本発明にかかる化合物を含む液晶組成物を表示素子に使用することにより、より広い温度範囲で使用可能な及び/又は表示特性に優れた表示素子が得られる。 According to the compound of the present invention, the upper limit temperature at which the SmC phase of the liquid crystal composition containing the compound can exist is increased, the temperature range of the SmC phase of the liquid crystal composition is widened, or the liquid crystal composition The tilt angle can be increased. Therefore, by using the liquid crystal composition containing the compound according to the present invention for a display element, a display element that can be used in a wider temperature range and / or has excellent display characteristics can be obtained.
以下、好適な実施の形態に基づき、図面を参照して本発明を説明するが、本発明はかかる実施形態に限定されない。 Hereinafter, the present invention will be described with reference to the drawings based on preferred embodiments, but the present invention is not limited to such embodiments.
《化合物の評価方法》
本発明にかかる化合物とそれを用いた液晶のSmC相の上限温度、SmC相の温度幅は、示差走査熱量測定および温度可変装置を装着した偏光顕微鏡による液晶相を観察して得た相系列(Phase sequence)の結果に基づく。
<Method for evaluating compounds>
The upper limit temperature of the SmC phase and the temperature range of the SmC phase of the compound according to the present invention and the liquid crystal using the same are the phase series obtained by observing the liquid crystal phase with a differential scanning calorimetry and a polarization microscope equipped with a temperature variable device ( Based on Phase sequence results.
本発明にかかる化合物のみからなる液晶のSmC相の上限温度が、標準液晶(比較例の化合物(REF1、REF2又はREF3)のみからなる液晶)のSmC相の上限温度よりも高い場合に、その化合物は、液晶のSmC相の上限温度を上昇させ易い化合物である(第一の上昇効果を奏する)と評価した。
REF2からなる標準液晶50重量部に、本発明の化合物を50重量部添加して得られた液晶組成物が発現するSmC相の上限温度と、前記標準液晶が発現するSmC相の上限温度とを比較し、前記標準液晶の前記上限温度よりも前記液晶組成物の前記上限温度が高い場合に、本発明の化合物は、液晶組成物のSmC相の上限温度の上昇効果を有する(第二の上昇効果を奏する)と評価した。
When the upper limit temperature of the SmC phase of the liquid crystal comprising only the compound according to the present invention is higher than the upper limit temperature of the SmC phase of the standard liquid crystal (liquid crystal comprising only the compound of the comparative example (REF1, REF2 or REF3)) Was evaluated as a compound that easily increases the upper limit temperature of the SmC phase of the liquid crystal (having a first increase effect).
The upper limit temperature of the SmC phase expressed by the liquid crystal composition obtained by adding 50 parts by weight of the compound of the present invention to 50 parts by weight of the standard liquid crystal composed of REF2, and the upper limit temperature of the SmC phase expressed by the standard liquid crystal In comparison, when the upper limit temperature of the liquid crystal composition is higher than the upper limit temperature of the standard liquid crystal, the compound of the present invention has an effect of increasing the upper limit temperature of the SmC phase of the liquid crystal composition (second increase). It is effective).
また、REF2からなる前記標準液晶50重量部に、本発明の化合物を50重量部添加して得られた液晶組成物が発現するSmC相の温度幅が、前記標準液晶が発現するSmC相の温度幅よりも広い場合に、本発明の化合物は、液晶組成物のSmC相の温度幅の拡大効果を有すると評価した。なお、SmC相の温度幅は、SmC相の上限温度(ネマチック相(N相)もしくはスメクチックA相(SmA相)が発現し始める下限温度)とSmC相の下限温度(固体相もしくは他のスメクチック相が発現し始める上限温度)の温度差である。 Further, the temperature range of the SmC phase expressed by the liquid crystal composition obtained by adding 50 parts by weight of the compound of the present invention to 50 parts by weight of the standard liquid crystal composed of REF2 is the temperature of the SmC phase expressed by the standard liquid crystal. When wider than the width, the compound of the present invention was evaluated as having an effect of expanding the temperature width of the SmC phase of the liquid crystal composition. The temperature range of the SmC phase is defined by the upper limit temperature of the SmC phase (the lower limit temperature at which the nematic phase (N phase) or smectic A phase (SmA phase) begins to develop) and the lower limit temperature of the SmC phase (solid phase or other smectic phase). Is the temperature difference).
本発明にかかる化合物のみからなる液晶がINC相系列を発現する場合に、SmC相の傾き角の拡大効果があると評価した。これは、液晶のSmC相の傾き角を大きくするためには、液晶の相系列が高温側からI相(等方相)−N相−SmC相(INC相系列)である方が、I相−N相−SmA相−SmC相(INAC相系列)より好ましいことから、INC相系列を発現する化合物の方が、SmC相の傾き角を大きくするには好ましいためである。 When the liquid crystal composed only of the compound according to the present invention expresses the INC phase series, it was evaluated that there was an effect of expanding the tilt angle of the SmC phase. In order to increase the tilt angle of the SmC phase of the liquid crystal, the phase sequence of the liquid crystal is the I phase (isotropic phase) -N phase-SmC phase (INC phase sequence) from the high temperature side. This is because a compound that expresses the INC phase series is preferable to increase the tilt angle of the SmC phase because it is more preferable than -N phase-SmA phase-SmC phase (INAC phase series).
《化合物》
本発明の第一の態様は、下記一般式(i)で表される化合物である。
"Compound"
The first aspect of the present invention is a compound represented by the following general formula (i).
一般式(i)中、R及びR’はそれぞれ独立に水素原子、炭素数1〜10のアルキル基又は炭素数1〜9のアルコキシ基を表す。
Rは、炭素数1〜10の直鎖状又は分岐鎖状アルキル基であることが好ましく、炭素数1〜10の直鎖状アルキル基であることがより好ましく、炭素数1〜8の直鎖状アルキル基が更に好ましく、炭素数3〜7の直鎖状アルキル基であることが特に好ましい。
R’は、水素原子又は炭素数1〜10の直鎖状又は分岐鎖状アルキル基であることが好ましく、水素原子又は炭素数1〜8の直鎖状アルキル基であることがより好ましく、水素原子又は炭素数1〜5の直鎖状アルキル基が更に好ましい。
R又はR’がアルコキシ基である場合、その基は直鎖状のメトキシ基、エトキシ基、プロポキシ基、ブトキシ基又はペンチルオキシ基であることが好ましい。
In general formula (i), R and R ′ each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 9 carbon atoms.
R is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms, and a linear chain having 1 to 8 carbon atoms. The alkyl group is more preferable, and a linear alkyl group having 3 to 7 carbon atoms is particularly preferable.
R ′ is preferably a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or a linear alkyl group having 1 to 8 carbon atoms, An atom or a linear alkyl group having 1 to 5 carbon atoms is more preferable.
When R or R ′ is an alkoxy group, the group is preferably a linear methoxy group, ethoxy group, propoxy group, butoxy group or pentyloxy group.
一般式(i)中、A1、A2及びA3はそれぞれ独立に1,4‐フェニレン基、2−フルオロ−1,4‐フェニレン基、3−フルオロ−1,4‐フェニレン基又は2,3‐ジフルオロ‐1,4‐フェニレン基を表す。
A1、A2及びA3のうち少なくとも1個は、2−フルオロ−1,4‐フェニレン基、3−フルオロ−1,4‐フェニレン基又は2,3‐ジフルオロ‐1,4‐フェニレン基であることが好ましく、2,3‐ジフルオロ‐1,4‐フェニレン基であることがより好ましい。また、A1、A2及びA3のうちの何れか1個が2,3‐ジフルオロ‐1,4‐フェニレン基であり、残りの2個が1,4‐フェニレン基であることがより好ましい。
In general formula (i), A1, A2 and A3 are each independently 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group or 2,3-difluoro. Represents a -1,4-phenylene group.
At least one of A1, A2 and A3 may be a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group or a 2,3-difluoro-1,4-phenylene group A 2,3-difluoro-1,4-phenylene group is more preferable. More preferably, any one of A1, A2 and A3 is a 2,3-difluoro-1,4-phenylene group, and the remaining two are 1,4-phenylene groups.
一般式(i)中、mは1〜10の整数を表す。 In general formula (i), m represents an integer of 1 to 10.
前記A3が2,3‐ジフルオロ‐1,4‐フェニレン基であり、前記A1及びA2が1,4‐フェニレン基である場合、前記mは、1、3又は5であることが好ましく、3又は5であることがより好ましく、3であることが更に好ましい。
mが3又は5であると、一般式(i)で表される化合物を含む液晶組成物のSmC相の上限温度を高め、SmC相の温度幅を拡大し、さらにSmC相の傾き角を拡大(INC相系列が発現)させることが容易である。mが3であると、前記第一の上昇効果が顕著に奏され易くなる。
When A3 is a 2,3-difluoro-1,4-phenylene group and A1 and A2 are 1,4-phenylene groups, m is preferably 1, 3 or 5, or 3 or 5 is more preferable, and 3 is still more preferable.
When m is 3 or 5, the upper limit temperature of the SmC phase of the liquid crystal composition containing the compound represented by the general formula (i) is increased, the temperature range of the SmC phase is expanded, and the inclination angle of the SmC phase is further expanded. (INC phase series is easily expressed). When m is 3, the first ascending effect is easily achieved.
前記A2が2,3‐ジフルオロ‐1,4‐フェニレン基であり、前記A1及びA3が1,4‐フェニレン基である場合、前記mは、4又は5であることが好ましく、5であることがより好ましい。
mが4であると、SmC相の温度幅を拡大し、傾き角を拡大(INC相系列が発現)させることが容易である。
mが5であると、一般式(i)で表される化合物のみからなる液晶および一般式(i)で表される化合物を含む液晶組成物のSmC相の上限温度を高め、SmC相の温度幅を拡大し、傾き角を拡大(INC相系列が発現)させることが容易である。
When A2 is a 2,3-difluoro-1,4-phenylene group and A1 and A3 are 1,4-phenylene groups, m is preferably 4 or 5, and preferably 5. Is more preferable.
When m is 4, it is easy to expand the temperature range of the SmC phase and expand the tilt angle (increased INC phase series).
When m is 5, the upper limit temperature of the SmC phase of the liquid crystal composition containing only the compound represented by the general formula (i) and the compound represented by the general formula (i) is increased, and the temperature of the SmC phase is increased. It is easy to enlarge the width and enlarge the tilt angle (increased INC phase series).
前記A1が2,3‐ジフルオロ‐1,4‐フェニレン基であり、前記A2及びA3が1,4‐フェニレン基である場合、前記mは、1、3又は5であることが好ましい。
mが1、3又は5であると、一般式(i)で表される化合物のみからなる液晶のSmC相の上限温度を高めることが容易である。
When A1 is a 2,3-difluoro-1,4-phenylene group and A2 and A3 are 1,4-phenylene groups, m is preferably 1, 3, or 5.
When m is 1, 3 or 5, it is easy to increase the upper limit temperature of the SmC phase of the liquid crystal composed only of the compound represented by the general formula (i).
一般式(i)中、Yは1,4‐シクロヘキシレン基、1,4‐フェニレン基、1,4‐ビシクロオクチレン基又はジアルキルシリレン基の何れかの基を表す。Yがここに示した構造的に嵩高い基であることにより、SmCの上限温度、SmC相の温度幅及びSmC相の傾き角のうち少なくとも1つを従来化合物よりも向上させることが容易になる。
前記1,4‐シクロヘキシレン基、1,4‐フェニレン基、1,4‐ビシクロオクチレン基及びジアルキルシリレン基に結合する水素原子のうち何れか1個以上がフッ素原子に置換されていても構わない。前記ジアルキルシリレン基が有する第一のアルキル基及び第二のアルキル基は、それぞれ独立に炭素数1〜4の直鎖状又は分岐鎖状アルキル基であることが好ましく、炭素数1〜4の直鎖状アルキル基であることがより好ましい。
前記Yは、1,4‐シクロヘキシレン基、1,4‐フェニレン基又は1,4‐ビシクロオクチレン基であることが好ましく、1,4‐シクロヘキシレン基又は1,4‐フェニレン基であることがより好ましく、1,4‐シクロヘキシレン基であることが更に好ましい。
In general formula (i), Y represents any group of a 1,4-cyclohexylene group, a 1,4-phenylene group, a 1,4-bicyclooctylene group, or a dialkylsilylene group. By Y being the structurally bulky group shown here, it becomes easier to improve at least one of the upper limit temperature of SmC, the temperature range of the SmC phase, and the inclination angle of the SmC phase as compared with the conventional compound. .
Any one or more of hydrogen atoms bonded to the 1,4-cyclohexylene group, 1,4-phenylene group, 1,4-bicyclooctylene group and dialkylsilylene group may be substituted with a fluorine atom. Absent. The first alkyl group and the second alkyl group of the dialkylsilylene group are preferably each independently a linear or branched alkyl group having 1 to 4 carbon atoms, and a straight chain having 1 to 4 carbon atoms. It is more preferably a chain alkyl group.
Y is preferably 1,4-cyclohexylene group, 1,4-phenylene group or 1,4-bicyclooctylene group, and is 1,4-cyclohexylene group or 1,4-phenylene group. Are more preferable, and a 1,4-cyclohexylene group is still more preferable.
前記一般式(i)で表される好ましい化合物として、例えば、下記一般式(i−0)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i), the compound represented by the following general formula (i-0) is mentioned, for example.
nは、SmC相の傾き角を拡大する(INC相系列を発現する)観点から、0〜3が好ましく、0〜2がより好ましく、0又は1がさらに好ましい。 n is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1 from the viewpoint of expanding the inclination angle of the SmC phase (expressing the INC phase series).
前記一般式(i−0)で表される好ましい化合物として、例えば、下記一般式(i−1)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i-0), the compound represented by the following general formula (i-1) is mentioned, for example.
R、m及びnの説明は、前記一般式(i−0)におけるR、m及びnの説明と同じである。
The description of R, m and n is the same as the description of R, m and n in the general formula (i-0).
一般式(i−1)におけるmとnの好ましい組み合わせとして、(m,n)=(5,0)、(5,1)、(4,2)、(3,3)、(2,4)、(1,5)が挙げられる。これらの組み合わせの中でも、(m,n)=(3,3)又は(1,5)であると、SmC相の上限温度を一層高めることができる(前記第一の上昇効果が一層奏される)とともに、SmC相の温度幅の拡大効果が容易に得られる。また、(m,n)=(5,0)、(5,1)、(3,3)であることにより、SmC相の上限温度の前記第二の上昇効果、SmC相の温度幅の拡大効果、及びSmC相の傾き角の拡大効果が容易に得られる。 As a preferable combination of m and n in the general formula (i-1), (m, n) = (5,0), (5,1), (4,2), (3,3), (2,4 ), (1, 5). Among these combinations, when (m, n) = (3, 3) or (1, 5), the upper limit temperature of the SmC phase can be further increased (the first increasing effect is further exhibited). ) And the effect of expanding the temperature range of the SmC phase can be easily obtained. Further, when (m, n) = (5,0), (5,1), (3,3), the second effect of increasing the upper limit temperature of the SmC phase and the expansion of the temperature range of the SmC phase. The effect and the effect of expanding the tilt angle of the SmC phase can be easily obtained.
前記一般式(i−1)で表される好ましい化合物として、例えば、下記一般式(i−1−1)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i-1), the compound represented by the following general formula (i-1-1) is mentioned, for example.
m及びnの説明は、前記一般式(i−1)におけるR、m及びnの説明と同じである。
The explanation of m and n is the same as the explanation of R, m and n in the general formula (i-1).
前記一般式(i−0)で表される好ましい化合物として、例えば、下記一般式(i−2)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i-0), the compound represented by the following general formula (i-2) is mentioned, for example.
R、m及びnの説明は、前記一般式(i−0)におけるR、m及びnの説明と同じである。
The description of R, m and n is the same as the description of R, m and n in the general formula (i-0).
一般式(i−2)におけるmとnの好ましい組み合わせとして、(m,n)=(5,0)、(5,1)、(4,2)、(3,3)、(2,4)、(1,5)が挙げられる。これらの組み合わせの中でも、(m,n)=(5,1)であると、SmC相の上限温度の前記第一の上昇効果及び第二の上昇効果、SmC相の温度幅の拡大効果、並びにSmC相の傾き角の拡大効果が容易に得られる。また、(m,n)=(4,2)であることにより、SmC相の温度幅の拡大効果及びSmC相の傾き角の拡大効果が容易に得られる。また、(m,n)=(5,0)であることにより、SmC相の上限温度の前記第一の上昇効果、SmC相の傾き角の拡大効果が容易に得られる。 As a preferable combination of m and n in the general formula (i-2), (m, n) = (5,0), (5,1), (4,2), (3,3), (2,4 ), (1, 5). Among these combinations, when (m, n) = (5, 1), the first increase effect and the second increase effect of the upper limit temperature of the SmC phase, the expansion effect of the temperature range of the SmC phase, and The effect of increasing the tilt angle of the SmC phase can be easily obtained. Further, when (m, n) = (4, 2), the effect of expanding the temperature width of the SmC phase and the effect of expanding the tilt angle of the SmC phase can be easily obtained. Further, when (m, n) = (5, 0), the first effect of increasing the upper limit temperature of the SmC phase and the effect of expanding the tilt angle of the SmC phase can be easily obtained.
前記一般式(i−2)で表される好ましい化合物として、例えば、下記一般式(i−2−1)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i-2), the compound represented by the following general formula (i-2-1) is mentioned, for example.
m及びnの説明は、前記一般式(i−2)におけるm及びnの説明と同じである。
The description of m and n is the same as the description of m and n in the general formula (i-2).
前記一般式(i−0)で表される好ましい化合物として、例えば、下記一般式(i−3)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i-0), the compound represented by the following general formula (i-3) is mentioned, for example.
R、m及びnの説明は、前記一般式(i−0)におけるR、m及びnの説明と同じである。
The description of R, m and n is the same as the description of R, m and n in the general formula (i-0).
一般式(i−3)におけるmとnの好ましい組み合わせとして、(m,n)=(5,0)、(5,1)、(4,2)、(3,3)、(2,4)、(1,5)が挙げられる。これらの組み合わせの中でも、(m,n)=(5,1)、(3,3)又は(1,5)であると、SmC相の上限温度の前記第一の上昇効果を容易に得ることができ、(m,n)=(3,3)であると、前記第一の上昇効果をより一層高めることができる。 As a preferable combination of m and n in the general formula (i-3), (m, n) = (5,0), (5,1), (4,2), (3,3), (2,4 ), (1, 5). Among these combinations, when (m, n) = (5,1), (3,3) or (1,5), the first effect of increasing the upper limit temperature of the SmC phase can be easily obtained. When (m, n) = (3, 3), the first increase effect can be further enhanced.
前記一般式(i−3)で表される好ましい化合物として、例えば、下記一般式(i−3−1)で表される化合物が挙げられる。 As a preferable compound represented by the said general formula (i-3), the compound represented by the following general formula (i-3-1) is mentioned, for example.
m及びnの説明は、前記一般式(i−3)におけるm及びnの説明と同じである。
The description of m and n is the same as the description of m and n in the general formula (i-3).
《液晶組成物》
本発明の第二の態様である液晶組成物は、前記一般式(i)で表される化合物のみからなる液相組成物であってもよいし、前記一般式(i)で表される化合物とその他の化合物を含む液相組成物であってもよい。本発明の液晶組成物は、強誘電性液晶組成物であることが好ましい。
本発明の液晶組成物が強誘電性液晶組成物である場合、当該液晶組成物は光学活性化合物を含有することが好ましい。本発明の液晶組成物に含有させることができる光学活性化合物は特に制限されず、公知の不斉原子を持つ化合物、軸不斉を持つ化合物、または面不斉を持つ化合物を用いることができ、不斉炭素を持つ化合物、又は炭素−炭素結合を軸不斉とする化合物を用いることが好ましく、不斉炭素原子を持つ化合物がより好ましい。
<Liquid crystal composition>
The liquid crystal composition according to the second aspect of the present invention may be a liquid phase composition composed only of the compound represented by the general formula (i) or the compound represented by the general formula (i). And a liquid phase composition containing other compounds. The liquid crystal composition of the present invention is preferably a ferroelectric liquid crystal composition.
When the liquid crystal composition of the present invention is a ferroelectric liquid crystal composition, the liquid crystal composition preferably contains an optically active compound. The optically active compound that can be contained in the liquid crystal composition of the present invention is not particularly limited, and a compound having a known asymmetric atom, a compound having axial asymmetry, or a compound having surface asymmetry can be used. A compound having an asymmetric carbon or a compound having a carbon-carbon bond as an axial asymmetry is preferably used, and a compound having an asymmetric carbon atom is more preferable.
不斉炭素を有する光学活性化合物において、不斉炭素は鎖状構造の一部に導入されていても、環状構造の一部に導入されていても良く、不斉炭素上にフッ素原子、メチル基又はCF3基が導入されている化合物、又は不斉炭素を有するオキシラン環構造を有する化合物が好ましい。
光学活性化合物として具体的には一般式(III)
In an optically active compound having an asymmetric carbon, the asymmetric carbon may be introduced into a part of a chain structure or a part of a cyclic structure, and a fluorine atom or a methyl group may be present on the asymmetric carbon. Alternatively, a compound having a CF 3 group introduced therein or a compound having an oxirane ring structure having an asymmetric carbon is preferable.
Specifically, the optically active compound is represented by the general formula (III)
(式中、R31及びR32は、各々独立に炭素原子数1〜18の直鎖状又は分岐状のアルキル基を表し、該アルキル基中の、1つ又は2つの隣接していない−CH2−基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−O−CO−O−、−CH=CH−又は−C≡C−で置き換えられてもよく、該アルキル基中の水素原子はフッ素原子又はCN基で置き換えられていてもよく、A3、B3及びC3は各々独立に、1,4−フェニレン基、ピラジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、トランス−1,4−シクロへキシレン基、1,3,4−チアジアゾール−2,5−ジイル基、1,3−ジオキサン−2,5−ジイル基、1,3−ジチアン−2,5−ジイル基、1,3−チアゾール−2,4−ジイル、1,3−チアゾール−2,5−ジイル、チオフェン−2,4−ジイル基、チオフェン−2,5−ジイル基、ピペラジン−1,4−ジイル基、ピペラジン−2,5−ジイル基又はナフタレン−2,6−ジイル基を表し、ただし、該1,4−フェニレン基及びナフタレン−2,5−ジイル基中の水素原子はフッ素原子、CF3基、OCF3基、CN基、CH3基、又はOCH3基に置換されていてもよく、該トランス−1,4−シクロへキシレン基中の水素原子はCN基又はCH3基で置換されていてもよく、a3、b3、及びc3は各々独立に0又は1を表し、L31及びL32は、各々独立に単結合、−O−、−CO−、−CH2O−、−OCH2−、−CF2O−、−OCF2−、−CO−O−、−O−CO−、−O−CO−O−、−CH2CH2−、−CH=CH−又は−C≡C−を表し、L33は、一般式(III−1)、 (In the formula, R 31 and R 32 each independently represent a linear or branched alkyl group having 1 to 18 carbon atoms, and one or two non-adjacent —CH in the alkyl group. The 2- group is replaced by —O—, —S—, —CO—, —CO—O—, —O—CO—, —O—CO—O—, —CH═CH— or —C≡C—. The hydrogen atom in the alkyl group may be replaced with a fluorine atom or a CN group, and A 3 , B 3 and C 3 are each independently a 1,4-phenylene group, pyrazine-2,5 -Diyl group, pyridazine-3,6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, trans-1,4-cyclohexylene group, 1,3,4-thiadiazole- 2,5-diyl group, 1,3-dioxane-2,5-diyl group, 1,3-dithiane 2,5-diyl group, 1,3-thiazole-2,4-diyl, 1,3-thiazole-2,5-diyl, thiophene-2,4-diyl group, thiophene-2,5-diyl group, piperazine -1,4-diyl group, piperazine-2,5-diyl group or naphthalene-2,6-diyl group, provided that the hydrogen atom in the 1,4-phenylene group and naphthalene-2,5-diyl group May be substituted by a fluorine atom, a CF 3 group, an OCF 3 group, a CN group, a CH 3 group, or an OCH 3 group, and the hydrogen atom in the trans-1,4-cyclohexylene group is a CN group or Optionally substituted with a CH 3 group, a 3 , b 3 , and c 3 each independently represent 0 or 1, L 31 and L 32 each independently represent a single bond, —O—, —CO— , -CH 2 O -, - OCH 2 -, - CF 2 O-, —OCF 2 —, —CO—O—, —O—CO—, —O—CO—O—, —CH 2 CH 2 —, —CH═CH— or —C≡C—, L 33 is Formula (III-1),
(式中、d3は0以上8以下の整数を表し、Xは−O−、−CO−O−、−O−CO−を表す。)のいずれかで表される構造を有し、Z31は、一般式(III−4)又は一般式(III−5)、 (Wherein d 3 represents an integer of 0 or more and 8 or less, and X represents —O—, —CO—O—, or —O—CO—). 31 represents the general formula (III-4) or the general formula (III-5),
(ただし、Z32はフッ素原子、メチル基又はCF3基を表し、R33及びR34は、各々独立に水素原子あるいは炭素原子数1〜10の直鎖状又は分岐状のアルキル基を表し、*は不斉炭素を表す。)のいずれかで表される構造を有する。)が好ましい。上記a3+b3+c3は2又は3であることが好ましい。 (However, Z 32 represents a fluorine atom, a methyl group or a CF 3 group, R 33 and R 34 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, * Represents an asymmetric carbon). ) Is preferred. The a 3 + b 3 + c 3 is preferably 2 or 3.
一般式(III)で表される化合物の中でも特に、Z31が一般式(III−4)の構造を持ち、かつZ32がフッ素原子の化合物、または、Z31が一般式(III−5)の構造を持ち、かつR33及びR34が水素原子である化合物がさらに好ましい。
一般式(III)で表される化合物の中で、Z31が一般式(III−4)の構造を持ち、かつZ32がフッ素原子の化合物としては、下記一般式(III−b)
Among the compounds represented by the general formula (III), in particular, Z 31 has a structure of the general formula (III-4) and Z 32 is a fluorine atom, or Z 31 is the general formula (III-5). More preferred is a compound having the following structure, and R 33 and R 34 are hydrogen atoms.
Among the compounds represented by the general formula (III), Z 31 has the structure of the general formula (III-4) and Z 32 is a fluorine atom, and the following general formula (III-b)
(式中、R37及びR38は、各々独立に炭素原子数1〜18の直鎖状又は分岐状のアルキル基を表し、該アルキル基中の、1つ又は2つの隣接していない−CH2−基は−O−、−S−、−CO−、−CO−O−、−O−CO−、−O−CO−O−、−CH=CH−又は−C≡C−で置き換えられてもよく、該アルキル基中の水素原子はフッ素原子又はCN基で置き換えられていてもよく、L34は、一般式(III−b−1)、又は一般式(III−b−2)、 Wherein R 37 and R 38 each independently represent a linear or branched alkyl group having 1 to 18 carbon atoms, and one or two non-adjacent —CH in the alkyl group The 2- group is replaced by —O—, —S—, —CO—, —CO—O—, —O—CO—, —O—CO—O—, —CH═CH— or —C≡C—. The hydrogen atom in the alkyl group may be replaced with a fluorine atom or a CN group, and L 34 is a group represented by the general formula (III-b-1), or the general formula (III-b-2),
(式中、g3、及びh3は、各々独立に0以上7以下の整数を表す。)のいずれかで表される構造を有する。)で表される化合物、又は、下記一般式(III−c) (Wherein g 3 and h 3 each independently represents an integer of 0 or more and 7 or less). Or a compound represented by the following general formula (III-c)
(式中、R39及びR40は各々独立に炭素原子数1〜18の直鎖状又は分岐状のアルキル基を表し、ただし、該アルキル基中の少なくともどちらかひとつは分岐状のアルキル基であり、該アルキル基中の、1つ又は2つの隣接していない−CH2−基は−O−、−CO−、−CO−O−、−O−CO−、−O−CO−O−、−CH=CH−又は−C≡C−で置き換えられてもよく、該アルキル基中の1つ以上の水素原子はフッ素原子あるいはCN基で置き換えられていてもよく、X31及びX32は各々独立に水素原子あるいはフッ素原子を表し、d3は0又は1の整数を表し、L35は、一般式(III−c−1)、一般式(III−c−2)、又は一般式(III−c−3)、 (In the formula, R 39 and R 40 each independently represent a linear or branched alkyl group having 1 to 18 carbon atoms, provided that at least one of the alkyl groups is a branched alkyl group. And one or two non-adjacent —CH 2 — groups in the alkyl group are —O—, —CO—, —CO—O—, —O—CO—, —O—CO—O—. , -CH = CH- or -C≡C-, one or more hydrogen atoms in the alkyl group may be replaced by a fluorine atom or a CN group, and X 31 and X 32 are Each independently represents a hydrogen atom or a fluorine atom, d 3 represents an integer of 0 or 1, and L 35 represents a general formula (III-c-1), a general formula (III-c-2), or a general formula ( III-c-3),
これら化合物の中でも、一般式(III−b)で表される化合物の場合はR37及びR38は直鎖状又は分岐状のアルキル基がさらに好ましく、特に直鎖状アルキル基が好ましい。一方、一般式(III−c)で表される化合物の場合、R39は直鎖状又は分岐状のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基がさらに好ましく、R40は直鎖状又は分岐状のアルキル基が好ましく、特に直鎖状アルキル基が好ましい。
一般式(III)で表される化合物の中で、Z31が一般式(III−5)の構造を持ち、かつR33及びR34が水素原子である化合物としては下記構造の化合物が好ましい。
Among these compounds, in the case of the compound represented by the general formula (III-b), R 37 and R 38 are more preferably a linear or branched alkyl group, and particularly preferably a linear alkyl group. On the other hand, in the case of the compound represented by the general formula (III-c), R 39 is more preferably a linear or branched alkyl group, alkoxy group, alkenyl group, alkenyloxy group, and R 40 is linear or A branched alkyl group is preferable, and a linear alkyl group is particularly preferable.
Among the compounds represented by the general formula (III), the compound having the following structure is preferred as a compound in which Z 31 has the structure of the general formula (III-5) and R 33 and R 34 are hydrogen atoms.
(式中、R331は炭素数4〜14のアルキル基あるいはアルコキシ基、R332は炭素数1〜8のアルキル基、R333は炭素数4〜14のアルキル基、L331、及びL332は各々独立にカルボニル基又はメチレン基を表す。)
一般式(III)として特に好ましい化合物の具体例を以下に挙げる。
Wherein R 331 is an alkyl group having 4 to 14 carbon atoms or an alkoxy group, R 332 is an alkyl group having 1 to 8 carbon atoms, R 333 is an alkyl group having 4 to 14 carbon atoms, L 331 and L 332 are Each independently represents a carbonyl group or a methylene group.)
Specific examples of particularly preferable compounds as the general formula (III) are shown below.
(式中、Raaは炭素数1〜18の直鎖状若しくは分岐状のアルキル基またはアルコキシ基、Rbbは炭素数1〜18の直鎖状若しくは分岐状のアルキル基、Maaは炭素数1〜3のメチレン基、Mbbは炭素数1〜2のメチレン基を表す。) (In the formula, R aa is a linear or branched alkyl group or alkoxy group having 1 to 18 carbon atoms, R bb is a linear or branched alkyl group having 1 to 18 carbon atoms, and M aa is a carbon number. 1 to 3 methylene groups, and M bb represents a methylene group having 1 to 2 carbon atoms.)
本発明の液晶組成物は、一般式(i)で表される化合物を含有する。本発明の液晶組成物の総質量に対する、一般式(i)で表される化合物の含有量は、5〜80質量%が好ましく、10〜60質量%がより好ましい。本発明の液晶組成物は、一般式(i)で表される化合物を2種以上含有することが好ましい。 The liquid crystal composition of the present invention contains a compound represented by the general formula (i). 5-80 mass% is preferable and, as for content of the compound represented by general formula (i) with respect to the gross mass of the liquid-crystal composition of this invention, 10-60 mass% is more preferable. The liquid crystal composition of the present invention preferably contains two or more compounds represented by the general formula (i).
本発明の液晶組成物が強誘電性液晶組成物である場合、一般式(i)で表される化合物に加え、一般式(III)で表されるキラル化合物を使用することが好ましい。前記強誘電性液晶組成物の総質量に対する、一般式(III)で表される化合物の含有量は、2〜50質量%が好ましく、5〜30質量%がより好ましい。また、一般式(III)の含有量が10質量%を超える場合には、一般式(III)で表される化合物を2種以上使用し、単一成分の含有量が10質量%を超えないようにすると、好ましくない結晶化や相系列の乱れを抑制することができる。 When the liquid crystal composition of the present invention is a ferroelectric liquid crystal composition, it is preferable to use a chiral compound represented by the general formula (III) in addition to the compound represented by the general formula (i). The content of the compound represented by the general formula (III) with respect to the total mass of the ferroelectric liquid crystal composition is preferably 2 to 50% by mass, and more preferably 5 to 30% by mass. Moreover, when content of general formula (III) exceeds 10 mass%, 2 or more types of compounds represented by general formula (III) are used, and content of a single component does not exceed 10 mass% By doing so, it is possible to suppress undesirable crystallization and disorder of the phase sequence.
液晶組成物から不純物等を除去する目的で、又は液晶組成物の比抵抗値を更に高くする目的で、シリカ、アルミナ等による精製処理を施しても良い。比抵抗値としては1012Ω・cm以上が好ましく、1013Ω・cm以上がより好ましい。更に、目的に応じて液晶組成物中に、キラル化合物、染料、イオン捕捉剤等のドーパントを添加することもできる。 For the purpose of removing impurities or the like from the liquid crystal composition, or for the purpose of further increasing the specific resistance value of the liquid crystal composition, purification treatment with silica, alumina or the like may be performed. The specific resistance value is preferably 10 12 Ω · cm or more, more preferably 10 13 Ω · cm or more. Furthermore, dopants such as chiral compounds, dyes, and ion scavengers can be added to the liquid crystal composition according to the purpose.
その他、必要に応じて酸化防止剤、紫外線吸収剤、非反応性のオリゴマーや無機充填剤、有機充填剤、重合禁止剤、消泡剤、レベリング剤、可塑剤、シランカップリング剤等を適宜添加しても良い。 In addition, antioxidants, UV absorbers, non-reactive oligomers and inorganic fillers, organic fillers, polymerization inhibitors, antifoaming agents, leveling agents, plasticizers, silane coupling agents, etc. are added as necessary. You may do it.
更に、強誘電性液晶組成物の成分として、必要に応じて一般式(i)で示される液晶性化合物以外の液晶性化合物を併用することができる。併用しうる化合物に特に限定はないが、強誘電性液晶相を安定化するためには、SmC相、あるいはキラルSmC相を示す液晶性化合物を用いることが好ましい。(本明細書中では、液晶相の名称を記載したときには特に断わりのない限り対応するキラルな液晶相も含むものとする。) また、強誘電性液晶相の相系列、あるいは各液晶相の温度範囲を調節するためには適宜液晶性化合物を選ぶことが好ましい。具体的には、N相を発現させたり、ネマチック相の温度範囲を広げたい場合には、N相を示す化合物を併用することが好ましく、また、SmA相を発現させたり、SmA相の温度範囲を広げたい場合には、SmA相を示す化合物を併用することが好ましく、あるいは、Half-V用材料のように、SmA相が不要な場合には、SmA相を示さない化合物を併用することが好ましい。強誘電性液晶相を安定化するために併用する化合物として好ましい具体例を以下に挙げる。 Furthermore, as a component of the ferroelectric liquid crystal composition, a liquid crystal compound other than the liquid crystal compound represented by the general formula (i) can be used in combination as necessary. The compound that can be used in combination is not particularly limited, but in order to stabilize the ferroelectric liquid crystal phase, it is preferable to use a liquid crystal compound exhibiting an SmC phase or a chiral SmC phase. (In this specification, the name of the liquid crystal phase includes the corresponding chiral liquid crystal phase unless otherwise specified.) In addition, the phase sequence of the ferroelectric liquid crystal phase or the temperature range of each liquid crystal phase is defined. In order to adjust, it is preferable to select a liquid crystal compound as appropriate. Specifically, when it is desired to develop the N phase or to expand the temperature range of the nematic phase, it is preferable to use a compound exhibiting the N phase together, and to develop the SmA phase or the temperature range of the SmA phase. When it is desired to expand the range, it is preferable to use a compound exhibiting an SmA phase, or, when a SmA phase is unnecessary, such as a Half-V material, a compound not exhibiting an SmA phase may be used in combination. preferable. Specific examples preferable as a compound to be used in combination for stabilizing the ferroelectric liquid crystal phase are given below.
(式中、R661及びR662は各々独立に炭素数4〜14のアルキル基、R663及びR664は各々独立に炭素数4〜14のアルキル基あるいはアルコキシ基、R665は炭素数4〜14のアルキル基、L661、及びL662は各々独立に単結合、−O−、−COO−、又は−OCO−、L663は単結合、−O−、−COO−、−OCO−又は−CH2−CH2−、X661、X662、X663、X664、X665、及びX666、は各々独立に水素原子あるいはフッ素原子を表す。)
コントラストの良い表示素子を得るためには、表示方式にあわせて傾き角を調整する必要がある。傾き角を大きくするためには、SmC相の上限温度を高くしたり、SmA相の温度幅を狭くするように、化合物を選ぶことが好ましく、傾き角を小さくするためには、SmC相の上限温度を低くしたり、SmA相の温度範囲を広くするような化合物を使用することが好ましい。
Wherein R 661 and R 662 are each independently an alkyl group having 4 to 14 carbon atoms, R 663 and R 664 are each independently an alkyl group or alkoxy group having 4 to 14 carbon atoms, and R 665 is an alkyl group having 4 to 4 carbon atoms. 14 alkyl groups, L 661 and L 662 are each independently a single bond, —O—, —COO— or —OCO—, L 663 is a single bond, —O—, —COO—, —OCO— or — CH 2 —CH 2 —, X 661 , X 662 , X 663 , X 664 , X 665 , and X 666 each independently represent a hydrogen atom or a fluorine atom.)
In order to obtain a display element with good contrast, it is necessary to adjust the tilt angle according to the display method. In order to increase the tilt angle, it is preferable to select a compound so as to increase the upper limit temperature of the SmC phase or to narrow the temperature range of the SmA phase, and in order to decrease the tilt angle, the upper limit of the SmC phase. It is preferable to use a compound that lowers the temperature or widens the temperature range of the SmA phase.
Sm相の層構造を安定化するためには、本発明液晶組成物に、フェニルベンゾエート誘導体又はビフェニルベンゾエート誘導体を含有させることが好ましい。これらフェニルベンゾエート誘導体又はビフェニルベンゾエート誘導体は組成物の粘度を上昇させるので、Sm相の層構造を安定化することができ、配向乱れを抑制することができる。またフェニルベンゾエート誘導体の添加により融点が低下する効果も得られる。しかし、フェニルベンゾエート誘導体の使用により粘度が上昇し応答速度も遅くなるので、所望の応答速度が得られる範囲内で使用することが望ましい。 In order to stabilize the layer structure of the Sm phase, the liquid crystal composition of the present invention preferably contains a phenylbenzoate derivative or a biphenylbenzoate derivative. Since these phenylbenzoate derivatives or biphenylbenzoate derivatives increase the viscosity of the composition, it is possible to stabilize the layer structure of the Sm phase and to suppress alignment disorder. Further, the effect of lowering the melting point can be obtained by the addition of the phenylbenzoate derivative. However, the use of the phenylbenzoate derivative increases the viscosity and slows the response speed. Therefore, it is desirable to use the phenylbenzoate derivative within a range in which a desired response speed can be obtained.
一般式(i)で表される化合物は1種を単独で用いても、アルキル鎖長、アルキル鎖の構造、結合部分の構造、環構造、環数が異なるものを複数併用しても良い。液晶温度の安定性を向上するためには、異なる構造の化合物を2種類以上使用することが好ましい。 The compounds represented by the general formula (i) may be used alone or in combination of a plurality of compounds having different alkyl chain lengths, alkyl chain structures, bond structure, ring structures, and ring numbers. In order to improve the stability of the liquid crystal temperature, it is preferable to use two or more compounds having different structures.
本発明の液晶組成物に含有するキラル化合物は、一般式(III)で示される構造の化合物を1種単独で用いても、あるいは、キラル構造、アルキル鎖長、アルキル鎖の構造、結合部分の構造、環構造、環数が異なるものを複数併用しても良い。キラルな効果に基づき発生する液晶相での螺旋構造を抑制し、良好な配向状態を得るためには、発生させるねじれの向きが異なる複数のキラル化合物を組み合わせて用いることが好ましい。このとき、自発分極の向きは揃うようにキラル化合物の組み合わせを選ぶか、あるいは、十分大きな自発分極を発生させる化合物とねじれ構造は誘起するが自発分極値の小さな化合物との組み合わせを選ぶことにより、自発分極の値はキャンセルされないので好ましい。キラルな効果に基づいて液晶相で起こる螺旋構造の発生を抑制するために、発生させるねじれの向きが異なる複数のキラル構造を同一の化合物の中に導入することも好ましい。このとき、自発分極の向きは揃うようにキラル構造の組み合わせを選ぶか、あるいは、十分大きな自発分極を発生させる構造とねじれ構造は誘起するが自発分極値の小さな構造との組み合わせを選ぶことにより、自発分極の値はキャンセルされないので好ましい。 The chiral compound contained in the liquid crystal composition of the present invention may be a single compound having a structure represented by the general formula (III), or a chiral structure, an alkyl chain length, an alkyl chain structure, A plurality of different structures, ring structures, and ring numbers may be used in combination. In order to suppress the helical structure in the liquid crystal phase generated based on the chiral effect and obtain a good alignment state, it is preferable to use a combination of a plurality of chiral compounds having different directions of twisting to be generated. At this time, by selecting a combination of chiral compounds so that the directions of spontaneous polarization are aligned, or by selecting a combination of a compound that generates a sufficiently large spontaneous polarization and a compound that induces a twisted structure but has a small spontaneous polarization value, Spontaneous polarization values are preferred because they are not canceled. In order to suppress the generation of a helical structure that occurs in the liquid crystal phase based on the chiral effect, it is also preferable to introduce a plurality of chiral structures having different twist directions to be introduced into the same compound. At this time, by selecting a combination of chiral structures so that the directions of spontaneous polarization are aligned, or by selecting a combination of a structure that generates a sufficiently large spontaneous polarization and a structure that induces a twisted structure but has a small spontaneous polarization value, Spontaneous polarization values are preferred because they are not canceled.
本発明の液晶組成物を液晶セルの中に入れることにより、液晶表示素子を作製することが可能である。液晶セルの2枚の基板はガラス、プラスチックの如き柔軟性をもつ透明な材料を用いることができる。片方の基板はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。 A liquid crystal display element can be produced by placing the liquid crystal composition of the present invention in a liquid crystal cell. For the two substrates of the liquid crystal cell, a transparent material having flexibility such as glass and plastic can be used. One substrate may be an opaque material such as silicon. A transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
強誘電性液晶組成物を用いた液晶表示素子は、フィールドシーケンシャル駆動方法を利用することにより、カラーフィルターを使用しなくてもカラー表示が可能となるが、カラーフィルターを使用した表示方法を利用してもよい。カラーフィルターは、例えば、顔料分散法、印刷法、電着法、又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。 A liquid crystal display element using a ferroelectric liquid crystal composition can display a color without using a color filter by using a field sequential driving method, but a display method using a color filter is used. May be. The color filter can be prepared by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method. A method for producing a color filter by a pigment dispersion method will be described as an example. A curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation. By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be created. In addition, a pixel electrode provided with an active element such as a TFT, a thin film diode, or a metal insulator metal specific resistance element may be provided on the substrate.
前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られるセルの厚さが1〜100μmとなるように調整するのが好ましい。セル厚は、1から10μmが更に好ましく、1から4μmがなお好ましい。偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。表示素子の製造の点ではセル厚が厚い方が好ましいが、その場合にはΔnが小さい液晶を使用する必要がある。その場合には、シクロヘキシル、あるいは、1,3,4−チアジアゾール−2,5−ジイル構造を有する一般式(i)又は一般式(III)の化合物、あるいは、一般式(i)又は一般式(III)以外の化合物で、シクロヘキシル、あるいは、1,3,4−チアジアゾール−2,5−ジイル構造を有する化合物を用いることが望ましい。シクロヘキシル構造は、一つの分子中に一つ、あるいは2つ存在することが好ましく、1,3,4−チアジアゾール−2,5−ジイルは一つの分子中に一つ存在することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。 The said board | substrate is made to oppose so that a transparent electrode layer may become an inner side. In that case, you may adjust the space | interval of a board | substrate through a spacer. In this case, it is preferable to adjust the thickness of the obtained cell to be 1 to 100 μm. The cell thickness is more preferably 1 to 10 μm, still more preferably 1 to 4 μm. When a polarizing plate is used, it is preferable to adjust the product of the refractive index anisotropy Δn of the liquid crystal and the cell thickness d so that the contrast is maximized. In view of manufacturing the display element, it is preferable that the cell thickness is thick. In that case, it is necessary to use a liquid crystal having a small Δn. In that case, cyclohexyl, a compound of general formula (i) or general formula (III) having a 1,3,4-thiadiazole-2,5-diyl structure, or general formula (i) or general formula ( It is desirable to use a compound other than III) that has cyclohexyl or 1,3,4-thiadiazole-2,5-diyl structure. One or two cyclohexyl structures are preferably present in one molecule, and one 1,3,4-thiadiazole-2,5-diyl is preferably present in one molecule. In addition, when there are two polarizing plates, the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good. Furthermore, a retardation film for widening the viewing angle can also be used. Examples of the spacer include glass particles, plastic particles, alumina particles, and a photoresist material. Thereafter, a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
2枚の基板間に高分子で安定化した強誘電性液晶組成物を狭持させる方法は、通常の真空注入法、又はODF法などを用いることができる。この時、液晶組成物は、均一なアイソトロピック状態か、又は(キラル)N相であることが好ましい。Sm相では、素子作製時の取り扱い方が難しくなる。 As a method for sandwiching a ferroelectric liquid crystal composition stabilized with a polymer between two substrates, a normal vacuum injection method, an ODF method, or the like can be used. At this time, the liquid crystal composition is preferably in a uniform isotropic state or in a (chiral) N phase. In the Sm phase, handling during device fabrication becomes difficult.
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.
<<合成1>>
4-(2,3-ジフルオロ-(4-(4-ペンチルフェニル))フェニル)フェノールの合成
<< Synthesis 1 >>
Synthesis of 4- (2,3-difluoro- (4- (4-pentylphenyl)) phenyl) phenol
<合成1−1>
2,3-ジフルオロ-4’-ペンチルビフェニルの合成
<Synthesis 1-1>
Synthesis of 2,3-difluoro-4'-pentylbiphenyl
窒素置換した3Lの四つ口フラスコに148.3gの 4-ペンチルフェニルホウ酸、102gの1-ブロモ-2,3-ジフルオロベンゼン、5.56gのテトラキストリフェニルホスフィンパラジウム(0)錯体と270gの炭酸水素ナトリウムおよび750mlのN,N−ジメチルアセトアミドを加え100度で8時間攪拌を行った。ガスクロマトグラフ(GC)で反応の終了を確認し、系を室温まで冷却した。反応系に1Lの水を加えて攪拌を行い、これにヘプタン1Lを加え激しく攪拌した。有機層を分離し、ついでヘプタン1Lで2回抽出を行った。得られたヘプタン溶液を300mlの水で2回洗浄した後、溶媒を留去し、溶媒にヘプタンを用いシリカゲル250gを用いて精製を行ったところ、無色透明の液体として100gの目的物を得た。収率72.8%。GC純度97.7%。M+260。 148.3 g 4-pentylphenylboric acid, 102 g 1-bromo-2,3-difluorobenzene, 5.56 g tetrakistriphenylphosphine palladium (0) complex and 270 g hydrogen carbonate in a nitrogen-substituted 3 L four-necked flask Sodium and 750 ml of N, N-dimethylacetamide were added and stirred at 100 degrees for 8 hours. The completion of the reaction was confirmed by gas chromatography (GC), and the system was cooled to room temperature. 1 L of water was added to the reaction system and stirred, and 1 L of heptane was added and stirred vigorously. The organic layer was separated and then extracted twice with 1 L of heptane. The obtained heptane solution was washed twice with 300 ml of water, and then the solvent was distilled off. Purification was performed using 250 g of silica gel using heptane as a solvent, and 100 g of the target product was obtained as a colorless transparent liquid. . Yield 72.8%. GC purity 97.7%. M + 260.
<合成1−2>
2, 3-ジフルオロ-4-ヨード-4'-ペンチルビフェニルの合成
<Synthesis 1-2>
Synthesis of 2, 3-difluoro-4-iodo-4'-pentylbiphenyl
窒素置換した1Lの四つ口フラスコに30.75gの2, 3-ジフルオロ-4'-ペンチルビフェニルを加え、これを100mlのTHFに溶解させ、-78度まで冷却した。系に1.3Mのsec-ブチルリチウム100ml を30分間かけて滴下した。5時間後、35.6gのヨウ素を100mlのTHFに溶解させた溶液を30分間かけて滴下した。その後、系の温度を8時間かけて室温まで上昇させた。系に500mlのヘプタンを加え、この溶液を500mlの飽和亜硫酸ナトリウム水溶液で洗浄した。溶媒を留去し、溶媒にヘプタンを用いシリカゲル50gを用いて精製を行ったところ、淡黄色の液体として43gの目的物を得た。収率94.3%。GC純度85.98%。M+386。 30.75 g of 2,3-difluoro-4′-pentylbiphenyl was added to a nitrogen-substituted 1 L four-necked flask, and this was dissolved in 100 ml of THF and cooled to −78 degrees. To the system, 100 ml of 1.3M sec-butyllithium was added dropwise over 30 minutes. After 5 hours, a solution of 35.6 g of iodine dissolved in 100 ml of THF was added dropwise over 30 minutes. Thereafter, the temperature of the system was raised to room temperature over 8 hours. 500 ml heptane was added to the system and this solution was washed with 500 ml saturated aqueous sodium sulfite. The solvent was distilled off, and purification was performed using 50 g of silica gel using heptane as a solvent. As a result, 43 g of the intended product was obtained as a pale yellow liquid. Yield 94.3%. GC purity 85.98%. M + 386.
<合成1−3>
4-(2,3-ジフルオロ-(4-(4-ペンチルフェニル))フェニル)フェノールの合成
<Synthesis 1-3>
Synthesis of 4- (2,3-difluoro- (4- (4-pentylphenyl)) phenyl) phenol
窒素置換した2Lの四つ口フラスコに60.8gの 4-ヒドロキシフェニルホウ酸, 172gの2,3-ジフルオロ-4-ヨード-4’-ペンチルビフェニル、40%炭酸カリウム水溶液261.5g、44.38gのテトラキストリフェニルホスフィンパラジウム(0)錯体を N,N−ジメチルアセトアミド500ml に溶解させ、110度で6時間攪拌を行った。GCで反応の終了を確認した後、室温まで冷却し、これに18%塩酸100mlを加えた。さらに200mlの酢酸エチルを加えて攪拌し、有機層を分離した。ついで酢酸エチル200mlを用いて2回抽出を行った。有機層を合わせて200mlの水ついで200mlの飽和食塩水で洗浄した。溶媒を留去した後、溶媒に酢酸エチル:ヘプタン(1:5)混合溶媒を用い、シリカゲル200gを用いて精製を行い、ついでエタノールとアセトンを用いて再結晶を行ったところ、白色の固体として123.5gの目的物を得た。収率78.8%。GC純度99.5%。M+352。 Nitrogen-substituted 2 L four-necked flask with 60.8 g of 4-hydroxyphenylboric acid, 172 g of 2,3-difluoro-4-iodo-4'-pentylbiphenyl, 261.5 g of 40% aqueous potassium carbonate, 44.38 g of tetrakis The triphenylphosphine palladium (0) complex was dissolved in 500 ml of N, N-dimethylacetamide and stirred at 110 degrees for 6 hours. After confirming the completion of the reaction by GC, the reaction mixture was cooled to room temperature, and 100 ml of 18% hydrochloric acid was added thereto. Furthermore, 200 ml of ethyl acetate was added and stirred, and the organic layer was separated. Subsequently, extraction was performed twice using 200 ml of ethyl acetate. The organic layers were combined and washed with 200 ml of water and then with 200 ml of saturated brine. After the solvent was distilled off, purification was performed using 200 g of silica gel using a mixed solvent of ethyl acetate: heptane (1: 5) as the solvent, followed by recrystallization using ethanol and acetone. As a white solid 123.5 g of the target product was obtained. Yield 78.8%. GC purity 99.5%. M + 352.
<<合成2>>
4-(4-(2,3-ジフルオロ-4-ペンチルフェニル)フェニル)フェノールの合成
<< Synthesis 2 >>
Synthesis of 4- (4- (2,3-difluoro-4-pentylphenyl) phenyl) phenol
<合成2−1>
ブチルトリフェニルホスホニウムブロミドの合成
<Synthesis 2-1>
Synthesis of butyltriphenylphosphonium bromide
窒素置換した2Lの四つ口フラスコに280gの臭化ブタン、 696gのトリフェニルホスフィンを500mlのキシレンに溶解させ、これをキシレンが還流する温度まで加熱して6時間攪拌を行った。系を室温まで冷却し、析出した白色結晶をろ過して取り出し、キシレンで洗浄した。乾燥した結果、白色固体として目的物797gを得た。収率97.7%。 280 g of butane bromide and 696 g of triphenylphosphine were dissolved in 500 ml of xylene in a nitrogen-substituted 2 L four-necked flask, which was heated to a temperature at which xylene was refluxed and stirred for 6 hours. The system was cooled to room temperature, and the precipitated white crystals were filtered out and washed with xylene. As a result of drying, 797 g of the desired product was obtained as a white solid. Yield 97.7%.
<合成2−2>
1, 2-ジフルオロ-3-(1-ペンテニル)ベンゼンの合成
<Synthesis 2-2>
Synthesis of 1,2-difluoro-3- (1-pentenyl) benzene
窒素置換した3Lの四つ口フラスコに797gのブチルトリフェニルホスホニウムブロミドを1LのTHFに懸濁させ-10度に冷却し、これに224gのカリウムt−ブトキシドをゆっくり加えた。1時間後、系を0度にして248gの2, 3-ジフルオロベンズアルデヒドをゆっくり加え、攪拌しながら一晩放置した。系に50mlの水を加え、溶媒を留去した後ヘプタン2Lを加え目的物を抽出した。得られたヘプタン溶液を40%メタノール水溶液で洗浄した後、溶媒を留去し、溶媒にヘプタンを用いシリカゲル1000gを用いて精製を行ったところ、淡黄色の液体として343gの目的物を得た。収率93.6%。GC純度87%。M+182。 797 g of butyltriphenylphosphonium bromide was suspended in 1 L of THF in a nitrogen-substituted 3 L four-necked flask and cooled to −10 degrees, and 224 g of potassium t-butoxide was slowly added thereto. After 1 hour, the system was brought to 0 degree and 248 g of 2,3-difluorobenzaldehyde was added slowly and left overnight with stirring. 50 ml of water was added to the system, the solvent was distilled off, and 2 L of heptane was added to extract the target product. The obtained heptane solution was washed with a 40% aqueous methanol solution, the solvent was distilled off, and purification was performed using 1000 g of silica gel using heptane as a solvent. As a result, 343 g of the desired product was obtained as a pale yellow liquid. Yield 93.6%. GC purity 87%. M + 182.
<合成2−3>
1, 2-ジフルオロ-3-ペンチルベンゼンの合成
<Synthesis 2-3>
Synthesis of 1,2-difluoro-3-pentylbenzene
2Lのオートクレーブに343gの1, 2-ジフルオロ-3-(1-ペンテニル)ベンゼンを1LのTHFに溶解させ、これに5%パラジウムカーボン10gを加えた後、系を窒素置換し、ついで0.2Mpaの水素雰囲気にして4時間攪拌を行った。GCで反応の終了を確認した後、パラジウムカーボンをろ別し、溶媒を留去した。溶媒にヘプタンを用いシリカゲル300gを用いて精製を行ったところ、無色の液体として345gの目的物を得た。収率89.6%。GC純度90%。M+184。 In a 2 L autoclave, 343 g of 1,2-difluoro-3- (1-pentenyl) benzene was dissolved in 1 L of THF, 10 g of 5% palladium carbon was added thereto, the system was purged with nitrogen, and then 0.2 MPa. The mixture was stirred for 4 hours in a hydrogen atmosphere. After confirming the completion of the reaction by GC, palladium carbon was filtered off and the solvent was distilled off. Purification was performed using 300 g of silica gel using heptane as a solvent, and 345 g of the target product was obtained as a colorless liquid. Yield 89.6%. GC purity 90%. M + 184.
<合成2−4>
2, 3-ジフルオロ-4-ペンチルフェニルホウ酸の合成
<Synthesis 2-4>
Synthesis of 2,3-difluoro-4-pentylphenylboric acid
窒素置換した2Lの四つ口フラスコに143gの1, 2-ジフルオロ-3-ペンチルベンゼンを500mlのTHFに溶解させ-78度に冷却した。これに1.6Mのブチルリチウムヘキサン溶液486mlを2時間かけて加えた。1時間後、81gのホウ酸トリメチルを1時間かけて滴下した。その後、系の温度を1時間かけて室温まで上昇させた。10%塩酸500mlを加え2時間攪拌した。系に500mlのヘプタンを加えて攪拌し、有機層を分離した。さらにヘプタン300mlを用いて抽出し、先の有機層と合わせてこれを300mlの飽和食塩水で洗浄した。溶媒を留去し、淡黄色の固体として152.1gの目的物を得た。収率95.4%。 In a 2 L four-necked flask purged with nitrogen, 143 g of 1,2-difluoro-3-pentylbenzene was dissolved in 500 ml of THF and cooled to -78 degrees. To this, 486 ml of 1.6 M butyllithium hexane solution was added over 2 hours. After 1 hour, 81 g of trimethyl borate was added dropwise over 1 hour. The system temperature was then raised to room temperature over 1 hour. 500 ml of 10% hydrochloric acid was added and stirred for 2 hours. 500 ml of heptane was added to the system and stirred, and the organic layer was separated. Further, extraction with 300 ml of heptane was performed, and the organic layer was combined and washed with 300 ml of saturated saline. The solvent was distilled off to obtain 152.1 g of the desired product as a pale yellow solid. Yield 95.4%.
<合成2−5>
4-(4-(2,3-ジフルオロ-4-ペンチルフェニル)フェニル)フェノールの合成
<Synthesis 2-5>
Synthesis of 4- (4- (2,3-difluoro-4-pentylphenyl) phenyl) phenol
窒素置換した2Lの四つ口フラスコに152.1gの2, 3-ジフルオロ-4-ペンチルフェニルホウ酸、156.6gの4-(4-ブロモフェニル)フェノール、40%炭酸カリウム水溶液434g、47.27gのテトラキストリフェニルホスフィンパラジウム(0)錯体を N,N−ジメチルアセトアミド500ml に溶解させ、110度で6時間攪拌を行った。GCで反応の終了を確認した後、室温まで冷却し、これに18%塩酸400mlを加えた。さらに200mlの酢酸エチルを加えて攪拌し、有機層を分離した。ついで酢酸エチル200mlを用いて3回抽出を行った。有機層を合わせて200mlの水ついで200mlの飽和食塩水で洗浄した。溶媒を留去した後、溶媒に酢酸エチル:ヘプタン(1:5)混合溶媒を用いシリカゲル300gを用いて精製を行い、ついでエタノールとアセトンを用いて再結晶を行ったところ、白色の固体として199gの目的物を得た。収率89.9%。GC純度99.3%。M+352。 In a nitrogen-substituted 2 L four-necked flask, 152.1 g of 2,3-difluoro-4-pentylphenylboric acid, 156.6 g of 4- (4-bromophenyl) phenol, 40% aqueous potassium carbonate 434 g, 47.27 g of tetrakis The triphenylphosphine palladium (0) complex was dissolved in 500 ml of N, N-dimethylacetamide and stirred at 110 degrees for 6 hours. After confirming the completion of the reaction by GC, the reaction mixture was cooled to room temperature, and 400 ml of 18% hydrochloric acid was added thereto. Furthermore, 200 ml of ethyl acetate was added and stirred, and the organic layer was separated. Subsequently, extraction was performed 3 times using 200 ml of ethyl acetate. The organic layers were combined and washed with 200 ml of water and then with 200 ml of saturated brine. After the solvent was distilled off, purification was performed using 300 g of silica gel using a mixed solvent of ethyl acetate: heptane (1: 5) as the solvent, followed by recrystallization using ethanol and acetone. As a white solid, 199 g The desired product was obtained. Yield 89.9%. GC purity 99.3%. M + 352.
<<合成3>>
メタンスルホン酸3-(4-プロピルシクロヘキシル)プロピルの合成
<< Synthesis 3 >>
Synthesis of 3- (4-propylcyclohexyl) propyl methanesulfonate
<合成3−1>
4-プロピルシクロヘキサンカルボン酸エチルの合成
<Synthesis 3-1>
Synthesis of ethyl 4-propylcyclohexanecarboxylate
1Lフラスコに120gの4-プロピルシクロヘキサンカルボン酸をエタノール250mlに溶解させ、これに濃硫酸0.5mlを加える。2時間加熱還流の後、溶媒を200ml留去する。溶液を氷水に滴下し、ついでトルエンを加え分液する。有機層を水で洗浄した後、10%炭酸水素ナトリウム水溶液で洗浄し、ついで飽和食塩水で洗浄する。溶媒を留去し、淡黄色の液体として136gの目的物を得た。収率97%。M+198。 In a 1 L flask, 120 g of 4-propylcyclohexanecarboxylic acid is dissolved in 250 ml of ethanol, and 0.5 ml of concentrated sulfuric acid is added thereto. After heating at reflux for 2 hours, 200 ml of the solvent is distilled off. The solution is dropped into ice water, and toluene is added to separate the solution. The organic layer is washed with water, then with 10% aqueous sodium hydrogen carbonate solution, and then with saturated brine. The solvent was distilled off to obtain 136 g of the desired product as a pale yellow liquid. Yield 97%. M + 198.
<合成3−2>
1-(4-プロピルシクロヘキシル)メタノールの合成
<Synthesis 3-2>
Synthesis of 1- (4-propylcyclohexyl) methanol
窒素置換した2Lの四つ口フラスコに水素化アルミニウムリチウム21.4gを1LのTHFに懸濁させる。系を0度に冷却し、136gの4-プロピルシクロヘキサンカルボン酸エチルを200mlのTHFに溶解させた溶液を1時間かけて滴下した。反応液を3時間攪拌し、GCで反応が終了したことを確認した後、18%の塩酸200gをゆっくり滴下した。分液後、水層にトルエンを加え2回抽出を行い、先の有機層と合わせて水洗した。溶媒を留去し、淡黄色の液体として100gの目的物を得た。収率99%。GC純度91.5%。M+156。 In a 2 L four-necked flask purged with nitrogen, 21.4 g of lithium aluminum hydride is suspended in 1 L of THF. The system was cooled to 0 ° C., and a solution of 136 g of ethyl 4-propylcyclohexanecarboxylate dissolved in 200 ml of THF was added dropwise over 1 hour. The reaction solution was stirred for 3 hours, and after confirming the completion of the reaction by GC, 200 g of 18% hydrochloric acid was slowly added dropwise. After liquid separation, toluene was added to the aqueous layer, extraction was performed twice, and the combined organic layer was washed with water. The solvent was distilled off to obtain 100 g of the desired product as a pale yellow liquid. Yield 99%. GC purity 91.5%. M + 156.
<合成3−3>
1-(ブロモメチル)-4-プロピルシクロヘキサンの合成
<Synthesis 3-3>
Synthesis of 1- (bromomethyl) -4-propylcyclohexane
5Lの四つ口フラスコに100gの1-(4-プロピルシクロヘキシル)メタノールと6.53gの赤燐を入れ、80度に加熱した。これに臭素66.3gを加え、系を120度にして3時間攪拌を行った。GCで反応が終了したことを確認し、系を室温まで冷却した。固形物をシリカゲルでろ過し、ヘキサン1Lで洗い出しを行った。得られたろ液を水洗し、ついで飽和食塩水で洗浄した。溶媒を留去し、透明な液体として118gの目的物を得た。収率97%。GC純度84%。M+218。 A 5-L four-necked flask was charged with 100 g of 1- (4-propylcyclohexyl) methanol and 6.53 g of red phosphorus and heated to 80 degrees. To this was added 66.3 g of bromine, and the system was stirred at 120 ° C. for 3 hours. After confirming the completion of the reaction by GC, the system was cooled to room temperature. The solid was filtered through silica gel and washed out with 1 L of hexane. The obtained filtrate was washed with water and then with saturated brine. The solvent was distilled off to obtain 118 g of the desired product as a transparent liquid. Yield 97%. GC purity 84%. M + 218.
<合成3−4>
2-(4-プロピルシクロヘキシル)アセトアルデヒドの合成
<Synthesis 3-4>
Synthesis of 2- (4-propylcyclohexyl) acetaldehyde
窒素置換した1Lの四つ口フラスコにマグネシウム15.5gを入れ、これに1-(1-ブロモメチル)-4-プロピルシクロヘキサン118gを250mlのTHFに溶解させた溶液を滴下した。その後、系を-5度まで冷却し、N, N-ジメチルホルムアミド78gを30分間かけて滴下した。1時間攪拌した後、18%の塩酸250mlを滴下した。分液の後、水層にヘキサン300mlを加え3回抽出を行い、先の有機層と合わせて水洗し、ついで10%炭酸水素ナトリウム水溶液で洗浄し、さらに飽和食塩水で洗浄を行った。溶媒を留去し、透明な液体として86gの目的物を得た。収率98%。GC純度87%。M+168。 15.5 g of magnesium was placed in a 1 L four-necked flask purged with nitrogen, and a solution prepared by dissolving 118 g of 1- (1-bromomethyl) -4-propylcyclohexane in 250 ml of THF was added dropwise thereto. Thereafter, the system was cooled to −5 ° C., and 78 g of N, N-dimethylformamide was added dropwise over 30 minutes. After stirring for 1 hour, 250 ml of 18% hydrochloric acid was added dropwise. After separation, 300 ml of hexane was added to the aqueous layer, and the mixture was extracted three times. The organic layer was washed with water, then washed with a 10% aqueous sodium hydrogen carbonate solution, and further washed with saturated saline. The solvent was distilled off to obtain 86 g of the desired product as a transparent liquid. Yield 98%. GC purity 87%. M + 168.
<合成3−5>
1-(3-メトキシ-2-プロペニル)-4-プロピルシクロヘキサンの合成
<Synthesis 3-5>
Synthesis of 1- (3-methoxy-2-propenyl) -4-propylcyclohexane
窒素置換した2L四つ口フラスコにメトキシメチルトリフェニルホスホニウムクロリド206.3gをTHF 500mlに懸濁させ-5度まで冷却した。ここにカリウムt−ブトキシド67.2gを少しずつ加えた。1時間後、2-(4-プロピルシクロヘキシル)アセトアルデヒド86gをゆっくり加え、4時間攪拌を行った。GCで反応を確認後、系に水100mlを加えた。溶媒を留去した後ヘキサンを加えてヘキサン溶液とし、水洗を行った。シリカゲル100gを用いて精製を行ったところ、無色の液体として89gの目的物を得た。収率82%。GC純度80%。M+196。 206.3 g of methoxymethyltriphenylphosphonium chloride was suspended in 500 ml of THF in a nitrogen-substituted 2 L four-necked flask and cooled to −5 degrees. To this, 67.2 g of potassium t-butoxide was added little by little. After 1 hour, 86 g of 2- (4-propylcyclohexyl) acetaldehyde was slowly added and stirred for 4 hours. After confirming the reaction by GC, 100 ml of water was added to the system. After the solvent was distilled off, hexane was added to form a hexane solution, which was then washed with water. When purification was performed using 100 g of silica gel, 89 g of the desired product was obtained as a colorless liquid. Yield 82%. GC purity 80%. M + 196.
<合成3−6>
3-(4-プロピルシクロヘキシル)プロパナールの合成
<Synthesis 3-6>
Synthesis of 3- (4-propylcyclohexyl) propanal
窒素置換した1L四つ口フラスコに89gの1-(3-メトキシ-2-プロペニル)-4-プロピルシクロヘキサンをTHF 350mlに溶解させ、これに12%塩酸350gを加える。系を加熱し、5時間還流させた。GCで反応終了を確認し、室温まで冷却した。トルエンを加えて分液後、有機層を水洗した。溶媒を留去し無色の液体として75gの目的物を得た。収率99%。GC純度87.2%。M+182。 89 g of 1- (3-methoxy-2-propenyl) -4-propylcyclohexane is dissolved in 350 ml of THF in a nitrogen-substituted 1 L four-necked flask, and 350 g of 12% hydrochloric acid is added thereto. The system was heated to reflux for 5 hours. The completion of the reaction was confirmed by GC and cooled to room temperature. Toluene was added for liquid separation, and the organic layer was washed with water. The solvent was distilled off to obtain 75 g of the desired product as a colorless liquid. Yield 99%. GC purity 87.2%. M + 182.
<合成3−7>
3-(4-プロピルシクロヘキシル)-1-プロパノールの合成
<Synthesis 3-7>
Synthesis of 3- (4-propylcyclohexyl) -1-propanol
窒素置換した2L四つ口フラスコに7.41gの水素化アルミニウムリチウムをTHF 500mlに懸濁させ、系を5度まで冷却した。75gの3-(4-プロピルシクロヘキシル)プロパナールをTHF 100mlに溶解させた溶液をゆっくり滴下した。GCで反応終了を確認し、20mlの水を加え、続けて18%塩酸500mlを加えた。トルエンを加えて分液を行い、さらにトルエンを用いて水層から抽出を2回行った。有機層を合わせて飽和食塩水で3回洗浄した。無水硫酸マグネシウムを加えて乾燥させた後、溶媒を留去したところ、黄色液体として68gの目的物を得た。収率91%。GC純度89%。M+184。 7.41 g of lithium aluminum hydride was suspended in 500 ml of THF in a nitrogen-substituted 2 L four-necked flask, and the system was cooled to 5 degrees. A solution prepared by dissolving 75 g of 3- (4-propylcyclohexyl) propanal in 100 ml of THF was slowly added dropwise. After confirming the completion of the reaction by GC, 20 ml of water was added, followed by 500 ml of 18% hydrochloric acid. Toluene was added for liquid separation, and extraction from the aqueous layer was further performed twice using toluene. The organic layers were combined and washed 3 times with saturated brine. After anhydrous magnesium sulfate was added and dried, the solvent was distilled off to obtain 68 g of the desired product as a yellow liquid. Yield 91%. GC purity 89%. M + 184.
<合成3−8>
メタンスルホン酸3-(4-プロピルシクロヘキシル)プロピルの合成
<Synthesis 3-8>
Synthesis of 3- (4-propylcyclohexyl) propyl methanesulfonate
1L四つ口フラスコに68gの3-(4-プロピルシクロヘキシル)-1-プロパノールを500mlのジクロロメタンに溶解させピリジン41.5gを加えて0度まで冷却した。44.1gのメタンスルホン酸クロリドをゆっくり滴下し6時間攪拌した。系を室温に戻し水300mlを加えた。分液の後、有機層を飽和食塩水で洗浄した。溶媒を留去しメタノールで再結晶することにより、白色結晶として70gの目的物を得た。収率76%。GC純度94%。M+262。 In a 1 L four-necked flask, 68 g of 3- (4-propylcyclohexyl) -1-propanol was dissolved in 500 ml of dichloromethane, and 41.5 g of pyridine was added and cooled to 0 degrees. 44.1 g of methanesulfonic acid chloride was slowly added dropwise and stirred for 6 hours. The system was returned to room temperature and 300 ml of water was added. After separation, the organic layer was washed with saturated brine. The solvent was distilled off and recrystallized from methanol to obtain 70 g of the desired product as white crystals. Yield 76%. GC purity 94%. M + 262.
<<合成4>>
メタンスルホン酸5-(4-メチルシクロヘキシル)ペンチルの合成
<< Synthesis 4 >>
Synthesis of 5- (4-methylcyclohexyl) pentyl methanesulfonate
<合成4−1>
1-(4-メチルシクロヘキシル)メタノールの合成
<Synthesis 4-1>
Synthesis of 1- (4-methylcyclohexyl) methanol
窒素置換した2Lの四つ口フラスコに38.5gの水素化アルミニウムリチウムをTHF 400mlに懸濁させ0度に冷却した。110gの4-メチルシクロヘキサンカルボン酸をTHF 400mlに溶解させた溶液をゆっくり滴下して6時間攪拌した。GCで反応終了を確認した後、水30mlを加え、ついで18%塩酸500gを加えた。分液後、水層からジクロロメタンを用いて2回抽出を行い、先の有機層と合わせて水洗し、さらに飽和食塩水で洗浄した。溶媒を留去し黄色液体として100gの目的物を得た。収率100%。GC純度99%。M+128。 38.5 g of lithium aluminum hydride was suspended in 400 ml of THF in a 2 L four-necked flask purged with nitrogen and cooled to 0 ° C. A solution of 110 g of 4-methylcyclohexanecarboxylic acid dissolved in 400 ml of THF was slowly added dropwise and stirred for 6 hours. After confirming the completion of the reaction by GC, 30 ml of water was added, and then 500 g of 18% hydrochloric acid was added. After separation, the aqueous layer was extracted twice with dichloromethane, washed with the previous organic layer, and then with saturated brine. The solvent was distilled off to obtain 100 g of the desired product as a yellow liquid. Yield 100%. GC purity 99%. M + 128.
<合成4−2>
1-(ブロモメチル)-4-メチルシクロヘキサンの合成
<Synthesis 4-2>
Synthesis of 1- (bromomethyl) -4-methylcyclohexane
窒素置換した2Lの四つ口フラスコに1-(4-メチルシクロヘキシル)メタノール99gとトリエチルアミン86gをTHF 500mlに溶解させた。室温でメシルクロリド97gを滴下し、2時間攪拌を行った。反応液を冷却し、析出物をろ別し、ろ液に臭化リチウム84gを加え、60度で6時間攪拌を行った。GCで反応を確認した後、溶媒を留去し蒸留を行い、無色透明の液体として85gの目的物を得た。収率58%。GC純度98%。M+190。 99 g of 1- (4-methylcyclohexyl) methanol and 86 g of triethylamine were dissolved in 500 ml of THF in a nitrogen-substituted 2 L four-necked flask. 97 g of mesyl chloride was added dropwise at room temperature and stirred for 2 hours. The reaction solution was cooled, the precipitate was filtered off, 84 g of lithium bromide was added to the filtrate, and the mixture was stirred at 60 ° C. for 6 hours. After confirming the reaction by GC, the solvent was distilled off and distillation was carried out to obtain 85 g of the objective product as a colorless and transparent liquid. Yield 58%. GC purity 98%. M + 190.
<合成4−3>
2-(4-メチルシクロヘキシル)アセトアルデヒドの合成
<Synthesis 4-3>
Synthesis of 2- (4-methylcyclohexyl) acetaldehyde
窒素置換した1Lの四つ口フラスコにマグネシウム12.7gを入れ、これに1-(1-ブロモメチル)-4-メチルシクロヘキサン83.88gをTHF 200mlに溶解させた溶液を滴下しグリニャール試薬を作成した。その後、系を-5度に冷却し乾燥したN, N-ジメチルホルムアミド64gを30分間かけて滴下した。その後、18%塩酸200mlを滴下し、さらにヘキサン300mlを加えて分液した。水層からヘキサン300mlを用いて2回抽出を行い、先の有機層と合わせて水洗の後、飽和食塩水で洗浄した。溶液を無水硫酸ナトリウムを用いて乾燥させ、溶媒を留去したのち蒸留し、無色透明の液体として57gの目的物を得た。収率92%。GC純度94%。M+140。 A 1L four-necked flask purged with nitrogen was charged with 12.7 g of magnesium, and a solution of 83.88 g of 1- (1-bromomethyl) -4-methylcyclohexane dissolved in 200 ml of THF was added dropwise to prepare a Grignard reagent. Thereafter, 64 g of N, N-dimethylformamide which was cooled to −5 ° C. and dried was added dropwise over 30 minutes. Thereafter, 200 ml of 18% hydrochloric acid was added dropwise, and 300 ml of hexane was further added for liquid separation. The aqueous layer was extracted twice with 300 ml of hexane, combined with the previous organic layer, washed with water and then with saturated brine. The solution was dried using anhydrous sodium sulfate, the solvent was distilled off and then distilled to obtain 57 g of the objective product as a colorless transparent liquid. Yield 92%. GC purity 94%. M + 140.
<合成4−4>
1-メチル-4-(3-メトキシ-2-プロペニル)シクロヘキサンの合成
<Synthesis 4-4>
Synthesis of 1-methyl-4- (3-methoxy-2-propenyl) cyclohexane
窒素置換した2Lの四つ口フラスコにメトキシメチルトリフェニルホスホニウムクロリド134.4gをTHF 500mlに懸濁させ0度まで冷却した。ここにカリウムt−ブトキシド43.7gを少しずつ加えた。1時間後、2-(4-メチルシクロヘキシル)アセトアルデヒド42.14gをゆっくり加え、4時間攪拌を行った。GCで反応を確認後、系に水100mlを加えた。溶媒を留去した後ヘキサンを加えてヘキサン溶液とし、水洗を行った。溶液を無水硫酸ナトリウムを用いて乾燥させ、溶媒を留去したのち蒸留し、無色透明の液体として35gの目的物を得た。収率69%。GC純度94%。M+168。 134.4 g of methoxymethyltriphenylphosphonium chloride was suspended in 500 ml of THF in a nitrogen-substituted 2 L four-necked flask and cooled to 0 ° C. To this, 43.7 g of potassium t-butoxide was added little by little. After 1 hour, 42.14 g of 2- (4-methylcyclohexyl) acetaldehyde was slowly added and stirred for 4 hours. After confirming the reaction by GC, 100 ml of water was added to the system. After the solvent was distilled off, hexane was added to form a hexane solution, which was then washed with water. The solution was dried using anhydrous sodium sulfate, the solvent was distilled off and then distilled to obtain 35 g of the objective product as a colorless transparent liquid. Yield 69%. GC purity 94%. M + 168.
<合成4−5>
3-(4-メチルシクロヘキシル) プロパナールの合成
<Synthesis 4-5>
Synthesis of 3- (4-methylcyclohexyl) propanal
窒素置換した1Lの四つ口フラスコに1-メチル-4-(3-メトキシ-2-プロペニル)シクロヘキサン35gと12%塩酸176ml、THF 120mlを入れ、還流温度で5時間攪拌を行った。系を室温まで冷却して分液し、有機層を水洗して溶媒を留去し、無色透明な液体として目的物32gを得た。収率100%。GC純度95%。M+154。 A 1-L four-necked flask substituted with nitrogen was charged with 35 g of 1-methyl-4- (3-methoxy-2-propenyl) cyclohexane, 176 ml of 12% hydrochloric acid and 120 ml of THF, and stirred at reflux temperature for 5 hours. The system was cooled to room temperature and separated, and the organic layer was washed with water and the solvent was distilled off to obtain 32 g of the desired product as a colorless and transparent liquid. Yield 100%. GC purity 95%. M + 154.
<合成4−6>
5-(4-メチルシクロヘキシル)-2-ペンテン酸エチルの合成
<Synthesis 4-6>
Synthesis of ethyl 5- (4-methylcyclohexyl) -2-pentenoate
窒素置換した1Lの四つ口フラスコにエトキシカルボニルメチル(トリフェニル)ホスホニウムブロミド98gをTHF 300mlに懸濁させ0度まで冷却した。ここにカリウムt−ブトキシド26gを少しずつ加えた。1時間後、3-(4-メチルシクロヘキシル) プロパナール32(0.2077)gをゆっくり加え、4時間攪拌を行った。GCで反応を確認後、系に水100mlを加えた。溶媒を留去した後ヘキサンを加えてヘキサン溶液とし、水洗を行った。溶液を無水硫酸ナトリウムを用いて乾燥させ、溶媒を留去し、無色透明の液体として33gの目的物を得た。収率71%。GC純度95%。M+224。 98 g of ethoxycarbonylmethyl (triphenyl) phosphonium bromide was suspended in 300 ml of THF in a 1 L four-necked flask purged with nitrogen and cooled to 0 degrees. To this, 26 g of potassium t-butoxide was added little by little. After 1 hour, 3- (4-methylcyclohexyl) propanal 32 (0.2077) g was slowly added and stirred for 4 hours. After confirming the reaction by GC, 100 ml of water was added to the system. After the solvent was distilled off, hexane was added to form a hexane solution, which was then washed with water. The solution was dried using anhydrous sodium sulfate, and the solvent was distilled off to obtain 33 g of the desired product as a colorless transparent liquid. Yield 71%. GC purity 95%. M + 224.
<合成4−7>
5-(4-メチルシクロヘキシル)ペンタン酸エチルの合成
<Synthesis 4-7>
Synthesis of ethyl 5- (4-methylcyclohexyl) pentanoate
1Lのオートクレーブに5-(4-メチルシクロヘキシル)-2-ペンテン酸エチル33gを酢酸エチル300mlに溶解させ、これに5wt%パラジウム/カーボン3.4gを加えた。系を窒素置換した後、水素に置換し、水素圧力を0.4MPaとし、系を40度に加温した。そのまま一晩攪拌を行い、系を室温に冷却した後、ろ過を行い、さらに溶媒を留去することによって、無色透明な液体として目的物32gを得た。収率96%。GC純度97%。M+226。 In a 1 L autoclave, 33 g of ethyl 5- (4-methylcyclohexyl) -2-pentenoate was dissolved in 300 ml of ethyl acetate, and 3.4 g of 5 wt% palladium / carbon was added thereto. The system was purged with nitrogen and then replaced with hydrogen, the hydrogen pressure was set to 0.4 MPa, and the system was heated to 40 degrees. The mixture was stirred overnight as it was, the system was cooled to room temperature, filtered, and the solvent was distilled off to obtain 32 g of the desired product as a colorless and transparent liquid. Yield 96%. GC purity 97%. M + 226.
<合成4−8>
5-(4-メチルシクロヘキシル)ペンタノールの合成
<Synthesis 4-8>
Synthesis of 5- (4-methylcyclohexyl) pentanol
窒素置換した2Lの四つ口フラスコに7.4gの水素化アルミニウムリチウムをTHF 250mlに懸濁させ5度に冷却した。32gの5-(4-メチルシクロヘキシル)ペンタン酸エチルをTHF 100mlに溶解させた溶液をゆっくり滴下して6時間攪拌した。GCで反応終了を確認した後、水20mlを加え、ついで18%塩酸200mlを加えた。分液後、水層からトルエンを用いて2回抽出を行い、先の有機層と合わせて水洗し、さらに飽和食塩水で洗浄し、無水硫酸マグネシウムを加えて乾燥させた。溶媒を留去し淡黄色液体として25gの目的物を得た。収率96%。GC純度99%。M+184。 7.4 g of lithium aluminum hydride was suspended in 250 ml of THF in a 2 L four-necked flask purged with nitrogen and cooled to 5 degrees. A solution of 32 g of ethyl 5- (4-methylcyclohexyl) pentanoate dissolved in 100 ml of THF was slowly added dropwise and stirred for 6 hours. After confirming the completion of the reaction by GC, 20 ml of water was added, and then 200 ml of 18% hydrochloric acid was added. After the separation, the aqueous layer was extracted twice with toluene, washed with water together with the previous organic layer, further washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off to obtain 25 g of the desired product as a pale yellow liquid. Yield 96%. GC purity 99%. M + 184.
<合成4−9>
メタンスルホン酸5-(4-メチルシクロヘキシル)ペンチルの合成
<Synthesis 4-9>
Synthesis of 5- (4-methylcyclohexyl) pentyl methanesulfonate
窒素置換した1L四つ口フラスコに25g(0.297)の5-(4-メチルシクロヘキシル)ペンタノールを200mlのジクロロメタンに溶解させトリエチルアミン32gを加えて0度まで冷却した。37gのメタンスルホン酸クロリドをゆっくり滴下し6時間攪拌した。系を室温に戻し水300mlを加えた。分液の後、有機層を飽和食塩水で洗浄した。溶媒を留去し、溶媒に酢酸エチル:ヘプタン(1:10)混合溶媒を用いシリカゲル100gを用いて精製を行い、ついでメタノールを用いて再結晶を行ったところ、白色の固体として24gの目的物を得た。収率67%。GC純度95.5%。M+262。 25 g (0.297) of 5- (4-methylcyclohexyl) pentanol was dissolved in 200 ml of dichloromethane in a nitrogen-substituted 1 L four-necked flask, and 32 g of triethylamine was added and cooled to 0 ° C. 37 g of methanesulfonic acid chloride was slowly added dropwise and stirred for 6 hours. The system was returned to room temperature and 300 ml of water was added. After separation, the organic layer was washed with saturated brine. The solvent was distilled off, and purification was performed using 100 g of silica gel using a mixed solvent of ethyl acetate: heptane (1:10) as the solvent, followed by recrystallization using methanol. As a result, 24 g of the desired product was obtained as a white solid. Got. Yield 67%. GC purity 95.5%. M + 262.
<<合成5−1>>
1,2-ジフルオロ-3-(4-ペンチルフェニル)-6-(4-(3-(4-プロピルシクロヘキシル)プロポキシ)フェニル)ベンゼンの合成
<< Synthesis 5-1 >>
Synthesis of 1,2-difluoro-3- (4-pentylphenyl) -6- (4- (3- (4-propylcyclohexyl) propoxy) phenyl) benzene
窒素置換した500ml四つ口フラスコに5.01gの4-(2,3-ジフルオロ-(4-(4-ペンチルフェニル))フェニル)フェノールと4.19gのメタンスルホン酸3-(4-プロピルシクロヘキシル)プロピルおよび2.79gの炭酸カリウムをN,N-ジメチルホルムアミド60mlに懸濁させ100度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル50gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として5.7gの目的物を得た。収率77%。GC純度99.6%。M+518。
NMR:δ=0.93(m, 10H), 1.19(m, 4H), 1.40(m, 8H), 1.72(m, 2H), 1.80(m, 6H), 2.69(t, 2H), 4.02(t, 2H), 7.02(d, 2H), 7.25(d, 2H), 7.30(d, 2H), 7.54(m, 4H).
Cr 97 SmC 137 SmA 146 N 209 Iso
In a 500 ml four-necked flask purged with nitrogen, 5.01 g of 4- (2,3-difluoro- (4- (4-pentylphenyl)) phenyl) phenol and 4.19 g of 3- (4-propylcyclohexyl) propyl methanesulfonate And 2.79 g of potassium carbonate were suspended in 60 ml of N, N-dimethylformamide and heated to 100 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 50 g of silica gel using a toluene: heptane (1: 5) mixed solvent as the solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 5.7 g of the target product was obtained. Yield 77%. GC purity 99.6%. M + 518.
NMR: δ = 0.93 (m, 10H), 1.19 (m, 4H), 1.40 (m, 8H), 1.72 (m, 2H), 1.80 (m, 6H), 2.69 (t, 2H), 4.02 (t, 2H), 7.02 (d, 2H), 7.25 (d, 2H), 7.30 (d, 2H), 7.54 (m, 4H).
Cr 97 SmC 137 SmA 146 N 209 Iso
<<合成5−2>>
1,2-ジフルオロ-3-(4-ペンチルフェニル)-6-(4-(5-(4-メチルシクロヘキシル)ペンチルオキシ)フェニル)ベンゼンの合成
<< Synthesis 5-2 >>
Synthesis of 1,2-difluoro-3- (4-pentylphenyl) -6- (4- (5- (4-methylcyclohexyl) pentyloxy) phenyl) benzene
窒素置換した500ml四つ口フラスコに4.32gの4-(2,3-ジフルオロ-(4-(4-ペンチルフェニル))フェニル)フェノールと3.61gのメタンスルホン酸5-(4-メチルシクロヘキシル)ペンチルおよび1.94gの炭酸カリウムをN,N-ジメチルホルムアミド60mlに懸濁させ100度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル50gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として3.2gの目的物を得た。収率52%。GC純度99.3%。M+518。
NMR:δ=0.89(m, 10H), 1.25(m, 4H), 1.41(m, 8H), 1.70(m, 6H), 1.84(m, 2H), 2.69(t, 2H), 4.04(t, 2H), 7.02(d, 2H), 7.25(d, 2H), 7.31(d, 2H), 7.54(m, 4H).
Cr 87 SmC 116 N 171.5 Iso
In a nitrogen-substituted 500 ml four-necked flask, 4.32 g of 4- (2,3-difluoro- (4- (4-pentylphenyl)) phenyl) phenol and 3.61 g of 5- (4-methylcyclohexyl) pentyl methanesulfonate And 1.94 g of potassium carbonate were suspended in 60 ml of N, N-dimethylformamide and heated to 100 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 50 g of silica gel using a toluene: heptane (1: 5) mixed solvent as the solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 3.2 g of the target product was obtained. Yield 52%. GC purity 99.3%. M + 518.
NMR: δ = 0.89 (m, 10H), 1.25 (m, 4H), 1.41 (m, 8H), 1.70 (m, 6H), 1.84 (m, 2H), 2.69 (t, 2H), 4.04 (t, 2H), 7.02 (d, 2H), 7.25 (d, 2H), 7.31 (d, 2H), 7.54 (m, 4H).
Cr 87 SmC 116 N 171.5 Iso
<<合成5−3>>
1-(2,3-ジフルオロ-4-ペンチルフェニル)-4-(4-(3-(4-プロピルシクロヘキシル)プロポキシ)フェニル)ベンゼンの合成
<< Synthesis 5-3 >>
Synthesis of 1- (2,3-difluoro-4-pentylphenyl) -4- (4- (3- (4-propylcyclohexyl) propoxy) phenyl) benzene
窒素置換した500ml四つ口フラスコに23.38gの4-(4-(2,3-ジフルオロ-4-ペンチルフェニル)フェニル)フェノールと20.24gのメタンスルホン酸3-(4-プロピルシクロヘキシル)プロピルおよび10.58gの炭酸カリウムをN,N-ジメチルホルムアミド100mlに懸濁させ100度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル200gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として23.8gの目的物を得た。収率70%。GC純度99.2%。M+518。
NMR:δ=0.90(m, 10H), 1.16(m, 4H), 1.38(m, 8H), 1.65(m, 2H), 1.76(m, 6H), 2.69(t, 2H), 3.98(t, 2H), 6.98(m, 3H), 7.13(m, 1H), 7.59(m, 6H).
Cr 118 SmC 161 SmA 210 N 222 Iso
In a nitrogen-substituted 500 ml four-necked flask, 23.38 g of 4- (4- (2,3-difluoro-4-pentylphenyl) phenyl) phenol and 20.24 g of 3- (4-propylcyclohexyl) propyl methanesulfonate and 10.58 g potassium carbonate was suspended in 100 ml N, N-dimethylformamide and heated to 100 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 200 g of silica gel using a toluene: heptane (1: 5) mixed solvent as a solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 23.8 g of the target product was obtained. Yield 70%. GC purity 99.2%. M + 518.
NMR: δ = 0.90 (m, 10H), 1.16 (m, 4H), 1.38 (m, 8H), 1.65 (m, 2H), 1.76 (m, 6H), 2.69 (t, 2H), 3.98 (t, 2H), 6.98 (m, 3H), 7.13 (m, 1H), 7.59 (m, 6H).
Cr 118 SmC 161 SmA 210 N 222 Iso
<<合成5−4>>
1-(2,3-ジフルオロ-4-ペンチルフェニル)-4-(4-(5-(4-メチルシクロヘキシル)ペンチルオキシ)フェニル)ベンゼンの合成
<< Synthesis 5-4 >>
Synthesis of 1- (2,3-difluoro-4-pentylphenyl) -4- (4- (5- (4-methylcyclohexyl) pentyloxy) phenyl) benzene
窒素置換した500ml四つ口フラスコに9.24gの4-(4-(2,3-ジフルオロ-4-ペンチルフェニル)フェニル)フェノールと7.58gのメタンスルホン酸3-(4-プロピルシクロヘキシル)プロピルおよび7.2gの炭酸カリウムをN,N-ジメチルホルムアミド100mlに懸濁させ100度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル200gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として8.4gの目的物を得た。収率59%。GC純度99.8%。M+518。
NMR:δ=0.87(m, 10H), 1.25(m, 4H), 1.37(m, 8H), 1.66(m, 6H), 1.85(m, 2H), 2.69(t, 2H), 4.00(t, 2H), 6.98(m, 3H), 7.15(m, 1H), 7.62(m, 6H).
Cr 75 X 108 SmC 158 SmA 176 N 186 Iso
In a nitrogen-substituted 500 ml four-necked flask, 9.24 g of 4- (4- (2,3-difluoro-4-pentylphenyl) phenyl) phenol and 7.58 g of 3- (4-propylcyclohexyl) propyl methanesulfonate and 7.2 g potassium carbonate was suspended in 100 ml N, N-dimethylformamide and heated to 100 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 200 g of silica gel using a toluene: heptane (1: 5) mixed solvent as a solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 8.4 g of the target product was obtained. Yield 59%. GC purity 99.8%. M + 518.
NMR: δ = 0.87 (m, 10H), 1.25 (m, 4H), 1.37 (m, 8H), 1.66 (m, 6H), 1.85 (m, 2H), 2.69 (t, 2H), 4.00 (t, 2H), 6.98 (m, 3H), 7.15 (m, 1H), 7.62 (m, 6H).
Cr 75 X 108 SmC 158 SmA 176 N 186 Iso
<示差走査熱量測定(1)>
得られた液晶化合物、前記式(C1)〜(C4)で表される化合物(C1)〜(C4)、の示差走査熱量測定を行ったところ、図1〜図4に示すチャートが得られた。
<Differential scanning calorimetry (1)>
When the differential scanning calorimetry of the obtained liquid crystal compound and the compounds (C1) to (C4) represented by the formulas (C1) to (C4) was performed, the charts shown in FIGS. 1 to 4 were obtained. .
<<合成6>>
2,3-ジフルオロ-4-(4-(4-ペンチルフェニル)フェニル)フェノールの合成
<< Synthesis 6 >>
Synthesis of 2,3-difluoro-4- (4- (4-pentylphenyl) phenyl) phenol
<合成6−1>
2,3-ジフルオロ-4-メトキシフェニルホウ酸の合成
<Synthesis 6-1>
Synthesis of 2,3-difluoro-4-methoxyphenylboric acid
窒素置換した1Lの四つ口フラスコに102gの1, 2-ジフルオロ-3-メトキシベンゼンを300mlのTHFに溶解させ-78度に冷却した。これに2.4Mのブチルリチウムヘキサン溶液326mlを1時間かけて加えた。1時間後、133gのホウ酸トリメチルを130mlのTHFに溶解させた溶液を1時間かけて滴下した。1時間後、系の温度を-30度にして、36%塩酸160mlを加え2時間攪拌した。系に500mlの酢酸エチルと水200mlを加えて攪拌し、有機層を分離した。さらに酢酸エチル200mlを用いて抽出し、先の有機層と合わせてこれを100mlの飽和食塩水で洗浄した。溶液を硫酸マグネシウムで乾燥した後、溶媒を留去し、白色の固体として133gの目的物を得た。収率100%。 In a 1 L four-necked flask purged with nitrogen, 102 g of 1,2-difluoro-3-methoxybenzene was dissolved in 300 ml of THF and cooled to -78 degrees. To this, 326 ml of 2.4 M butyllithium hexane solution was added over 1 hour. After 1 hour, 133 g of trimethyl borate dissolved in 130 ml of THF was added dropwise over 1 hour. After 1 hour, the temperature of the system was adjusted to −30 ° C., 160 ml of 36% hydrochloric acid was added, and the mixture was stirred for 2 hours. To the system, 500 ml of ethyl acetate and 200 ml of water were added and stirred, and the organic layer was separated. Furthermore, extraction was performed using 200 ml of ethyl acetate, and the organic layer was combined and washed with 100 ml of saturated brine. After the solution was dried with magnesium sulfate, the solvent was distilled off to obtain 133 g of the desired product as a white solid. Yield 100%.
<合成6−2>
2,3-ジフルオロ-1-メトキシ-4-(4-(4-ペンチルフェニル)フェニル)ベンゼンの合成
<Synthesis 6-2>
Synthesis of 2,3-difluoro-1-methoxy-4- (4- (4-pentylphenyl) phenyl) benzene
窒素置換した2Lの四つ口フラスコに133gの2,3-ジフルオロ-4-メトキシフェニルホウ酸、186.3gの1-ブロモ-4-(4-ペンチルフェニル)ベンゼン、30%炭酸カリウム水溶液622g、N,N−ジメチルアセトアミド250ml とトルエン450mlを混合した。これに5.9gのテトラキストリフェニルホスフィンパラジウム(0)錯体を 加え、系を還流温度にして20時間攪拌を行った。GCで反応の終了を確認した後、室温まで冷却し、これに18%塩酸500mlを加えた。さらに500mlのトルエンを加えて攪拌し、有機層を分離した。ついでトルエン200mlを用いて2回抽出を行った。有機層を合わせて200mlの水ついで200mlの飽和食塩水で洗浄した。溶媒を留去した後、溶媒に酢酸エチル:ヘプタン(1:5)混合溶媒を用いシリカゲル300gを用いて精製を行い、ついでエタノールとアセトンを用いて再結晶を行ったところ、白色の固体として178gの目的物を得た。収率49.2%。GC純度99.5%。M+366。 Into a nitrogen-substituted 2 L four-necked flask, 133 g of 2,3-difluoro-4-methoxyphenylboric acid, 186.3 g of 1-bromo-4- (4-pentylphenyl) benzene, 622 g of 30% aqueous potassium carbonate solution, N , N-dimethylacetamide 250 ml and toluene 450 ml were mixed. To this, 5.9 g of tetrakistriphenylphosphine palladium (0) complex was added, and the system was brought to reflux temperature and stirred for 20 hours. After confirming the completion of the reaction by GC, the reaction mixture was cooled to room temperature, and 500 ml of 18% hydrochloric acid was added thereto. An additional 500 ml of toluene was added and stirred to separate the organic layer. Subsequently, extraction was performed twice using 200 ml of toluene. The organic layers were combined and washed with 200 ml of water and then with 200 ml of saturated brine. After the solvent was distilled off, purification was performed using 300 g of silica gel using a mixed solvent of ethyl acetate: heptane (1: 5) as the solvent, followed by recrystallization using ethanol and acetone. As a white solid, 178 g The desired product was obtained. Yield 49.2%. GC purity 99.5%. M + 366.
<合成6−3>
2,3-ジフルオロ-4-(4-(4-ペンチルフェニル)フェニル)フェノールの合成
<Synthesis 6-3>
Synthesis of 2,3-difluoro-4- (4- (4-pentylphenyl) phenyl) phenol
2Lの四つ口フラスコに128gの2,3-ジフルオロ-1-メトキシ-4-(4-(4-ペンチルフェニル)フェニル)ベンゼンを4Lのジクロロメタンに溶解させ0度に冷却した。これに100gの三臭化ホウ素を250mlのジクロロメタンに溶解させた溶液を1時間かけて滴下し、72時間攪拌を行った。系に水100mlを加え攪拌を行い、有機層と水層を分離した。有機層を水洗し、ついで飽和の炭酸水素ナトリウム水溶液で洗浄し、さらに飽和食塩水で洗浄を行った。溶媒を留去した後、溶媒に酢酸エチル:トルエン(1:10)混合溶媒を用いシリカゲル300gを用いて精製を行い、ついでヘプタンを用いて再結晶を行ったところ、白色の固体として117gの目的物を得た。収率94.9%。GC純度97%。M+352。 In a 2 L four-necked flask, 128 g of 2,3-difluoro-1-methoxy-4- (4- (4-pentylphenyl) phenyl) benzene was dissolved in 4 L of dichloromethane and cooled to 0 degrees. A solution prepared by dissolving 100 g of boron tribromide in 250 ml of dichloromethane was added dropwise thereto over 1 hour, followed by stirring for 72 hours. 100 ml of water was added to the system and stirred, and the organic layer and the aqueous layer were separated. The organic layer was washed with water, then with a saturated aqueous sodium hydrogen carbonate solution, and further with saturated brine. After the solvent was distilled off, purification was carried out using 300 g of silica gel using a mixed solvent of ethyl acetate: toluene (1:10) as the solvent, followed by recrystallization using heptane. I got a thing. Yield 94.9%. GC purity 97%. M + 352.
<<合成7>>
メタンスルホン酸5-シクロヘキシルペンチルの合成
<< Synthesis 7 >>
Synthesis of 5-cyclohexylpentyl methanesulfonate
<合成7−1>
エトキシカルボニルプロピル(トリフェニル)ホスホニウムブロミドの合成
<Synthesis 7-1>
Synthesis of ethoxycarbonylpropyl (triphenyl) phosphonium bromide
窒素置換した5Lの四つ口フラスコに136gの4-ブロモブタン酸エチル、 238gのトリフェニルホスフィンを1,000mlのキシレンに溶解させ、これをキシレンが還流する温度まで加熱して4時間攪拌を行った。系を室温まで冷却し、析出した白色結晶をろ過して取り出し、これを300mlのジクロロメタンに溶解させ、1Lのヘキサンにそそぎ析出した結晶をろ別した。結晶をキシレンで洗浄し、白色固体として301gの目的物を得た。収率97%。 In a nitrogen-substituted 5 L four-necked flask, 136 g of ethyl 4-bromobutanoate and 238 g of triphenylphosphine were dissolved in 1,000 ml of xylene, which was heated to a temperature at which xylene was refluxed and stirred for 4 hours. The system was cooled to room temperature, and the precipitated white crystals were filtered out and dissolved in 300 ml of dichloromethane, and the precipitated crystals were poured into 1 L of hexane and filtered. The crystals were washed with xylene to obtain 301 g of the desired product as a white solid. Yield 97%.
<合成7−2>
5-シクロヘキシル-4-ブテン酸エチルの合成
<Synthesis 7-2>
Synthesis of ethyl 5-cyclohexyl-4-butenoate
窒素置換した2Lの四つ口フラスコにエトキシカルボニルプロピル(トリフェニル)ホスホニウムブロミド301gをTHF 500mlに懸濁させ0度まで冷却した。ここにカリウムt−ブトキシド64gを少しずつ加えた。2時間後、シクロヘキシルホルムアルデヒド57gをTHF 70mlに溶解させた溶液を1時間かけて滴下し、一晩攪拌を行った。GCで反応を確認後、系に水200mlを加えた。有機層と水層を分離し、水層にヘキサンを加え3回抽出を行った。先の有機層と合わせ、飽和食塩水で3回洗浄した後、塩化カルシウムで乾燥させた。蒸留を行い、黄色の液体として74gの目的物を得た。収率69%。GC純度88%。M+210。 301 g of ethoxycarbonylpropyl (triphenyl) phosphonium bromide was suspended in 500 ml of THF in a 2 L four-necked flask purged with nitrogen, and cooled to 0 degrees. To this, 64 g of potassium t-butoxide was added little by little. After 2 hours, a solution of 57 g of cyclohexyl formaldehyde dissolved in 70 ml of THF was added dropwise over 1 hour and stirred overnight. After confirming the reaction by GC, 200 ml of water was added to the system. The organic layer and the aqueous layer were separated, and hexane was added to the aqueous layer for extraction three times. The organic layer was combined, washed with saturated brine three times, and then dried with calcium chloride. Distillation was performed to obtain 74 g of the desired product as a yellow liquid. Yield 69%. GC purity 88%. M + 210.
<合成7−3>
5-シクロヘキシル-4-ペンテン-1-オールの合成
<Synthesis 7-3>
Synthesis of 5-cyclohexyl-4-penten-1-ol
窒素置換した2Lの四つ口フラスコに水素化アルミニウムリチウム16.3gを700mlのTHFに懸濁させる。系を5度に冷却し、74gの5-シクロヘキシル-4-ブテン酸エチルを100mlのTHFに溶解させた溶液を1時間かけて滴下した。反応液を3時間攪拌し、GCで反応が終了したことを確認した後、水60mlをゆっくり滴下した。ろ過を行い、ろ液を硫酸ナトリウムで乾燥させ蒸留を行った。淡黄色の液体として45gの目的物を得た。収率76%。GC純度95%。M+168。 16.3 g of lithium aluminum hydride is suspended in 700 ml of THF in a nitrogen-substituted 2 L four-necked flask. The system was cooled to 5 degrees and a solution of 74 g of ethyl 5-cyclohexyl-4-butenoate dissolved in 100 ml of THF was added dropwise over 1 hour. The reaction solution was stirred for 3 hours, and after confirming that the reaction was completed by GC, 60 ml of water was slowly added dropwise. Filtration was performed, and the filtrate was dried over sodium sulfate and distilled. 45 g of the desired product was obtained as a pale yellow liquid. Yield 76%. GC purity 95%. M + 168.
<合成7−4>
5-シクロヘキシルペンタン-1-オールの合成
<Synthesis 7-4>
Synthesis of 5-cyclohexylpentan-1-ol
2Lのオートクレーブに5-シクロヘキシル-4-ペンテン-1-オール42gを酢酸エチル300mlに溶解させ、これに5wt%パラジウム/カーボン5gを加えた。系を窒素置換した後、水素に置換し、水素圧力を0.4MPaとし、系を40度に加温した。そのまま一晩攪拌を行い、系を室温に冷却した後、ろ過を行い、さらに溶媒を留去することによって、無色透明な液体として目的物42gを得た。収率99%。GC純度97%。M+170。 In a 2 L autoclave, 42 g of 5-cyclohexyl-4-penten-1-ol was dissolved in 300 ml of ethyl acetate, and 5 g of 5 wt% palladium / carbon was added thereto. The system was purged with nitrogen and then replaced with hydrogen, the hydrogen pressure was set to 0.4 MPa, and the system was heated to 40 degrees. The mixture was stirred as it was overnight, the system was cooled to room temperature, filtered, and the solvent was distilled off to obtain 42 g of the objective product as a colorless and transparent liquid. Yield 99%. GC purity 97%. M + 170.
<合成7−5>
メタンスルホン酸5-シクロヘキシルペンチルの合成
<Synthesis 7-5>
Synthesis of 5-cyclohexylpentyl methanesulfonate
窒素置換した1L四つ口フラスコに36.3gの5-シクロヘキシルペンタン-1-オールを200mlのジクロロメタンに溶解させトリエチルアミン25.1gを加えて0度まで冷却した。29.0gのメタンスルホン酸クロリドをゆっくり滴下し6時間攪拌した。系を室温に戻し水300mlを加えた。分液の後、有機層を飽和食塩水で洗浄した。溶媒を留去し、溶媒にジクロロメタン:ヘプタン(3:7)混合溶媒を用いシリカゲル100gを用いて精製を行い、ついでメタノールを用いて再結晶を行ったところ、白色の液体として20gの目的物を得た。収率37%。GC純度95%。M+248。 In a 1 L four-necked flask purged with nitrogen, 36.3 g of 5-cyclohexylpentan-1-ol was dissolved in 200 ml of dichloromethane, and 25.1 g of triethylamine was added, followed by cooling to 0 ° C. 29.0 g of methanesulfonic acid chloride was slowly added dropwise and stirred for 6 hours. The system was returned to room temperature and 300 ml of water was added. After separation, the organic layer was washed with saturated brine. The solvent was distilled off, and purification was performed using 100 g of silica gel using a mixed solvent of dichloromethane: heptane (3: 7) as the solvent, followed by recrystallization using methanol. As a result, 20 g of the target product was obtained as a white liquid. Obtained. Yield 37%. GC purity 95%. M + 248.
<<合成8−1>>
2,3-ジフルオロ-1-(4-(4-ペンチルフェニル)フェニル)-4-(3-(4-プロピルシクロヘキシル)プロポキシ)ベンゼンの合成
<< Synthesis 8-1 >>
Synthesis of 2,3-difluoro-1- (4- (4-pentylphenyl) phenyl) -4- (3- (4-propylcyclohexyl) propoxy) benzene
窒素置換した1L四つ口フラスコに19gの2,3-ジフルオロ-4-(4-(4-ペンチルフェニル)フェニル)フェノールと16.3gのメタンスルホン酸3-(4-プロピルシクロヘキシル)プロピルおよび11.2gの炭酸カリウムをN,N-ジメチルアセトアミド350mlに懸濁させ100度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル50gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として20.5gの目的物を得た。収率73%。GC純度99.9%。M+518。
NMR:δ=0.88(m, 10H), 1.16(m, 4H), 1.37(m, 8H), 1.66(m, 2H), 1.76(m, 4H),1.85(m, 2H), 2.65(t, 2H), 4.05(t, 2H), 6.79(m, 1H), 7.12(m, 1H), 7.25(m, 2H), 7.56(m, 4H), 7.64(m, 2H).
Cr1 77 Cr2 105 SmC 159 N 214 Iso
In a nitrogen-substituted 1 L four-necked flask, 19 g of 2,3-difluoro-4- (4- (4-pentylphenyl) phenyl) phenol and 16.3 g of 3- (4-propylcyclohexyl) propyl methanesulfonate and 11.2 g Of potassium carbonate was suspended in 350 ml of N, N-dimethylacetamide and heated to 100 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 50 g of silica gel using a toluene: heptane (1: 5) mixed solvent as the solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 20.5 g of the desired product was obtained. Yield 73%. GC purity 99.9%. M + 518.
NMR: δ = 0.88 (m, 10H), 1.16 (m, 4H), 1.37 (m, 8H), 1.66 (m, 2H), 1.76 (m, 4H), 1.85 (m, 2H), 2.65 (t, 2H), 4.05 (t, 2H), 6.79 (m, 1H), 7.12 (m, 1H), 7.25 (m, 2H), 7.56 (m, 4H), 7.64 (m, 2H).
Cr1 77 Cr2 105 SmC 159 N 214 Iso
<<合成8−2>>
2,3-ジフルオロ-1-(4-(4-ペンチルフェニル)フェニル)-4-(5-(4-メチルシクロヘキシル)ペンチルオキシ)ベンゼンの合成
<< Synthesis 8-2 >>
Synthesis of 2,3-difluoro-1- (4- (4-pentylphenyl) phenyl) -4- (5- (4-methylcyclohexyl) pentyloxy) benzene
窒素置換した500ml四つ口フラスコに8.9gの2,3-ジフルオロ-4-(4-(4-ペンチルフェニル)フェニル)フェノールと7.4gのメタンスルホン酸5-(4-メチルシクロヘキシル)ペンチルおよび5.8gの炭酸カリウムをN,N-ジメチルアセトアミド120mlに懸濁させ80度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル50gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として8gの目的物を得た。収率61%。GC純度99.5%。M+518。
NMR:δ=0.89(m, 10H), 1.1-1.45(m, 12H), 1.66(m, 6H), 1.84(m, 2H), 2.65(t, 2H), 4.08(t, 2H), 6.81(t, 1H), 7.13(m, 1H), 7.26(m, 2H), 7.56(m, 4H), 7.58(d, 2H).
Cr 94 SmC 138 N 178.5 Iso
In a nitrogen-substituted 500 ml four-necked flask, 8.9 g of 2,3-difluoro-4- (4- (4-pentylphenyl) phenyl) phenol and 7.4 g of 5- (4-methylcyclohexyl) pentyl methanesulfonate and 5.8 g g potassium carbonate was suspended in 120 ml N, N-dimethylacetamide and heated to 80 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 50 g of silica gel using a toluene: heptane (1: 5) mixed solvent as the solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 8 g of the desired product was obtained. Yield 61%. GC purity 99.5%. M + 518.
NMR: δ = 0.89 (m, 10H), 1.1-1.45 (m, 12H), 1.66 (m, 6H), 1.84 (m, 2H), 2.65 (t, 2H), 4.08 (t, 2H), 6.81 ( t, 1H), 7.13 (m, 1H), 7.26 (m, 2H), 7.56 (m, 4H), 7.58 (d, 2H).
Cr 94 SmC 138 N 178.5 Iso
<<合成8−3>>
2,3-ジフルオロ-1-(4-(4-ペンチルフェニル)フェニル)-4-(5-シクロヘキシルペンチルオキシ)ベンゼンの合成
<< Synthesis 8-3 >>
Synthesis of 2,3-difluoro-1- (4- (4-pentylphenyl) phenyl) -4- (5-cyclohexylpentyloxy) benzene
窒素置換した500ml四つ口フラスコに19.3gの2,3-ジフルオロ-4-(4-(4-ペンチルフェニル)フェニル)フェノールと16.3gのメタンスルホン酸5-シクロヘキシルペンチルおよび7.6gの炭酸カリウムをN,N-ジメチルアセトアミド265mlに懸濁させ85度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル50gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として15gの目的物を得た。収率53%。GC純度99.5%。M+504。
NMR:δ=0.91(m, 5H), 1.21(m, 6H), 1.36(m, 6H), 1.46(m, 2H), 1.68(m, 7H), 1.86(m, 2H), 2.65(t, 2H), 4.07(t, 2H), 6.80(t, 1H), 7.13(m, 1H), 7.26(m, 2H), 7.56(m, 4H), 7.58(d, 2H).
Cr 100 SmC 136 N 152 Iso
A nitrogen-substituted 500 ml four-necked flask was charged with 19.3 g 2,3-difluoro-4- (4- (4-pentylphenyl) phenyl) phenol, 16.3 g 5-cyclohexylpentyl methanesulfonate and 7.6 g potassium carbonate. It was suspended in 265 ml of N, N-dimethylacetamide and heated to 85 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 50 g of silica gel using a toluene: heptane (1: 5) mixed solvent as the solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 15 g of the desired product was obtained. Yield 53%. GC purity 99.5%. M + 504.
NMR: δ = 0.91 (m, 5H), 1.21 (m, 6H), 1.36 (m, 6H), 1.46 (m, 2H), 1.68 (m, 7H), 1.86 (m, 2H), 2.65 (t, 2H), 4.07 (t, 2H), 6.80 (t, 1H), 7.13 (m, 1H), 7.26 (m, 2H), 7.56 (m, 4H), 7.58 (d, 2H).
Cr 100 SmC 136 N 152 Iso
<<合成8−4>>
1,2-ジフルオロ-3-(4-ペンチルフェニル)-6-(4-(5-シクロヘキシルペンチルオキシ)フェニル)ベンゼンの合成
<< Synthesis 8-4 >>
Synthesis of 1,2-difluoro-3- (4-pentylphenyl) -6- (4- (5-cyclohexylpentyloxy) phenyl) benzene
窒素置換した500ml四つ口フラスコに6.8gの4-(2,3-ジフルオロ-(4-(4-ペンチルフェニル))フェニル)フェノールと5.3gのメタンスルホン酸5-シクロヘキシルペンチルおよび3.0gの炭酸カリウムをN,N-ジメチルアセトアミド80mlに懸濁させ100度に加熱した。6時間攪拌を行った後、系を室温まで冷却して1Lのトルエンを加えた。分液ロートに反応液を移し、水洗した後、12%塩酸で洗浄、さらに飽和炭酸水素ナトリウム水溶液ついで食塩水で洗浄した。溶媒を留去し、得られた個体を、溶媒にトルエン:ヘプタン(1:5)混合溶媒を用いシリカゲル50gを用いて精製を行い、ついでエタノールを用いて再結晶を行ったところ、白色の固体として8gの目的物を得た。収率79%。GC純度99.0%。M+504。
NMR:δ=0.94(m, 5H), 1.24(m, 6H), 1.39(m, 8H), 1.72(m, 7H), 1.84(m, 2H), 2.69(t, 2H), 4.04(t, 2H), 7.02(d, 2H), 7.25(d, 2H), 7.30(m, 2H), 7.54(m, 4H).
Cr 92 SmC 102 N 139 Iso
In a 500 ml four-necked flask purged with nitrogen, 6.8 g of 4- (2,3-difluoro- (4- (4-pentylphenyl)) phenyl) phenol, 5.3 g of 5-cyclohexylpentyl methanesulfonate and 3.0 g of carbonic acid Potassium was suspended in 80 ml of N, N-dimethylacetamide and heated to 100 degrees. After stirring for 6 hours, the system was cooled to room temperature and 1 L of toluene was added. The reaction solution was transferred to a separatory funnel, washed with water, then washed with 12% hydrochloric acid, further washed with a saturated aqueous sodium hydrogen carbonate solution and then with brine. The solvent was distilled off, and the resulting solid was purified using 50 g of silica gel using a toluene: heptane (1: 5) mixed solvent as the solvent, and then recrystallized using ethanol to obtain a white solid. As a result, 8 g of the desired product was obtained. Yield 79%. GC purity 99.0%. M + 504.
NMR: δ = 0.94 (m, 5H), 1.24 (m, 6H), 1.39 (m, 8H), 1.72 (m, 7H), 1.84 (m, 2H), 2.69 (t, 2H), 4.04 (t, 2H), 7.02 (d, 2H), 7.25 (d, 2H), 7.30 (m, 2H), 7.54 (m, 4H).
Cr 92 SmC 102 N 139 Iso
<<合成9>>
2,3-ジフルオロ-1-(4-(4-ペンチルフェニル)フェニル)-4-(5-シクロヘキシルメチルオキシ)ベンゼンの合成
<< Synthesis 9 >>
Synthesis of 2,3-difluoro-1- (4- (4-pentylphenyl) phenyl) -4- (5-cyclohexylmethyloxy) benzene
先に示した式(C5)〜(C7)で表される化合物と同様に合成を行い、白色の固体として20.5gの目的物を得た。GC純度98.8%。M+504。
NMR:δ=0.90(m, 8H), 1.09(m, 2H), 1.21-1.37(m, 13H), 1.66(m, 2H), 1.82(m, 3H), 1.93(m, 2H), 2.65(t, 2H), 3.86(d, 2H), 6.79(m, 1H), 7.11(m, 1H), 7.25(m, 2H), 7.55(m, 4H), 7.64(d, 2H).
Cr 105 SmC 174 SmA 207 N 244 Iso
Synthesis was performed in the same manner as the compounds represented by the formulas (C5) to (C7) shown above, and 20.5 g of the target product was obtained as a white solid. GC purity 98.8%. M + 504.
NMR: δ = 0.90 (m, 8H), 1.09 (m, 2H), 1.21-1.37 (m, 13H), 1.66 (m, 2H), 1.82 (m, 3H), 1.93 (m, 2H), 2.65 ( t, 2H), 3.86 (d, 2H), 6.79 (m, 1H), 7.11 (m, 1H), 7.25 (m, 2H), 7.55 (m, 4H), 7.64 (d, 2H).
Cr 105 SmC 174 SmA 207 N 244 Iso
<<合成10>>
1,2-ジフルオロ-3-(4-ペンチルフェニル)-6-(4-(5-シクロヘキシルブチルオキシ)フェニル)ベンゼンの合成
<< Synthesis 10 >>
Synthesis of 1,2-difluoro-3- (4-pentylphenyl) -6- (4- (5-cyclohexylbutyloxy) phenyl) benzene
先に示した式(C1)、(C2)、(C8)で表される化合物と同様に合成を行い、白色の固体として7.3gの目的物を得た。GC純度99.5%。M+504。
NMR:δ=0.87(m, 10H), 1.10(m, 1H), 1.27(m, 5H), 1.37(m, 4H), 1.50(m, 2H), 1.70(m, 2H), 1.75(m, 6H), 2.66(t, 2H), 4.01(d, 2H), 6.99(d, 2H), 7.25(m, 4H), 7.51(m, 4H).
Cr 74 SmC 80 N 136 Iso
Synthesis was performed in the same manner as the compounds represented by the formulas (C1), (C2), and (C8), and 7.3 g of the target product was obtained as a white solid. GC purity 99.5%. M + 504.
NMR: δ = 0.87 (m, 10H), 1.10 (m, 1H), 1.27 (m, 5H), 1.37 (m, 4H), 1.50 (m, 2H), 1.70 (m, 2H), 1.75 (m, 6H), 2.66 (t, 2H), 4.01 (d, 2H), 6.99 (d, 2H), 7.25 (m, 4H), 7.51 (m, 4H).
Cr 74 SmC 80 N 136 Iso
<示差走査熱量測定(2)>
得られた液晶化合物、前記式(C5)〜(C8)、(C11)及び(C12)で表される化合物(C5)〜(C8)、(C11)及び(C12)、の示差走査熱量測定を行ったところ、図5〜図10に示すチャートが得られた。
<Differential scanning calorimetry (2)>
Differential scanning calorimetry of the obtained liquid crystal compound, the compounds (C5) to (C8), (C11) and (C12) represented by the formulas (C5) to (C8), (C11) and (C12). As a result, charts shown in FIGS. 5 to 10 were obtained.
<<物性評価>>
合成した各化合物の物性を評価するために、比較例の化合物(REF1〜REF3)を準備した。
<< Physical property evaluation >>
In order to evaluate the physical properties of each synthesized compound, the comparative compounds (REF1 to REF3) were prepared.
<<化合物C5〜C7,C10〜C11の物性評価>>
化合物C5〜C7、C11と同様に、下記表に示す化合物C10を合成した。下記表に示す各化合物の純度をガスクロマトグラフィにより求めた(GC purity)。各化合物の相系列(Phase sequence)の上限温度を示差走査熱量測定および温度可変装置を装着した偏光顕微鏡による液晶相の観察によって求めた。
<< Physical property evaluation of compounds C5 to C7, C10 to C11 >>
Similarly to compounds C5 to C7 and C11, compound C10 shown in the following table was synthesized. The purity of each compound shown in the following table was determined by gas chromatography (GC purity). The upper limit temperature of the phase sequence of each compound was determined by differential scanning calorimetry and observation of the liquid crystal phase with a polarizing microscope equipped with a temperature variable device.
化合物C5〜C7、化合物C10〜C11のテルフェニル構造に類似する、比較例の化合物(REF1)を合成し、その相系列の上限温度(相転移温度)を測定した。比較例の化合物(REF1)のSmC相の上限温度は、144℃であった。
この化合物(REF1)の上限温度を基準として、各化合物C5〜C7,C10〜C11のSmC相の上限温度の方が高い場合には、当該本発明の化合物にSmC相の上限温度の上昇効果があると評価した。表1において、このSmC相の上限温度の上昇効果(第一の上昇効果)を有する化合物を「○」で示した。
さらに、標準の化合物(REF2)50重量部に、本発明の化合物を50重量部添加した場合に、化合物(REF2)が発現するSmC相の上限温度(95℃)より上昇する場合、当該本発明の化合物にSmC相の上限温度の上昇効果があると評価した。表1において、このSmC相の上限温度の上昇効果(第二の上昇効果)を有する化合物を「◎」で示した。
また、化合物(REF2)50重量部に、本発明の化合物を50重量部添加した場合に発現するSmC相の温度幅が、化合物(REF2)が発現するSmC相の温度幅(46.5℃)よりも広い場合、SmC相の温度幅の拡大効果があると評価した。表1において、このSmC相の温度幅の拡大効果を有する化合物を「○」で示した。
また、SmC相の傾き角を大きくするには、液晶の相系列が高温側からI相−N相−SmC相(INC相系列)である方が、I相−N相−SmA相−SmC相(INAC相系列)よりも好ましい。このため、INC相系列を発現する化合物である場合、SmC相の傾き角の拡大効果を有する化合物であると評価した。
A compound (REF1) of a comparative example similar to the terphenyl structure of compounds C5 to C7 and compounds C10 to C11 was synthesized, and the upper limit temperature (phase transition temperature) of the phase series was measured. The upper limit temperature of the SmC phase of the compound of the comparative example (REF1) was 144 ° C.
When the upper limit temperature of the SmC phase of each of the compounds C5 to C7 and C10 to C11 is higher based on the upper limit temperature of the compound (REF1), the compound of the present invention has an effect of increasing the upper limit temperature of the SmC phase. Evaluated that there was. In Table 1, the compound having the effect of increasing the maximum temperature of the SmC phase (first increasing effect) is indicated by “◯”.
Furthermore, when 50 parts by weight of the compound of the present invention is added to 50 parts by weight of the standard compound (REF2), when the temperature rises from the upper limit temperature (95 ° C.) of the SmC phase at which the compound (REF2) is expressed, the present invention It was evaluated that this compound has an effect of increasing the maximum temperature of the SmC phase. In Table 1, the compounds having the effect of increasing the maximum temperature of the SmC phase (second increasing effect) are indicated by “◎”.
In addition, the temperature range of the SmC phase that is expressed when 50 parts by weight of the compound of the present invention is added to 50 parts by weight of the compound (REF2) is the temperature range of the SmC phase that is expressed by the compound (REF2) (46.5 ° C.). If it is wider, it was evaluated that there was an effect of expanding the temperature width of the SmC phase. In Table 1, the compound having the effect of expanding the temperature range of the SmC phase is indicated by “◯”.
In order to increase the tilt angle of the SmC phase, the phase sequence of the liquid crystal is the I phase-N phase-SmC phase (INC phase sequence) from the high temperature side, the I phase-N phase-SmA phase-SmC phase. More preferable than (INAC phase series). For this reason, when it was a compound which expresses an INC phase series, it evaluated that it was a compound which has the expansion effect of the inclination angle of a SmC phase.
<<化合物C1〜C2,C8,C12,C14の物性評価>>
化合物C1〜C2,C8、C12と同様に、下記表に示す化合物C14を合成した。下記表に示す合成スケール(weight)で得た各化合物の純度をガスクロマトグラフィにより求めた(GC purity)。各化合物の相系列(Phase sequence)の上限温度を示差走査熱量測定および温度可変装置を装着した偏光顕微鏡による液晶相の観察によって求めた。
<< Evaluation of physical properties of compounds C1 to C2, C8, C12, C14 >>
Compound C14 shown in the following table was synthesized in the same manner as compounds C1 to C2, C8, and C12. The purity of each compound obtained at the synthesis scale (weight) shown in the following table was determined by gas chromatography (GC purity). The upper limit temperature of the phase sequence of each compound was determined by differential scanning calorimetry and observation of the liquid crystal phase with a polarizing microscope equipped with a temperature variable device.
化合物C1〜C2、C8、C12及びC14のテルフェニル構造に類似する、比較例の化合物(REF2)を合成し、その相系列の上限温度(相転移温度)を測定した。比較例の化合物(REF2)のSmC相の上限温度は、95℃であった。
この化合物(REF2)の上限温度を基準として、各化合物C1〜C2,C8,C12,C14のSmC相の上限温度の方が高い場合には、当該化合物にSmCの上限温度の上昇効果があると評価した。表2において、このSmC相の上限温度の上昇効果(第一の上昇効果)を有する化合物を「○」で示した。
さらに、標準の化合物(REF2)50重量部に、本発明の化合物を50重量部添加した場合に、化合物(REF2)が発現するSmC相の上限温度(95℃)より上昇する場合、当該本発明の化合物にSmC相の上限温度の上昇効果があると評価した。表2において、このSmC相の上限温度の上昇効果(第二の上昇効果)を有する化合物を「◎」で示した。
また、標準の化合物(REF2)50重量部に、本発明の化合物を50重量部添加した場合に発現するSmC相の温度幅が、化合物(REF2)が発現するSmC相の温度幅(46.5℃)よりも広い場合、SmC相の温度幅の拡大効果があると評価した。表2において、このSmC相の温度幅の拡大効果を有する化合物を「○」で示した。
また、SmC相の傾き角を大きくするには、液晶の相系列が高温側からI相−N相−SmC相(INC相系列)である方が、I相−N相−SmA相−SmC相(INAC相系列)よりも好ましい。このため、INC相系列を発現する化合物である場合、SmC相の傾き角の拡大効果を有する化合物であると評価した。
A comparative compound (REF2) similar to the terphenyl structure of compounds C1-C2, C8, C12 and C14 was synthesized, and the upper limit temperature (phase transition temperature) of the phase series was measured. The upper limit temperature of the SmC phase of the compound of the comparative example (REF2) was 95 ° C.
When the upper limit temperature of the SmC phase of each of the compounds C1 to C2, C8, C12, and C14 is higher with respect to the upper limit temperature of the compound (REF2), the compound has an effect of increasing the upper limit temperature of SmC. evaluated. In Table 2, the compound having the effect of increasing the maximum temperature of the SmC phase (first increasing effect) is indicated by “◯”.
Furthermore, when 50 parts by weight of the compound of the present invention is added to 50 parts by weight of the standard compound (REF2), when the temperature rises from the upper limit temperature (95 ° C.) of the SmC phase at which the compound (REF2) is expressed, the present invention It was evaluated that this compound has an effect of increasing the maximum temperature of the SmC phase. In Table 2, the compound having the effect of increasing the maximum temperature of the SmC phase (second increasing effect) is indicated by “◎”.
In addition, the temperature range of the SmC phase that appears when 50 parts by weight of the compound of the present invention is added to 50 parts by weight of the standard compound (REF2) is equal to the temperature range of the SmC phase that the compound (REF2) expresses (46.5). In the case of wider than (° C.), it was evaluated that there was an effect of expanding the temperature width of the SmC phase. In Table 2, the compound having the effect of expanding the temperature range of the SmC phase is indicated by “◯”.
In order to increase the tilt angle of the SmC phase, the phase sequence of the liquid crystal is the I phase-N phase-SmC phase (INC phase sequence) from the high temperature side, the I phase-N phase-SmA phase-SmC phase. More preferable than (INAC phase series). For this reason, when it was a compound which expresses an INC phase series, it evaluated that it was a compound which has the expansion effect of the inclination angle of a SmC phase.
<<化合物C3〜C4,C18の物性評価>>
化合物C3〜C4と同様に、下記表に示す化合物C18を合成した。下記表に示す合成スケール(weight)で得た各化合物の純度をガスクロマトグラフィにより求めた(GC purity)。各化合物の相系列(Phase sequence)の上限温度を示差走査熱量測定および温度可変装置を装着した偏光顕微鏡による液晶相の観察によって求めた。
<< Physical property evaluation of compounds C3 to C4, C18 >>
Similarly to compounds C3 to C4, compound C18 shown in the following table was synthesized. The purity of each compound obtained at the synthesis scale (weight) shown in the following table was determined by gas chromatography (GC purity). The upper limit temperature of the phase sequence of each compound was determined by differential scanning calorimetry and observation of the liquid crystal phase with a polarizing microscope equipped with a temperature variable device.
化合物C3、C4及び化合物C18のテルフェニル構造に類似する、比較例の化合物(REF3)を合成し、その相系列の上限温度(相転移温度)を測定した。比較例の化合物(REF3)のSmC相の上限温度は、155.5℃であった。
この化合物(REF3)の上限温度を基準として、各化合物C3〜C4,C18のSmC相の上限温度の方が高い場合には、当該化合物にSmC相の上限温度の上昇効果があると評価した。表3において、このSmC相の上限温度の上昇効果(第一の上昇効果)を有する化合物を「○」で示した。
また、SmC相の傾き角を大きくするには、液晶の相系列が高温側からI相−N相−SmC相(INC相系列)である方が、I相−N相−SmA相−SmC相(INAC相系列)よりも好ましい。このため、INC相系列を発現する化合物である場合、SmC相の傾き角の拡大効果を有する化合物であると評価した。
A comparative compound (REF3) similar to the terphenyl structure of compounds C3, C4 and C18 was synthesized, and the upper limit temperature (phase transition temperature) of the phase series was measured. The upper limit temperature of the SmC phase of the compound of the comparative example (REF3) was 155.5 ° C.
When the upper limit temperature of the SmC phase of each of the compounds C3 to C4 and C18 was higher with reference to the upper limit temperature of this compound (REF3), the compound was evaluated as having an effect of increasing the upper limit temperature of the SmC phase. In Table 3, the compounds having the effect of increasing the maximum temperature of the SmC phase (first increasing effect) are indicated by “◯”.
In order to increase the tilt angle of the SmC phase, the phase sequence of the liquid crystal is the I phase-N phase-SmC phase (INC phase sequence) from the high temperature side, the I phase-N phase-SmA phase-SmC phase. More preferable than (INAC phase series). For this reason, when it was a compound which expresses an INC phase series, it evaluated that it was a compound which has the expansion effect of the inclination angle of a SmC phase.
以上の結果から、本発明の化合物は、比較例の化合物が有するテルフェニル構造に加えて、さらに一般式(i)のYで表される嵩高い基を有することにより、SmC相の上限温度を高め易くなることが理解される。また、本発明の化合物において、テルフェニル構造と嵩高い基をつなぐ連結基の長さをメチレン基よりも長くすることにより、SmC相の温度幅の拡大効果及び/又はSmC相の傾き角の拡大効果が得られ易くなることが判る。 From the above results, the compound of the present invention has a bulky group represented by Y in the general formula (i) in addition to the terphenyl structure of the compound of the comparative example, thereby increasing the maximum temperature of the SmC phase. It is understood that it is easy to increase. In the compound of the present invention, the length of the linking group connecting the terphenyl structure and the bulky group is made longer than that of the methylene group, so that the effect of increasing the temperature range of the SmC phase and / or the increase of the tilt angle of the SmC phase. It turns out that an effect becomes easy to be acquired.
<<液晶組成物>>
表4に示す割合で各化合物を混合し、液晶組成物を作成したところ、相系列(Phase sequence)の各転移温度が以下の値を示す強誘電性液晶組成物が得られた。
結晶−SmC*相転移温度:室温以下
SmC*相−N*相転移温度:97.8℃
N*相−I相転移温度:141.8℃
<< Liquid crystal composition >>
When each compound was mixed in the ratio shown in Table 4 to prepare a liquid crystal composition, a ferroelectric liquid crystal composition in which each transition temperature of the phase sequence showed the following values was obtained.
Crystal-SmC * phase transition temperature: room temperature or less SmC * phase-N * phase transition temperature: 97.8 ° C
N * phase-I phase transition temperature: 141.8 ° C.
上記強誘電性液晶組成物をガラスセルに注入して液晶表示素子を作製したところ、表示特性に優れる液晶表示素子が得られた。 When the liquid crystal display element was produced by injecting the ferroelectric liquid crystal composition into a glass cell, a liquid crystal display element having excellent display characteristics was obtained.
以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 The configurations and combinations thereof in the embodiments described above are examples, and the addition, omission, replacement, and other modifications of the configurations can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.
本発明に係る化合物は、液晶ディスプレイの分野に広く適用可能である。 The compound according to the present invention is widely applicable in the field of liquid crystal displays.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013115481A JP6136589B2 (en) | 2013-05-31 | 2013-05-31 | Compound, liquid crystal composition, and display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013115481A JP6136589B2 (en) | 2013-05-31 | 2013-05-31 | Compound, liquid crystal composition, and display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014234357A JP2014234357A (en) | 2014-12-15 |
JP6136589B2 true JP6136589B2 (en) | 2017-05-31 |
Family
ID=52137312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013115481A Active JP6136589B2 (en) | 2013-05-31 | 2013-05-31 | Compound, liquid crystal composition, and display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6136589B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI693275B (en) * | 2016-01-20 | 2020-05-11 | 日商捷恩智股份有限公司 | 4-ring liquid crystal compound having a 2-atom bonding group and 2,3-difluorophenylene, liquid crystal composition, and liquid crystal display element |
CN107213857B (en) * | 2017-02-15 | 2020-02-18 | 湘潭大学 | A side chain type liquid crystal polymer gel factor and its prepared physical gel material |
CN108101940A (en) * | 2017-12-27 | 2018-06-01 | 安徽金善化工科技有限公司 | A kind of butyltriphenylphosphonium bromide phosphine |
CN111876163A (en) * | 2019-05-02 | 2020-11-03 | 达兴材料股份有限公司 | Liquid crystal compound, liquid crystal composition, and liquid crystal display element |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2346148B (en) * | 1999-01-28 | 2002-06-19 | John William Brown | Conducting polymers with switchable magnetic/electronic properties |
GB0126849D0 (en) * | 2001-11-08 | 2002-01-02 | Qinetiq Ltd | Novel compounds |
KR101540489B1 (en) * | 2007-09-06 | 2015-07-29 | 제이엔씨 석유 화학 주식회사 | Tetra-or penta-cyclic liquid crystalline compound having lateral fluorine, liquid crystal composition, and liquid crystal display element |
EP2199270B1 (en) * | 2007-09-10 | 2016-05-25 | JNC Corporation | Liquid crystalline compound, liquid crystal composition, and liquid crystal display device |
US8394294B2 (en) * | 2008-06-09 | 2013-03-12 | Jnc Corporation | Four-ring liquid crystal compound having lateral fluorine, liquid crystal composition and liquid crystal display device |
PL214647B1 (en) * | 2009-04-14 | 2013-08-30 | Wojskowa Akad Tech | Antiferroelectric ortoconic smectics of long helix and method of obtaining them |
-
2013
- 2013-05-31 JP JP2013115481A patent/JP6136589B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014234357A (en) | 2014-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102788755B1 (en) | Liquid crystal medium and liquid crystal display comprising the same | |
KR102788738B1 (en) | Thiophene compound, liquid-crystalline medium and liquid-crystal display comprising the same | |
TWI675094B (en) | Liquid-crystalline media having homeotropic alignment | |
JP6510419B2 (en) | Liquid crystal display and liquid crystal medium having homeotropic alignment | |
JP6258349B2 (en) | Negative dielectric anisotropic liquid crystal mixture | |
JP7373895B2 (en) | Liquid-crystalline media and liquid-crystal displays containing said liquid-crystalline media | |
TWI626298B (en) | Liquid crystal compound, liquid crystal composition and liquid crystal display element | |
JP6137419B2 (en) | Nematic liquid crystal composition and liquid crystal display device using the same | |
KR20190085057A (en) | Liquid crystal medium and liquid crystal display comprising same | |
TW201348412A (en) | Compound having four polymerizable groups, liquid crystal composition and liquid crystal display device | |
TW202012385A (en) | Thiophene compound, liquid-crystalline medium and liquid-crystal display comprising the same | |
TW201026823A (en) | Liquid-crystalline medium | |
US8003006B2 (en) | Difluorobenzene derivative and nematic liquid crystal composition using the same | |
TW202132545A (en) | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds | |
WO2013099754A1 (en) | Compound with 2-fluorophenyloxymethane structure | |
JP6136589B2 (en) | Compound, liquid crystal composition, and display element | |
KR101691873B1 (en) | Alkenyl ether compound and liquid crystal composition using same | |
JP5077621B2 (en) | Difluorobenzene derivative and liquid crystal composition using the same | |
JP5892357B2 (en) | Fluoronaphthalene derivative and liquid crystal composition containing the same. | |
TW202111095A (en) | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds | |
KR20160001773A (en) | Thienothiophenes liquid crystal compounds, liquid crystal compositions containing TT, and electro-optical device | |
KR20160136118A (en) | Liquid crystal compound and liquid crystal composition comprising the same | |
CN104884575B (en) | Liquid crystal media | |
JP2017222588A (en) | Production method of liquid crystal compound and the compound | |
JP2006225588A (en) | Liquid crystal composition, display element and compound containing trifluoronaphthalene derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170417 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6136589 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |