JP6122728B2 - SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material - Google Patents
SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material Download PDFInfo
- Publication number
- JP6122728B2 JP6122728B2 JP2013159940A JP2013159940A JP6122728B2 JP 6122728 B2 JP6122728 B2 JP 6122728B2 JP 2013159940 A JP2013159940 A JP 2013159940A JP 2013159940 A JP2013159940 A JP 2013159940A JP 6122728 B2 JP6122728 B2 JP 6122728B2
- Authority
- JP
- Japan
- Prior art keywords
- sic
- composite material
- fiber
- reinforced
- sic fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/02—Details
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
- C04B2235/483—Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Description
本発明は、SiC繊維強化SiC複合材料及びSiC繊維強化SiC複合材料の製造方法に関する。 The present invention relates to a SiC fiber reinforced SiC composite material and a method for producing a SiC fiber reinforced SiC composite material.
炭化珪素(SiC)、窒化珪素(Si3N4)等のセラミック材料は、耐熱性、化学的安定性、機械的特性に優れている。そのため、これらのセラミック材料は、原子力分野、航空・宇宙分野、発電分野等の過酷な環境下や、ポンプメカニカルシール等の一般的な分野で使用される材料として開発が進められている。これらのセラミック材料のうち、SiCは、上記の特性に優れていることから、広範囲な分野において有望視されている構造材料である。 Ceramic materials such as silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) are excellent in heat resistance, chemical stability, and mechanical properties. Therefore, these ceramic materials are being developed as materials used in harsh environments such as the nuclear field, aerospace field, and power generation field, and in general fields such as pump mechanical seals. Of these ceramic materials, SiC is a structural material that is promising in a wide range of fields because of its excellent properties.
ただし、SiC自体は脆い材料であるため、SiC繊維とSiCマトリックスとからなるSiC繊維/SiC複合材料が提案されている。しかしながら、SiC繊維/SiC複合材料であっても、SiCマトリックスに亀裂が生じると、マトリックス中に亀裂が進展し、SiC繊維にまで亀裂が伝播することがあった。 However, since SiC itself is a brittle material, a SiC fiber / SiC composite material composed of a SiC fiber and a SiC matrix has been proposed. However, even in the SiC fiber / SiC composite material, when a crack occurs in the SiC matrix, the crack propagates in the matrix and the crack may propagate to the SiC fiber.
そこで、例えば、特許文献1には、SiC繊維表面に炭素、窒化ホウ素及び炭化ケイ素の少なくとも1種を含む被覆層が形成されてなる被覆SiC繊維に対し、SiC微粉末及び焼結助剤を含み、かつ、有機ケイ素高分子を含まないスラリーを含浸させることにより予備成形体を得る第1工程と、上記予備成形体を加圧焼結させる第2工程を含むことを特徴とするSiC繊維強化型SiC複合材料の製造方法が開示されている。 Therefore, for example, Patent Document 1 includes SiC fine powder and a sintering aid for a coated SiC fiber in which a coating layer containing at least one of carbon, boron nitride, and silicon carbide is formed on the surface of the SiC fiber. And a SiC fiber reinforced mold comprising a first step of obtaining a preform by impregnating a slurry containing no organosilicon polymer and a second step of pressure-sintering the preform. A method of manufacturing a SiC composite material is disclosed.
特許文献1に記載の方法により製造される複合材料では、SiC繊維表面に被覆層が形成されているため、SiCマトリックスに亀裂が生じても、その亀裂がSiC繊維まで伝播することを防止することができる。そのため、特許文献1に記載の方法により製造される複合材料は高強度であるとされている。 In the composite material manufactured by the method described in Patent Document 1, since the coating layer is formed on the surface of the SiC fiber, even if a crack occurs in the SiC matrix, the crack is prevented from propagating to the SiC fiber. Can do. Therefore, it is said that the composite material manufactured by the method described in Patent Document 1 has high strength.
しかしながら、被覆層の材料として使用されている炭素(熱分解炭素)や窒化ホウ素(熱分解窒化ホウ素:PBN)等には耐蝕性がない。そのため、特許文献1に記載の方法により製造される複合材料を、軽水炉構造部材等の原子力構造部材の材料として使用する場合、高温下において被覆層が水と反応し、被覆層が破損する結果、複合材料の強度が低下してしまう。また、PBNの成膜温度としては1750℃以上が必要であるため、成膜時にSiC繊維に加わるダメージが大きく、高強度の複合材料を得ることが困難である。このように、従来の製造方法によって得られる複合材料には、さらなる改善の余地があった。 However, carbon (pyrolytic carbon), boron nitride (pyrolytic boron nitride: PBN) and the like used as the material for the coating layer do not have corrosion resistance. Therefore, when the composite material manufactured by the method described in Patent Document 1 is used as a material for a nuclear structural member such as a light water reactor structural member, the coating layer reacts with water at a high temperature, and the coating layer is damaged. The strength of the composite material is reduced. In addition, since the PBN film forming temperature is required to be 1750 ° C. or higher, the damage applied to the SiC fiber during film formation is large, and it is difficult to obtain a high-strength composite material. Thus, the composite material obtained by the conventional manufacturing method has room for further improvement.
本発明は、上記の問題を解決するためになされたものであり、異種材料の被覆層等を含まず、SiCのみで高強度のSiC繊維強化SiC複合材料及び該SiC繊維強化SiC複合材料の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and does not include a coating layer of a different material, and the SiC fiber-reinforced SiC composite material having high strength only by SiC and the production of the SiC fiber-reinforced SiC composite material. It aims to provide a method.
本発明のSiC繊維強化SiC複合材料は、SiC繊維とSiCマトリックスとからなるSiC繊維強化SiC複合材料であって、上記SiCマトリックス中に略球形の気泡を有し、原子力用構造部材であることを特徴とする。 The SiC fiber reinforced SiC composite material of the present invention is a SiC fiber reinforced SiC composite material composed of SiC fibers and a SiC matrix, and has substantially spherical bubbles in the SiC matrix, and is a structural member for nuclear power. Features.
本発明のSiC繊維強化SiC複合材料においては、構成材料がSiCであるため、高強度を実現することができる。また、SiCマトリックス中に気泡が存在すると、SiCマトリックスが低弾性となる。そのため、本発明の複合材料では、SiCマトリックスに亀裂が生じても、SiCマトリックス中に存在する気泡によって亀裂の進展を防止し、その亀裂がSiC繊維にまで伝播することを防止することができる。
また、気泡が略球形であると、外部からの衝撃によって発生した亀裂によるエネルギーが周囲に分散され、亀裂の進展を防ぐことができる。
なお、「略球形」とは、本発明の各効果を奏する程度に球形であればよく、完全に球形であってもよいし、実質的に球形であってもよい。
このように、本発明の複合材料では、亀裂の伝播を防止するための被覆層等を含まずに、高強度の複合材料とすることができる。
In the SiC fiber reinforced SiC composite material of the present invention, since the constituent material is SiC, high strength can be realized. Further, when bubbles are present in the SiC matrix, the SiC matrix becomes low elastic. Therefore, in the composite material of the present invention, even if a crack occurs in the SiC matrix, the progress of the crack can be prevented by the bubbles present in the SiC matrix, and the crack can be prevented from propagating to the SiC fiber.
Further, when the bubbles are substantially spherical, energy due to cracks generated by external impact is dispersed to the surroundings, and the progress of cracks can be prevented.
The “substantially spherical shape” may be a spherical shape to the extent that each effect of the present invention is exhibited, and may be a complete spherical shape or a substantially spherical shape.
As described above, the composite material of the present invention can be a high-strength composite material without including a coating layer or the like for preventing the propagation of cracks.
上記気泡は、SiCからなる殻で囲まれていることが望ましい。気泡を形成する殻によって、亀裂の伝播をより防止することができる。 The bubbles are preferably surrounded by a shell made of SiC. The propagation of cracks can be further prevented by the shell forming the bubbles.
上記気泡の直径は、上記SiC繊維の直径より小さいことが望ましい。気泡の直径が小さいと、SiCマトリックスの弾性率が高い部分を少なくすることができるため、亀裂の伝播をより防止することができる。 The diameter of the bubbles is preferably smaller than the diameter of the SiC fiber. When the diameter of the bubbles is small, the portion having a high elastic modulus of the SiC matrix can be reduced, so that the propagation of cracks can be further prevented.
上記SiC繊維は、複数本がまとまってSiC繊維束を構成していることが望ましい。SiC繊維がまとまって束で存在すると、SiC繊維間に空間ができにくいので、複合材料中のSiC繊維の存在比率を高くすることができ、高強度の複合材料を得ることができる。 As for the said SiC fiber, it is desirable for the SiC fiber bundle to comprise the SiC fiber bundle. When the SiC fibers are present in a bundle, it is difficult to form a space between the SiC fibers. Therefore, the existence ratio of the SiC fibers in the composite material can be increased, and a high-strength composite material can be obtained.
上記SiC繊維の表面から上記SiC繊維の直径の距離の範囲における上記SiCマトリックス中の上記気泡の含有率は、10〜50vol%であることが望ましい。上記の範囲における気泡の含有率が10〜50vol%であることは、SiC繊維の近傍に気泡が存在することを意味する。この場合、SiC繊維の表面が低弾性のマトリックスで覆われるため、亀裂の起点となる傷がSiC繊維の表面に付きにくくなる。 As for the content rate of the said bubble in the said SiC matrix in the range of the distance of the diameter of the said SiC fiber from the surface of the said SiC fiber, it is desirable that it is 10-50 vol%. That the content rate of the bubble in said range is 10-50 vol% means that a bubble exists in the vicinity of a SiC fiber. In this case, since the surface of the SiC fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is hardly attached to the surface of the SiC fiber.
本発明のSiC繊維強化SiC複合材料は、軽水炉用構造部材であることが望ましい。軽水炉用構造部材等の原子力用構造部材の材料として本発明の複合材料を使用する場合、応力によって複合材料が変形し、SiC繊維に達する亀裂が生じたとしても、SiC繊維の表面には熱分解炭素等からなる被覆層が形成されていないため、被覆層が水と反応して複合材料の強度が低下するという問題を防止することができる。 The SiC fiber reinforced SiC composite material of the present invention is desirably a light water reactor structural member. When the composite material of the present invention is used as a material for a nuclear structural member such as a light water reactor structural member, the surface of the SiC fiber is thermally decomposed even if the composite material is deformed by a stress and a crack reaching the SiC fiber occurs. Since the coating layer made of carbon or the like is not formed, the problem that the coating layer reacts with water and the strength of the composite material is reduced can be prevented.
本発明のSiC繊維強化SiC複合材料の製造方法は、原子力用構造部材であるSiC繊維強化SiC複合材料の製造方法であって、SiC繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、上記含浸体を焼成する焼成工程とを含むことを特徴とする。 A method for producing a SiC fiber reinforced SiC composite material according to the present invention is a method for producing a SiC fiber reinforced SiC composite material that is a nuclear structural member, wherein a matrix precursor and a hollow body are added to a fiber assembly made of SiC fibers. An impregnation step of impregnating a slurry containing the impregnation product and a firing step of firing the impregnation product are characterized.
本発明のSiC繊維強化SiC複合材料の製造方法では、スラリーに中空体を混入することによって、マトリックス中に気泡を形成することができる。その結果、上述した本発明のSiC繊維強化SiC複合材料を製造することができる。 In the method for producing a SiC fiber-reinforced SiC composite material of the present invention, bubbles can be formed in the matrix by mixing a hollow body into the slurry. As a result, the above-described SiC fiber reinforced SiC composite material of the present invention can be manufactured.
上記マトリックス前駆体は、有機珪素化合物であってもよい。有機珪素化合物を焼成することによって、SiCからなるマトリックスを形成することができる。 The matrix precursor may be an organosilicon compound. By baking the organosilicon compound, a matrix made of SiC can be formed.
また、上記マトリックス前駆体は、SiC粒子と焼結助剤とからなっていてもよい。焼結助剤を用いてSiC粒子を焼結することによって、SiCからなるマトリックスを形成することができる。 The matrix precursor may be composed of SiC particles and a sintering aid. A SiC matrix can be formed by sintering SiC particles using a sintering aid.
上記SiC粒子の平均粒子径は、上記中空体の平均気泡径より小さいことが望ましい。中空体の平均気泡径よりもSiC粒子の平均粒子径を小さくすることで、マトリックス内部に発生する応力集中を小さくしつつ、弾性率の低いマトリックスを形成することができる。 The average particle diameter of the SiC particles is preferably smaller than the average cell diameter of the hollow body. By making the average particle diameter of the SiC particles smaller than the average bubble diameter of the hollow body, it is possible to form a matrix having a low elastic modulus while reducing the concentration of stress generated inside the matrix.
上記SiC繊維は、複数本がまとまってSiC繊維束を構成していることが望ましい。 As for the said SiC fiber, it is desirable for the SiC fiber bundle to comprise the SiC fiber bundle.
上記繊維集合体は、織布、マット、ブレーディング(組紐)成形体、及び、フィラメントワインディング成形体からなる群より選択される少なくとも一層の繊維集合体であることが望ましい。 The fiber assembly is preferably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded product, and a filament winding molded product.
本発明によれば、異種材料の被覆層等を含まず、SiCのみで高強度のSiC繊維強化SiC複合材料及び該SiC繊維強化SiC複合材料の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the SiC fiber reinforced SiC composite material which does not include the coating layer etc. of a dissimilar material, and is high intensity | strength only by SiC, and this SiC fiber reinforced SiC composite material can be provided.
(発明の詳細な説明)
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
[SiC繊維強化SiC複合材料]
まず、本発明のSiC繊維強化SiC複合材料について説明する。
本発明のSiC繊維強化SiC複合材料は、SiC繊維とSiCマトリックスとからなるSiC繊維強化SiC複合材料であって、上記SiCマトリックス中に略球形の気泡を有し、原子力用構造部材であることを特徴とする。
[SiC fiber reinforced SiC composite material]
First, the SiC fiber reinforced SiC composite material of the present invention will be described.
The SiC fiber reinforced SiC composite material of the present invention is a SiC fiber reinforced SiC composite material composed of SiC fibers and a SiC matrix, and has substantially spherical bubbles in the SiC matrix, and is a structural member for nuclear power. Features.
図1(a)は、本発明のSiC繊維強化SiC複合材料の一例を模式的に示す断面図であり、図1(b)は、図1(a)に示すSiC繊維強化SiC複合材料のA−A線断面図である。
図1(a)は、SiC繊維の長さ方向に垂直な方向の断面図であり、図1(b)は、SiC繊維の長さ方向に平行な方向の断面図である。
Fig.1 (a) is sectional drawing which shows typically an example of the SiC fiber reinforced SiC composite material of this invention, FIG.1 (b) is A of SiC fiber reinforced SiC composite material shown to Fig.1 (a). FIG.
Fig.1 (a) is sectional drawing of the direction perpendicular | vertical to the length direction of a SiC fiber, FIG.1 (b) is sectional drawing of the direction parallel to the length direction of a SiC fiber.
図1(a)及び図1(b)に示すSiC繊維強化SiC複合材料10は、SiC繊維11とSiCマトリックス12とからなる複合材料である。SiC繊維強化SiC複合材料10は、SiCマトリックス12中に気泡13を有している。
An SiC fiber reinforced SiC
本発明のSiC繊維強化SiC複合材料において、SiC繊維としては、NGSアドバンストファイバー製Hi−Nicalon、宇部興産製Tyranno−SA等を使用することができる。 In the SiC fiber-reinforced SiC composite material of the present invention, as the SiC fiber, Hi-Nicalon made by NGS Advanced Fiber, Tyranno-SA made by Ube Industries, etc. can be used.
SiC繊維の直径は、SiC繊維強化SiC複合材料の用途に応じて適宜設定できるが、5〜25μmであることが望ましい。SiC繊維の直径が5μm以上であると、使用するSiC粒子及び中空体に対して充分に大きな直径を確保できるので、高強度の複合材料を得ることができる。SiC繊維の直径が25μm以下であると、SiC繊維が曲がっても表面の延び率を小さくすることができるので破断しにくくすることができる。SiC繊維束を構成するSiC繊維の本数は、例えば50〜2000本である。 Although the diameter of a SiC fiber can be suitably set according to the use of a SiC fiber reinforced SiC composite material, it is desirable that it is 5-25 micrometers. When the diameter of the SiC fiber is 5 μm or more, a sufficiently large diameter can be secured for the SiC particles and the hollow body to be used, so that a high-strength composite material can be obtained. If the diameter of the SiC fiber is 25 μm or less, the elongation rate of the surface can be reduced even if the SiC fiber is bent, so that it is difficult to break. The number of SiC fibers constituting the SiC fiber bundle is, for example, 50 to 2000.
SiC繊維の直径は、SiC繊維強化SiC複合材料の断面を走査型電子顕微鏡(SEM)で観察することにより測定することができる。 The diameter of the SiC fiber can be measured by observing a cross section of the SiC fiber-reinforced SiC composite material with a scanning electron microscope (SEM).
本発明のSiC繊維強化SiC複合材料において、マトリックスは、SiCからなるマトリックスである。 In the SiC fiber-reinforced SiC composite material of the present invention, the matrix is a matrix made of SiC.
本発明のSiC繊維強化SiC複合材料は、SiCマトリックス中に気泡を有するものであるが、気泡は、SiCマトリックス全体に分散していてもよく、SiCマトリックスの一部に偏在していてもよい。特に、SiC繊維の近傍に気泡が存在すると、SiC繊維に接するSiCマトリックスの弾性率が低くなるため、SiCマトリックス中に生じた亀裂がSiC繊維に伝播することを防止することができる。 The SiC fiber-reinforced SiC composite material of the present invention has bubbles in the SiC matrix, but the bubbles may be dispersed throughout the SiC matrix or may be unevenly distributed in a part of the SiC matrix. In particular, if air bubbles are present in the vicinity of the SiC fiber, the elastic modulus of the SiC matrix in contact with the SiC fiber is lowered, so that cracks generated in the SiC matrix can be prevented from propagating to the SiC fiber.
SiCマトリックス中に気泡を形成する方法は特に限定されないが、後述するように、スラリーに中空体を混入することによって気泡が形成されていることが望ましい。 The method of forming bubbles in the SiC matrix is not particularly limited, but it is desirable that the bubbles are formed by mixing a hollow body into the slurry, as will be described later.
気泡は、SiCからなる殻で囲まれていることが望ましい。SiCからなる殻は、SiCマトリックスの組織よりも緻密な材料で構成されるため、気泡を形成する殻によって、亀裂の伝播をより防止することができる。このように、本発明のSiC繊維強化SiC複合材料においては、気泡が殻で囲まれていることが望ましいが、殻で囲まれていなくてもよい。 It is desirable that the bubbles are surrounded by a shell made of SiC. Since the shell made of SiC is made of a material denser than the structure of the SiC matrix, the propagation of cracks can be further prevented by the shell forming bubbles. As described above, in the SiC fiber-reinforced SiC composite material of the present invention, it is desirable that the bubbles are surrounded by the shell, but the bubbles need not be surrounded by the shell.
気泡の直径は、SiC繊維の直径より小さいことが望ましい。気泡の直径が小さいと、SiCマトリックスの弾性率が高い部分を少なくすることができるため、亀裂の伝播をより防止することができる。 It is desirable that the diameter of the bubbles is smaller than the diameter of the SiC fiber. When the diameter of the bubbles is small, the portion having a high elastic modulus of the SiC matrix can be reduced, so that the propagation of cracks can be further prevented.
具体的には、気泡の直径は、2〜20μmであることが望ましい。気泡の直径が2μm以上であると、SiC粒子の形成する気孔より充分に大きな気泡を形成することができるので、亀裂の進展を防ぐ効果を大きくすることができる。気泡の直径が20μm以下であると、曲げても折れにくい屈曲性の高いSiC繊維を使用することができるので、高強度の複合材料を得ることができる。 Specifically, the bubble diameter is desirably 2 to 20 μm. If the diameter of the bubbles is 2 μm or more, bubbles that are sufficiently larger than the pores formed by the SiC particles can be formed, so that the effect of preventing the progress of cracks can be increased. When the bubble diameter is 20 μm or less, a highly flexible SiC fiber that does not break even when bent can be used, and thus a high-strength composite material can be obtained.
なお、気泡の直径は、気泡の体積と体積が同一の球(相当球)の直径を示し、走査型電子顕微鏡(SEM)を用いて測定することができる。立体的な形状であるので、集束イオンビーム(FIB)を用いて、少しずつ削りながら測定を繰り返し、気泡径を計測する。 The bubble diameter indicates the diameter of a sphere (equivalent sphere) having the same volume as the bubble volume, and can be measured using a scanning electron microscope (SEM). Since it is a three-dimensional shape, the measurement is repeated using a focused ion beam (FIB) while gradually scraping to measure the bubble diameter.
気泡の形状は、略球形である。気泡が略球形であると、外部からの衝撃によって発生した亀裂によるエネルギーが周囲に分散され、亀裂の進展を防ぐことができる。 The shape of the bubble is substantially spherical. When the bubbles are substantially spherical, energy due to cracks generated by an external impact is dispersed to the surroundings, and the progress of the cracks can be prevented.
SiCマトリックス中の気泡の含有率は特に限定されないが、SiC繊維の表面からSiC繊維の直径の距離の範囲におけるマトリックス中の気泡の含有率が、10〜50vol%であることが望ましく、20〜30vol%であることがより望ましい。上記の範囲における気泡の含有率が10〜50vol%であることは、SiC繊維の近傍に気泡が存在することを意味する。この場合、SiC繊維の表面が低弾性のマトリックスで覆われるため、亀裂の起点となる傷がSiC繊維の表面に付きにくくなる。気泡の含有率が10vol%以上であると、マトリックスに充分な機械強度があるので、複合材料としての強度を確保することができる。気泡の含有率が50vol%以下であると、発生した亀裂のエネルギーが周囲に分散されやすく、割れにくくすることができる。また、気泡の含有率が20vol%以上であると、マトリックスにより大きな機械強度があるので、複合材料としての強度をさらに確保することができる。気泡の含有率が30vol%以下であると、発生した亀裂のエネルギーがより周囲に分散されやすく、さらに割れにくくすることができる。
なお、SiC繊維が、複数本まとまってSiC繊維束を構成している場合には、1本のSiC繊維を囲むマトリックスのみについて気泡の含有率を定義する。
The bubble content in the SiC matrix is not particularly limited, but the bubble content in the matrix in the range of the SiC fiber diameter from the surface of the SiC fiber is preferably 10 to 50 vol%, and 20 to 30 vol. % Is more desirable. That the content rate of the bubble in said range is 10-50 vol% means that a bubble exists in the vicinity of a SiC fiber. In this case, since the surface of the SiC fiber is covered with the low-elasticity matrix, the scratch that becomes the starting point of the crack is hardly attached to the surface of the SiC fiber. When the bubble content is 10 vol% or more, the matrix has sufficient mechanical strength, so that strength as a composite material can be ensured. When the bubble content is 50 vol% or less, the generated crack energy is easily dispersed to the surroundings and can be made difficult to break. In addition, when the bubble content is 20 vol% or more, the matrix has a higher mechanical strength, so that the strength as a composite material can be further ensured. When the bubble content is 30 vol% or less, the energy of the generated crack is more easily dispersed to the surroundings, and can be further prevented from cracking.
In addition, when a plurality of SiC fibers form a SiC fiber bundle, the bubble content is defined only for the matrix surrounding one SiC fiber.
図2は、図1(b)に示したSiC繊維強化SiC複合材料の拡大断面図である。
図2中、SiC繊維11の直径を矢印dで示している。したがって、「SiC繊維の表面からSiC繊維の直径の距離の範囲」とは、SiC繊維11の表面から距離dにある範囲を意味する。
FIG. 2 is an enlarged cross-sectional view of the SiC fiber-reinforced SiC composite material shown in FIG.
In FIG. 2, the diameter of the
本発明のSiC繊維強化SiC複合材料において、SiCマトリックスの気孔率は、10〜50%であることが望ましく、20〜30%であることがより望ましい。 In the SiC fiber reinforced SiC composite material of the present invention, the porosity of the SiC matrix is preferably 10 to 50%, and more preferably 20 to 30%.
図3は、本発明のSiC繊維強化SiC複合材料の別の一例を模式的に示す断面図である。
本発明のSiC繊維強化SiC複合材料においては、図3に示すように、SiC繊維強化SiC複合材料10の表面にSiC層20が形成されていてもよい。SiC層20は、SiC繊維強化SiC複合材料10にCVD処理を施すことにより形成されたCVD−SiC層であることが望ましい。
FIG. 3 is a cross-sectional view schematically showing another example of the SiC fiber-reinforced SiC composite material of the present invention.
In the SiC fiber reinforced SiC composite material of the present invention, as shown in FIG. 3, a
[SiC繊維強化SiC複合材料の製造方法]
上述した本発明のSiC繊維強化SiC複合材料は、本発明のSiC繊維強化SiC複合材料の製造方法により製造することができる。
本発明のSiC繊維強化SiC複合材料の製造方法は、原子力用構造部材であるSiC繊維強化SiC複合材料の製造方法であって、SiC繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、上記含浸体を焼成する焼成工程とを含むことを特徴とする。
[Method for producing SiC fiber-reinforced SiC composite material]
The SiC fiber reinforced SiC composite material of the present invention described above can be manufactured by the method for manufacturing the SiC fiber reinforced SiC composite material of the present invention.
A method for producing a SiC fiber reinforced SiC composite material according to the present invention is a method for producing a SiC fiber reinforced SiC composite material that is a nuclear structural member, wherein a matrix precursor and a hollow body are added to a fiber assembly made of SiC fibers. An impregnation step of impregnating a slurry containing the impregnation product and a firing step of firing the impregnation product are characterized.
まず、SiC繊維からなる繊維集合体を準備する。
繊維集合体は、SiC繊維に形状を付与する賦形工程によって得ることができる。具体的には、繊維集合体は、織布、マット、ブレーディング(組紐)成形体、及び、フィラメントワインディング成形体からなる群より選択される少なくとも一層の繊維集合体であることが望ましい。
First, a fiber assembly made of SiC fibers is prepared.
The fiber assembly can be obtained by a shaping process for imparting a shape to the SiC fiber. Specifically, the fiber assembly is desirably at least one fiber assembly selected from the group consisting of a woven fabric, a mat, a braided (braided) molded product, and a filament winding molded product.
SiC繊維については、[SiC繊維強化SiC複合材料]で説明したとおりであるので、その詳細な説明を省略する。 Since the SiC fiber is as described in [SiC fiber reinforced SiC composite material], detailed description thereof is omitted.
例えば、SiC繊維を50〜2000本束ねたSiC繊維束を織布してシート状にしたものを繊維集合体とすることができる。 For example, a fiber assembly can be formed by weaving SiC fiber bundles of 50 to 2000 SiC fibers into a sheet shape.
次に、準備した繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る(含浸工程)。 Next, the prepared fiber aggregate is impregnated with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body (impregnation step).
含浸の方法としては、ディップ、吹き付け、塗布、コーター、真空加圧含浸等の方法が挙げられるが、いずれの方法であってもよい。 Examples of the impregnation method include dipping, spraying, coating, coater, vacuum pressure impregnation and the like, and any method may be used.
スラリーに含まれる中空体としては、SiCバルーン、シリカバルーン、カーボンバルーン等の無機バルーン;樹脂バルーン等の有機バルーン;樹脂;及びこれらの反応物を用いることができる。 As the hollow body contained in the slurry, inorganic balloons such as SiC balloons, silica balloons and carbon balloons; organic balloons such as resin balloons; resins; and reaction products thereof can be used.
中空体がSiCバルーンである場合、SiCバルーンは、ポリカルボシラン等の有機珪素化合物から作製することができる。 When the hollow body is a SiC balloon, the SiC balloon can be made from an organosilicon compound such as polycarbosilane.
中空体がシリカバルーンである場合、スラリーに炭素粉末をさらに含有させることにより、シリカバルーンと炭素粉末が反応してSiCバルーンとして残留する。また、中空体がカーボンバルーンである場合、スラリーにシリカ粉末をさらに含有させることにより、カーボンバルーンとシリカ粉末が反応してSiCバルーンとして残留する。 When the hollow body is a silica balloon, the silica balloon and the carbon powder react and remain as an SiC balloon by further containing carbon powder in the slurry. Moreover, when a hollow body is a carbon balloon, a carbon balloon and a silica powder react and remain as a SiC balloon by further making a slurry contain silica powder.
中空体が樹脂からなる場合、樹脂としては熱可塑性樹脂であることが望ましい。これらの樹脂は、焼成によって熱分解し、殻がなくなるためである。 When the hollow body is made of a resin, the resin is preferably a thermoplastic resin. This is because these resins are thermally decomposed by firing to eliminate the shell.
中空体の平均気泡径は、2〜20μmであることが望ましく、5〜15μmであることがより望ましい。
なお、中空体の平均気泡径は、レーザー回折式粒度測定機で粒子径を測定し、中空体の膜厚を減ずることで測定することができる。
The average cell diameter of the hollow body is desirably 2 to 20 μm, and more desirably 5 to 15 μm.
The average cell diameter of the hollow body can be measured by measuring the particle diameter with a laser diffraction particle size measuring machine and reducing the film thickness of the hollow body.
スラリー中の中空体の含有量は特に限定されないが、固形分量で20〜65重量%であることが望ましく、40〜65重量%であることがより望ましい。 Although content of the hollow body in a slurry is not specifically limited, It is desirable that it is 20 to 65 weight% in solid content, and it is more desirable that it is 40 to 65 weight%.
スラリーに含まれるマトリックス前駆体は、有機珪素化合物であってもよいし、SiC粒子と焼結助剤とからなっていてもよい。 The matrix precursor contained in the slurry may be an organosilicon compound, or may be composed of SiC particles and a sintering aid.
マトリックス前駆体が有機珪素化合物である場合、有機珪素化合物を焼成することによって、SiCからなるマトリックスを形成することができる。 When the matrix precursor is an organosilicon compound, a matrix made of SiC can be formed by firing the organosilicon compound.
有機珪素化合物としては、例えば、ポリカルボシラン、ポリビニルシラン、ポリメチルシラン等のケイ素系ポリマーが挙げられる。 Examples of the organosilicon compound include silicon polymers such as polycarbosilane, polyvinylsilane, and polymethylsilane.
マトリックス前駆体が有機珪素化合物である場合、スラリー中の有機珪素化合物の含有量は特に限定されないが、固形分量で20〜65重量%であることが望ましく、40〜65重量%であることがより望ましい。 When the matrix precursor is an organosilicon compound, the content of the organosilicon compound in the slurry is not particularly limited, but the solid content is preferably 20 to 65 wt%, more preferably 40 to 65 wt%. desirable.
マトリックス前駆体が、SiC粒子と焼結助剤とからなる場合、焼結助剤を用いてSiC粒子を焼結することによって、SiCからなるマトリックスを形成することができる。 In the case where the matrix precursor is composed of SiC particles and a sintering aid, a SiC matrix can be formed by sintering the SiC particles using the sintering aid.
SiC粒子の平均粒子径は、中空体の平均気泡径より小さいことが望ましい。中空体の平均気泡径よりもSiC粒子の平均粒子径を小さくすることで、マトリックス内部に発生する応力集中を小さくしつつ、弾性率の低いマトリックスを形成することができる。 The average particle diameter of the SiC particles is preferably smaller than the average bubble diameter of the hollow body. By making the average particle diameter of the SiC particles smaller than the average bubble diameter of the hollow body, it is possible to form a matrix having a low elastic modulus while reducing the concentration of stress generated inside the matrix.
具体的には、SiC粒子の平均粒子径は、10〜1000nmであることが望ましく、250〜800nmであることがより望ましい。
なお、SiC粒子の平均粒子径は、走査型電子顕微鏡(SEM)を用いて測定することができる。
Specifically, the average particle diameter of the SiC particles is desirably 10 to 1000 nm, and more desirably 250 to 800 nm.
In addition, the average particle diameter of a SiC particle can be measured using a scanning electron microscope (SEM).
スラリー中のSiC粒子の含有量は特に限定されないが、固形分量で25〜65重量%であることが望ましく、45〜65重量%であることがより望ましい。
特に、SiC粒子及び中空体の比率(SiC粒子:中空体)が、重量比で2:1〜7:1であることが望ましく、2:1〜4:1であることがより望ましい。
Although content of the SiC particle in a slurry is not specifically limited, It is desirable that it is 25 to 65 weight% in solid content, and it is more desirable that it is 45 to 65 weight%.
In particular, the ratio of SiC particles to hollow bodies (SiC particles: hollow bodies) is preferably 2: 1 to 7: 1 and more preferably 2: 1 to 4: 1.
焼結助剤としては、例えば、Al2O3、Y2O3、SiO2、CaO等が挙げられる。これらは1種類であってもよいし、複数種類を組み合わせてもよい。また、焼結助剤は、粉末状であることが望ましい。 Examples of the sintering aid include Al 2 O 3 , Y 2 O 3 , SiO 2 , and CaO. These may be one type or a combination of a plurality of types. Moreover, it is desirable that the sintering aid is in a powder form.
スラリー中の焼結助剤の含有量は特に限定されないが、固形分量で1〜3重量%であることが望ましく、1〜2重量%であることがより望ましい。 Although content of the sintering auxiliary agent in a slurry is not specifically limited, It is desirable that it is 1-3 weight% in solid content, and it is more desirable that it is 1-2 weight%.
スラリーには分散媒(溶媒)が含まれる。分散媒としては、水又は有機溶媒を用いることができる。有機溶媒としては、例えば、エタノール、イソプロパノール等のアルコール系有機溶媒;ヘキサン、トルエン、キシレン等の炭化水素系有機溶媒等が挙げられる。 The slurry contains a dispersion medium (solvent). As the dispersion medium, water or an organic solvent can be used. Examples of the organic solvent include alcohol-based organic solvents such as ethanol and isopropanol; hydrocarbon-based organic solvents such as hexane, toluene and xylene.
なお、得られた含浸体を必要に応じて乾燥してもよい。 In addition, you may dry the obtained impregnated body as needed.
また、SiC繊維の近傍に気泡を多く形成する場合には、中空体の含有率の異なるスラリーを準備し、繊維集合体に含有率の高いスラリーを含浸した後、含有率の低いスラリーを含浸すればよい。 Also, when many bubbles are formed in the vicinity of the SiC fiber, a slurry having a different hollow body content is prepared, and the fiber aggregate is impregnated with a high content slurry, and then impregnated with a low content slurry. That's fine.
続いて、含浸体を焼成する(焼成工程)。 Subsequently, the impregnated body is fired (firing step).
含浸体を焼成する方法としては、例えば、含浸体を加圧焼結する方法等が挙げられる。
加圧焼結の方法としては特に限定されず、ホットプレス(HP)法、熱間等方圧プレス(HIP)法等の公知の方法が挙げられる。
Examples of the method of firing the impregnated body include a method of pressure-sintering the impregnated body.
The pressure sintering method is not particularly limited, and examples thereof include known methods such as a hot press (HP) method and a hot isostatic press (HIP) method.
焼結温度は、適宜設定することができるが、1000〜2000℃であることが望ましく、1200〜1600℃であることがより望ましい。また、圧力は、1〜30MPaであることが望ましく、5〜20MPaであることがより望ましい。 Although sintering temperature can be set suitably, it is desirable that it is 1000-2000 degreeC, and it is more desirable that it is 1200-1600 degreeC. Further, the pressure is desirably 1 to 30 MPa, and more desirably 5 to 20 MPa.
含浸体の焼成は、非酸化性雰囲気下で行えばよく、例えば、不活性ガス雰囲気下、還元性雰囲気下、真空雰囲気下等で行うことができる。これらのなかでは、水素、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で行うことが望ましい。 The impregnated body may be fired in a non-oxidizing atmosphere. For example, it can be performed in an inert gas atmosphere, a reducing atmosphere, a vacuum atmosphere, or the like. In these, it is desirable to carry out in inert gas atmosphere, such as hydrogen, nitrogen, helium, and argon.
以上の工程を経ることにより、本発明のSiC繊維強化SiC複合材料を製造することができる。 By passing through the above process, the SiC fiber reinforced SiC composite material of this invention can be manufactured.
本発明のSiC繊維強化SiC複合材料は、原子力分野、航空・宇宙分野、発電分野等の過酷な環境下で使用することが望ましく、特に、原子力分野で使用することが望ましい。
具体的には、本発明のSiC繊維強化SiC複合材料は、原子力用構造部材であり、軽水炉用構造部材であることが望ましい。
The SiC fiber reinforced SiC composite material of the present invention is desirably used in harsh environments such as the nuclear field, aerospace field, and power generation field, and particularly desirably in the nuclear field.
Specifically, the SiC fiber-reinforced SiC composite material of the present invention is a structural member for nuclear power, and is desirably a structural member for light water reactors.
以下、本発明のSiC繊維強化SiC複合材料及びSiC繊維強化SiC複合材料の製造方法の作用効果について説明する。 Hereinafter, the effect of the manufacturing method of the SiC fiber reinforced SiC composite material and the SiC fiber reinforced SiC composite material of the present invention will be described.
本発明のSiC繊維強化SiC複合材料においては、構成材料がSiCであるため、高強度を実現することができる。また、SiCマトリックス中に気泡が存在すると、SiCマトリックスが低弾性となる。そのため、本発明の複合材料では、SiCマトリックスに亀裂が生じても、SiCマトリックス中に存在する気泡によって亀裂の進展を防止し、その亀裂がSiC繊維にまで伝播することを防止することができる。このように、本発明の複合材料では、亀裂の伝播を防止するための被覆層等を含まずに、高強度の複合材料とすることができる。 In the SiC fiber reinforced SiC composite material of the present invention, since the constituent material is SiC, high strength can be realized. Further, when bubbles are present in the SiC matrix, the SiC matrix becomes low elastic. Therefore, in the composite material of the present invention, even if a crack occurs in the SiC matrix, the progress of the crack can be prevented by the bubbles present in the SiC matrix, and the crack can be prevented from propagating to the SiC fiber. As described above, the composite material of the present invention can be a high-strength composite material without including a coating layer or the like for preventing the propagation of cracks.
本発明のSiC繊維強化SiC複合材料の製造方法では、スラリーに中空体を混入することによって、マトリックス中に気泡を形成することができる。その結果、上述した本発明のSiC繊維強化SiC複合材料を製造することができる。 In the method for producing a SiC fiber-reinforced SiC composite material of the present invention, bubbles can be formed in the matrix by mixing a hollow body into the slurry. As a result, the above-described SiC fiber reinforced SiC composite material of the present invention can be manufactured.
本発明のSiC繊維強化SiC複合材料は、SiCマトリックス中に気泡を有することを必須の構成要件としている。本発明のSiC繊維強化SiC複合材料の製造方法は、SiC繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得た後、上記含浸体を焼成することを必須の構成要件としている。
係る必須の構成要件に、本発明の詳細な説明で詳述した種々の構成(例えば、SiC繊維の構成、SiCマトリックスの構成、気泡の構成、中空体の構成、SiC繊維強化SiC複合材料の製造条件等)を適宜組み合わせることにより所望の効果を得ることができる。
The SiC fiber-reinforced SiC composite material of the present invention has an essential constituent element that has a bubble in the SiC matrix. In the method for producing a SiC fiber-reinforced SiC composite material according to the present invention, a fiber assembly made of SiC fibers is impregnated with a slurry containing a matrix precursor and a hollow body, and after obtaining the impregnated body, the impregnated body is fired. This is an essential component requirement.
The various constituents detailed in the detailed description of the present invention (for example, SiC fiber configuration, SiC matrix configuration, bubble configuration, hollow body configuration, SiC fiber reinforced SiC composite material manufacture) The desired effect can be obtained by appropriately combining the conditions and the like.
10 SiC繊維強化SiC複合材料
11 SiC繊維
12 SiCマトリックス
13 気泡
20 SiC層
10 SiC fiber reinforced SiC
Claims (11)
前記SiCマトリックス中に略球形の気泡を有し、
前記気泡は、SiCからなる殻で囲まれており、
原子力用構造部材であることを特徴とするSiC繊維強化SiC複合材料。 A SiC fiber reinforced SiC composite material comprising a SiC fiber and a SiC matrix,
Having substantially spherical bubbles in the SiC matrix;
The bubbles are surrounded by a shell made of SiC;
A SiC fiber reinforced SiC composite material, which is a structural member for nuclear power.
SiC繊維からなる繊維集合体に、マトリックス前駆体と中空体とを含むスラリーを含浸し、含浸体を得る含浸工程と、
前記含浸体を焼成する焼成工程とを含むことを特徴とするSiC繊維強化SiC複合材料の製造方法。 A method for producing a SiC fiber-reinforced SiC composite material according to any one of claims 1 to 5 ,
An impregnation step of impregnating a fiber assembly composed of SiC fibers with a slurry containing a matrix precursor and a hollow body to obtain an impregnated body;
A method for producing a SiC fiber-reinforced SiC composite material, comprising: a firing step of firing the impregnated body.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013159940A JP6122728B2 (en) | 2013-07-31 | 2013-07-31 | SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material |
PCT/JP2014/068945 WO2015016071A1 (en) | 2013-07-31 | 2014-07-16 | SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL AND PRODUCTION METHOD FOR SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013159940A JP6122728B2 (en) | 2013-07-31 | 2013-07-31 | SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015030633A JP2015030633A (en) | 2015-02-16 |
JP6122728B2 true JP6122728B2 (en) | 2017-04-26 |
Family
ID=52431611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013159940A Active JP6122728B2 (en) | 2013-07-31 | 2013-07-31 | SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6122728B2 (en) |
WO (1) | WO2015016071A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6467290B2 (en) * | 2015-05-26 | 2019-02-13 | イビデン株式会社 | Ceramic composite material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185979A (en) * | 1998-12-21 | 2000-07-04 | Tokai Carbon Co Ltd | Method for producing porous silicon carbide molded body |
JP2010070421A (en) * | 2008-09-18 | 2010-04-02 | Enetech Soken:Kk | METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL |
KR101494116B1 (en) * | 2010-11-11 | 2015-02-16 | 고쿠리츠 다이가쿠 호진 교토 다이가쿠 | SiC CERAMIC MATERIAL AND SiC CERAMIC STRUCTURE, AND PRODUCTION METHOD FOR SAME |
-
2013
- 2013-07-31 JP JP2013159940A patent/JP6122728B2/en active Active
-
2014
- 2014-07-16 WO PCT/JP2014/068945 patent/WO2015016071A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2015030633A (en) | 2015-02-16 |
WO2015016071A1 (en) | 2015-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Binner et al. | Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs–a review | |
CN110256082B (en) | Method for preparing single crystal silicon carbide nanofibers/silicon carbide ceramic matrix composites by reaction sintering | |
KR100447840B1 (en) | Manufacturing method for carbon-carbon composites | |
US20110124253A1 (en) | Cnt-infused fibers in carbon-carbon composites | |
EP2639211B1 (en) | Sic ceramic material and sic ceramic structure, and production method for same | |
WO2002098819A1 (en) | Method for producing sic fiber-reinforced sic composite material | |
US11325867B2 (en) | Hybrid multifunctional composite material | |
CN103415485A (en) | Method for producing a composite including a ceramic matrix | |
CN108863418A (en) | Long fiber reinforcement silicon carbide member, its manufacturing method and nuclear reactor structure component | |
WO1999019273A1 (en) | Fibrous composite material and process for producing the same | |
JP2015500197A (en) | CMC material parts | |
Su et al. | SiOC modified carbon‐bonded carbon fiber composite with SiC nanowires enhanced interfibrous junctions | |
JP6490915B2 (en) | Tubular body and manufacturing method thereof | |
JP2003252694A (en) | SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL | |
CN113563097B (en) | Carbon fiber preform, preparation method thereof and preparation method of carbon/carbon composite material | |
JP6122728B2 (en) | SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material | |
WO2015016072A1 (en) | Ceramic composite material and production method for ceramic composite material | |
CN102898171B (en) | SiCf/SiC composite material and preparation method thereof | |
KR101196665B1 (en) | Fiber reinforced composites containing reinforcing fiber coated with an inner layer of PyC and an outer layer of BN | |
KR101623914B1 (en) | Method for fabrication of high density SiCf/SiC composites with homogeneous microstructure | |
JP4538607B2 (en) | High thermal conductivity of SiC / SiC composites using carbon nanotubes or nanofibers | |
JP5769519B2 (en) | Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same | |
CN114230347A (en) | Preparation method and product of continuous fiber reinforced ZrC/SiC composite part | |
JP6719333B2 (en) | Long fiber reinforced silicon carbide member and method for producing the same | |
JP2017088418A (en) | Method for producing SiC fiber-reinforced SiC composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170403 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6122728 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |