JP6132103B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6132103B2 JP6132103B2 JP2014080993A JP2014080993A JP6132103B2 JP 6132103 B2 JP6132103 B2 JP 6132103B2 JP 2014080993 A JP2014080993 A JP 2014080993A JP 2014080993 A JP2014080993 A JP 2014080993A JP 6132103 B2 JP6132103 B2 JP 6132103B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- hot
- steel sheet
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Metal Rolling (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、変圧器の鉄心材料等に用いて好適な方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for producing a grain-oriented electrical steel sheet that is suitable for use as a core material of a transformer.
方向性電磁鋼板は、主として変圧器や発電機の鉄心材料等として用いられる軟磁性材料であり、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有しているところに特徴がある。このような集合組織は、製造工程最終の仕上焼鈍において、いわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。 Oriented electrical steel sheet is a soft magnetic material mainly used as a core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned with the rolling direction of the steel sheet. There is a feature in doing. Such a texture is formed through secondary recrystallization that preferentially grows grains of {110} <001> orientation, so-called Goss orientation, in finish annealing at the end of the manufacturing process. The
二次再結晶を起こさせる方法としては、インヒビターと呼ばれる析出物を使用して、仕上焼鈍中にGoss方位を有する粒を優先的に二次再結晶させる方法が一般的であり、例えば、特許文献1には、インヒビターとしてAlNやMnSを使用する方法が、特許文献2には、インヒビターとしてMnSやMnSeを使用する方法が提案され、既に実用化されている。これらのインヒビターを用いる方法は、スラブを1300℃以上の高温に再加熱する必要があるものの、安定して二次再結晶粒を発達させるには極めて有用な方法である。さらに、これらのインヒビターの働きを強化するため、特許文献3には、Pb,Sb,NbおよびTeを添加する方法が、特許文献4には、Zr,Ti,B,Nb,Ta,V,CrおよびMoを添加する方法が開示されている。
As a method of causing secondary recrystallization, a method of preferentially recrystallizing grains having Goss orientation during finish annealing using precipitates called inhibitors is generally used. No. 1 proposes a method using AlN or MnS as an inhibitor, and
さらに、特許文献5には、酸可溶性Al(sol.Al)を0.010〜0.060mass%含有させ、スラブ再加熱温度を低温に抑えて、脱炭焼鈍工程で適正な窒化雰囲気下で窒化処理することにより、二次再結晶時に(Al,Si)Nを析出させ、これをインヒビターとして用いる方法が提案されている。しかし、(Al,Si)Nは、鋼中に微細分散してインヒビターとして有効に機能するが、Alの含有量によってインヒビターの強度が決まるため、製鋼でのAlの的中精度が十分ではない場合は、十分な粒成長抑制力が得られないことがあるという問題がある。なお。このような製造工程の途中で窒化処理を行うことで、(Al,Si)NあるいはAlNを析出させ、これらをインヒビターとして利用する技術は数多く提案されており、最近ではスラブ再加熱温度を1300℃超えとする製造方法等も提案されている。 Furthermore, Patent Document 5 contains acid-soluble Al (sol. Al) in an amount of 0.010 to 0.060 mass%, and slab reheating temperature is suppressed to a low temperature, and nitriding is performed in an appropriate nitriding atmosphere in a decarburization annealing process. There has been proposed a method in which (Al, Si) N is precipitated during the secondary recrystallization by treatment, and this is used as an inhibitor. However, (Al, Si) N finely disperses in steel and functions effectively as an inhibitor. However, since the strength of the inhibitor is determined by the Al content, the accuracy of Al in steelmaking is not sufficient. However, there is a problem that a sufficient grain growth inhibiting power may not be obtained. Note that. Many techniques have been proposed in which (Al, Si) N or AlN is precipitated by performing nitriding in the course of such a manufacturing process, and these are used as inhibitors. Recently, the slab reheating temperature is 1300 ° C. The manufacturing method etc. which exceed are also proposed.
一方、インヒビター形成成分を含有しない、いわゆるインヒビターレスの素材を用いて、ゴス方位結晶粒を二次再結晶させ、成長させる技術が特許文献6等に開示されている。この方法は、インヒビターを鋼中に微細分散させる必要がないため、インヒビターを用いる技術では必須のスラブの高温再加熱が不要であり、エネルギーコストや設備コストの面で大きなメリットがある。 On the other hand, Patent Document 6 discloses a technique in which goss-oriented crystal grains are secondarily recrystallized and grown using a so-called inhibitorless material that does not contain an inhibitor-forming component. Since this method does not require the inhibitor to be finely dispersed in steel, the technique using the inhibitor does not require reheating of the slab, which is essential, and has great advantages in terms of energy cost and equipment cost.
しかしながら、特許文献6に開示のようなインヒビターレスの素材を用いた方向性電磁鋼板の製造方法では、一次再結晶粒の粒成長を抑制し、粒径を一定の大きさに揃える機能を有するインヒビターが存在しないため、工程条件や素材成分が少し変動しただけで、一次再結晶後の鋼板の結晶粒径が大きく変動したり、不均一な粒径分布になったりすることがある。このため、これまで提案されてきたインヒビターレスの方向性電磁鋼板の製造方法では、良好な磁気特性を安定的に実現することは容易ではないという問題がある。 However, in the method for producing a grain-oriented electrical steel sheet using an inhibitorless material as disclosed in Patent Document 6, an inhibitor having a function of suppressing grain growth of primary recrystallized grains and aligning the grain sizes to a certain size Therefore, the crystal grain size of the steel sheet after primary recrystallization may fluctuate greatly or a non-uniform grain size distribution may occur even if the process conditions and material components are slightly changed. For this reason, in the manufacturing method of the inhibitorless grain-oriented electrical steel sheet proposed until now, there exists a problem that it is not easy to implement | achieve a favorable magnetic characteristic stably.
本発明は、インヒビターレスの方向性電磁鋼板の製造方法における上記問題点に鑑みてなされたものであり、その目的は、スラブの高温再加熱を回避しつつ、工業的に安定して良好な磁気特性を有する方向性電磁鋼板を安定して製造する方法を提案することにある。 The present invention has been made in view of the above-described problems in the method of manufacturing an inhibitorless grain-oriented electrical steel sheet, and its object is to avoid the high-temperature reheating of the slab and to provide a stable and stable magnetic field. The object is to propose a method for stably producing a grain-oriented electrical steel sheet having characteristics.
発明者らは、上記課題の解決に向けて、鋭意検討を重ねた。その結果、鋼素材として、Alを0.0100mass%(100massppm)未満に低減したインヒビターレス成分に準じた鋼を用いることでスラブの高温再加熱を回避し、さらに、窒化処理技術を利用して、AlNではなく窒化珪素(Si3N4)を析出させ、この窒化珪素を正常粒成長の抑制力、すなわち、インヒビターとして機能させ、さらに、熱延板焼鈍条件を適正化することで、一次再結晶焼鈍後鋼板の高エネルギー粒界の比率を高めることで、工業的に安定して良好な磁気特性を有する方向性電磁鋼板を製造し得ることを見出し、本発明を開発するに至った。 Inventors repeated earnest examination toward the solution of the said subject. As a result, as a steel material, high temperature reheating of the slab is avoided by using steel according to the inhibitorless component in which Al is reduced to less than 0.0100 mass% (100 massppm). By precipitating silicon nitride (Si 3 N 4 ) instead of AlN, this silicon nitride functions as an inhibitor of normal grain growth, ie, an inhibitor, and further optimizes the hot-rolled sheet annealing conditions, thereby performing primary recrystallization. It has been found that a grain-oriented electrical steel sheet having good magnetic properties can be produced industrially stably by increasing the ratio of high energy grain boundaries in the steel sheet after annealing, leading to the development of the present invention.
すなわち、本発明は、C:0.002〜0.08mass%、Si:2.0〜4.5mass%およびMn:0.005〜1.0mass%を含有し、sol.Alを0.0150mass%未満、Nを0.0100mass%未満、SおよびSeをそれぞれ0.0050mass%未満に低減してなり、残部がFeおよび不可避的不純物からなる成分組成のスラブを1250℃以下の温度に再加熱した後、熱間圧延して熱延板とし、熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、該脱炭焼鈍の途中あるいは脱炭焼鈍後に窒化処理を施し、その後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記熱延板焼鈍における均熱温度を800〜1100℃とし、加熱過程における200℃〜均熱温度間の平均昇温速度を5℃/s以上として、一次再結晶後の鋼板の方位差角20〜45°の粒界の全体の粒界に対する比率を65%以上とし、上記窒化処理における増窒量を0.0050〜0.1000mass%の範囲とすることを特徴とする方向性電磁鋼板の製造方法を提案する。 That is, the present invention, C: 0.002~0.08mass%, Si: 2.0~ 4.5 mass% and Mn: containing 0.005~1.0mass%, sol. Al is less than 0.0150 mass%, N is less than 0.0100 mass%, S and Se are each reduced to less than 0.0050 mass%, and a slab having a composition composed of Fe and unavoidable impurities as the balance is 1250 ° C. or less. After reheating to temperature, hot rolled to hot rolled sheet, hot rolled sheet annealed, cold rolled twice or more with one or more intermediate sandwiches in between to make a cold rolled sheet of final thickness, decarburized Directional electromagnetics consisting of a series of processes in which primary recrystallization annealing that also serves as annealing is performed, nitriding is performed during or after decarburization annealing, and then an annealing separator is applied to the surface of the steel sheet and finish annealing is performed. In the steel sheet manufacturing method, the soaking temperature in the hot-rolled sheet annealing is set to 800 to 1100 ° C., the average heating rate between 200 ° C. and the soaking temperature in the heating process is set to 5 ° C./s or more, and after the primary recrystallization. steel sheet The ratio of the total grain boundaries of the grain boundary of misorientation angle 20 to 45 ° and less than 65%, directionality, characterized in that the range of 0.0050~0.1000Mass% intensifying窒量in the nitriding treatment A method for manufacturing electrical steel sheets is proposed.
本発明の方向性電磁鋼板の製造方法は、上記熱延板の板厚をth(mm)、熱間仕上圧延の全圧下率をRf(%)とするとき、上記thおよびRfが下記(1)式;
th>−0.0571×Rf+7.2 ・・・(1)
を満たすよう熱間圧延することを特徴とする。
Method for producing a grain-oriented electrical steel sheet of the present invention, the thickness of the hot-rolled sheet t h (mm), a total rolling reduction of hot finish rolling when the R f (%), the t h and R f Is the following formula (1):
t h > −0.0571 × R f +7.2 (1)
It is characterized by hot rolling to satisfy the above.
また、本発明の方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらにNi:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%,Mo:0.005〜0.100mass%、Te:0.005〜0.050mass%およびNb:0.0010〜0.0100mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the said slab used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Ni: 0.010-1.50 mass%, Cr: 0.01-0.50 mass%, Cu: 0. 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass %, Mo: 0.005 to 0.100 mass%, Te: 0.005 to 0.050 mass%, and Nb: 0.0010 to 0.0100 mass%. Features.
本発明によれば、窒化技術を利用して、AlNではなく窒化珪素(Si3N4)をインヒビターとして機能させ、かつ、熱延板焼鈍条件を適正化し、一次再結晶焼鈍後鋼板の高エネルギー粒界の比率を高めることで上記インヒビター機能を高めることができるので、スラブを高温に再加熱する必要がなく、磁気特性に優れる方向性電磁鋼板を安価にかつ工業的に安定して提供することが可能となる。 According to the present invention, by utilizing nitriding technology, silicon nitride (Si 3 N 4 ) instead of AlN functions as an inhibitor, and the hot-rolled sheet annealing conditions are optimized, and the high energy of the steel sheet after primary recrystallization annealing Since the inhibitor function can be enhanced by increasing the grain boundary ratio, there is no need to reheat the slab to a high temperature, and a grain-oriented electrical steel sheet having excellent magnetic properties can be provided inexpensively and industrially stably. Is possible.
まず、本発明を開発するに至った実験について説明する。
C:0.055mass%、Si:3.25mass%、Mn:0.15mass%、sol.Al:0.0065mass%、N:0.0040mass%、S:0.0034mass%、およびSe:0.0010mass%を含有するスラブを連続鋳造法で製造し、1180℃の温度に再加熱した後、熱間圧延して1.2〜3.0mmの種々の板厚に圧延した。その後、これらの熱延板を、種々の昇温速度、均熱温度、均熱時間で熱延板焼鈍を施した後、冷間圧延して最終板厚0.27mmの冷延板に仕上げた。この際、冷間圧延における鋼板温度を室温〜300℃の範囲で種々の温度で変化させた。ここで、熱延板の板厚、熱延板焼鈍条件および冷延条件を種々に変更したのは、一次再結晶(脱炭焼鈍)後の鋼板の結晶方位分布を変化させるためである。
First, the experiment that led to the development of the present invention will be described.
C: 0.055 mass%, Si: 3.25 mass%, Mn: 0.15 mass%, sol. A slab containing Al: 0.0065 mass%, N: 0.0040 mass%, S: 0.0034 mass%, and Se: 0.0010 mass% was manufactured by a continuous casting method, and after reheating to a temperature of 1180 ° C, Hot rolled to various plate thicknesses of 1.2 to 3.0 mm. Thereafter, these hot-rolled sheets were subjected to hot-rolled sheet annealing at various heating rates, soaking temperatures, and soaking times, and then cold rolled to finish cold-rolled sheets having a final thickness of 0.27 mm. . Under the present circumstances, the steel plate temperature in cold rolling was changed at various temperature in the range of room temperature-300 degreeC. Here, the thickness of the hot-rolled sheet, the hot-rolled sheet annealing conditions, and the cold-rolled conditions were variously changed in order to change the crystal orientation distribution of the steel sheet after primary recrystallization (decarburization annealing).
次いで、上記冷延板を50vol%H2−50vol%N2で、露点が60℃の湿潤雰囲気下で、840℃×80秒の脱炭焼鈍を兼ねて行う一次再結晶焼鈍を施した。
次いで、一次再結晶後の鋼板の断面組織を、板厚×長さ5mmの範囲にわたってEBSPで粒界方位差角を測定し、20〜45°の方位差角を有する粒界の比率を算出した。
次いで、イソナイトを主原料とした500℃の塩浴に30分浸漬して窒化処理を施した後、水洗し、鋼板表面にMgOを主体とする焼鈍分離剤を塗布し、二次再結晶させた後、水素雰囲気下で1200℃で5時間保持する仕上焼鈍を施した。
Subsequently, the cold-rolled sheet was subjected to primary recrystallization annealing performed at 50 vol% H 2 -50 vol% N 2 in a humid atmosphere having a dew point of 60 ° C. and also performing decarburization annealing at 840 ° C. for 80 seconds.
Next, the cross-sectional structure of the steel sheet after primary recrystallization was measured for the grain boundary orientation difference angle by EBSP over the range of plate thickness x length 5 mm, and the ratio of grain boundaries having an orientation difference angle of 20 to 45 ° was calculated. .
Next, after immersing in a salt bath of 500 ° C. using isonite as a main raw material for 30 minutes to perform nitriding treatment, it was washed with water, and an annealing separator mainly composed of MgO was applied to the steel sheet surface, followed by secondary recrystallization. Then, the finish annealing which hold | maintains at 1200 degreeC for 5 hours under a hydrogen atmosphere was given.
斯くして得た仕上焼鈍後の鋼板から試験片を採取し、JIS C2550に記載の方法で、磁束密度B8(800A/mで励磁した時の磁束密度(T))を測定した。
図1に、上記測定結果を示す。この結果から、一次再結晶後の鋼板において、20〜45°の方位差角を有する粒界の比率が65%以上であるときに、磁束密度B8が1.90T以上となることがわかる。
Test pieces were collected from the steel sheet after finish annealing thus obtained, and the magnetic flux density B 8 (magnetic flux density (T) when excited at 800 A / m) was measured by the method described in JIS C2550.
FIG. 1 shows the measurement results. From this result, in the steel sheet after primary recrystallization, when the ratio of the grain boundary having a misorientation angle of 20 to 45 ° is 65% or more, the magnetic flux density B 8 is seen to be a more 1.90T.
上記のように20〜45°の方位差角を有する粒界の比率を高めることで磁気特性が向上する理由について、発明者らは次のように考えている。
方位差角20〜45°の粒界は、C.G.Dunnらによる実験データ(AIME Transaction,88巻(1949)P.368)によれば、高エネルギー粒界である。この高エネルギー粒界は、粒界内の自由空間が大きく、乱雑な構造をしている。粒界拡散は、粒界を通じて原子が移動する現象であり、粒界内の自由空間が大きい、高エネルギー粒界の方が拡散係数(拡散速度)が大きくなる。
ここで、鋼板に窒化処理を施した場合を考えると、窒化処理している間は、温度が低いため、窒素は鋼板表面に窒化鉄を形成しており、鋼板内部にはあまり拡散しない、したがって、窒素が拡散するのは、仕上焼鈍の昇温時であると考えられる。
上記仕上焼鈍では、800℃以上の温度で二次再結晶を起こさせた後、フォルステライト被膜を形成したり、純化を図るため、通常、1200℃程度の高温まで昇温するが、窒化処理を施さない場合には、インヒビターとなるものが存在していないため、二次再結晶が起こる前に正常粒成長してしまうため、二次再結晶の駆動力が低下する。
しかし、窒化処理を施した場合には、窒化処理により鋼板表面に形成された窒化鉄が、二次再結晶が起こる前に分解し、高エネルギー粒界を介して鋼板内部に窒素が拡散して、粒界上に窒化珪素が析出する。この析出物は、ピン止め効果を発現して、昇温中の粒径粗大化を抑制し、インヒビターとして機能するので、二次再結晶の駆動力低下を抑制できる。特に、高エネルギー粒界が65%以上になると、窒素の拡散が促進され、上記のピン止め効果が、仕上焼鈍の早期に発現するので、インヒビター機能がより効果的に発現し、理想方位に近いGoss方位粒を選択的に二次再結晶させて、磁束密度B8を向上させたものと考えられる。
As described above, the inventors consider the reason why the magnetic properties are improved by increasing the ratio of grain boundaries having an orientation difference angle of 20 to 45 ° as follows.
Grain boundaries with misorientation angles of 20 to 45 ° are C.I. G. According to the experimental data by Dunn et al. (AIME Transaction, Vol. 88 (1949) P. 368), it is a high energy grain boundary. This high energy grain boundary has a random structure with a large free space within the grain boundary. Grain boundary diffusion is a phenomenon in which atoms move through the grain boundary, and the diffusion space (diffusion rate) is larger in the high energy grain boundary where the free space in the grain boundary is larger.
Here, considering the case where the steel sheet is subjected to nitriding treatment, the temperature is low during nitriding treatment, so nitrogen forms iron nitride on the steel sheet surface and does not diffuse so much inside the steel sheet. It is considered that nitrogen diffuses at the time of temperature increase in finish annealing.
In the above-mentioned finish annealing, after causing secondary recrystallization at a temperature of 800 ° C. or higher, the temperature is usually raised to a high temperature of about 1200 ° C. in order to form a forsterite film or to purify it. When not applied, since there is no inhibitor, normal grains grow before secondary recrystallization occurs, and the driving force of secondary recrystallization decreases.
However, when nitriding is performed, the iron nitride formed on the steel sheet surface by nitriding is decomposed before secondary recrystallization occurs, and nitrogen diffuses into the steel sheet through high energy grain boundaries. Then, silicon nitride is deposited on the grain boundaries. This precipitate expresses a pinning effect, suppresses the coarsening of the particle size during temperature rise, and functions as an inhibitor, so that it is possible to suppress a reduction in driving force of secondary recrystallization. In particular, when the high energy grain boundary is 65% or more, the diffusion of nitrogen is promoted, and the above pinning effect is expressed early in the finish annealing, so that the inhibitor function is more effectively expressed and is close to the ideal orientation. Goss by oriented grains selectively to secondary recrystallization, presumably with improved magnetic flux density B 8.
そして、上記効果は、インヒビターフリーの素材のように、不純物元素を低減した成分系で発現すると考えられる。というのは、鋼中に存在する不純物元素は、粒界、特に高エネルギー粒界に偏析しやすいため、不純物元素を多く含むときには、高エネルギー粒界の拡散係数は、その他の粒界と大差がなくなってしまうからである。すなわち、本発明の技術は、インヒビターフリー素材を用いることで、始めて効果が発現する技術である。 And the said effect is thought to be expressed by the component system which reduced the impurity element like an inhibitor free raw material. This is because the impurity elements present in steel tend to segregate at the grain boundaries, particularly at high energy grain boundaries, and therefore when there are many impurity elements, the diffusion coefficient of the high energy grain boundaries differs greatly from other grain boundaries. Because it will disappear. That is, the technique of the present invention is a technique that exhibits an effect for the first time by using an inhibitor-free material.
ここで、上記実験においては、熱延条件、熱延板焼鈍条件および冷延条件を種々変更したが、この結果から、方位差角20〜45°の高エネルギー粒界の比率を65%以上に高めるためには、熱延板焼鈍の均熱温度を800〜1100℃の範囲とし、かつ上記均熱温度に至るまでの昇温速度を5℃/s以上とすることが必要であることがわかった。ここで、上記昇温速度は、200℃〜均熱温度間の平均昇温速度で定義する。 Here, in the above experiment, the hot rolling conditions, the hot-rolled sheet annealing conditions, and the cold-rolling conditions were variously changed. From this result, the ratio of the high-energy grain boundaries having a misorientation angle of 20 to 45 ° was increased to 65% or more. In order to raise, it turns out that it is necessary to make the soaking temperature of hot-rolled sheet annealing into the range of 800-1100 degreeC, and to raise the temperature increase rate until it reaches the said soaking temperature 5 degree-C / s or more. It was. Here, the said temperature increase rate is defined by the average temperature increase rate between 200 degreeC and soaking temperature.
また、方位差角が20〜45°の高エネルギー粒界の比率をより安定して高めるためには、熱間圧延における仕上圧延の圧下率と熱延板厚との間の関係を適正範囲内、すなわち、上記熱延板の板厚をth(mm)、熱間仕上圧延の全圧下率をRf(%)としたとき、上記thおよびRfが下記(1)式;
th>−0.0571×Rf+7.2 ・・・(1)
を満たすよう熱間圧延することが有効であることも知見した。
Further, in order to more stably increase the ratio of high energy grain boundaries having an orientation difference angle of 20 to 45 °, the relationship between the reduction ratio of the finish rolling in hot rolling and the hot rolled sheet thickness is within an appropriate range. , namely, the plate thickness of the hot-rolled sheet t h (mm), when a total reduction ratio of the hot finish rolling was set to R f (%), the t h and R f is represented by the following formula (1);
t h > −0.0571 × R f +7.2 (1)
It was also found that it is effective to perform hot rolling to satisfy the above condition.
図2は、仕上圧延圧下率Rfと熱延板の板厚thが、方位差角20〜45°の高エネルギー粒界の比率に及ぼす影響を示したものである。なお、図2において、高エネルギー粒界の比率69%で分けているのは、上記実験で、磁束密度B8が1.94T以上の良好な特性が得られた範囲が69〜85%であるためである。 Figure 2 is a finish rolling reduction ratio R f and the plate thickness t h of the hot-rolled plate, shows the effect on the ratio of the high-energy grain boundaries of misorientation angle 20 to 45 °. In FIG. 2, the high energy grain boundary ratio of 69% is that the range in which good characteristics with a magnetic flux density B 8 of 1.94 T or more were obtained in the above experiment is 69 to 85%. Because.
次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.08mass%
Cは、0.002mass%未満では、粒界強化効果が失われ、スラブに割れが生じて、表面欠陥が発生するなど、製造に支障を来たすようになる。一方、0.08mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.08mass%の範囲とする。好ましくは0.01〜0.05mass%の範囲である。
Next, the component composition of the steel material (slab) used for manufacture of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002-0.08 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect is lost, the slab is cracked, and surface defects occur, which hinders production. On the other hand, if it exceeds 0.08 mass%, it will be difficult to reduce to 0.005 mass% or less at which no magnetic aging occurs due to decarburization annealing. Therefore, C is in the range of 0.002 to 0.08 mass%. Preferably it is the range of 0.01-0.05 mass%.
Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減すのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.0〜8.0mass%の範囲とする。好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.0 mass%, it is not sufficient. On the other hand, if it exceeds 8.0 mass%, the workability is lowered and it is difficult to roll and manufacture. Therefore, Si is set to a range of 2.0 to 8.0 mass%. Preferably it is the range of 2.5-4.5 mass%.
Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.005mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とする。好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.005 mass%, it is not sufficient. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is set to a range of 0.005 to 1.0 mass%. Preferably it is the range of 0.02-0.20 mass%.
上記C,Si,Mn以外の成分としては、インヒビター形成成分であるAl,N,SおよびSeはできるだけ低減する必要がり、本発明では、Alはsol.Alで0.0150mass%未満、Nは0.0100mass%未満、SおよびSeは、それぞれ0.0050mass%未満に低減した鋼素材を用いる。なお、好ましくは、Alに関しては、sol.Alで0.0100mass%未満、Nに関しては、0.0050mass%未満である。 As components other than C, Si, and Mn, it is necessary to reduce Al, N, S, and Se as inhibitor forming components as much as possible. In the present invention, Al is sol. A steel material is used in which Al is less than 0.0150 mass%, N is less than 0.0100 mass%, and S and Se are each reduced to less than 0.0050 mass%. Preferably, for Al, sol. Al is less than 0.0100 mass%, and N is less than 0.0050 mass%.
なお、本発明に用いる鋼素材は、上記成分以外に、鉄損を改善する目的で、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、Te:0.005〜0.050mass%およびNb:0.0010〜0.0100mass%のうちから選ばれる1種または2種を含有してもよい。それぞれの元素の添加量が上記下限値より少ない場合には、鉄損低減効果が小さく、一方、上記上限値を超えると、磁束密度の低下を招き、磁気特性が劣化する。ただし、上記成分の中で、P,SnおよびSbは、粒界に偏析しやすく、本発明に及ぼす影響が大きいので、添加する場合には、これらの元素の上限は0.10mass%とするのが望ましく、より望ましくは0.05mass%である。 In addition to the above components, the steel material used in the present invention is for the purpose of improving iron loss, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 -0.50 mass%, P: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, You may contain 1 type or 2 types chosen from Mo: 0.005-0.100mass%, Te: 0.005-0.050mass% and Nb: 0.0010-0.0100mass%. When the amount of each element added is less than the lower limit, the effect of reducing iron loss is small. On the other hand, when the upper limit is exceeded, the magnetic flux density is lowered and the magnetic properties are deteriorated. However, among the above components, P, Sn and Sb are easily segregated at the grain boundaries and have a great influence on the present invention. Therefore, when added, the upper limit of these elements is 0.10 mass%. Is desirable, more desirably 0.05 mass%.
上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を害しない範囲内であれば、上記以外の成分を含有することを拒むものではない。 The balance other than the above components is Fe and inevitable impurities. However, as long as the effect of the present invention is not impaired, it does not refuse to contain components other than those described above.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の製造方法に用いる鋼素材(スラブ)は、上記に説明した成分組成を有する鋼を通常の精錬プロセスで溶製した後、通常公知の連続鋳造法または造塊−分塊圧延法で製造することが好ましい。また、直接製造法で100mm以下の薄鋳片を製造してもよい。
なお、上述した任意の添加成分は、製造過程の途中で添加することは困難であるので、溶鋼段階で添加するのが好ましい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The steel material (slab) used in the production method of the present invention is produced by a generally known continuous casting method or ingot-bundling rolling method after melting the steel having the component composition described above by a normal refining process. It is preferable to do. Moreover, you may manufacture a thin cast piece of 100 mm or less by a direct manufacturing method.
In addition, since it is difficult to add the arbitrary addition component mentioned above in the middle of a manufacturing process, it is preferable to add at the molten steel stage.
上記のようにして製造したスラブは、その後、再加熱して熱間圧延に供するが、本発明の成分系では、インヒビターを固溶させるための高温再加熱を必要としないため、スラブの再加熱温度は1250℃以下の低温とすることができる。 The slab produced as described above is then reheated and subjected to hot rolling. However, the component system of the present invention does not require high-temperature reheating to dissolve the inhibitor, so that the slab is reheated. The temperature can be a low temperature of 1250 ° C. or lower.
続く熱間圧延において重要なことは、熱延板の板厚をth、熱間仕上圧延の全圧下率をRfとしたとき、下記(1)式;
th>−0.0571×Rf+7.2 ・・・(1)
を満たして熱間圧延することである。この条件を満たすことにより、一次再結晶組織における方位差角20〜45°の高エネルギー粒界の比率を本発明範囲内に制御し易くなる。
What is important in the subsequent hot rolling is that when the thickness of the hot rolled sheet is t h and the total rolling reduction of the hot finish rolling is R f , the following equation (1):
t h > −0.0571 × R f +7.2 (1)
And hot rolling. By satisfying this condition, it becomes easy to control the ratio of high energy grain boundaries having an orientation difference angle of 20 to 45 ° in the primary recrystallized structure within the range of the present invention.
次いで、熱間圧延して得た熱延板は、本発明において最も重要な熱延板焼鈍を施す。
上記熱延板焼鈍は、一次再結晶後の鋼板における方位差角20〜45°の高エネルギー粒界の比率を65%以上とするためには、均熱温度を800〜1100℃の範囲とし、上記均熱温度に加熱する際の昇温速度(200℃〜均熱温度間の平均昇温速度)を5℃/s以上で加熱することが必要である。均熱温度が800℃未満では、再結晶が不十分となってバンド状組織が残存して一次再結晶後の集合組織が劣り、上記効果が得られない。一方、均熱温度が1100℃を超えると、結晶粒が粗大化し過ぎ、整粒の一次再結晶組織を得るのが難しくなる。好ましい均熱温度は900〜1050℃の範囲である。
また、昇温速度が5℃/s未満では、やはり、再結晶の前に回復が進むため、バンド状組織が残存し易くなり、上記の効果が得られなくなる。好ましくは、200〜600℃間を平均昇温速度15℃/s以上で加熱することである。
なお、熱延板焼鈍における均熱時間は、高エネルギー粒界の比率を高める観点からは、5秒以上とすることが好ましい。
Next, the hot-rolled sheet obtained by hot rolling is subjected to the most important hot-rolled sheet annealing in the present invention.
In order to set the ratio of high energy grain boundaries having an orientation angle angle of 20 to 45 ° in the steel sheet after the primary recrystallization to 65% or more, the hot rolled sheet annealing is performed at a soaking temperature in the range of 800 to 1100 ° C. It is necessary to heat at a heating rate (average heating rate between 200 ° C. and soaking temperature) at 5 ° C./s or higher when heating to the soaking temperature. If the soaking temperature is less than 800 ° C., recrystallization is insufficient and a band-like structure remains, resulting in poor texture after primary recrystallization, and the above effect cannot be obtained. On the other hand, when the soaking temperature exceeds 1100 ° C., the crystal grains become too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized particles. A preferable soaking temperature is in the range of 900 to 1050 ° C.
Further, when the rate of temperature rise is less than 5 ° C./s, the recovery proceeds before recrystallization, so that the band-like structure tends to remain and the above effect cannot be obtained. Preferably, it is heating between 200-600 degreeC with the average temperature increase rate of 15 degrees C / s or more.
The soaking time in the hot-rolled sheet annealing is preferably 5 seconds or more from the viewpoint of increasing the ratio of high energy grain boundaries.
上記熱延板焼鈍を施した熱延板は、その後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚に冷延板とする。上記中間焼鈍を行う場合には、焼鈍温度は900〜1200℃の範囲とするのが好ましい。900℃未満では、再結晶粒が細かくなり過ぎ、一次再結晶組織におけるGoss方位核が減少して磁気特性が劣化する。一方、1200℃を超えると、熱延板焼鈍と同様に粒径が粗大化し過ぎて、整粒の一次再結晶組織を得るのが難しくなる。 The hot-rolled sheet subjected to the above-mentioned hot-rolled sheet annealing is then made into a cold-rolled sheet with a final sheet thickness by cold rolling at least once with one or two intermediate sandwiches. When performing the said intermediate annealing, it is preferable to make annealing temperature into the range of 900-1200 degreeC. If it is less than 900 ° C., the recrystallized grains become too fine, the Goss orientation nuclei in the primary recrystallized structure decrease, and the magnetic properties deteriorate. On the other hand, when it exceeds 1200 ° C., the grain size becomes excessively coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of sized particles.
なお、最終板厚とする冷間圧延(最終冷間圧延)は、高エネルギー粒界の比率を高める観点から、鋼板温度を100〜300℃に上昇させて圧延する温間圧延を採用したり、圧延の途中で100〜300℃の温度で1回または複数回の時効処理を施したりすることが有効であり、また、最終冷間圧延の圧下率を81%以上に高めることも有効である。 In addition, cold rolling (final cold rolling) to be the final plate thickness employs warm rolling in which the steel plate temperature is increased to 100 to 300 ° C. from the viewpoint of increasing the ratio of high energy grain boundaries, It is effective to perform an aging treatment one or more times at a temperature of 100 to 300 ° C. during rolling, and it is also effective to increase the reduction ratio of the final cold rolling to 81% or more.
最終板厚に圧延した冷延板は、その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。
この一次再結晶焼鈍では、焼鈍後の鋼板における方位差角20〜45°の高エネルギー粒界の比率を65%以上とすることが必要である。好ましくは69〜85%の範囲である。
上記脱炭焼鈍の条件は、脱炭性を確保する観点から、均熱温度は800〜900℃の範囲とし、雰囲気は酸化性の湿潤雰囲気とすることが好ましい。なお、用いる鋼素材のC含有量が、脱炭が不要な0.005mass%以下である場合は、この限りではない。
また、一次再結晶焼鈍における昇温速度は、集合組織がランダム化し、高エネルギー粒界の比率が低下するのを防止するため、上限は200℃/sとすることが好ましい。
The cold-rolled sheet rolled to the final sheet thickness is then subjected to primary recrystallization annealing that also serves as decarburization annealing.
In this primary recrystallization annealing, it is necessary to set the ratio of high energy grain boundaries having a misorientation angle of 20 to 45 ° in the steel sheet after annealing to 65% or more. Preferably it is 69 to 85% of range.
From the viewpoint of ensuring decarburization, it is preferable that the soaking temperature is in the range of 800 to 900 ° C. and the atmosphere is an oxidizing wet atmosphere. In addition, it is not this limitation when C content of the steel raw material to be used is 0.005 mass% or less which does not require decarburization.
Moreover, in order to prevent the temperature increase rate in the primary recrystallization annealing from randomizing the texture and reducing the ratio of the high energy grain boundaries, the upper limit is preferably set to 200 ° C./s.
脱炭焼鈍した鋼板は、その後、窒化処理を施す。窒化処理する方法は、窒化量を制御できる方法であれば特に限定しないが、例えば、コイル形態のままNH3雰囲気でガス窒化を行なう方法や、走行するストリップをNH3雰囲気中に導入して連続的にガス窒化を行なう方法、上記ガス窒化法に比べて窒化能の高い塩浴窒化法等を用いることができる。 The decarburized and annealed steel sheet is then subjected to nitriding treatment. The method of nitriding is not particularly limited as long as the amount of nitriding can be controlled. For example, a method of performing gas nitridation in an NH 3 atmosphere with a coil form, or a continuous strip by introducing a running strip into the NH 3 atmosphere. In particular, a method of performing gas nitriding, a salt bath nitriding method having higher nitriding ability than the gas nitriding method, or the like can be used.
上記窒化処理のタイミングは、熱エネルギーを削減する観点からは、脱炭焼鈍後、鋼板温度を室温まで下げることなく連続して行うのが好ましいが、脱炭焼鈍後、一旦室温まで冷却した後、改めて窒化処理を行ってもよい。
窒化処理による窒素量の増加量(増窒量)は0.0050〜0.1000mass%(50〜1000massppm)の範囲が好ましい。窒素増量が0.0050mass%未満では、窒化珪素の析出量が少な過ぎて、磁気特性向上効果が十分に得られず、一方、0.1000mass%を超えると、窒化珪素の析出量が過多となり、二次再結晶が生じなくなるおそれがある。望ましくは0.0200〜0.0700mass%の範囲である。
From the viewpoint of reducing thermal energy, the timing of the nitriding treatment is preferably performed continuously after decarburization annealing without lowering the steel plate temperature to room temperature, but after decarburization annealing, after cooling to room temperature, Nitriding treatment may be performed again.
The amount of increase in nitrogen amount (nitrification increase amount) by nitriding is preferably in the range of 0.0050 to 0.1000 mass% (50 to 1000 massppm). If the nitrogen increase is less than 0.0050 mass%, the amount of silicon nitride deposited is too small and the effect of improving the magnetic properties is not sufficiently obtained. On the other hand, if it exceeds 0.1000 mass%, the amount of silicon nitride deposited becomes excessive, Secondary recrystallization may not occur. Desirably, it is in the range of 0.0200 to 0.0700 mass%.
窒化処理を施した鋼板は、その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布した後、仕上焼鈍を施して、二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させる。仕上焼鈍温度は、二次再結晶を発現させるためには800℃以上で行うことが好ましく、二次再結晶を完了させるためには上記温度で20時間以上保持することが好ましい。また、フォルステライト被膜を形成させたり、純化処理を施したりするためには、二次再結晶を完了させた後、1200℃程度の温度まで昇温するのが好ましい。 The steel sheet subjected to nitriding treatment is then applied with an annealing separator mainly composed of MgO on the steel sheet surface, and then subjected to finish annealing to develop a secondary recrystallized structure and to form a forsterite film. The finish annealing temperature is preferably 800 ° C. or higher in order to develop secondary recrystallization, and is preferably maintained at the above temperature for 20 hours or more in order to complete the secondary recrystallization. Further, in order to form a forsterite film or to perform a purification treatment, it is preferable to raise the temperature to about 1200 ° C. after completing the secondary recrystallization.
仕上焼鈍後の鋼板は、その後、鋼板表面に残留した焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を施した後、形状矯正および鉄損特性改善のため、平坦化焼鈍を施すことが好ましい。 The steel sheet after finish annealing is then subjected to flattening annealing for shape correction and iron loss property improvement after washing, brushing, pickling, etc. to remove the annealing separator remaining on the steel sheet surface. Is preferred.
なお、鋼板を積層して使用する場合には、鉄損を改善するため、上記平坦化焼鈍前もしくは後に、鋼板表面に絶縁被膜を被成することが好ましい。また、鉄損をより低減するためには、上記絶縁被膜は、鋼鈑表面に張力を付与する張力付与型のものであることが好ましい。なお、上記絶縁被膜の被成に際しては、バインダーを介して張力付与被膜を塗布する方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させてから塗布する方法を採用すると、被膜密着性に優れかつ著しい鉄損低減効果を有する被膜が得られる。 In addition, when using it, laminating | stacking a steel plate, in order to improve an iron loss, it is preferable to coat | cover an insulating film on the steel plate surface before or after the said planarization annealing. Moreover, in order to reduce iron loss more, it is preferable that the said insulating film is a tension | tensile_strengthening type thing which provides tension | tensile_strength to the steel plate surface. In addition, when the insulating film is formed, a method of applying a tension-imparting film via a binder or a method of applying an inorganic substance on a steel sheet surface by physical vapor deposition or chemical vapor deposition is adopted. A film having excellent properties and a remarkable effect of reducing iron loss can be obtained.
さらに、より鉄損を低減するためには、磁区細分化処理を施すことが好ましい。磁区細分化する方法としては、一般的に実施されている、最終製品板にローラー加工等で線状の溝や歪領域を形成したり、電子ビームやレーザ、プラズマジェットなどを照射して線状の熱歪領域や衝撃歪領域を導入したりする方法や、最終板厚に圧延した冷延板の表面に、それ以降の工程においてエッチング加工等で溝を入れたりする方法を用いることができる。 Furthermore, in order to further reduce the iron loss, it is preferable to perform a magnetic domain refinement process. As a method of subdividing the magnetic domain, a linear groove or strain region is formed on the final product plate by roller processing or the like, or an electron beam, laser, plasma jet, etc. is irradiated to form a linear shape. The method of introducing the thermal strain region or the impact strain region, or the method of forming grooves in the surface of the cold-rolled plate rolled to the final plate thickness by etching or the like in the subsequent steps can be used.
C:0.045mass%、Si:3.21mass%、Mn:0.08mass%、sol.Al:0.0080mass%、N:0.0035mass%、S:0.0034mass%およびSe:0.0010mass%を含有するスラブを連続鋳造法で製造し、1230℃の温度に再加熱した後、熱間粗圧延で40mmのシートバーとし、熱間仕上圧延で2.4mm(圧下率94.0%)の板厚の熱延板に仕上げた。
その後、上記熱延板に、表1に示した昇温速度で均熱温度まで加熱し、45秒間保持する熱延板焼鈍を施した後、冷間圧延して最終板厚0.27mmの冷延板に仕上げた。
次いで、55vol%H2−45vol%N2で、露点60℃の湿潤雰囲気下で、840℃×90秒の脱炭焼鈍を兼ねて行う一次再結晶焼鈍を施した。
この際、上記一次再結晶後の鋼板からサンプルを採取し、その断面を、板厚(0.27mm)×長さ5mmの範囲に亘ってEBSPで測定して粒界の方位差角分布を得、これから、方位差角20〜45°の高エネルギー粒界の比率を算出した。
その後、一次再結晶後の鋼板に、80vol%N2+20vol%NH3の雰囲気中で、550℃で240秒間保持する窒化処理を施した。
次いで、上記窒化処理後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布・乾燥した後、二次再結晶させた後、水素雰囲気下で、1230℃で2時間保持して純化処理する仕上焼鈍を施し、製品板とした。
C: 0.045 mass%, Si: 3.21 mass%, Mn: 0.08 mass%, sol. A slab containing Al: 0.0080 mass%, N: 0.0035 mass%, S: 0.0034 mass% and Se: 0.0010 mass% was manufactured by a continuous casting method, and after reheating to a temperature of 1230 ° C, A hot rolled sheet having a sheet thickness of 2.4 mm (reduction ratio 94.0%) was finished by hot finish rolling.
Thereafter, the hot-rolled sheet is heated to a soaking temperature at the rate of temperature increase shown in Table 1 and subjected to hot-rolled sheet annealing that is held for 45 seconds, and then cold-rolled to obtain a final sheet thickness of 0.27 mm. Finished in a sheet.
Next, primary recrystallization annealing was performed at 55 vol% H 2 -45 vol% N 2 in a humid atmosphere with a dew point of 60 ° C., which also served as decarburization annealing at 840 ° C. for 90 seconds.
At this time, a sample was taken from the steel sheet after the primary recrystallization, and the cross section was measured by EBSP over a range of plate thickness (0.27 mm) × length 5 mm to obtain an orientation difference distribution of grain boundaries. From this, the ratio of high energy grain boundaries with an orientation difference angle of 20 to 45 ° was calculated.
Thereafter, the steel sheet after the primary recrystallization was subjected to nitriding treatment for 240 seconds at 550 ° C. in an atmosphere of 80 vol% N 2 +20 vol% NH 3 .
Next, after applying and drying an annealing separator mainly composed of MgO on the surface of the steel sheet after the nitriding treatment, the secondary recrystallization is performed, and then a finishing treatment is performed by holding at 1230 ° C. for 2 hours in a hydrogen atmosphere. Annealed to give a product plate.
斯くして得た製品板から試験片を採取し、JIS C2550に記載の方法で磁束密度B8を測定した。
得られた結果を表1に併記する。同表から、本発明に適合する条件で製造した方向性電磁鋼板では、磁束密度B8:1.90T以上が安定して得られていることがわかる。
And thus the product plate from the specimen obtained was in collected, the magnetic flux density was measured B 8 by the method described in JIS C2550.
The obtained results are also shown in Table 1. From the table, it can be seen that the magnetic flux density B 8 : 1.90 T or more is stably obtained in the grain-oriented electrical steel sheet manufactured under conditions suitable for the present invention.
表2に示した種々の成分組成からなるスラブを連続鋳造法で製造し、1150℃の温度に再加熱した後、熱間粗圧延で30mmのシートバーとし、熱間仕上圧延で2.7mm(圧下率91.0%)の板厚の熱延板に仕上げた。
その後、200〜600℃間の昇温速度を17℃/sかつ200〜950℃間の昇温速度を10℃/sとして均熱温度まで加熱し、950℃×30秒の熱延板焼鈍を施した。
次いで、上記熱延板を冷間圧延して1.7mmの板厚とし、1100℃×45秒の中間焼鈍を施した後、100℃の温度で温間圧延して最終板厚0.23mmの冷延板に仕上げた。
次いで、60vol%H2−40vol%N2で露点64℃の湿潤雰囲気下で、850℃×100秒の脱炭焼鈍を兼ねて行う一次再結晶焼鈍を施した。
この際、上記一次再結晶後の鋼板からサンプルを採取し、その断面を、板厚(0.27mm)×長さ5mmの範囲に亘ってEBSPで測定して粒界の方位差角分布を得、これから、方位差角20〜45°の高エネルギー粒界の比率を算出した。
その後、一次再結晶後の鋼板に、90vol%N2+5vol%H2+5vol%NH3の雰囲気中で、800℃で30秒間保持する窒化処理を施した。
次いで、上記窒化処理後の鋼板表面にMgOを主体とする焼鈍分離剤を塗布・乾燥した後、二次再結晶させた後、水素雰囲気下で、1200℃で10時間保持して純化処理する仕上焼鈍を施し、製品板とした。
Slabs having various component compositions shown in Table 2 were manufactured by a continuous casting method, reheated to a temperature of 1150 ° C., then hot-rolled into 30 mm sheet bars, and hot-finished by 2.7 mm ( The sheet was finished into a hot-rolled sheet having a reduction ratio of 91.0%.
Thereafter, the heating rate between 200 to 600 ° C. is set to 17 ° C./s and the heating rate between 200 to 950 ° C. is set to 10 ° C./s and heated to a soaking temperature. gave.
Next, the hot-rolled sheet was cold-rolled to a thickness of 1.7 mm, subjected to intermediate annealing at 1100 ° C. for 45 seconds, and then warm-rolled at a temperature of 100 ° C. to a final thickness of 0.23 mm. Finished in cold rolled sheet.
Next, primary recrystallization annealing was performed at 60 vol% H 2 -40 vol% N 2 in a humid atmosphere with a dew point of 64 ° C. and also performing decarburization annealing at 850 ° C. for 100 seconds.
At this time, a sample was taken from the steel sheet after the primary recrystallization, and the cross section was measured by EBSP over a range of plate thickness (0.27 mm) × length 5 mm to obtain an orientation difference distribution of grain boundaries. From this, the ratio of high energy grain boundaries with an orientation difference angle of 20 to 45 ° was calculated.
Thereafter, the steel sheet after the primary recrystallization was subjected to a nitriding treatment that was held at 800 ° C. for 30 seconds in an atmosphere of 90 vol% N 2 +5 vol% H 2 +5 vol% NH 3 .
Next, after applying and drying an annealing separator mainly composed of MgO on the surface of the steel sheet after the nitriding treatment, secondary recrystallization is performed, and then a finishing treatment is performed by maintaining at 1200 ° C. for 10 hours in a hydrogen atmosphere. Annealed to give a product plate.
斯くして得た製品板から試験片を採取し、JIS C2550に記載の方法で磁束密度B8を測定した。
得られた結果を表2に併記する。同表から、本発明に適合する条件で製造した方向性電磁鋼板では、磁束密度B8:1.92T以上が安定して得られていることがわかる。
And thus the product plate from the specimen obtained was in collected, the magnetic flux density was measured B 8 by the method described in JIS C2550.
The obtained results are also shown in Table 2. From the table, it can be seen that the magnetic flux density B 8 : 1.92 T or more is stably obtained in the grain-oriented electrical steel sheet manufactured under the conditions suitable for the present invention.
本発明の技術は、窒化処理で表面硬度を高めたり、強度自体を高めたりする方法としても用いることができる。 The technique of the present invention can also be used as a method of increasing the surface hardness by nitriding or increasing the strength itself.
Claims (3)
上記熱延板焼鈍における均熱温度を800〜1100℃とし、加熱過程における200℃〜均熱温度間の平均昇温速度を5℃/s以上として、一次再結晶後の鋼板の方位差角20〜45°の粒界の全体の粒界に対する比率を65%以上とし、上記窒化処理における増窒量を0.0050〜0.1000mass%の範囲とすることを特徴とする方向性電磁鋼板の製造方法。 C: 0.002~0.08mass%, Si: 2.0~ 4.5 mass% and Mn: containing 0.005~1.0mass%, sol. Al is less than 0.0150 mass%, N is less than 0.0100 mass%, S and Se are each reduced to less than 0.0050 mass%, and a slab having a composition composed of Fe and unavoidable impurities as the balance is 1250 ° C. or less. After reheating to temperature, hot rolled to hot rolled sheet, hot rolled sheet annealed, cold rolled twice or more with one or more intermediate sandwiches in between to make a cold rolled sheet of final thickness, decarburized Directional electromagnetics consisting of a series of processes in which primary recrystallization annealing that also serves as annealing is performed, nitriding is performed during or after decarburization annealing, and then an annealing separator is applied to the surface of the steel sheet and finish annealing is performed. In the manufacturing method of the steel sheet,
The soaking temperature in the hot-rolled sheet annealing is set to 800 to 1100 ° C., and the average heating rate between 200 ° C. and the soaking temperature in the heating process is set to 5 ° C./s or more. Production of grain- oriented electrical steel sheet, characterized in that the ratio of grain boundaries of ˜45 ° to the whole grain boundaries is 65% or more , and the nitriding amount in the nitriding treatment is in the range of 0.0050 to 0.1000 mass%. Method.
記
th>−0.0571×Rf+7.2 ・・・(1) The thickness of the hot-rolled sheet t h (mm), when the total rolling reduction of hot finish rolling and R f (%), hot to the t h and R f satisfies the following formula (1) rolling The method for producing a grain-oriented electrical steel sheet according to claim 1.
T h > −0.0571 × R f +7.2 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014080993A JP6132103B2 (en) | 2014-04-10 | 2014-04-10 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014080993A JP6132103B2 (en) | 2014-04-10 | 2014-04-10 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015200002A JP2015200002A (en) | 2015-11-12 |
JP6132103B2 true JP6132103B2 (en) | 2017-05-24 |
Family
ID=54551549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014080993A Active JP6132103B2 (en) | 2014-04-10 | 2014-04-10 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6132103B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101707451B1 (en) * | 2015-12-22 | 2017-02-16 | 주식회사 포스코 | Grain oriented electrical steel sheet and method for manufacturing the same |
CA3014035C (en) * | 2016-02-22 | 2021-02-09 | Jfe Steel Corporation | Method of producing grain-oriented electrical steel sheet |
JP6455468B2 (en) * | 2016-03-09 | 2019-01-23 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP6617827B2 (en) * | 2016-03-09 | 2019-12-11 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP6777025B2 (en) * | 2016-07-01 | 2020-10-28 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
JP6748375B2 (en) | 2016-10-19 | 2020-09-02 | Jfeスチール株式会社 | Descaling method for Si-containing hot rolled steel sheet |
KR102295735B1 (en) * | 2017-02-20 | 2021-08-30 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing grain-oriented electrical steel sheet |
JP6900977B2 (en) * | 2018-06-29 | 2021-07-14 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
CN114107787A (en) * | 2020-08-27 | 2022-03-01 | 宝山钢铁股份有限公司 | High magnetic induction oriented silicon steel and manufacturing method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4123653B2 (en) * | 1999-10-12 | 2008-07-23 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP4196565B2 (en) * | 2002-02-05 | 2008-12-17 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP2003253336A (en) * | 2002-03-06 | 2003-09-10 | Jfe Steel Kk | Method of manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent surface properties |
JP4923821B2 (en) * | 2006-07-26 | 2012-04-25 | Jfeスチール株式会社 | Unidirectional electrical steel sheet and manufacturing method thereof |
JP2011219793A (en) * | 2010-04-06 | 2011-11-04 | Nippon Steel Corp | Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same |
CN104024457B (en) * | 2011-12-28 | 2017-11-07 | 杰富意钢铁株式会社 | Grain-oriented magnetic steel sheet and its manufacture method |
RU2599942C2 (en) * | 2012-07-26 | 2016-10-20 | ДжФЕ СТИЛ КОРПОРЕЙШН | Method of making sheet of textured electrical steel |
-
2014
- 2014-04-10 JP JP2014080993A patent/JP6132103B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015200002A (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6132103B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5854233B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN106414780B (en) | Method for producing grain-oriented electrical steel sheet | |
JP6617827B2 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2016136095A9 (en) | Method for producing non-oriented electrical steel sheets | |
US9214275B2 (en) | Method for manufacturing grain oriented electrical steel sheet | |
JP5737483B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR101683693B1 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2014049770A1 (en) | Process for producing grain-oriented electromagnetic steel sheet | |
JP2013047382A (en) | Method of producing grain-oriented electromagnetic steel sheet | |
US20170240988A1 (en) | Method of manufacturing grain-oriented electrical steel sheet | |
JP6856179B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6813143B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2016199423A1 (en) | Oriented electromagnetic steel sheet and method for producing same | |
KR102295735B1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP6344263B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7197068B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6947147B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5712652B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2014194073A (en) | Method for manufacturing oriented electromagnetic steel sheet | |
JP5712626B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5310510B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7338511B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2014173103A (en) | Method of producing grain-oriented magnetic steel sheet | |
US20230212720A1 (en) | Method for the production of high permeability grain oriented electrical steel containing chromium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6132103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |