[go: up one dir, main page]

JP6136216B2 - Laser radar device, inspection system, and target plate - Google Patents

Laser radar device, inspection system, and target plate Download PDF

Info

Publication number
JP6136216B2
JP6136216B2 JP2012261226A JP2012261226A JP6136216B2 JP 6136216 B2 JP6136216 B2 JP 6136216B2 JP 2012261226 A JP2012261226 A JP 2012261226A JP 2012261226 A JP2012261226 A JP 2012261226A JP 6136216 B2 JP6136216 B2 JP 6136216B2
Authority
JP
Japan
Prior art keywords
intensity
light
range
angle range
received light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012261226A
Other languages
Japanese (ja)
Other versions
JP2014106191A (en
Inventor
田中 秀明
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012261226A priority Critical patent/JP6136216B2/en
Priority to PCT/JP2013/081510 priority patent/WO2014084137A1/en
Publication of JP2014106191A publication Critical patent/JP2014106191A/en
Application granted granted Critical
Publication of JP6136216B2 publication Critical patent/JP6136216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、レーザ光を出力してその反射光を受光した結果に基づいて、物標との相対的な位置関係を導出するレーザレーダ装置,そのレーザレーダ装置の設置状態を検査する検査システム、及びレーザレーダ装置の設置状態の検査に用いるターゲット板に関する。   The present invention relates to a laser radar device for deriving a relative positional relationship with a target based on a result of outputting a laser beam and receiving a reflected light thereof, an inspection system for inspecting an installation state of the laser radar device, The present invention also relates to a target plate used for inspection of the installation state of a laser radar device.

従来、自動車に搭載して用いられ、自車両と物体との相対的な位置関係(以下、相対位置と称す)を導出するレーザレーダ装置が知られている。この種のレーザレーダ装置は、探査波としてのレーザ光を規定角度範囲に出射する発光部と、発光部にて出射されたレーザ光の反射光を受光する受光部と、発光部及び受光部にてレーザ光を発受光した結果に基づいて、レーザ光を反射した物体上のポイント(以下、物標と称す)までの距離、及び物標が存在する方位を相対位置として導出する信号処理部とを備えている。   Conventionally, there has been known a laser radar device that is used in an automobile and derives a relative positional relationship between the host vehicle and an object (hereinafter referred to as a relative position). This type of laser radar device includes a light emitting unit that emits laser light as a search wave in a specified angle range, a light receiving unit that receives reflected light of the laser light emitted from the light emitting unit, and a light emitting unit and a light receiving unit. A signal processing unit for deriving, as relative positions, a distance to a point (hereinafter referred to as a target) on the object reflecting the laser light and a direction in which the target exists based on the result of emitting and receiving the laser beam. It has.

このようなレーザレーダ装置にて相対位置を精度良く導出するためには、自動車に規定された設置基準軸にレーザレーダ装置に設定された配置基準軸を一致させるように、レーザレーダ装置を自動車に設置する必要がある。   In order to accurately derive the relative position with such a laser radar device, the laser radar device is mounted on the vehicle so that the placement reference axis defined in the vehicle matches the placement reference axis set in the laser radar device. It is necessary to install.

レーザレーダ装置の設置状態が、設置基準軸に配置基準軸が一致しているか否かを検査する方法(以下、軸ズレ検査方法と称す)として、水平方向に沿った長さが規定角度範囲における水平方向の長さよりも短く、かつ、レーザ光を反射する一枚のターゲット板を用いる方法が提案されている(特許文献1参照)。   As a method for inspecting whether or not the installation reference axis of the laser radar device is coincident with the installation reference axis (hereinafter referred to as an axis deviation inspection method), the length along the horizontal direction is within a specified angle range. There has been proposed a method using a single target plate that is shorter than the length in the horizontal direction and reflects laser light (see Patent Document 1).

このターゲット板を用いる軸ズレ検査方法では、規定角度範囲内に配置されたターゲット板に対して、レーザレーダ装置の発光部からレーザ光を照射する。そして、レーザレーダ装置にて認識したターゲット板の左右それぞれの端と、レーザ光を照射する規定角度範囲の中心軸とのなす角度の平均に基づいて、設置基準軸に配置基準軸が一致しているか否か、即ち、軸ズレの有無を検査する。   In this axial displacement inspection method using a target plate, laser light is irradiated from a light emitting unit of a laser radar device to a target plate arranged within a specified angle range. Based on the average angle between the left and right ends of the target plate recognized by the laser radar device and the central axis of the specified angle range for irradiating laser light, the placement reference axis matches the placement reference axis. It is checked whether or not there is an axis shift.

すなわち、特許文献1に記載された軸ズレ検査方法においては、レーザ光を照射する規定角度範囲の中心軸が、ターゲット板の中心軸に一致している状態を軸ズレしていない状態とし、前記角度の平均が「0」とみなせる角度範囲を超えた場合に、設置基準軸に対して配置基準軸がズレているものと判定している。   That is, in the axial misalignment inspection method described in Patent Document 1, the state in which the central axis of the specified angle range for irradiating the laser light coincides with the central axis of the target plate is not misaligned, When the average angle exceeds an angle range that can be regarded as “0”, it is determined that the arrangement reference axis is deviated from the installation reference axis.

特許文献1に記載された軸ズレ検査方法にて軸ズレの有無を検査可能なレーザレーダ装置は、方位分解能が細かいレーザレーダ装置である。方位分解能が細かいレーザレーダ装置とは、例えば、規定角度範囲を細分化した走査範囲のそれぞれに、2次元的なビームスキャンにより順次レーザ光を照射し、その各走査範囲に存在する物標を検知するレーザレーダ装置である。   A laser radar apparatus capable of inspecting the presence or absence of an axis deviation by the axis deviation inspection method described in Patent Document 1 is a laser radar apparatus having a fine azimuth resolution. A laser radar device with fine azimuth resolution means that, for example, each scanning range obtained by subdividing a specified angular range is irradiated with laser light sequentially by two-dimensional beam scanning, and a target existing in each scanning range is detected. This is a laser radar device.

しかしながら、レーザレーダ装置の中には、方位分解能が粗いレーザレーダ装置も存在する。この方位分解能が粗いレーザレーダ装置における発光部は、例えば、一つのレーザダイオード(LD)と、LDを駆動するLD駆動回路と、LDにて発生したレーザ光のビーム幅を規定角度範囲に一致させる一つの発光レンズを少なくとも含む光学素子とを備える。そして、受光部は、反射光を集光する受光レンズと、受光レンズを介して反射光を受光し、その強度に応じた信号レベルの受光信号を発生する複数の受光素子(PD)とを備えている。ただし、受光素子は、直線上に隣接して配置されており、受光レンズは、反射光の入射角度に応じて、1つの受光素子へと反射光を導くように構成されている。   However, among laser radar devices, there are laser radar devices with a low azimuth resolution. The light emitting unit in the laser radar apparatus having a rough azimuth resolution, for example, matches one laser diode (LD), an LD drive circuit for driving the LD, and the beam width of the laser light generated by the LD within a specified angle range. And an optical element including at least one light-emitting lens. The light receiving unit includes a light receiving lens that collects the reflected light, and a plurality of light receiving elements (PD) that receive the reflected light through the light receiving lens and generate a light receiving signal having a signal level corresponding to the intensity. ing. However, the light receiving elements are arranged adjacent to each other on a straight line, and the light receiving lens is configured to guide the reflected light to one light receiving element according to the incident angle of the reflected light.

つまり、このようなレーザレーダ装置では、発光部から規定角度範囲へとレーザ光を照射し、規定角度範囲を複数の角度範囲に分割した受光角度範囲の一つからのレーザ光の反射光を、受光レンズを介して一つの受光素子にて受光する。そして、その受光した受光素子を特定することで、物標が存在する方位を検出している。   That is, in such a laser radar device, the reflected light of the laser beam from one of the light receiving angle ranges obtained by irradiating the laser beam from the light emitting unit to the specified angle range and dividing the specified angle range into a plurality of angle ranges, Light is received by one light receiving element through the light receiving lens. And the azimuth | direction in which the target exists is detected by specifying the light receiving element which received the light.

特開平11−337634号公報JP-A-11-337634

しかしながら、このような方位分解能が粗いレーザレーダ装置では、ターゲット板の左右それぞれの端が存在する方位を精度良く検出できない。
なお、方位分解能が細かいレーザレーダ装置(ポリゴンミラー型レーザレーダ)の方位分解能は、例えば、「0.1度」である。これに対して、方位分解能が粗いとは、例えば、レーザレーダ装置が有する方位分解能が、方位分解能が細かいレーザレーダ装置の方位分解能に対して、予め規定された規定倍率(例えば、20倍)以上となることである。
However, such a laser radar apparatus having a low azimuth resolution cannot accurately detect the azimuth where the left and right ends of the target plate exist.
Note that the azimuth resolution of a laser radar apparatus (polygon mirror type laser radar) having a fine azimuth resolution is, for example, “0.1 degrees”. On the other hand, the coarse azimuth resolution means that, for example, the azimuth resolution of the laser radar device is greater than a prescribed magnification (for example, 20 times) defined in advance with respect to the azimuth resolution of the laser radar device with fine azimuth resolution. It is to become.

よって、特許文献1に記載された軸ズレ検査方法にて、方位分解能が粗いレーザレーダ装置の軸ズレの有無を検査する場合、前記角度の平均が、実際には、「0」とみなせる角度の範囲外であるにも拘わらず、「0」とみなせる角度範囲を超えずに、設置基準軸に対して配置基準軸がズレているものと判定できない可能性があった。   Therefore, in the case of inspecting the presence or absence of axial misalignment of a laser radar apparatus having a coarse azimuth resolution by the axial misalignment inspection method described in Patent Document 1, the average of the angles is actually an angle that can be regarded as “0”. In spite of being out of the range, there is a possibility that it cannot be determined that the arrangement reference axis is deviated from the installation reference axis without exceeding the angle range that can be regarded as “0”.

つまり、方位分解能が粗いレーザレーダ装置の設置状態を検査する場合、特許文献1に記載されたターゲット板を用いる軸ズレ検査方法では、軸ズレの検査精度が良くないという問題が生じる。   That is, when inspecting the installation state of a laser radar apparatus having a low azimuth resolution, the axial deviation inspection method using the target plate described in Patent Document 1 has a problem that the axial deviation inspection accuracy is not good.

そこで、本発明は、レーザレーダ装置において、方位分解能に関わらず、設置基準軸に配置基準軸が一致しているか否かの検査精度を向上させることを目的とする。   Therefore, an object of the present invention is to improve the inspection accuracy of whether or not the arrangement reference axis matches the installation reference axis in the laser radar apparatus regardless of the azimuth resolution.

上記目的を達成するためになされた本発明は、探査波を送受信した結果に基づいて、探査波を反射した物標との相対的な位置関係を検出するレーザレーダ装置に関する。
本発明のレーザレーダ装置では、発光手段が、規定された角度範囲である規定角度範囲に、探査波としてのレーザ光を出力し、受光手段が、発光手段にて出力されたレーザ光が反射された反射光であって、受光角度範囲それぞれからの反射光を、当該受光角度範囲を識別可能な態様にて受光する。ただし、本発明における「受光角度範囲」とは、規定角度範囲を互いに隣接するように複数に分割した角度範囲のそれぞれである。
The present invention made to achieve the above object relates to a laser radar device that detects a relative positional relationship with a target reflecting a search wave based on a result of transmitting and receiving a search wave.
In the laser radar device of the present invention, the light emitting means outputs laser light as the exploration wave in a prescribed angle range that is a prescribed angle range, and the light receiving means reflects the laser light output by the light emitting means. The reflected light from each of the light receiving angle ranges is received in such a manner that the light receiving angle ranges can be identified. However, the “light reception angle range” in the present invention is each of the angle ranges obtained by dividing the specified angle range into a plurality of adjacent ones.

さらに、本発明においては、受光角度範囲と当該受光角度範囲での反射光の受光強度との対応関係を強度対応関係とすると共に、車両に設けられた軸である設置基準軸に、当該レーザレーダ装置に規定された配置基準軸が一致した状態を適正配置状態とする。これと共に、本発明においては、適正配置状態にてレーザ光を照射した結果、互いに隣接する2つの受光角度範囲に渡って規定強度以上の受光強度となるように複数の反射部材が設置されたターゲット板に、適正配置状態でレーザ光を照射した結果としての強度対応関係を模範強度対応関係とする。   Further, in the present invention, the correspondence relationship between the light reception angle range and the light reception intensity of the reflected light in the light reception angle range is an intensity correspondence relationship, and the laser radar is mounted on the installation reference axis that is an axis provided in the vehicle. A state in which the arrangement reference axes defined in the apparatus coincide with each other is defined as an appropriate arrangement state. At the same time, in the present invention, as a result of irradiating the laser beam in the proper arrangement state, a target in which a plurality of reflecting members are installed so that the received light intensity is equal to or higher than the specified intensity over two adjacent light receiving angle ranges. The intensity correspondence as a result of irradiating the plate with the laser beam in an appropriate arrangement state is set as an exemplary intensity correspondence.

そして、本発明のレーザレーダ装置では、軸ズレ検出手段が、発光手段にてレーザ光を発光して、受光手段にて反射光を受光した結果に基づいて、レーザ光を発光するごとの強度対応関係である角度強度対応関係を導出すると共に、その導出した角度強度対応関係を模範強度対応関係に照合した結果、一致度が規定値未満であれば、設置基準軸に対して配置基準軸が不一致である軸ズレ状態であることを検出する。   In the laser radar device of the present invention, the axis deviation detecting means responds to the intensity every time the laser light is emitted based on the result of emitting the laser light by the light emitting means and receiving the reflected light by the light receiving means. If the degree of coincidence is less than the specified value as a result of deriving the relationship between the angle strength and the derived angle strength correspondence with the model strength correspondence, the placement reference axis does not match the installation reference axis It is detected that the shaft is in an axial misalignment state.

本発明において、角度強度対応関係における各受光角度範囲での受光強度は、受光手段で受光した反射光の強さに応じたものである。この反射光の強さは、各受光角度範囲内に存在する反射板の面積、即ち、レーザレーダ装置の設置状態によって差異が生じる。   In the present invention, the received light intensity in each light receiving angle range in the angle intensity correspondence relationship corresponds to the intensity of the reflected light received by the light receiving means. The intensity of the reflected light varies depending on the area of the reflector existing in each light receiving angle range, that is, the installation state of the laser radar device.

つまり、レーザレーダ装置の設置状態が適正配置状態でない場合には、反射板と配置基準軸との位置関係が規定された位置関係ではないため、当該反射板にて反射され、2つの受光角度範囲のそれぞれにおける反射光の受光強度は、模範強度対応関係として予め想定された受光強度とは異なるものとなる。   That is, when the installation state of the laser radar device is not in the proper arrangement state, the positional relationship between the reflection plate and the arrangement reference axis is not a prescribed positional relationship, and is reflected by the reflection plate and thus is in the two light receiving angle ranges. The received light intensity of the reflected light in each of these is different from the received light intensity assumed in advance as the model intensity correspondence relationship.

一方、レーザレーダ装置の設置状態が適正配置状態であれば、反射板にて反射され、2つの受光角度範囲のそれぞれにおける反射光の受光強度は、模範強度対応関係として予め想定された受光強度に一致する。   On the other hand, if the installation state of the laser radar device is an appropriate arrangement state, the light reception intensity of the reflected light reflected by the reflecting plate in each of the two light reception angle ranges is set to the light reception intensity assumed in advance as a model intensity correspondence relationship. Match.

したがって、本発明のレーザレーダ装置においては、模範強度対応関係に角度強度対応関係を照合することで、軸ズレ状態であるか否かを検査することができる。
さらに、本発明のレーザレーダ装置では、強度対応関係を構成する指標である受光強度及び受光角度範囲のそれぞれを多値としているため、方位分解能が粗くても、角度強度対応関係を模範強度対応関係に照合した結果における差異の有無を検出できる。
Therefore, in the laser radar device of the present invention, it is possible to inspect whether or not the axis is in a misaligned state by checking the angular intensity correspondence with the model intensity correspondence.
Furthermore, in the laser radar device of the present invention, each of the received light intensity and the received light angle range, which is an index constituting the intensity correspondence relationship, is multivalued, so even if the azimuth resolution is rough, the angular intensity correspondence relationship is set as the model intensity correspondence relationship. It is possible to detect the presence or absence of a difference in the result of collating with.

換言すれば、本発明によれば、レーザレーダ装置において、方位分解能に関わらず、設置基準軸に配置基準軸が一致しているか否かの検査精度を向上させることができる。
また、本発明における軸ズレ検出手段では、第一特定手段が、受光強度が最も強い受光角度範囲である最高強度範囲、及び最高強度範囲での受光強度の値を特定し、第二特定手段が、第一特定手段にて特定した最高強度範囲に隣接する受光角度範囲である隣接角度範囲での受光強度の値を特定しても良い。この場合、第一検出手段が、最高強度範囲での受光強度の値と、隣接角度範囲での受光強度の値との関係を表す強度関係が、模範強度対応関係における強度関係に一致するとみなせる範囲を超えていれば、軸ズレ状態であるものと検出しても良い。
In other words, according to the present invention, in the laser radar device, it is possible to improve the inspection accuracy whether or not the arrangement reference axis matches the installation reference axis regardless of the azimuth resolution.
Further, in the shaft misalignment detecting means in the present invention, the first specifying means specifies the maximum intensity range that is the light receiving angle range in which the received light intensity is the strongest, and the value of the received light intensity in the maximum intensity range, and the second specifying means includes The value of the received light intensity in the adjacent angle range which is the received light angle range adjacent to the maximum intensity range specified by the first specifying means may be specified. In this case, the range in which the first detection means can consider that the intensity relationship representing the relationship between the value of the received light intensity in the maximum intensity range and the value of the received light intensity in the adjacent angle range matches the intensity relationship in the model intensity correspondence relationship. If it exceeds, it may be detected that the shaft is in an offset state.

このようなレーザレーダ装置によれば、角度強度対応関係を模範強度対応関係に照合した結果における差異をより確実に検出できる。
ここで言う「強度関係」とは、2つの受光強度の値における数学的な関係を表すものであり、数学的な関係には、両者の比率や、差分などを含む。
According to such a laser radar device, it is possible to more reliably detect a difference in the result of collating the angle intensity correspondence with the model intensity correspondence.
The “intensity relationship” referred to here represents a mathematical relationship between two values of received light intensity, and the mathematical relationship includes the ratio or difference between the two.

そして、本発明における軸ズレ検出手段では、第三特定手段が、受光強度が二番目に強い受光角度範囲である次点強度範囲、及び次点強度範囲での受光強度の値を特定し、第四特定手段が、第三特定手段にて特定した次点強度範囲に隣接する受光角度範囲である第二隣接角度範囲での受光強度の値を特定しても良い。この場合、第二検出手段が、次点強度範囲での受光強度の値と、第二隣接角度範囲での受光強度の値との関係を表す強度関係が、模範強度対応関係における強度関係に一致するとみなせる範囲を超えていれば、軸ズレ状態であるものと検出しても良い。   Then, in the axial deviation detecting means in the present invention, the third specifying means specifies the next point intensity range in which the received light intensity is the second strongest light receiving angle range, and the received light intensity value in the next point intensity range, The four specifying means may specify the value of the received light intensity in the second adjacent angle range that is the received light angle range adjacent to the next point intensity range specified by the third specifying means. In this case, the second detection means has an intensity relationship that represents the relationship between the received light intensity value in the next point intensity range and the received light intensity value in the second adjacent angle range that matches the intensity relationship in the exemplary intensity correspondence relationship. Then, if it exceeds the range that can be considered, it may be detected that the shaft is in an offset state.

このようなレーザレーダ装置によれば、角度強度対応関係を模範強度対応関係に照合した結果における差異をより確実に検出できる。
さらには、本発明のレーザレーダ装置では、ズレ角度導出手段が、軸ズレ検出手段にて軸ズレ状態であることを検出した場合、設置基準軸に対する配置基準軸のズレ角度を導出し、角度報知手段が、ズレ角度導出手段で導出されたズレ角度を報知しても良い。
According to such a laser radar device, it is possible to more reliably detect a difference in the result of collating the angle intensity correspondence with the model intensity correspondence.
Furthermore, in the laser radar device of the present invention, when the deviation angle deriving means detects that the axis deviation detection means is in an axis deviation state, the deviation angle of the arrangement reference axis with respect to the installation reference axis is derived, and the angle is notified. The means may notify the deviation angle derived by the deviation angle deriving means.

本発明のレーザレーダ装置によれば、当該レーザレーダ装置が設置基準軸に対して配置基準軸が一致しているか否かを検査する検査担当者は、ズレ角度を認識できる。
ところで、本発明は、レーザレーダ装置が、配置基準軸が設置基準軸に対して不一致である軸ズレ状態であるか否かを検査する検査システムとしてなされていても良い。本発明における検査システムは、上述したレーザレーダ装置に加えて、軸ズレ検出手段にて軸ズレ状態であることを検出すると、軸ズレ状態である旨を報知する報知手段を備えても良い。
According to the laser radar apparatus of the present invention, an inspection person who inspects whether or not the arrangement reference axis of the laser radar apparatus matches the installation reference axis can recognize the deviation angle.
By the way, the present invention may be implemented as an inspection system in which the laser radar device is inspected to determine whether or not the arrangement reference axis is in an axial misalignment state that is inconsistent with the installation reference axis. In addition to the above-described laser radar device, the inspection system according to the present invention may include notifying means for notifying that the shaft is in a misalignment state when the shaft misalignment detecting means detects that the shaft is in a misalignment state.

このような検査システムによれば、軸ズレ状態であるか否かを、検査担当者に認識させることができる。
さらに、本発明は、レーザレーダ装置が、配置基準軸が設置基準軸に一致して設置されているか否かの検査に用いるターゲット板としてなされていても良い。
According to such an inspection system, it is possible for the person in charge of the inspection to recognize whether or not the shaft is shifted.
Furthermore, the present invention may be configured such that the laser radar device is a target plate used for checking whether or not the arrangement reference axis is installed so as to coincide with the installation reference axis.

本発明が適用されたレーザレーダ装置の設置場所を示す説明図である。It is explanatory drawing which shows the installation place of the laser radar apparatus to which this invention was applied. レーザレーダ装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a laser radar apparatus. (A)は、発光部の概略構成を示すブロック図であり、(B)は、受光部の概略構成を示すブロック図である。(A) is a block diagram which shows schematic structure of a light emission part, (B) is a block diagram which shows schematic structure of a light-receiving part. 受光角度範囲を説明する説明図である。It is explanatory drawing explaining the light reception angle range. ターゲット板の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a target board. 模範強度データにおける模範強度対応関係を説明する説明図である。It is explanatory drawing explaining the model intensity | strength correspondence in model intensity | strength data. 模範強度データを説明する説明図である。It is explanatory drawing explaining model intensity | strength data. 模範強度データを説明する説明図である。It is explanatory drawing explaining model intensity | strength data. 模範強度データを説明する説明図である。It is explanatory drawing explaining model intensity | strength data. 軸ズレ検査処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of an axial shift test | inspection process. ズレ角度導出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a shift | offset | difference angle derivation process. (A)は、変形例における発光部の概略構成を示すブロック図であり、(B)は、変形例における受光部の概略構成を示すブロック図である。(A) is a block diagram which shows schematic structure of the light emission part in a modification, (B) is a block diagram which shows schematic structure of the light-receiving part in a modification. ターゲット板の変形例を示す図である。It is a figure which shows the modification of a target board. ターゲット板の変形例を示す図である。It is a figure which shows the modification of a target board.

以下に本発明の実施形態を図面と共に説明する。
〈検査システム〉
図1に示すレーザレーダ装置10は、探査波としてのレーザ光を、規定された角度範囲(以下、規定角度範囲とも称す)ATに出力(照射)し、そのレーザ光の反射光を受光することにより、レーザ光を反射した物体上のポイント(以下、物標と称す)までの距離及び物標が存在する方位(即ち、相対位置)を導出する装置である。
Embodiments of the present invention will be described below with reference to the drawings.
<Inspection system>
A laser radar device 10 shown in FIG. 1 outputs (irradiates) a laser beam as an exploration wave to a specified angle range (hereinafter also referred to as a specified angle range) AT, and receives reflected light of the laser beam. Is a device for deriving the distance to a point (hereinafter referred to as a target) on the object reflecting the laser beam and the azimuth (that is, the relative position) where the target exists.

このレーザレーダ装置10は、自動車AMの進行方向上に規定角度範囲ATが位置するように、自動車AMに規定された設置基準軸AAに、レーザレーダ装置10に設定された配置基準軸RAが一致した適正配置状態にて自動車AMに取り付けられる。レーザレーダ装置10の自動車AMへの取付場所は、図1に示すように、自動車AMの前部、例えば、バンパーやボンネットなどでも良いし、自動車AMの車室内であっても良い。以下では、レーザレーダ装置10が搭載された自動車を自車両AMとも称す。   In this laser radar apparatus 10, the arrangement reference axis RA set in the laser radar apparatus 10 matches the installation reference axis AA defined in the automobile AM so that the prescribed angle range AT is positioned in the traveling direction of the automobile AM. It is attached to the automobile AM in the proper arrangement state. As shown in FIG. 1, the laser radar device 10 may be attached to the automobile AM at a front portion of the automobile AM, for example, a bumper or a bonnet, or in a vehicle interior of the automobile AM. Hereinafter, the automobile on which the laser radar device 10 is mounted is also referred to as a host vehicle AM.

このようなレーザレーダ装置10の自動車AMへの取付作業は、自動車AMの製造ラインにおける艤装工程や、自動車ディーラーにて別途実施される。そして、取付作業が完了すると、配置基準軸RAが設置基準軸AAに一致しているか否か、即ち、適正配置状態であるか否かを検査して調整する軸調整工程が実施される。本実施形態における軸調整工程は、自動車AMに取り付けられたレーザレーダ装置10において、配置基準軸RAが設置基準軸AAに一致しているか否かを検査する軸ズレ検査工程と、軸ズレ検査工程での検査の結果、配置基準軸RAが設置基準軸AAに不一致であれば、一致するように修正する軸修正工程とを含む。   Such a mounting operation of the laser radar device 10 to the automobile AM is separately performed in an outfitting process in a production line of the automobile AM or an automobile dealer. When the mounting operation is completed, an axis adjustment process is performed for inspecting and adjusting whether or not the arrangement reference axis RA coincides with the installation reference axis AA, that is, whether or not it is in an appropriate arrangement state. The axis adjustment process in the present embodiment includes an axis deviation inspection process for inspecting whether or not the arrangement reference axis RA coincides with the installation reference axis AA in the laser radar device 10 attached to the automobile AM, and an axis deviation inspection process. If the arrangement reference axis RA does not coincide with the installation reference axis AA as a result of the inspection in (1), an axis correction step of correcting the arrangement reference axis RA so as to coincide is included.

このような軸調整工程を実施するためのシステムである検査システム65は、図2に示すように、検査対象であるレーザレーダ装置10に、軸調整工程における検査結果を報知する報知装置60が接続されている。   As shown in FIG. 2, the inspection system 65, which is a system for carrying out such an axis adjustment process, is connected to a laser radar apparatus 10 that is an inspection object by a notification device 60 that notifies the inspection result in the axis adjustment process. Has been.

報知装置60は、周知の表示装置であっても良いし、周知の音出力装置であっても良いし、これら表示装置と音出力装置との組み合わせであっても良い。なお、ここで言う表示装置とは、例えば、液晶ディスプレイやCRTなどである。また、ここで言う音出力装置とは、例えば、スピーカである。
〈レーザレーダ装置〉
レーザレーダ装置10は、図2に示すように、発光部20と、受光部30と、検知回路40と、制御部42とを備えている。
The notification device 60 may be a known display device, a known sound output device, or a combination of the display device and the sound output device. The display device referred to here is, for example, a liquid crystal display or a CRT. In addition, the sound output device referred to here is, for example, a speaker.
<Laser radar device>
As shown in FIG. 2, the laser radar device 10 includes a light emitting unit 20, a light receiving unit 30, a detection circuit 40, and a control unit 42.

発光部20は、パルス状に変化するレーザ光を発光して、規定角度範囲ATにレーザ光を照射する。本実施形態における発光部20は、図3(A)に示すように、レーザ光を発生させるレーザダイオード(LD)21と、制御部42からの発光信号Esに従って、時間軸に沿った出力レベルがパルス状のレーザ光をLD21に発生させるLD駆動回路22と、LD21が発生したレーザ光のビーム幅を決定する発光レンズを含む光学素子23とを備えている。ただし、光学素子23に含まれる発光レンズは、LD21にて発光したレーザ光のビーム幅を規定角度範囲ATとするように構成されている。   The light emitting unit 20 emits a laser beam that changes in a pulse shape, and irradiates the laser beam in a specified angle range AT. As shown in FIG. 3A, the light emitting unit 20 in the present embodiment has an output level along the time axis in accordance with a laser diode (LD) 21 that generates laser light and a light emission signal Es from the control unit 42. An LD drive circuit 22 that generates pulsed laser light in the LD 21 and an optical element 23 that includes a light-emitting lens that determines the beam width of the laser light generated by the LD 21 are provided. However, the light-emitting lens included in the optical element 23 is configured so that the beam width of the laser light emitted from the LD 21 is within the specified angle range AT.

なお、本実施形態にて規定角度範囲ATとして規定される角度範囲は、自車両AMの車幅方向(水平方向)及び車高方向(垂直方向)の両方に沿ったものである。
受光部30は、レーザ光が反射することで生成された反射光を受光して、受光信号Rsを出力する。本実施形態における受光部30は、図3(B)に示すように、反射光を集光する受光レンズ31と、受光レンズ31を介して反射光を受光し、その受光強度に応じた信号強度を有する受光信号Rsを発生させる複数の受光素子(PD)321〜32nと、受光素子321〜32nからの受光信号Rs1〜Rsnそれぞれを増幅する増幅器331〜33nとを備えている。ただし、受光素子321〜32nは、直線上に隣接して配置されており、受光レンズ31は、特定の受光角度範囲θからの反射光を、その受光角度範囲θに対応する受光素子32へと導くように構成されている。
Note that the angle range defined as the specified angle range AT in the present embodiment is along both the vehicle width direction (horizontal direction) and the vehicle height direction (vertical direction) of the host vehicle AM.
The light receiving unit 30 receives the reflected light generated by reflecting the laser light and outputs a light reception signal Rs. As shown in FIG. 3B, the light receiving unit 30 in the present embodiment receives the reflected light through the light receiving lens 31 that collects the reflected light and the light receiving lens 31, and the signal intensity corresponding to the received light intensity. A plurality of light receiving elements (PD) 32 1 to 32 n for generating a light receiving signal Rs having amplifiers, and amplifiers 33 1 to 33 n for amplifying the light receiving signals Rs 1 to Rs n from the light receiving elements 32 1 to 32 n, respectively. I have. However, the light receiving elements 32 1 to 32 n are arranged adjacent to each other on a straight line, and the light receiving lens 31 receives reflected light from a specific light receiving angle range θ and corresponds to the light receiving angle range θ. It is configured to lead to.

したがって、受光素子32のそれぞれが、反射光を受光したことを表す規定閾値以上の信号レベルの受光信号Rsを出力する条件は、当該受光素子32に対応する受光角度範囲θから反射光が入射された場合である。   Accordingly, the condition for each of the light receiving elements 32 to output a light receiving signal Rs having a signal level equal to or higher than a specified threshold value indicating that the reflected light has been received is that the reflected light is incident from the light receiving angle range θ corresponding to the light receiving element 32. This is the case.

本実施形態における受光角度範囲θとは、図4に示すように、規定角度範囲ATよりも小さな角度範囲が互いに隣接するように、規定角度範囲ATを水平方向に複数の角度範囲に分割したものであり、水平方向の角度分解能に相当する。   In the present embodiment, the light reception angle range θ is obtained by dividing the specified angle range AT into a plurality of angle ranges in the horizontal direction so that angle ranges smaller than the specified angle range AT are adjacent to each other, as shown in FIG. It corresponds to the angular resolution in the horizontal direction.

本実施形態では、7つの受光角度範囲(図4中:第一方位から第七方位)θ1〜θmに分割され(m=「7」)、各受光角度範囲θ1〜θmにおける角度範囲は、互いに均等な大きさである。なお、本実施形態では、規定角度範囲ATの中心軸が第四方位の中心軸となるように、規定角度範囲ATが分割されている。 In the present embodiment, seven light receiving angle ranges (in FIG. 4: from the first direction to the seventh direction) are divided into θ 1 to θ m (m = “7”), and the angles in each light receiving angle range θ 1 to θ m The ranges are equally sized. In the present embodiment, the specified angle range AT is divided so that the central axis of the specified angle range AT is the central axis of the fourth direction.

ここで図2へと戻り、検知回路40は、発光部20にてレーザ光を発光してから受光部30にて反射光を受光するまでの時間、及び受光部30での反射光の受光強度を計測して計測データを生成する。   Here, returning to FIG. 2, the detection circuit 40 receives the reflected light at the light receiving unit 30 and the time from when the light emitting unit 20 emits the laser light until the light receiving unit 30 receives the reflected light. To generate measurement data.

検知回路40は、制御部42からの発光信号Esが入力されるごとに計測データを生成して蓄積すると共に、制御部42からの要求に基づいて制御部42に出力する。この検知回路40は、制御部42からの発光信号Esと、信号レベルが規定閾値以上となる受光部30からの受光信号Rsとの位相差(即ち、反射物までの往復時間)を計測し、レーザ光を反射した物体までの距離(以下、検知距離)Rを導出する。これと共に、検知回路40は、信号レベルが規定閾値以上である受光信号Rsを出力した増幅器33(ひいては受光素子32)を特定することで、レーザ光を反射した物体の方位(即ち、受光角度範囲θ)を特定する。   The detection circuit 40 generates and accumulates measurement data every time the light emission signal Es from the control unit 42 is input, and outputs the measurement data to the control unit 42 based on a request from the control unit 42. The detection circuit 40 measures the phase difference (that is, the round trip time to the reflector) between the light emission signal Es from the control unit 42 and the light reception signal Rs from the light receiving unit 30 whose signal level is equal to or higher than a specified threshold. A distance (hereinafter referred to as a detection distance) R to an object reflecting the laser light is derived. At the same time, the detection circuit 40 specifies the amplifier 33 (and thus the light receiving element 32) that has output the light reception signal Rs whose signal level is equal to or higher than the predetermined threshold value, so that the direction of the object reflecting the laser beam (that is, the light reception angle range). θ) is specified.

なお、検知回路40が生成する計測データは、検知距離Rを、受光角度範囲θ及び受光信号Rsの信号レベルと対応付けたものである。以下では、本実施形態における計測データのうち、受光角度範囲θ1〜θmと、各受光角度範囲θでの反射光の受光強度(信号レベル)との対応関係を、「角度強度対応関係」と称す。 The measurement data generated by the detection circuit 40 is obtained by associating the detection distance R with the light reception angle range θ and the signal level of the light reception signal Rs. Hereinafter, among the measurement data in the present embodiment, the correspondence relationship between the light reception angle ranges θ 1 to θ m and the received light intensity (signal level) of the reflected light in each light reception angle range θ is referred to as “angle intensity correspondence relationship”. Called.

制御部42は、発光部20からレーザ光を照射するための発光信号Esを出力すると共に、検知回路40にて生成した計測データに基づいて検知データを生成する。制御部42にて生成する検知データとは、例えば、クラスタリング処理によって、同一物体と推定される物標を前方物体として認識した結果や、前方物体(クラスタ)の形状や前方物体までの距離及び方位(即ち、相対位置)を含む。   The control unit 42 outputs a light emission signal Es for irradiating laser light from the light emitting unit 20, and generates detection data based on the measurement data generated by the detection circuit 40. The detection data generated by the control unit 42 includes, for example, a result of recognizing a target estimated as the same object by a clustering process as a front object, a shape of a front object (cluster), a distance to a front object, and an orientation. (That is, relative position).

具体的には、制御部42は、電源が切断されても記憶内容を保持する必要がある処理プログラムやデータを格納するROM44と、処理プログラムやデータを一時的に格納するRAM46と、ROM44やRAM46に記憶された処理プログラムに従って各種処理を実行するCPU48とを少なくとも有した周知のコンピュータを中心に構成されている。
〈軸ズレ検査工程〉
本実施形態の軸ズレ検査工程は、ターゲット板80(図5参照)に向けて、レーザレーダ装置10からレーザ光を照射して反射光の強度を認識した結果を、実験などの結果から予め用意した模範強度データに照合した結果に基づいて実行する。この軸ズレ検査工程は、自動車AMに取り付けられたレーザレーダ装置10に対して予め定められた距離及び高さなどの位置関係(以下、適正位置と称す)となるように、ターゲット板80を配置した状態で実施される。
Specifically, the control unit 42 includes a ROM 44 that stores processing programs and data that need to retain stored contents even when the power is turned off, a RAM 46 that temporarily stores processing programs and data, and a ROM 44 and a RAM 46. A known computer having at least a CPU 48 that executes various processes according to a processing program stored in the computer is mainly configured.
<Axis misalignment inspection process>
In the axial misalignment inspection process of the present embodiment, the result of recognizing the intensity of reflected light by irradiating laser light from the laser radar device 10 toward the target plate 80 (see FIG. 5) is prepared in advance from the results of experiments and the like. It performs based on the result collated with the model strength data. In this axial misalignment inspection process, the target plate 80 is arranged so as to have a predetermined positional relationship such as distance and height (hereinafter referred to as an appropriate position) with respect to the laser radar device 10 attached to the automobile AM. It is carried out in the state.

ターゲット板80は、軸ズレ検査工程にて、レーザレーダ装置10からのレーザ光が照射される部材であり、図5に示すように、一つの基板84と、2個の反射部材86と、複数の反射部材90とを備えている。   The target plate 80 is a member that is irradiated with the laser beam from the laser radar device 10 in the axial misalignment inspection process. As shown in FIG. 5, one substrate 84, two reflecting members 86, and a plurality of target plates 80 are provided. The reflection member 90 is provided.

基板84は、矩形に形成された板状の部材である。この基板84は、適正配置状態であるレーザレーダ装置10の発光部20からレーザ光が照射された場合、レーザ光が照射される範囲(以下、正常照射範囲と称す)の中心が基板84自身の重心に一致し、かつ、正常照射範囲を包含する大きさに形成されている。   The board | substrate 84 is a plate-shaped member formed in the rectangle. When the substrate 84 is irradiated with laser light from the light emitting unit 20 of the laser radar device 10 in the proper arrangement state, the center of the range irradiated with the laser light (hereinafter referred to as normal irradiation range) is the substrate 84 itself. It is formed in a size that matches the center of gravity and includes the normal irradiation range.

以下、基板84において、適正配置状態であるレーザレーダ装置10の受光角度範囲θ1〜θmに対応する基板84上の領域の各々を対応領域θc1〜θcmと称す。
反射部材86は、レーザ光を含む光を反射する周知の部材であり、矩形状に形成されている。反射部材861,862は、それぞれ、基板84上の予め規定された第一設置位置に固定される。
Hereinafter, the substrate 84, each of the regions on the substrate 84 corresponding to the light receiving angle range theta 1 through? M of the laser radar device 10 is a proper arrangement referred to as a corresponding region θc 1 ~θc m.
The reflecting member 86 is a well-known member that reflects light including laser light, and is formed in a rectangular shape. Each of the reflecting members 86 1 and 86 2 is fixed to a predetermined first installation position on the substrate 84.

第一設置位置のうち水平方向に沿った位置は、互いに隣接する2つの対応領域θcの境界である。互いに隣接する2つの対応領域θcの一つは、受光角度範囲θ2(第二方位)に対応する対応領域θc2及び受光角度範囲θ3(第三方位)に対応する対応領域θc3である。また、互いに隣接する2つの対応領域θcの別の一つは、受光角度範囲θ5(第五方位)に対応する対応領域θc5及び受光角度範囲θ6(第六方位)に対応する対応領域θc6である。 The position along the horizontal direction among the first installation positions is a boundary between two corresponding regions θc adjacent to each other. One of the two corresponding areas θc adjacent to each other is a corresponding area θc 2 corresponding to the light receiving angle range θ 2 (second orientation) and a corresponding area θc 3 corresponding to the light receiving angle range θ 3 (third direction). . Another one of the two corresponding regions θc adjacent to each other is a corresponding region θc 5 corresponding to the light receiving angle range θ 5 (fifth direction) and a corresponding region corresponding to the light receiving angle range θ 6 (sixth direction). θc 6 .

そして、反射部材861,862は、それぞれ、互いに隣接する2つの対応領域θcの境界を跨ぎ、かつ、それぞれの対応領域θcに渡って、反射部材86自身が均等な面積となるように設置される。 The reflecting members 86 1 and 86 2 are installed so as to straddle the boundary between the two corresponding regions θc adjacent to each other and over the corresponding regions θc so that the reflecting member 86 itself has an equal area. Is done.

第一設置位置のうち垂直方向に沿った位置は、適正配置状態であるレーザレーダ装置10の発光部20からレーザ光が照射された場合に、レーザ光が照射される上限の軸(以下、上限軸と称す)RLup上,及び下限の軸(以下、下限軸と称す)RLdw上である。すなわち、反射部材861は、上限軸RLupを跨ぐように設置され、反射部材862は、下限軸RLdwを跨ぐように設置される。 The position along the vertical direction among the first installation positions is an upper limit axis (hereinafter, upper limit) on which the laser beam is irradiated when the laser beam is irradiated from the light emitting unit 20 of the laser radar device 10 in the proper arrangement state. On the RL up , and on the lower limit axis (hereinafter referred to as the lower limit axis) RL dw . That is, the reflecting member 861 is disposed so as to straddle the upper shaft RL Stay up-reflection member 862 is installed so as to straddle the lower shaft RL dw.

以上説明した2つの反射部材861,862は、基板84の中心を対称点とした点対称となる位置に配置されている。
反射部材90は、レーザ光を含む光を反射する周知の部材であり、構成する辺が反射部材86の辺よりも短い矩形状に形成されている。本実施形態においては、8個の反射部材90を備えている。反射部材901〜908は、それぞれ、基板84上の予め規定された第二設置位置に固定される。
The two reflecting members 86 1 and 86 2 described above are arranged at positions that are point-symmetric with respect to the center of the substrate 84.
The reflection member 90 is a well-known member that reflects light including laser light, and is formed in a rectangular shape in which the sides constituting the reflection member 90 are shorter than the sides of the reflection member 86. In the present embodiment, eight reflecting members 90 are provided. Each of the reflecting members 90 1 to 90 8 is fixed at a predetermined second installation position on the substrate 84.

反射部材901の第二設置位置は、水平方向に沿った位置が、対応領域θc6と対応領域θc7との境界延長上であり、垂直方向に沿った位置が、下限軸RLdwよりも下方である。 The second installation position of the reflecting member 90 1 is located along the horizontal direction is on a boundary extending between the corresponding region θc6 the corresponding region Shitashi7, the position along the vertical direction, at below the lower limit axis RL dw is there.

反射部材902の第二設置位置は、水平方向に沿った位置が、基板84の水平方向の中心軸(即ち、対応領域θc4の中心軸,以下、水平中心軸と称す)RCv上であり、垂直方向に沿った位置が、反射部材901の第一設置位置よりも下方である。 The second installation position of the reflecting member 90 2 is a position along the horizontal direction on the horizontal axis of the substrate 84 (that is, the central axis of the corresponding region θc 4 , hereinafter referred to as the horizontal central axis) RCv. , the position along the vertical direction, is lower than the first setting position of the reflecting member 90 1.

反射部材903の第二設置位置は、水平方向に沿った位置が、対応領域θc5と対応領域θc6との境界延長上であり、垂直方向に沿った位置が、基板84の垂直方向の中心軸(以下、垂直中心軸と称す)RCh上である。 Regarding the second installation position of the reflecting member 90 3 , the position along the horizontal direction is on the boundary extension between the corresponding region θc 5 and the corresponding region θc 6, and the position along the vertical direction is the vertical direction of the substrate 84. It is on the central axis (hereinafter referred to as the vertical central axis) RCh.

反射部材904の第二設置位置は、水平方向に沿った位置が、対応領域θc6と対応領域θc7との境界延長上であり、垂直方向に沿った位置は、上限軸RLupよりも上方である。 As for the second installation position of the reflecting member 90 4 , the position along the horizontal direction is on the boundary extension between the corresponding region θc 6 and the corresponding region θc 7, and the position along the vertical direction is more than the upper limit axis RL up. Above.

なお、反射部材905〜反射部材908の第二設置位置は、それぞれ、反射部材901〜反射部材904と、基板84の中心を対称点とした点対称となる位置である。
すなわち、適正配置状態であるレーザレーダ装置10の発光部20からレーザ光が照射された場合には、反射部材86と、反射部材903と反射部材907とがレーザ光を反射する。一方、レーザ光を照射され、反射部材903,907以外の反射部材90がレーザ光を反射している場合には、レーザレーダ装置10は軸ズレしている可能性が高いと考えられる。
The second installation positions of the reflecting member 90 5 to the reflecting member 90 8 are positions that are point-symmetric with respect to the reflecting member 90 1 to the reflecting member 90 4 and the center of the substrate 84, respectively.
That is, when the laser beam is emitted from the light emitting portion 20 of the laser radar device 10 is a proper arrangement includes a reflecting member 86, a reflecting member 90 3 and the reflecting member 90 7 reflects the laser beam. On the other hand, when the laser beam is irradiated and the reflecting member 90 other than the reflecting members 90 3 and 90 7 reflects the laser beam, it is considered that the laser radar device 10 is likely to be misaligned.

本実施形態における「模範強度データ」は、レーザレーダ装置10からターゲット板80にレーザ光を照射した場合の角度強度対応関係を、設置基準軸AAに対する配置基準軸RAの角度(以下、軸角度と称す)ごとに表したものである。ここで言う「軸角度」には、適正配置状態である場合の軸角度や、適正配置状態ではない場合の軸角度を含む。   The “exemplary intensity data” in the present embodiment refers to the relationship between the angular intensity when the laser beam is irradiated from the laser radar device 10 to the target plate 80, and the angle of the arrangement reference axis RA with respect to the installation reference axis AA (hereinafter referred to as the axis angle). It is expressed for each. The “axis angle” referred to here includes an axis angle in a proper arrangement state and an axis angle in a case where it is not in an appropriate arrangement state.

模範強度データには、具体的には、各軸角度にて、受光強度が最も強い最高強度範囲θmax、及び最高強度範囲θmaxに隣接する受光角度範囲θである隣接角度範囲θng1が規定されている。さらに、模範強度データには、最高強度範囲θmaxでの反射光の受光強度と隣接角度範囲θng1での反射光の受光強度との強度関係が、対応する軸角度ごとに規定されている。ここで言う強度関係とは、2つの受光強度の値における数学的な関係を表すものであり、例えば、受光強度同士の大小関係や、差、比率などである。 Specifically, in the exemplary intensity data, the maximum intensity range θ max where the received light intensity is the strongest and the adjacent angle range θ ng1 that is adjacent to the maximum intensity range θ max are specified for each axis angle. Has been. Further, in the exemplary intensity data, the intensity relationship between the received light intensity of the reflected light in the maximum intensity range θ max and the received light intensity of the reflected light in the adjacent angle range θ ng1 is defined for each corresponding shaft angle. The intensity relationship referred to here represents a mathematical relationship between two values of the received light intensity, such as a magnitude relationship, a difference, a ratio, or the like between the received light intensity.

また、模範強度データには、具体的には、各軸角度にて、受光強度が二番目に強い次点強度範囲θnex及び次点強度範囲θnexに隣接する受光角度範囲θである隣接角度範囲θng2が規定されている。さらに、模範強度データには、次点強度範囲θnexでの反射光の受光強度と隣接角度範囲θng2での反射光の受光強度との強度関係が、対応する軸角度ごとに規定されている。 In addition, in the model intensity data, specifically, at each axis angle, the next-point intensity range θ nex with the second highest received-light intensity and the adjacent angle that is the reception angle range θ adjacent to the next-point intensity range θ nex A range θ ng2 is defined. Further, in the model intensity data, the intensity relationship between the received light intensity of the reflected light in the next point intensity range θ nex and the received light intensity of the reflected light in the adjacent angle range θ ng2 is defined for each corresponding shaft angle. .

より詳細には、模範強度データにおける角度強度対応関係は、水平方向に沿った軸角度が「0」度であれば(即ち、軸ズレしていなければ)、図6に示すように、最高強度範囲θmaxは受光角度範囲θ3(3方位)であり、次点強度範囲θnexは受光角度範囲θ5(5方位)である。以下、軸角度が「0」度である場合の模範強度データにおける角度強度対応関係を、模範強度対応関係と称す。 More specifically, the angular intensity correspondence relationship in the model intensity data indicates that if the axial angle along the horizontal direction is “0” degrees (that is, if the axis is not shifted), as shown in FIG. The range θ max is the light reception angle range θ 3 (3 directions), and the next point intensity range θ nex is the light reception angle range θ 5 (5 directions). Hereinafter, the angular intensity correspondence in the exemplary intensity data when the axis angle is “0” is referred to as exemplary intensity correspondence.

そして、模範強度対応関係において、最高強度範囲θmaxでの受光強度、及び次点強度範囲θnexでの受光強度は、それぞれ、規定強度以上である。さらに、模範強度対応関係において、隣接角度範囲θng1は受光角度範囲θ2(2方位)であり、隣接角度範囲θng2は受光角度範囲θ6(6方位)である。そして、隣接角度範囲θng1での受光強度、及び隣接角度範囲θng2での受光強度は、それぞれ、規定強度以上であり、かつ、最高強度範囲θmaxでの受光強度、及び次点強度範囲θnexでの受光強度との差は、均一とみなせる規定値の範囲内である。 In the exemplary intensity correspondence relationship, the received light intensity in the maximum intensity range θ max and the received light intensity in the next intensity range θ nex are each equal to or higher than the specified intensity. Further, in the model intensity correspondence relationship, the adjacent angle range θ ng1 is the light reception angle range θ 2 (2 directions), and the adjacent angle range θ ng2 is the light reception angle range θ 6 (6 directions). The received light intensity in the adjacent angle range θ ng1 and the received light intensity in the adjacent angle range θ ng2 are each equal to or higher than the specified intensity, and the received light intensity in the maximum intensity range θ max and the next point intensity range θ The difference from the received light intensity in nex is within the range of a prescribed value that can be regarded as uniform.

また、水平方向に沿った軸角度を有する場合の模範強度対応関係は、図7(A),図7(B),図7(C),図8(A),図8(B)に示すように、軸角度が「0」度である場合の模範強度対応関係とは、最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、隣接角度範囲θng2として特定される受光角度範囲θ自体が異なる。さらに、各受光角度範囲θにおける受光強度が、模範強度対応関係における受光強度とも異なり、それらの受光強度同士における差も異なる。 Further, exemplary strength correspondences in the case of having an axial angle along the horizontal direction are shown in FIGS. 7 (A), 7 (B), 7 (C), 8 (A), and 8 (B). As described above, when the axial angle is “0”, the exemplary intensity correspondence relationship is the light reception specified as the maximum intensity range θ max , the next point intensity range θ nex , the adjacent angle range θ ng1 , and the adjacent angle range θ ng2. The angle range θ itself is different. Further, the received light intensity in each received light angle range θ is different from the received light intensity in the model intensity correspondence relationship, and the difference in the received light intensity is also different.

なお、図7(A)は、水平方向に沿った軸角度が、第一規定角度(例えば、3度)である場合の模範強度データにおける角度強度対応関係を示し、図7(B)は、水平方向に沿った軸角度が、第一規定角度よりも小さい第二規定角度(例えば、2度)である場合の模範強度データにおける角度強度対応関係を示している。さらに、図7(C)は、水平方向に沿った軸角度が、第二規定角度よりも小さい第三規定角度(例えば、1度)である場合の模範強度データにおける角度強度対応関係を示している。図8(A)は、水平方向に沿った軸角度が、第三規定角度よりも小さい第四規定角度(例えば、0.5度)である場合の模範強度データにおける角度強度対応関係を示し、図8(B)は、水平方向に沿った軸角度が、第四規定角度よりも小さい第五規定角度(例えば、0.125度)である場合の模範強度データにおける角度強度対応関係を示している。   7A shows the angular intensity correspondence relationship in the exemplary intensity data when the axial angle along the horizontal direction is the first specified angle (for example, 3 degrees), and FIG. The angular intensity correspondence relationship in the exemplary intensity data when the axis angle along the horizontal direction is a second specified angle (for example, 2 degrees) smaller than the first specified angle is shown. Further, FIG. 7C shows the angular intensity correspondence relationship in the exemplary intensity data when the axial angle along the horizontal direction is a third specified angle (for example, 1 degree) smaller than the second specified angle. Yes. FIG. 8A shows an angular intensity correspondence relationship in the exemplary intensity data when the axial angle along the horizontal direction is a fourth specified angle (for example, 0.5 degrees) smaller than the third specified angle. FIG. 8B shows the angular intensity correspondence relationship in the exemplary intensity data when the axial angle along the horizontal direction is a fifth specified angle (for example, 0.125 degrees) smaller than the fourth specified angle. Yes.

また、模範強度データにおける角度強度対応関係は、垂直方向に沿った軸角度が「0」度であれば(即ち、軸ズレしていなければ)、図9(A)に示すように、最高強度範囲θmaxは受光角度範囲θ3(3方位)であり、次点強度範囲θnexは受光角度範囲θ5(5方位)である。そして、最高強度範囲θmaxでの受光強度、及び次点強度範囲θnexでの受光強度は、それぞれ、規定強度以上であり、受光強度の差は、均一とみなせる規定値の範囲内である。 The angular intensity correspondence relationship in the model intensity data indicates that the maximum intensity is shown in FIG. 9A when the axis angle along the vertical direction is “0” (that is, when the axis is not shifted). The range θ max is the light reception angle range θ 3 (3 directions), and the next point intensity range θ nex is the light reception angle range θ 5 (5 directions). The received light intensity in the maximum intensity range θ max and the received light intensity in the next point intensity range θ nex are each greater than or equal to the specified intensity, and the difference in received light intensity is within a specified value range that can be considered uniform.

一方、垂直方向に沿った軸角度を有する場合の模範強度データにおける角度強度対応関係は、図9(B),図9(C)に示すように、軸角度が「0」度である場合の模範強度データにおける角度強度対応関係とは、最高強度範囲θmaxにおける受光強度と次点強度範囲θnexとの差が異なる。 On the other hand, as shown in FIGS. 9B and 9C, the angular intensity correspondence relationship in the exemplary intensity data in the case of having an axial angle along the vertical direction is as shown in FIGS. 9B and 9C when the axial angle is “0” degrees. The difference between the received light intensity in the maximum intensity range θ max and the next-point intensity range θ nex differs from the angular intensity correspondence relationship in the model intensity data.

つまり、本実施形態においては、計測データの角度強度対応関係における最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1及び隣接角度範囲θng2と、それぞれの角度範囲θでの受光強度を、模範強度データに照合することで、最も一致度が高い軸角度を特定する。換言すれば、本実施形態においては、計測データにおける角度強度対応関係を模範強度関係に照合した結果、一致度が規定値未満であれば、軸ズレ状態であるものと検出する。 That is, in the present embodiment, the maximum intensity range θ max , the next point intensity range θ nex , the adjacent angle range θ ng1 and the adjacent angle range θ ng2 in the angular intensity correspondence relationship of the measurement data, and the light reception in each angle range θ. By checking the intensity against the model intensity data, the axis angle having the highest degree of coincidence is specified. In other words, in this embodiment, as a result of collating the angular intensity correspondence relationship in the measurement data with the model intensity relationship, if the degree of coincidence is less than the specified value, it is detected that the axis is in an offset state.

なお、レーザレーダ装置10においては、軸ズレ検査工程の少なくとも一部を実現する軸ズレ検査処理を制御部42が実行するための処理プログラムがROM44に格納されている。
〈軸ズレ検査処理〉
次に、制御部42が実行する軸ズレ検査処理について説明する。
In the laser radar device 10, a processing program for the control unit 42 to execute an axial deviation inspection process that realizes at least a part of the axial deviation inspection process is stored in the ROM 44.
<Axis misalignment inspection process>
Next, the axis misalignment inspection process executed by the control unit 42 will be described.

この軸ズレ検査処理は、外部から起動指令が入力されると起動される。
そして、軸ズレ検査処理は、起動されると、図10に示すように、発光部20に対して発光信号Esを出力する(S110)。これにより、発光部20は、パルス状に変化するレーザ光を規定角度範囲ATに設置されているターゲット板80に向けて出力する。
This axis misalignment inspection process is activated when an activation command is input from the outside.
When the axis misalignment inspection process is started, a light emission signal Es is output to the light emitting unit 20 as shown in FIG. 10 (S110). As a result, the light emitting unit 20 outputs the laser beam that changes in a pulse shape toward the target plate 80 installed in the specified angle range AT.

続いて、受光部30にて受光した反射光に基づいて検知回路40にて取得した計測データを取得する(S120)。
さらに、S120にて取得した計測データを模範強度データに照合した結果に基づいて、軸角度を導出するズレ角度導出処理を実行する(S130)。
Subsequently, measurement data acquired by the detection circuit 40 is acquired based on the reflected light received by the light receiving unit 30 (S120).
Furthermore, based on the result of collating the measurement data acquired in S120 with the model intensity data, a deviation angle deriving process for deriving an axis angle is executed (S130).

続いて、S130にて導出された軸角度を、報知装置60を介して報知する(S140)。その後、本軸ズレ検査処理を終了する。
〈ズレ角度導出処理〉
軸ズレ検査処理のS130にて起動されるズレ角度導出処理は、起動されると、図11に示すように、先のS120にて取得した計測データにおける最高強度範囲θmaxを特定すると共に、その最高強度範囲θmaxでの反射光の受光強度を特定する(S210)。
Then, the shaft angle derived | led-out in S130 is alert | reported via the alerting | reporting apparatus 60 (S140). Thereafter, the main axis deviation inspection process is terminated.
<Deviation angle derivation process>
When the deviation angle derivation process activated in S130 of the axis deviation inspection process is activated, as shown in FIG. 11, the maximum intensity range θ max in the measurement data acquired in the previous S120 is specified, and The received light intensity of the reflected light in the maximum intensity range θ max is specified (S210).

続いて、先のS120にて取得した計測データにおける隣接角度範囲θng1を特定すると共に、その隣接角度範囲θng1での反射光の受光強度を特定する(S220)。
さらに、先のS120にて取得した計測データにおける次点強度範囲θnexを特定すると共に、その次点強度範囲θnexでの反射光の受光強度を特定する(S230)。
Subsequently, the adjacent angle range θ ng1 in the measurement data acquired in the previous S120 is specified, and the received light intensity of the reflected light in the adjacent angle range θ ng1 is specified (S220).
Further, the next point intensity range θ nex in the measurement data acquired in the previous S120 is specified, and the received light intensity of the reflected light in the next point intensity range θ nex is specified (S230).

そして、先のS120にて取得した計測データにおける隣接角度範囲θng2を特定すると共に、その隣接角度範囲θng2での反射光の受光強度を特定する(S240)。
続いて、S210〜S240にて特定した受光角度範囲θ、及び当該受光角度範囲θでの反射光の受光強度を模範角度データに照合する(S250)。すなわち、S250では計測データの角度強度対応関係における最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、及び隣接角度範囲θng2と、それぞれの角度範囲θでの受光強度を、模範強度データに照合することで、最も一致度が高い軸角度を特定する。
Then, the adjacent angle range θ ng2 in the measurement data acquired in the previous S120 is specified, and the received light intensity of the reflected light in the adjacent angle range θ ng2 is specified (S240).
Subsequently, the received light angle range θ specified in S210 to S240 and the received light intensity of the reflected light in the received light angle range θ are collated with the model angle data (S250). That is, in S250, the maximum intensity range θ max , the next point intensity range θ nex , the adjacent angle range θ ng1 , and the adjacent angle range θ ng2 in the angular intensity correspondence relationship of the measurement data, and the received light intensity in each angle range θ, By collating with the model strength data, the axis angle having the highest degree of coincidence is specified.

このS250での照合結果に基づいて特定した軸角度が、微小な角度として予め規定された微小角度以下であるか否かを判定する(S260)。
続いて、ズレ角度導出処理では、認識した軸角度が微小角度以下であれば(S260:YES)、その微小角度以下である軸角度自体(以下、微小ズレ角度と称す)を導出する(S270)。なお、本実施形態では、第四規定角度を微小角度としている。
It is determined whether or not the shaft angle specified based on the collation result in S250 is equal to or smaller than a minute angle defined in advance as a minute angle (S260).
Subsequently, in the misalignment angle deriving process, if the recognized shaft angle is equal to or smaller than the minute angle (S260: YES), the shaft angle itself (hereinafter referred to as the minute misalignment angle) that is equal to or smaller than the minute angle is derived (S270). . In the present embodiment, the fourth specified angle is a minute angle.

その微小ズレ角度の導出は、具体的には、下記(1),(2)式に従って導出する。   Specifically, the fine deviation angle is derived according to the following equations (1) and (2).

(1)式は、水平方向に沿った微小ズレ角度ΔθXを導出する式であり、(2)式は、垂直方向に沿った微小ズレ角度ΔθYを導出する式である。
なお、(1),(2)式におけるP3は、最高強度範囲θmaxにおける受光強度であり、P5は、次点強度範囲θnexにおける受光強度である。また、P2は、隣接角度範囲θng1における受光強度であり、P6は、隣接角度範囲θng2における受光強度である。
Expression (1) is an expression for deriving a minute deviation angle Δθ X along the horizontal direction, and expression (2) is an expression for deriving a minute deviation angle Δθ Y along the vertical direction.
In the equations (1) and (2), P 3 is the received light intensity in the maximum intensity range θ max , and P 5 is the received light intensity in the next point intensity range θ nex . P 2 is the received light intensity in the adjacent angle range θ ng1 , and P 6 is the received light intensity in the adjacent angle range θ ng2 .

(1)式におけるα1は、予め規定された固定値(定数)である。この固定値α1は、実験などによって予め求められたものであり、レーザレーダ装置10の配置状態が適正配置状態である場合における第一特定位置での受光強度を、最高強度範囲θmaxにおける受光強度にて除した強度比である。なお、本実施形態における第一特定位置とは、最高強度範囲θmaxと隣接角度範囲θng1との境界である。 Α 1 in the formula (1) is a fixed value (constant) defined in advance. This fixed value α 1 is obtained in advance by experiments or the like, and the received light intensity at the first specific position when the arrangement state of the laser radar apparatus 10 is an appropriate arrangement state is received in the maximum intensity range θ max . The intensity ratio divided by the intensity. Note that the first specific position in the present embodiment is a boundary between the maximum intensity range θ max and the adjacent angle range θ ng1 .

また、(1)式におけるΔα1は、実験などによって予め規定された固定値(定数)である。この固定値Δα1は、レーザレーダ装置10の配置状態を適正配置状態から水平方向に沿って変化させた場合における各角度での固定値α1の変化率、即ち、第一特定位置における受光強度の傾きである。 Further, Δα 1 in the equation (1) is a fixed value (constant) defined in advance by an experiment or the like. This fixed value Δα 1 is the rate of change of the fixed value α 1 at each angle when the arrangement state of the laser radar device 10 is changed from the proper arrangement state along the horizontal direction, that is, the received light intensity at the first specific position. Is the slope of

(1)式におけるα2は、実験などによって予め規定された固定値(定数)である。この固定値α2は、実験などによって予め求められたものであり、レーザレーダ装置10の配置状態が適正配置状態である場合における第二特定位置での受光強度を、次点強度範囲θnexにおける受光強度にて除した強度比である。なお、本実施形態における第二特定位置とは、次点強度範囲θnexと隣接角度範囲θng2との境界である。 Α 2 in the equation (1) is a fixed value (constant) defined in advance by an experiment or the like. This fixed value α 2 is obtained in advance by experiments or the like, and the received light intensity at the second specific position when the arrangement state of the laser radar device 10 is an appropriate arrangement state is calculated in the next point intensity range θ nex . The intensity ratio divided by the received light intensity. Note that the second specific position in the present embodiment is a boundary between the next point intensity range θ nex and the adjacent angle range θ ng2 .

また、(1)式におけるΔα2は、実験などによって予め規定された固定値(定数)である。この固定値Δα2は、レーザレーダ装置10の配置状態を適正配置状態から水平方向に沿って変化させた場合における各角度での固定値α2の変化率、即ち、第二特定位置における受光強度の傾きである。 Further, Δα 2 in the equation (1) is a fixed value (constant) defined in advance by an experiment or the like. This fixed value Δα 2 is the rate of change of the fixed value α 2 at each angle when the arrangement state of the laser radar device 10 is changed from the proper arrangement state along the horizontal direction, that is, the received light intensity at the second specific position. Is the slope of

(2)式におけるα3は、実験などによって予め規定された固定値(定数)である。この固定値α3は、実験などによって予め求められたものであり、レーザレーダ装置10の配置状態が適正配置状態である場合における第三特定位置での受光強度を、最高強度範囲θmaxにおける受光強度にて除した強度比である。なお、本実施形態における第三特定位置とは、最高強度範囲θmaxと隣接角度範囲θng1との境界である。 Α 3 in the equation (2) is a fixed value (constant) defined in advance by an experiment or the like. This fixed value α 3 is obtained in advance by experiments or the like, and the received light intensity at the third specific position when the arrangement state of the laser radar device 10 is an appropriate arrangement state is the light reception in the maximum intensity range θ max . The intensity ratio divided by the intensity. Note that the third specific position in the present embodiment is a boundary between the maximum intensity range θ max and the adjacent angle range θ ng1 .

また、(1)式におけるΔα3は、実験などによって予め規定された固定値(定数)である。この固定値Δα3は、レーザレーダ装置10の配置状態を適正配置状態から垂直方向に沿って変化させた場合における各角度での固定値α3の変化率、即ち、第三特定位置における受光強度の傾きである。 Further, Δα 3 in the equation (1) is a fixed value (constant) defined in advance by an experiment or the like. This fixed value Δα 3 is the rate of change of the fixed value α 3 at each angle when the arrangement state of the laser radar device 10 is changed from the proper arrangement state along the vertical direction, that is, the received light intensity at the third specific position. Is the slope of

すなわち、(1),(2)式によれば、実験などで軸ズレ角度ごとに予め求められた受光強度の比に基づく係数を、最高強度範囲θmaxにおける受光強度、次点強度範囲θnexにおける受光強度、隣接角度範囲θng1における受光強度、隣接角度範囲θng2における受光強度の比に乗じることで、微小ズレ角度を導出している。 That is, according to the equations (1) and (2), the coefficient based on the ratio of the received light intensity obtained in advance for each axis deviation angle by experiment or the like is used as the received light intensity in the maximum intensity range θ max and the next-point intensity range θ nex. By multiplying the ratio of the received light intensity at, the received light intensity in the adjacent angle range θ ng1, and the received light intensity in the adjacent angle range θ ng2 , a minute deviation angle is derived.

その後、S280へと移行する。
なお、S260での判定の結果、軸角度が微小角度以上であれば(S260:NO)、S270を実行することなく、S280へと移行する。
Thereafter, the process proceeds to S280.
If the result of determination in S260 is that the shaft angle is not less than a minute angle (S260: NO), the process proceeds to S280 without executing S270.

そのS280では、軸角度を決定する。すなわち、S270を実行することなくS280へと移行した場合には、S270にて認識した角度そのものを、軸角度として決定する。一方、S270を実行した後にS280へと移行した場合には、水平方向の微小ズレ角度X、及び垂直方向の微小ズレ角度Yを、軸角度として決定する。   In S280, the shaft angle is determined. That is, when the process proceeds to S280 without executing S270, the angle itself recognized in S270 is determined as the axis angle. On the other hand, when the process proceeds to S280 after the execution of S270, the horizontal deviation angle X and the vertical deviation angle Y are determined as axial angles.

その後、軸ズレ検査処理のS140へと移行する。
そのS140では、導出された軸角度を、報知装置60を介して報知している。すなわち、本実施形態では、軸角度が「0度」とみなせる角度の範囲内でなければ、軸ズレ状態であるものとして、軸角度を報知し、軸角度が「0度」とみなせる角度の範囲内であれば、軸ズレ状態でないものとして、軸角度を報知している。
Thereafter, the process proceeds to S140 of the shaft misalignment inspection process.
In S140, the derived shaft angle is notified through the notification device 60. That is, in this embodiment, if the shaft angle is not within the range of angles that can be regarded as “0 degrees”, the shaft angle is reported as being in an axial misalignment state, and the range of angles that can be regarded as “0 degrees”. If it is within, the shaft angle is informed that the shaft is not shifted.

なお、軸ズレ検査処理のS140にて報知された軸角度を知得した軸調整工程の作業者は、通常、軸角度が「0」となるように、即ち、配置基準軸RAが設置基準軸AAに一致するように、レーザレーダ装置10の取付位置を修正する。
[実施形態の効果]
以上説明したように、本実施形態のレーザレーダ装置10において、各受光角度範囲θでの受光強度は、受光部30で受光した反射光の強さに応じたものである。軸ズレ検査での反射光の強さは、ターゲット板80に対してレーザ光を照射した場合の各受光角度範囲θ内に存在する反射部材86の面積によって差異が生じる。
Note that the operator of the shaft adjustment process who has obtained the shaft angle notified in S140 of the shaft misalignment inspection process is usually such that the shaft angle becomes “0”, that is, the placement reference axis RA is the installation reference axis. The mounting position of the laser radar device 10 is corrected so as to coincide with AA.
[Effect of the embodiment]
As described above, in the laser radar device 10 of the present embodiment, the received light intensity in each light receiving angle range θ is in accordance with the intensity of the reflected light received by the light receiving unit 30. The intensity of the reflected light in the axial misalignment inspection varies depending on the area of the reflecting member 86 existing in each light receiving angle range θ when the target plate 80 is irradiated with laser light.

つまり、レーザレーダ装置10の設置状態が適正配置状態でない場合には、計測データの角度強度対応関係における最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、及び隣接角度範囲θng2は、適正配置状態での最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、及び隣接角度範囲θng2とは異なる。しかも、計測データの角度強度対応関係における最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、及び隣接角度範囲θng2における受光強度も、適正配置状態での最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、及び隣接角度範囲θng2の受光強度とは異なる。 That is, when the installation state of the laser radar device 10 is not an appropriate arrangement state, the maximum intensity range θ max , the next point intensity range θ nex , the adjacent angle range θ ng1 , and the adjacent angle range θ ng2 the highest intensity range theta max at reasonable arrangement, the runner-up intensity range theta nex, different from the adjacent angle ranges theta ng1, and adjacent angular range theta ng2. In addition, the maximum intensity range θ max , the next-point intensity range θ nex , the adjacent angle range θ ng1 , and the adjacent angle range θ ng2 in the correspondence relationship of the angular intensity of the measurement data is also the maximum intensity range θ max in the proper arrangement state. The received light intensity of the next point intensity range θ nex , the adjacent angle range θ ng1 , and the adjacent angle range θ ng2 is different.

したがって、レーザレーダ装置10においては、計測データの角度強度対応関係における最高強度範囲θmax、次点強度範囲θnex、隣接角度範囲θng1、及び隣接角度範囲θng2と、それぞれの角度範囲θでの受光強度を、模範強度データに照合することで、軸ズレ状態であるか否かを検査することができる。 Therefore, in the laser radar device 10, the maximum intensity range θ max , the next point intensity range θ nex , the adjacent angle range θ ng1 , and the adjacent angle range θ ng2 in the angular intensity correspondence relationship of the measurement data are represented by the respective angle ranges θ. It is possible to inspect whether or not it is in an axial misalignment state by collating the received light intensity with the model intensity data.

さらに、レーザレーダ装置10では、計測データを構成する受光強度及び受光角度範囲θのそれぞれを多値としているため、方位分解能が粗くても、計測データを模範強度データに照合した結果における差異の有無を検出できる。   Furthermore, in the laser radar device 10, since each of the light reception intensity and the light reception angle range θ constituting the measurement data is multivalued, whether there is a difference in the result of collating the measurement data with the model intensity data even if the azimuth resolution is rough Can be detected.

換言すれば、レーザレーダ装置10によれば、レーザレーダ装置において、方位分解能に関わらず、設置基準軸AAに配置基準軸RAが一致しているか否かの検査精度を向上させることができる。   In other words, according to the laser radar device 10, in the laser radar device, it is possible to improve the inspection accuracy whether or not the placement reference axis RA coincides with the installation reference axis AA regardless of the azimuth resolution.

しかも、ズレ角度導出処理によれば、計測データの角度強度対応関係を、模範強度対応関係に照合した結果、最も一致度が高い軸角度を特定している。その特定した軸角度は、検査システム65にて報知されるため、レーザレーダ装置10が設置基準軸AAに対して配置基準軸RAが一致しているか否かを検査する検査担当者は、軸角度を認識できる。よって、当該検査担当者は、配置基準軸RAが設置基準軸AAに一致するように、レーザレーダ装置10の取付位置を修正できる。
[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
Moreover, according to the deviation angle deriving process, the angle angle correspondence relationship of the measurement data is collated with the model strength correspondence relationship, and as a result, the axis angle having the highest degree of coincidence is specified. Since the specified axis angle is notified by the inspection system 65, the inspection person inspecting whether the laser radar apparatus 10 and the arrangement reference axis RA coincide with the installation reference axis AA is Can be recognized. Therefore, the person in charge of inspection can correct the mounting position of the laser radar device 10 so that the arrangement reference axis RA coincides with the installation reference axis AA.
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it is possible to implement in various aspects.

例えば、レーザレーダ装置10における発光部20及び受光部30の構造は、上記実施形態に記載された構成に限るものではない。
すなわち、発光部20は、図12(A)に示すように、レーザダイオード(LD)21と、LD駆動回路22と、少なくとも発光レンズを含む光学素子23と、光学素子23を介して供給されるレーザ光を反射する各面の倒れ角が異なる回転多面鏡24を有し、その回転多面鏡24を回動可能に支持すると共に、レーザ光の俯角θzを車高方向に沿って変化させることが可能なように構成されたスキャナ機構部25と、制御部42からのSC駆動信号に従って、スキャナ機構部25を駆動することで、規定角度範囲内でのレーザ光の走査を実現するSC駆動回路26とを備えるように構成されていても良い。
For example, the structure of the light emitting unit 20 and the light receiving unit 30 in the laser radar device 10 is not limited to the configuration described in the above embodiment.
That is, as shown in FIG. 12A, the light emitting unit 20 is supplied via a laser diode (LD) 21, an LD driving circuit 22, an optical element 23 including at least a light emitting lens, and the optical element 23. The rotary polygon mirror 24 having different tilt angles of the respective surfaces that reflect the laser light is provided, the rotary polygon mirror 24 is rotatably supported, and the depression angle θz of the laser light can be changed along the vehicle height direction. An SC drive circuit 26 that realizes scanning of laser light within a specified angle range by driving the scanner mechanism unit 25 in accordance with the SC drive signal from the scanner mechanism unit 25 and the control unit 42 configured as possible. May be provided.

発光部20が、図12(A)に示すように構成されている場合、受光部30は、図12(B)に示すように、受光レンズ31と、1つの受光素子(PD)32と、1つの受光素子32からの受光信号を増幅する1つの増幅器33とを備えるように構成しても良い。つまり、図12(A)に示す発光部20及び図12(B)に示す受光部30,40を備えたレーザレーダ装置10では、2次元的なビームスキャンにより、規定角度範囲ATに渡って、レーザ光のビームを照射することができ、その規定角度範囲AT内に存在する物体を検知することが可能となる。   When the light emitting unit 20 is configured as shown in FIG. 12A, the light receiving unit 30 includes a light receiving lens 31, one light receiving element (PD) 32, as shown in FIG. One amplifier 33 that amplifies the light reception signal from one light receiving element 32 may be provided. That is, in the laser radar device 10 including the light emitting unit 20 shown in FIG. 12A and the light receiving units 30 and 40 shown in FIG. 12B, over a specified angle range AT by two-dimensional beam scanning, It is possible to irradiate a laser beam, and to detect an object existing within the specified angular range AT.

換言すれば、発光部20及び受光部30は、規定角度範囲ATにレーザ光を照射して、その照射されたレーザ光の反射光を受光可能に構成され、検知回路40及び制御部42にて、反射物までの距離R及び角度θを検知可能であれば、どのように構成されていても良い。   In other words, the light emitting unit 20 and the light receiving unit 30 are configured to irradiate laser light to the specified angle range AT and receive reflected light of the irradiated laser light. As long as the distance R to the reflector and the angle θ can be detected, any configuration may be used.

さらに、上記実施形態における軸ズレ検査処理では、水平方向の軸角度と、垂直方向の軸角度とを同時に認識していたが、本発明においては、水平方向の軸角度と、垂直方向の軸角度とは、それぞれ別個に検出しても良い。この場合、ターゲット板として、上記実施形態に記載したターゲット板80を用いても良いし、水平方向の軸角度、及び垂直方向の軸角度それぞれを検出するために専用のターゲット板を設けても良い。   Further, in the axial misalignment inspection processing in the above embodiment, the horizontal axis angle and the vertical axis angle are recognized simultaneously. However, in the present invention, the horizontal axis angle and the vertical axis angle are recognized. May be detected separately. In this case, the target plate 80 described in the above embodiment may be used as the target plate, or a dedicated target plate may be provided to detect the horizontal axis angle and the vertical axis angle, respectively. .

後者の場合、水平方向の軸角度を検出するための専用のターゲット板は、例えば、図13に示すように、基板84の水平方向の中心軸上に、垂直方向の中心軸を対称軸とした線対称となるように配置された反射部材861,862を備えたものであっても良い。 In the latter case, the dedicated target plate for detecting the horizontal axis angle is, for example, as shown in FIG. 13, with the vertical central axis as the symmetry axis on the horizontal central axis of the substrate 84. It may be provided with reflecting members 86 1 and 86 2 arranged so as to be line symmetric.

また、垂直方向の軸角度を検出するための専用のターゲット板は、例えば、図14に示すように、基板84の中心を中心軸として点対称となるように、一方が上限軸RLup上に、他方が下限軸RLdw上に配置された反射部材861,862を備えたものであっても良い。 In addition, as shown in FIG. 14, for example, as shown in FIG. 14, the dedicated target plate for detecting the axial angle in the vertical direction is point-symmetric about the center of the substrate 84, and one of the target plates is on the upper limit axis RL up . The other may include the reflecting members 86 1 and 86 2 arranged on the lower limit axis RL dw .

なお、本発明は、上記の実施形態によって何ら限定して解釈されない。また、上記の実施形態の構成の一部を、課題を解決できる限りにおいて省略した態様も本発明の実施形態である。また、上記の実施形態と変形例とを適宜組み合わせて構成される態様も本発明の実施形態である。また、特許請求の範囲に記載した文言のみによって特定される発明の本質を逸脱しない限度において考え得るあらゆる態様も本発明の実施形態である。また、上記の実施形態の説明で用いる符号を特許請求の範囲にも適宜使用しているが、各請求項に係る発明の理解を容易にする目的で使用しており、各請求項に係る発明の技術的範囲を限定する意図ではない。   Note that the present invention is not construed as being limited in any way by the above embodiment. Moreover, the aspect which abbreviate | omitted a part of structure of said embodiment as long as the subject could be solved is also embodiment of this invention. In addition, an aspect configured by appropriately combining the above embodiment and the modification is also an embodiment of the present invention. Moreover, all the aspects which can be considered in the limit which does not deviate from the essence of the invention specified only by the wording described in the claims are embodiments of the present invention. Further, the reference numerals used in the description of the above embodiments are also used in the claims as appropriate, but they are used for the purpose of facilitating the understanding of the invention according to each claim, and the invention according to each claim. It is not intended to limit the technical scope of

10…レーザレーダ装置 20…発光部 22…LD駆動回路 23…光学素子 30…受光部 31…受光レンズ 32…受光素子 33…増幅器 40…検知回路 42…制御部 60…報知装置 65…検査システム 80…ターゲット板 84…基板 86…反射部材 90…反射部材   DESCRIPTION OF SYMBOLS 10 ... Laser radar apparatus 20 ... Light emission part 22 ... LD drive circuit 23 ... Optical element 30 ... Light receiving part 31 ... Light receiving lens 32 ... Light receiving element 33 ... Amplifier 40 ... Detection circuit 42 ... Control part 60 ... Notification apparatus 65 ... Inspection system 80 ... Target plate 84 ... Substrate 86 ... Reflection member 90 ... Reflection member

Claims (6)

探査波を送受信した結果に基づいて、前記探査波を反射した物標との相対的な位置関係を検出するレーザレーダ装置(10)であって、
規定された角度範囲である規定角度範囲に、探査波としてのレーザ光を出力する発光手段(20)と、
前記規定角度範囲を互いに隣接するように複数に分割した角度範囲のそれぞれを受光角度範囲とし、前記発光手段にて出力されたレーザ光が反射された反射光であって、前記受光角度範囲それぞれからの反射光を、当該受光角度範囲を識別可能な態様にて受光する受光手段(30)と、
前記受光角度範囲と当該受光角度範囲での前記反射光の受光強度との対応関係を強度対応関係とし、車両に設けられた軸である設置基準軸に、当該レーザレーダ装置に規定された配置基準軸が一致した状態を適正配置状態とし、前記適正配置状態にて前記レーザ光を照射した結果、互いに隣接する2つの前記受光角度範囲に渡って規定強度以上の受光強度となるように複数の反射部材が設置されたターゲット板(80)に、前記適正配置状態で前記レーザ光を照射した結果としての前記強度対応関係を模範強度対応関係とし、
前記発光手段にて前記レーザ光を発光して、前記受光手段にて反射光を受光した結果に基づいて、前記レーザ光を発光するごとの前記強度対応関係である角度強度対応関係を導出すると共に、その導出した前記角度強度対応関係を前記模範強度対応関係に照合した結果、一致度が規定値未満であれば、前記設置基準軸に対して前記配置基準軸が不一致である軸ズレ状態であることを検出する軸ズレ検出手段(42,S110〜S130,S210〜S260)と
を備え
前記軸ズレ検出手段は、
前記受光強度が最も強い前記受光角度範囲である最高強度範囲、及び前記最高強度範囲での受光強度の値を特定する第一特定手段(42,S210)と、
前記第一特定手段にて特定した最高強度範囲に隣接する前記受光角度範囲である隣接角度範囲での受光強度の値を特定する第二特定手段(42,S220)と、
前記第一特定手段で特定した前記最高強度範囲での受光強度の値と、前記第二特定手段で特定した前記隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記最高強度範囲での受光強度の値と前記隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第一検出手段(42,S250,S260)と、
前記受光強度が二番目に強い前記受光角度範囲である次点強度範囲、及び前記次点強度範囲での受光強度の値を特定する第三特定手段(42,S230)と、
前記第三特定手段にて特定した次点強度範囲に隣接する前記受光角度範囲である第二隣接角度範囲での受光強度の値を特定する第四特定手段(42,S240)と、
前記第三特定手段で特定した前記次点強度範囲での受光強度の値と、前記第四特定手段で特定した前記第二隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記次点強度範囲での受光強度の値と前記第二隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第二検出手段(42,S250,S260)と
を備えることを特徴とするレーザレーダ装置。
A laser radar device (10) for detecting a relative positional relationship with a target reflecting the exploration wave based on a result of transmitting / receiving the exploration wave,
A light emitting means (20) for outputting a laser beam as an exploration wave in a prescribed angle range which is a prescribed angle range;
Each of the angle ranges obtained by dividing the prescribed angle range so as to be adjacent to each other is defined as a light reception angle range, and the reflected laser light output from the light emitting means is reflected from each of the light reception angle ranges. Light receiving means (30) for receiving the reflected light in a manner in which the light receiving angle range can be identified;
The correspondence relationship between the light reception angle range and the light reception intensity of the reflected light in the light reception angle range is an intensity correspondence relationship, and an installation reference axis that is an axis provided in the vehicle is an arrangement reference defined for the laser radar device. A state in which the axes coincide with each other is regarded as an appropriate arrangement state, and as a result of irradiating the laser light in the appropriate arrangement state, a plurality of reflections are performed so that the received light intensity is equal to or higher than a specified intensity over two adjacent light receiving angle ranges. The intensity correspondence as a result of irradiating the target plate (80) on which the member is installed with the laser light in the proper arrangement state as an exemplary intensity correspondence,
Based on the result of emitting the laser light by the light emitting means and receiving the reflected light by the light receiving means, the angle intensity correspondence relation that is the intensity correspondence relation every time the laser light is emitted is derived. If the degree of coincidence is less than a specified value as a result of collating the derived angle intensity correspondence with the model intensity correspondence, the axis alignment state is inconsistent with the arrangement reference axis with respect to the installation reference axis. A shaft misalignment detecting means (42, S110 to S130, S210 to S260) for detecting this ,
The shaft misalignment detecting means is
A first specifying means (42, S210) for specifying a maximum intensity range that is the light receiving angle range in which the received light intensity is strongest, and a value of the received light intensity in the maximum intensity range;
Second specifying means (42, S220) for specifying a value of received light intensity in an adjacent angle range that is the received light angle range adjacent to the maximum intensity range specified by the first specifying means;
The intensity relationship representing the relationship between the value of the received light intensity in the maximum intensity range specified by the first specifying means and the value of the received light intensity in the adjacent angle range specified by the second specifying means is the model intensity. If it exceeds the range that can be regarded as coincident with the intensity relationship between the value of the received light intensity in the maximum intensity range and the value of the received light intensity in the adjacent angle range in the correspondence relationship, it is detected that the axis deviation state is present. One detection means (42, S250, S260);
A third point specifying means (42, S230) for specifying a second point intensity range that is the second light receiving angle range in which the received light intensity is the second highest, and a received light intensity value in the second point intensity range;
Fourth specifying means (42, S240) for specifying the value of the received light intensity in the second adjacent angle range that is the received light angle range adjacent to the next point intensity range specified by the third specifying means;
The intensity relationship representing the relationship between the value of the received light intensity in the next point intensity range specified by the third specifying means and the value of the received light intensity in the second adjacent angle range specified by the fourth specifying means, If the range of the received light intensity in the next-point intensity range in the exemplary intensity correspondence relationship and the intensity relationship between the received light intensity values in the second adjacent angle range exceed a range that can be considered to coincide with each other, Second detection means (42, S250, S260) for detecting the presence of
Laser radar apparatus according to claim Rukoto equipped with.
探査波を送受信した結果に基づいて、前記探査波を反射した物標との相対的な位置関係を検出するレーザレーダ装置(10)であって、
規定された角度範囲である規定角度範囲に、探査波としてのレーザ光を出力する発光手段(20)と、
前記規定角度範囲を互いに隣接するように複数に分割した角度範囲のそれぞれを受光角度範囲とし、前記発光手段にて出力されたレーザ光が反射された反射光であって、前記受光角度範囲それぞれからの反射光を、当該受光角度範囲を識別可能な態様にて受光する受光手段(30)と、
前記受光角度範囲と当該受光角度範囲での前記反射光の受光強度との対応関係を強度対応関係とし、車両に設けられた軸である設置基準軸に、当該レーザレーダ装置に規定された配置基準軸が一致した状態を適正配置状態とし、前記適正配置状態にて前記レーザ光を照射した結果、互いに隣接する2つの前記受光角度範囲に渡って規定強度以上の受光強度となるように複数の反射部材が基板(84)に設置されたターゲット板(80)に、前記適正配置状態で前記レーザ光を照射した結果としての前記強度対応関係を模範強度対応関係とし、
前記発光手段にて前記レーザ光を発光して、前記受光手段にて反射光を受光した結果に基づいて、前記レーザ光を発光するごとの前記強度対応関係である角度強度対応関係を導出すると共に、その導出した前記角度強度対応関係を前記模範強度対応関係に照合した結果、一致度が規定値未満であれば、前記設置基準軸に対して前記配置基準軸が不一致である軸ズレ状態であることを検出する軸ズレ検出手段(42,S110〜S130,S210〜S260)と
を備え
前記適正配置状態での前記受光角度範囲に対応する前記基板上の領域を対応領域とし、
前記反射部材は、互いに隣接する2つの前記対応領域の境界を跨ぐように設置されており、
前記軸ズレ検出手段は、
前記受光強度が最も強い前記受光角度範囲である最高強度範囲、及び前記最高強度範囲での受光強度の値を特定する第一特定手段(42,S210)と、
前記第一特定手段にて特定した最高強度範囲に前記反射部材が配置された前記境界を挟んで隣接する前記受光角度範囲である隣接角度範囲での受光強度の値を特定する第二特定手段(42,S220)と、
前記第一特定手段で特定した前記最高強度範囲での受光強度の値と、前記第二特定手段で特定した前記隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記最高強度範囲での受光強度の値と前記隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第一検出手段(42,S250,S260)と
を備えることを特徴とするレーザレーダ装置。
A laser radar device (10) for detecting a relative positional relationship with a target reflecting the exploration wave based on a result of transmitting / receiving the exploration wave,
A light emitting means (20) for outputting a laser beam as an exploration wave in a prescribed angle range which is a prescribed angle range;
Each of the angle ranges obtained by dividing the prescribed angle range so as to be adjacent to each other is defined as a light reception angle range, and the reflected laser light output from the light emitting means is reflected from each of the light reception angle ranges. Light receiving means (30) for receiving the reflected light in a manner in which the light receiving angle range can be identified;
The correspondence relationship between the light reception angle range and the light reception intensity of the reflected light in the light reception angle range is an intensity correspondence relationship, and an installation reference axis that is an axis provided in the vehicle is an arrangement reference defined for the laser radar device. A state in which the axes coincide with each other is regarded as an appropriate arrangement state, and as a result of irradiating the laser light in the appropriate arrangement state, a plurality of reflections are performed so that the received light intensity is equal to or higher than a specified intensity over two adjacent light receiving angle ranges. The intensity correspondence as a result of irradiating the target plate (80) whose member is installed on the substrate (84) with the laser light in the proper arrangement state is an exemplary intensity correspondence,
Based on the result of emitting the laser light by the light emitting means and receiving the reflected light by the light receiving means, the angle intensity correspondence relation that is the intensity correspondence relation every time the laser light is emitted is derived. If the degree of coincidence is less than a specified value as a result of collating the derived angle intensity correspondence with the model intensity correspondence, the axis alignment state is inconsistent with the arrangement reference axis with respect to the installation reference axis. A shaft misalignment detecting means (42, S110 to S130, S210 to S260) for detecting this ,
A region on the substrate corresponding to the light receiving angle range in the proper arrangement state is a corresponding region,
The reflection member is installed so as to straddle the boundary between the two corresponding areas adjacent to each other,
The shaft misalignment detecting means is
A first specifying means (42, S210) for specifying a maximum intensity range that is the light receiving angle range in which the received light intensity is strongest, and a value of the received light intensity in the maximum intensity range;
Second specifying means for specifying the value of the received light intensity in the adjacent angle range that is the adjacent light receiving angle range across the boundary where the reflecting member is disposed in the maximum intensity range specified by the first specifying means ( 42, S220),
The intensity relationship representing the relationship between the value of the received light intensity in the maximum intensity range specified by the first specifying means and the value of the received light intensity in the adjacent angle range specified by the second specifying means is the model intensity. If it exceeds the range that can be regarded as coincident with the intensity relationship between the value of the received light intensity in the maximum intensity range and the value of the received light intensity in the adjacent angle range in the correspondence relationship, it is detected that the axis deviation state is present. One detection means (42, S250, S260);
The laser radar apparatus according to claim Rukoto equipped with.
前記軸ズレ検出手段は、
前記受光強度が二番目に強い前記受光角度範囲である次点強度範囲、及び前記次点強度範囲での受光強度の値を特定する第三特定手段(42,S230)と、
前記第三特定手段にて特定した次点強度範囲に隣接する前記受光角度範囲である第二隣接角度範囲での受光強度の値を特定する第四特定手段(42,S240)と、
前記第三特定手段で特定した前記次点強度範囲での受光強度の値と、前記第四特定手段で特定した前記第二隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記次点強度範囲での受光強度の値と前記第二隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第二検出手段(42,S250,S260)と
を備えることを特徴とする請求項2に記載のレーザレーダ装置。
The shaft misalignment detecting means is
A third point specifying means (42, S230) for specifying a second point intensity range that is the second light receiving angle range in which the received light intensity is the second highest, and a received light intensity value in the second point intensity range;
Fourth specifying means (42, S240) for specifying the value of the received light intensity in the second adjacent angle range that is the received light angle range adjacent to the next point intensity range specified by the third specifying means;
The intensity relationship representing the relationship between the value of the received light intensity in the next point intensity range specified by the third specifying means and the value of the received light intensity in the second adjacent angle range specified by the fourth specifying means, If the range of the received light intensity in the next-point intensity range in the exemplary intensity correspondence relationship and the intensity relationship between the received light intensity values in the second adjacent angle range exceed a range that can be considered to coincide with each other, 3. The laser radar device according to claim 2, further comprising: second detection means (42, S 250, S 260) for detecting the presence.
前記軸ズレ検出手段にて軸ズレ状態であることを検出した場合、前記設置基準軸に対する前記配置基準軸のズレ角度を導出するズレ角度導出手段(42,S250〜S280)と、
前記ズレ角度導出手段で導出されたズレ角度を報知する角度報知手段(42,S140)と
を備えることを特徴とする請求項1から請求項3のいずれか一項に記載のレーザレーダ装置。
A deviation angle deriving means (42, S250 to S280) for deriving a deviation angle of the arrangement reference axis with respect to the installation reference axis when it is detected by the axis deviation detection means;
The laser radar device according to any one of claims 1 to 3, further comprising an angle notifying unit (42, S140) for notifying the deviation angle derived by the deviation angle deriving unit.
探査波を送受信した結果に基づいて、前記探査波を反射した物標との相対的な位置関係を検出するレーザレーダ装置(10)が、当該レーザレーダ装置に規定された配置基準軸が車両に設けられた設置基準軸に対して不一致である軸ズレ状態であるか否かを検査する検査システム(65)であって、
前記レーザレーダ装置は、
規定された角度範囲である規定角度範囲に、探査波としてのレーザ光を出力する発光手段(20)と、
前記規定角度範囲を互いに隣接するように複数に分割した角度範囲のそれぞれを受光角度範囲とし、前記発光手段にて出力されたレーザ光が反射された反射光であって、前記受光角度範囲それぞれからの反射光を、当該受光角度範囲を識別可能な態様にて受光する受光手段(30)と、
前記受光角度範囲と当該受光角度範囲での前記反射光の受光強度との対応関係を強度対応関係とし、前記設置基準軸に前記配置基準軸が一致した状態を適正配置状態とし、前記適正配置状態にて前記レーザ光を照射した結果、互いに隣接する2つの前記受光角度範囲に渡って規定強度以上で均等とみなせる受光強度となり、かつ、中心軸に対して点対称となるように複数の反射部材が設置されたターゲット板(80)に、前記適正配置状態で前記レーザ光を照射した結果としての前記強度対応関係を模範強度対応関係とし、
前記発光手段にて前記レーザ光を発光して、前記受光手段にて反射光を受光した結果に基づいて、前記レーザ光を発光するごとの前記強度対応関係である角度強度対応関係を導出すると共に、その導出した前記角度強度対応関係を前記模範強度対応関係に照合した結果、一致度が規定値未満であれば、前記軸ズレ状態であることを検出する軸ズレ検出手段(42,S110〜S130,S210〜S260)と、
前記軸ズレ検出手段にて軸ズレ状態であることを検出すると、前記軸ズレ状態である旨を報知する報知手段(60)と
を備え
前記軸ズレ検出手段は、
前記受光強度が最も強い前記受光角度範囲である最高強度範囲、及び前記最高強度範囲での受光強度の値を特定する第一特定手段(42,S210)と、
前記第一特定手段にて特定した最高強度範囲に隣接する前記受光角度範囲である隣接角度範囲での受光強度の値を特定する第二特定手段(42,S220)と、
前記第一特定手段で特定した前記最高強度範囲での受光強度の値と、前記第二特定手段で特定した前記隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記最高強度範囲での受光強度の値と前記隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第一検出手段(42,S250,S260)と、
前記受光強度が二番目に強い前記受光角度範囲である次点強度範囲、及び前記次点強度範囲での受光強度の値を特定する第三特定手段(42,S230)と、
前記第三特定手段にて特定した次点強度範囲に隣接する前記受光角度範囲である第二隣接角度範囲での受光強度の値を特定する第四特定手段(42,S240)と、
前記第三特定手段で特定した前記次点強度範囲での受光強度の値と、前記第四特定手段で特定した前記第二隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記次点強度範囲での受光強度の値と前記第二隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第二検出手段(42,S250,S260)と
を備えることを特徴とする検査システム。
Based on the result of transmitting and receiving the exploration wave, the laser radar device (10) for detecting the relative positional relationship with the target reflecting the exploration wave has an arrangement reference axis defined in the laser radar device on the vehicle. An inspection system (65) for inspecting whether or not an axis misalignment state is inconsistent with a provided installation reference axis,
The laser radar device is
A light emitting means (20) for outputting a laser beam as an exploration wave in a prescribed angle range which is a prescribed angle range;
Each of the angle ranges obtained by dividing the prescribed angle range so as to be adjacent to each other is defined as a light reception angle range, and the reflected laser light output from the light emitting means is reflected from each of the light reception angle ranges. Light receiving means (30) for receiving the reflected light in a manner in which the light receiving angle range can be identified;
The correspondence relationship between the light reception angle range and the received light intensity of the reflected light in the light reception angle range is an intensity correspondence relationship, and the state where the placement reference axis coincides with the placement reference axis is the proper placement state, and the proper placement state As a result of irradiating the laser beam with a plurality of reflecting members so as to have a received light intensity that can be regarded as equal to or greater than a specified intensity over two adjacent light receiving angle ranges, and is point-symmetric with respect to the central axis The intensity correspondence as a result of irradiating the target plate (80) with the laser beam in the proper arrangement state as an exemplary intensity correspondence,
Based on the result of emitting the laser light by the light emitting means and receiving the reflected light by the light receiving means, the angle intensity correspondence relation that is the intensity correspondence relation every time the laser light is emitted is derived. As a result of collating the derived angular intensity correspondence with the exemplary intensity correspondence, if the degree of coincidence is less than a specified value, the axis deviation detecting means (42, S110 to S130) detects that the axis deviation state exists. , S210 to S260),
An informing means (60) for informing that the shaft misalignment state is detected when the shaft misalignment detecting means detects the shaft misalignment state ;
The shaft misalignment detecting means is
A first specifying means (42, S210) for specifying a maximum intensity range that is the light receiving angle range in which the received light intensity is strongest, and a value of the received light intensity in the maximum intensity range;
Second specifying means (42, S220) for specifying a value of received light intensity in an adjacent angle range that is the received light angle range adjacent to the maximum intensity range specified by the first specifying means;
The intensity relationship representing the relationship between the value of the received light intensity in the maximum intensity range specified by the first specifying means and the value of the received light intensity in the adjacent angle range specified by the second specifying means is the model intensity. If it exceeds the range that can be regarded as coincident with the intensity relationship between the value of the received light intensity in the maximum intensity range and the value of the received light intensity in the adjacent angle range in the correspondence relationship, it is detected that the axis deviation state is present. One detection means (42, S250, S260);
A third point specifying means (42, S230) for specifying a second point intensity range that is the second light receiving angle range in which the received light intensity is the second highest, and a received light intensity value in the second point intensity range;
Fourth specifying means (42, S240) for specifying the value of the received light intensity in the second adjacent angle range that is the received light angle range adjacent to the next point intensity range specified by the third specifying means;
The intensity relationship representing the relationship between the value of the received light intensity in the next point intensity range specified by the third specifying means and the value of the received light intensity in the second adjacent angle range specified by the fourth specifying means, If the range of the received light intensity in the next-point intensity range in the exemplary intensity correspondence relationship and the intensity relationship between the received light intensity values in the second adjacent angle range exceed a range that can be considered to coincide with each other, Second detection means (42, S250, S260) for detecting the presence of
Inspection system, wherein Rukoto equipped with.
探査波を送受信した結果に基づいて、前記探査波を反射した物標との相対的な位置関係を検出するレーザレーダ装置(10)が、当該レーザレーダ装置に規定された配置基準軸が車両に設けられた設置基準軸に対して不一致である軸ズレ状態であるか否かを検査する検査システム(65)であって、
前記レーザレーダ装置は、
規定された角度範囲である規定角度範囲に、探査波としてのレーザ光を出力する発光手段(20)と、
前記規定角度範囲を互いに隣接するように複数に分割した角度範囲のそれぞれを受光角度範囲とし、前記発光手段にて出力されたレーザ光が反射された反射光であって、前記受光角度範囲それぞれからの反射光を、当該受光角度範囲を識別可能な態様にて受光する受光手段(30)と、
前記受光角度範囲と当該受光角度範囲での前記反射光の受光強度との対応関係を強度対応関係とし、前記設置基準軸に前記配置基準軸が一致した状態を適正配置状態とし、前記適正配置状態にて前記レーザ光を照射した結果、互いに隣接する2つの前記受光角度範囲に渡って規定強度以上で均等とみなせる受光強度となり、かつ、中心軸に対して点対称となるように複数の反射部材が基板(84)に設置されたターゲット板(80)に、前記適正配置状態で前記レーザ光を照射した結果としての前記強度対応関係を模範強度対応関係とし、
前記発光手段にて前記レーザ光を発光して、前記受光手段にて反射光を受光した結果に基づいて、前記レーザ光を発光するごとの前記強度対応関係である角度強度対応関係を導出すると共に、その導出した前記角度強度対応関係を前記模範強度対応関係に照合した結果、一致度が規定値未満であれば、前記軸ズレ状態であることを検出する軸ズレ検出手段(42,S110〜S130,S210〜S260)と、
前記軸ズレ検出手段にて軸ズレ状態であることを検出すると、前記軸ズレ状態である旨を報知する報知手段(60)と
を備え
前記適正配置状態での前記受光角度範囲に対応する前記基板上の領域を対応領域とし、
前記反射部材は、互いに隣接する2つの前記対応領域の境界を跨ぐように設置されており、
前記軸ズレ検出手段は、
前記受光強度が最も強い前記受光角度範囲である最高強度範囲、及び前記最高強度範囲での受光強度の値を特定する第一特定手段(42,S210)と、
前記第一特定手段にて特定した最高強度範囲に前記反射部材が配置された前記境界を挟んで隣接する前記受光角度範囲である隣接角度範囲での受光強度の値を特定する第二特定手段(42,S220)と、
前記第一特定手段で特定した前記最高強度範囲での受光強度の値と、前記第二特定手段で特定した前記隣接角度範囲での受光強度の値との関係を表す強度関係が、前記模範強度対応関係における前記最高強度範囲での受光強度の値と前記隣接角度範囲での受光強度の値との強度関係に一致するとみなせる範囲を超えていれば、前記軸ズレ状態であることを検出する第一検出手段(42,S250,S260)と
を備えることを特徴とする検査システム。
Based on the result of transmitting and receiving the exploration wave, the laser radar device (10) for detecting the relative positional relationship with the target reflecting the exploration wave has an arrangement reference axis defined in the laser radar device on the vehicle. An inspection system (65) for inspecting whether or not an axis misalignment state is inconsistent with a provided installation reference axis,
The laser radar device is
A light emitting means (20) for outputting a laser beam as an exploration wave in a prescribed angle range which is a prescribed angle range;
Each of the angle ranges obtained by dividing the prescribed angle range so as to be adjacent to each other is defined as a light reception angle range, and the reflected laser light output from the light emitting means is reflected from each of the light reception angle ranges. Light receiving means (30) for receiving the reflected light in a manner in which the light receiving angle range can be identified;
The correspondence relationship between the light reception angle range and the received light intensity of the reflected light in the light reception angle range is an intensity correspondence relationship, and the state where the placement reference axis coincides with the placement reference axis is the proper placement state, and the proper placement state As a result of irradiating the laser beam with a plurality of reflecting members so as to have a received light intensity that can be regarded as equal to or greater than a specified intensity over two adjacent light receiving angle ranges, and is point-symmetric with respect to the central axis Is the intensity correspondence as a result of irradiating the target plate (80) placed on the substrate (84) with the laser light in the proper arrangement state,
Based on the result of emitting the laser light by the light emitting means and receiving the reflected light by the light receiving means, the angle intensity correspondence relation that is the intensity correspondence relation every time the laser light is emitted is derived. As a result of collating the derived angular intensity correspondence with the exemplary intensity correspondence, if the degree of coincidence is less than a specified value, the axis deviation detecting means (42, S110 to S130) detects that the axis deviation state exists. , S210 to S260),
An informing means (60) for informing that the shaft misalignment state is detected when the shaft misalignment detecting means detects the shaft misalignment state ;
A region on the substrate corresponding to the light receiving angle range in the proper arrangement state is a corresponding region,
The reflection member is installed so as to straddle the boundary between the two corresponding areas adjacent to each other,
The shaft misalignment detecting means is
A first specifying means (42, S210) for specifying a maximum intensity range that is the light receiving angle range in which the received light intensity is strongest, and a value of the received light intensity in the maximum intensity range;
Second specifying means for specifying the value of the received light intensity in the adjacent angle range that is the adjacent light receiving angle range across the boundary where the reflecting member is disposed in the maximum intensity range specified by the first specifying means ( 42, S220),
The intensity relationship representing the relationship between the value of the received light intensity in the maximum intensity range specified by the first specifying means and the value of the received light intensity in the adjacent angle range specified by the second specifying means is the model intensity. If it exceeds the range that can be regarded as coincident with the intensity relationship between the value of the received light intensity in the maximum intensity range and the value of the received light intensity in the adjacent angle range in the correspondence relationship, it is detected that the axis deviation state is present. One detection means (42, S250, S260);
Inspection system, wherein Rukoto equipped with.
JP2012261226A 2012-11-29 2012-11-29 Laser radar device, inspection system, and target plate Active JP6136216B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012261226A JP6136216B2 (en) 2012-11-29 2012-11-29 Laser radar device, inspection system, and target plate
PCT/JP2013/081510 WO2014084137A1 (en) 2012-11-29 2013-11-22 Laser radar device, inspection system, and target board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261226A JP6136216B2 (en) 2012-11-29 2012-11-29 Laser radar device, inspection system, and target plate

Publications (2)

Publication Number Publication Date
JP2014106191A JP2014106191A (en) 2014-06-09
JP6136216B2 true JP6136216B2 (en) 2017-05-31

Family

ID=50827775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261226A Active JP6136216B2 (en) 2012-11-29 2012-11-29 Laser radar device, inspection system, and target plate

Country Status (2)

Country Link
JP (1) JP6136216B2 (en)
WO (1) WO2014084137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460075A (en) * 2018-11-01 2019-03-12 湖北航天技术研究院总体设计所 A kind of method and system of Fast Azimuth angular alignment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071486B1 (en) * 2017-02-23 2020-01-30 한국과학기술원 Optical position sensing device
KR102429879B1 (en) 2017-09-13 2022-08-05 삼성전자주식회사 LiDAR apparatus and method of operating LiDAR apparatus
JP2020056663A (en) * 2018-10-01 2020-04-09 パイオニア株式会社 Control method and distance measuring device
JP2020056891A (en) * 2018-10-01 2020-04-09 パイオニア株式会社 Control method and optical apparatus
JP6995388B2 (en) * 2019-11-14 2022-01-14 株式会社三洋物産 Pachinko machine
JP2020127795A (en) * 2020-05-13 2020-08-27 株式会社三洋物産 Game machine
CN111781611B (en) * 2020-06-16 2023-06-16 万物镜像(北京)计算机系统有限公司 Method and device for establishing model, storage medium and electronic equipment
CN114509741A (en) * 2021-12-28 2022-05-17 珠海视熙科技有限公司 Laser radar test fixture
CN114509742B (en) * 2021-12-29 2023-07-21 珠海视熙科技有限公司 Laser radar testing method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0002294D0 (en) * 2000-02-02 2000-03-22 Jaguar Cars Automotive radar elevation alignment
JP5142434B2 (en) * 2001-09-28 2013-02-13 本田技研工業株式会社 Axis deviation adjusting device in vehicle object detection device
JP2004317507A (en) * 2003-04-04 2004-11-11 Omron Corp Axis-adjusting method of supervisory device
US7106421B2 (en) * 2003-04-04 2006-09-12 Omron Corporation Method of adjusting axial direction of monitoring apparatus
EP1584946A3 (en) * 2004-04-02 2006-03-22 Omron Corporation Method of adjusting monitor axis of optical sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460075A (en) * 2018-11-01 2019-03-12 湖北航天技术研究院总体设计所 A kind of method and system of Fast Azimuth angular alignment
CN109460075B (en) * 2018-11-01 2021-10-01 湖北航天技术研究院总体设计所 Method and system for fast azimuth alignment

Also Published As

Publication number Publication date
JP2014106191A (en) 2014-06-09
WO2014084137A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6136216B2 (en) Laser radar device, inspection system, and target plate
US8344940B2 (en) Apparatus and sensor for adjusting sensor vertical alignment
JP6428270B2 (en) Axis deviation detector
US20190391233A1 (en) System and method for vehicle radar inspection
JP2008232887A (en) Object sensing apparatus and irradiation axis adjustment method
JP2016031236A (en) Laser radar device
US9792510B2 (en) Object recognition device
US20130120734A1 (en) Laser radar apparatus
JP2013213830A (en) Alignment method and system for radar of vehicle
JP5930019B2 (en) Vehicle detection device and vehicle detection method
JP3802339B2 (en) Axis adjustment method for rangefinder
JP2017096792A (en) Traffic density measuring device
JP5632352B2 (en) Object detection device
JP2003149343A (en) On-vehicle radar, its inspection method and vehicle-to- vehicle distance measuring device
US20220289026A1 (en) Object Detection Sensor Alignment
KR101248851B1 (en) Method and System of Alignment of Radar of Vihecle in the Vertical Direction
US10539659B2 (en) Apparatus for detecting axial misalignment
JP5832067B2 (en) Optical distance measuring device
JP2014219250A (en) Range finder and program
US9829569B2 (en) Checking method and system for radar device
JP2014006071A (en) Upper structure detection device
KR102186681B1 (en) Automotive detection devices, driver assistance systems, vehicles and detection methods
JP2013075619A (en) Parking support device
JP3814201B2 (en) Axis adjustment target and axis adjustment method for distance measuring apparatus
EP3508873B1 (en) Measuring device, control device, control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250