JP6115841B2 - Lead acid battery - Google Patents
Lead acid battery Download PDFInfo
- Publication number
- JP6115841B2 JP6115841B2 JP2016012098A JP2016012098A JP6115841B2 JP 6115841 B2 JP6115841 B2 JP 6115841B2 JP 2016012098 A JP2016012098 A JP 2016012098A JP 2016012098 A JP2016012098 A JP 2016012098A JP 6115841 B2 JP6115841 B2 JP 6115841B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- density
- less
- ion concentration
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002253 acid Substances 0.000 title claims description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 34
- 229910001416 lithium ion Inorganic materials 0.000 claims description 34
- 239000003792 electrolyte Substances 0.000 claims description 25
- 238000003860 storage Methods 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 description 31
- -1 aluminum ions Chemical class 0.000 description 31
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 26
- 238000009825 accumulation Methods 0.000 description 18
- 239000008151 electrolyte solution Substances 0.000 description 16
- 230000007423 decrease Effects 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 230000019635 sulfation Effects 0.000 description 4
- 238000005670 sulfation reaction Methods 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910014474 Ca-Sn Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Description
この発明は制御弁式等の鉛蓄電池に関する。 The present invention relates to a lead storage battery such as a control valve type.
自動車用等の制御弁式鉛蓄電池では、電装品の増加による暗電流の増加と、アイドリングストップ時の電装品への電力供給等のために、高容量化が要求されている。そして高容量化に際しては、低温HR性能等で表されるエンジン始動時の性能を許容範囲内に保ち、硫酸鉛の蓄積(サルフェーション)を許容範囲内に留める必要がある。なお低温HR性能は例えば低温HR容量で評価でき、高密度の電解液では低温でサルフェーションが進行しやすいので、低温でのサルフェーションを検討する。 Control valve type lead-acid batteries for automobiles and the like are required to have a high capacity in order to increase dark current due to an increase in electrical components and to supply power to electrical components when idling is stopped. When the capacity is increased, it is necessary to keep the engine start performance represented by low temperature HR performance or the like within an allowable range and to keep lead sulfate accumulation (sulfation) within the allowable range. The low-temperature HR performance can be evaluated by, for example, the low-temperature HR capacity, and sulfation is likely to proceed at low temperatures in high-density electrolytes.
関連する先行技術を示すと、特許文献1(WO2007/36979)は、電解液にアルミニウムイオンとリチウムイオンとを含有させることにより、アイドリングストップ寿命と電池の容量(5時間率容量)とに優れた、液式の鉛蓄電池が得られることを開示している。しかしながら電解液の密度の影響は検討されていない。また制御弁式の鉛蓄電池の電解液に、アルミニウムイオンとリチウムイオンとを含有させることは開示されていない。 As for related prior art, Patent Document 1 (WO2007 / 36979) is superior in idling stop life and battery capacity (5-hour rate capacity) by containing aluminum ions and lithium ions in the electrolytic solution. Discloses that a liquid lead-acid battery can be obtained. However, the influence of the density of the electrolytic solution has not been studied. Moreover, it is not disclosed that aluminum ions and lithium ions are contained in the electrolyte of a control valve type lead-acid battery.
この発明の課題は、低温HR性能を向上させた鉛蓄電池を提供することにある。 The subject of this invention is providing the lead storage battery which improved the low temperature HR performance .
この発明の鉛蓄電池では、正極板と負極板との間にセパレータを介在させた極板群を電槽内に収容し、電解液は20℃の満充電状態における密度が1.32g/cm 3 以上で1.36g/cm 3 以下で、かつリチウムイオンを0.02mol/L以上0.3mol/L以下含有する。このようにすると、低温HR性能を向上させることができる。
好ましくは鉛蓄電池は、前記極板群と前記セパレータとに電解液を保持させている制御弁式鉛蓄電池である。
この発明では、前記電解液は20℃の満充電状態における密度が1.32g/cm3以上で1.36g/cm3以下である。電解液密度が1.32g/cm3以上で1.36g/cm3以下の範囲で、低温HR容量が特異的に大きくなる。
In the lead storage battery of the present invention, an electrode plate group in which a separator is interposed between a positive electrode plate and a negative electrode plate is accommodated in a battery case , and the electrolyte has a density of 1.32 g / cm 3 or more in a fully charged state at 20 ° C. 1.36 g / cm 3 or less , and lithium ions are contained in an amount of 0.02 mol / L to 0.3 mol / L. In this way, the low temperature HR performance can be improved.
Preferably, the lead acid battery is a control valve type lead acid battery in which an electrolytic solution is held in the electrode plate group and the separator.
In the present invention, the density of the electrolytic solution in a fully charged state at 20 ° C. is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less. When the electrolyte density is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less, the low temperature HR capacity is specifically increased.
なお満充電状態とは充電率が実質的に100%の状態であり、例えば定格容量の150%程度の電気量を10時間程度で充電すると実現できる。以下では電解液の密度は20℃の満充電状態における密度を表すものとする。 The fully charged state is a state where the charging rate is substantially 100%. For example, it can be realized by charging an amount of electricity of about 150% of the rated capacity in about 10 hours. Hereinafter, the density of the electrolytic solution represents the density in a fully charged state at 20 ° C.
実施の態様:
正極板と負極板との間にセパレータを介在させた極板群を電槽内に収容すると共に、前記極板群と前記セパレータとに電解液を保持させている制御弁式鉛蓄電池において、前記電解液は20℃の満充電状態における密度が1.32g/cm3以上で1.36g/cm3以下で、かつアルミニウムイオンを0.02mol/L以上0.3mol/L以下、リチウムイオンを0.02mol/L以上0.3mol/L以下含有する。なお、アルミニウムイオン濃度が0.2mol/Lを越えると、アルミニウムイオン濃度が0.2mol/Lの場合に比べ、低温HR容量が低下し、硫酸鉛の蓄積量も増す。またリチウムイオン濃度が0.2mol/Lを越えても、リチウムイオン濃度が0.2mol/Lの場合に比べ、同様に低温HR容量が低下し、硫酸鉛の蓄積量も増す。そこで好ましくは、電解液中のアルミニウムイオン濃度を0.02mol/L以上0.2mol/L以下とし、リチウムイオン濃度を0.02mol/L以上0.2mol/L以下とする。
Embodiment:
In the control valve type lead storage battery in which the electrode plate group in which the separator is interposed between the positive electrode plate and the negative electrode plate is accommodated in the battery case, and the electrolytic solution is held in the electrode plate group and the separator. Electrolyte has a density of 1.32 g / cm 3 or more and 1.36 g / cm 3 or less in a fully charged state at 20 ° C., 0.02 mol / L or more to 0.3 mol / L or less of aluminum ion, and 0.02 mol / L or more of lithium ion. Contains 0.3 mol / L or less . Note that when the aluminum ion concentration exceeds 0.2 mol / L, the low-temperature HR capacity decreases and the amount of lead sulfate accumulation also increases compared to the case where the aluminum ion concentration is 0.2 mol / L. Even when the lithium ion concentration exceeds 0.2 mol / L, the low-temperature HR capacity similarly decreases and the amount of lead sulfate accumulation also increases compared to the case where the lithium ion concentration is 0.2 mol / L. Therefore, preferably, the aluminum ion concentration in the electrolytic solution is 0.02 mol / L or more and 0.2 mol / L or less, and the lithium ion concentration is 0.02 mol / L or more and 0.2 mol / L or less.
制御弁式鉛蓄電池の電解液にアルミニウムイオンとリチウムイオンとを含有させると、これらのイオンの効果は、電解液の密度が1.32g/cm3〜1.36g/cm3の範囲で特に高くなる。図1はアルミニウムイオン濃度を0.05mol/Lに固定し、リチウムイオン濃度を0.1mol/Lに固定して、制御弁式鉛蓄電池の電解液密度を1.28g/cm3から1.37g/cm3の範囲で変化させた際の特性を表している。JIS D 5301:2006の9.5.3b)に規定する低温HR容量と、電池工業会規格SBA S 0101:2006に規定するアイドリングストップ寿命試験を0℃で実施した際の硫酸鉛の蓄積量を、アルミニウムイオンもリチウムイオンも含有しない比較例を100%とする相対値で、縦軸に示す。実施例では電解液の密度が1.32g/cm3以上と高い場合、低温で硫酸鉛の蓄積が著しいので、アイドリングストップ寿命試験を電池工業会規格の25℃ではなく0℃で実施したが、0℃での硫酸鉛の蓄積が少ない制御弁式鉛蓄電池は、25℃等でも硫酸鉛の蓄積が少なかった。
When the the electrolyte of the valve-regulated lead-acid battery containing an aluminum ion and lithium ion, the effect of these ions, the density of the electrolyte is particularly high in the range of 1.32g / cm 3 ~1.36g / cm 3 . Figure 1 shows that the aluminum ion concentration is fixed at 0.05 mol / L, the lithium ion concentration is fixed at 0.1 mol / L, and the electrolyte density of the control valve type lead-acid battery is 1.28 g / cm 3 to 1.37 g / cm 3 . It shows the characteristics when changing in the range. The low-temperature HR capacity specified in 9.5.3b) of JIS D 5301: 2006 and the amount of lead sulfate accumulated when the idling stop life test specified in the battery industry association standard SBA S 0101: 2006 was conducted at 0 ° C The relative value which makes the comparative example which does not contain ion and
電解液密度が1.32g/cm3以上で1.36g/cm3以下の範囲で、低温HR容量が特異的に大きくなり、またこの範囲で硫酸鉛の蓄積量も特異的に小さくなる。そして一般に電解液の密度を高めることにより、制御弁式鉛蓄電池の放電容量が増す。この反面で硫酸鉛の蓄積が進行しやすくなり、かつ低温HR性能が低下する。このため密度が1.32g/cm3以上で1.36g/cm3以下の電解液に、アルミニウムイオンとリチウムイオンを各々0.02mol/L以上0.3mol/L以下含有させると、制御弁式鉛蓄電池の放電容量を大きくでき、かつ低温HR性能とアイドリングストップ寿命性能を向上させることができる。 When the electrolyte density is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less, the low-temperature HR capacity is specifically increased, and the amount of lead sulfate accumulation is also specifically reduced within this range. In general, the discharge capacity of the control valve type lead storage battery is increased by increasing the density of the electrolytic solution. On the other hand, the accumulation of lead sulfate tends to progress and the low-temperature HR performance decreases. For this reason, when aluminum ions and lithium ions are contained in the electrolyte solution having a density of 1.32 g / cm 3 or more and 1.36 g / cm 3 or less, respectively, 0.02 mol / L or more and 0.3 mol / L or less, the discharge of the control valve type lead storage battery Capacitance can be increased, and low-temperature HR performance and idling stop life performance can be improved.
電解液の密度が1.32g/cm3以上で1.36g/cm3以下で、0.02mol/L以上0.3mol/L以下のリチウムイオンを含む場合、アルミニウムイオン濃度を0.01mol/Lから0.02mol/Lへ増すことにより硫酸鉛の蓄積量を著しく少なくできる。なおアルミニウムイオン濃度を0.2mol/Lから0.3mol/Lへ増すと、硫酸鉛の蓄積量が再度増し、また低温HR容量も低下する。従ってアルミニウムイオン濃度を0.02mol/L以上0.3mol/L以下とし、好ましくは0.02mol/L以上0.2mol/L以下とする。 When the density of the electrolyte is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less and contains lithium ions of 0.02 mol / L or more and 0.3 mol / L or less, the aluminum ion concentration is changed from 0.01 mol / L to 0.02 mol / L. By increasing the amount of lead sulfate, the amount of lead sulfate accumulated can be significantly reduced. When the aluminum ion concentration is increased from 0.2 mol / L to 0.3 mol / L, the amount of lead sulfate accumulated increases again, and the low-temperature HR capacity decreases. Therefore, the aluminum ion concentration is 0.02 mol / L or more and 0.3 mol / L or less, preferably 0.02 mol / L or more and 0.2 mol / L or less.
電解液の密度が1.32g/cm3以上1.36g/cm3以下で、0.02mol/L以上0.3mol/L以下のアルミニウムイオンを含む場合、リチウムイオン濃度を0.01mol/Lから0.02mol/Lへ増すことにより、低温HR容量を増すと共に硫酸鉛の蓄積量を少なくできる。リチウムイオン濃度を0.2mol/Lから0.3mol/Lへ増すと、硫酸鉛の蓄積量が増し、また低温HR容量も低下する。従ってリチウムイオン濃度を0.02mol/L以上0.3mol/L以下とし、好ましくは0.02mol/L以上0.2mol/L以下とする。これらのため全体としては、電解液の密度を1.32g/cm3以上で1.36g/cm3以下とし、アルミニウムイオン濃度を0.02mol/L以上0.3mol/L以下とし、リチウムイオン濃度を0.02mol/L以上0.3mol/L以下とする。そして好ましくは、電解液の密度を1.32g/cm3以上で1.36g/cm3以下とし、アルミニウムイオン濃度を0.02mol/L以上0.2mol/L以下とし、リチウムイオン濃度を0.02mol/L以上0.2mol/L以下とする。 When the density of the electrolyte is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less and contains aluminum ions of 0.02 mol / L or more and 0.3 mol / L or less, the lithium ion concentration is changed from 0.01 mol / L to 0.02 mol / L. By increasing, the low-temperature HR capacity can be increased and the amount of lead sulfate accumulated can be reduced. When the lithium ion concentration is increased from 0.2 mol / L to 0.3 mol / L, the amount of lead sulfate accumulation increases and the low-temperature HR capacity also decreases. Therefore, the lithium ion concentration is 0.02 mol / L or more and 0.3 mol / L or less, preferably 0.02 mol / L or more and 0.2 mol / L or less. Therefore, as a whole, the density of the electrolytic solution is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less, the aluminum ion concentration is 0.02 mol / L or more and 0.3 mol / L or less, and the lithium ion concentration is 0.02 mol / L. L to 0.3 mol / L. Preferably, the density of the electrolytic solution is 1.32 g / cm 3 or more and 1.36 g / cm 3 or less, the aluminum ion concentration is 0.02 mol / L or more and 0.2 mol / L or less, and the lithium ion concentration is 0.02 mol / L or more and 0.2 or less. Use mol / L or less.
以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。 Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.
ボールミル法で製造した鉛粉に合成樹脂繊維を加え、水と希硫酸とを加えてペースト化し、Pb-Ca-Sn系の正極格子に充填して熟成と乾燥とを施し、未化成の正極板とした。ボールミル法で製造した鉛粉に合成樹脂繊維と硫酸バリウムとカーボンブラックとリグニンとを加え、水と希硫酸とを加えてペースト化し、Pb-Ca-Sn系の負極格子に充填して熟成と乾燥とを施し、未化成の負極板とした。未化成の負極板5枚と未化成の正極板4枚を用意し、微細なガラス繊維から成るリテーナマットをU字に折り曲げて正極板を包み、圧迫を加えながら電槽に収容し、負極板上部の耳部を互いに溶接して未化成の負極板群とし、正極板上部の耳部を互いに溶接して未化成の正極板群とした。なおリテーナマットの代わりに、ゲル化した電解液を用い、あるいは顆粒状のシリカを含む電解液を用いても良い。 Synthetic resin fibers are added to the lead powder produced by the ball mill method, and water and dilute sulfuric acid are added to make a paste. The Pb-Ca-Sn positive electrode lattice is filled with aging and drying, and the unformed positive electrode plate It was. Synthetic resin fibers, barium sulfate, carbon black and lignin are added to the lead powder produced by the ball mill method, and water and dilute sulfuric acid are added to form a paste, which is then filled into a Pb-Ca-Sn negative electrode lattice and aged and dried. To give an unformed negative electrode plate. Prepare 5 unformed negative electrode plates and 4 unformed positive electrode plates, fold a retainer mat made of fine glass fiber into U shape, wrap the positive electrode plate, put it in the battery case while applying pressure, negative electrode plate The upper ear portions were welded together to form an unformed negative electrode plate group, and the upper ear portions of the positive electrode plate were welded together to form an unformed positive electrode plate group. Note that instead of the retainer mat, a gelled electrolytic solution may be used, or an electrolytic solution containing granular silica may be used.
アルミニウムイオン含有量とリチウムイオン含有量とが各々0〜0.3mol/Lとなるように硫酸アルミニウムと硫酸リチウムとを加え、かつ化成後の満充電の状態で20℃での密度が1.28〜1.37g/cm3となるように密度を変化させた希硫酸を調製した。この希硫酸を電槽に注ぎ、25℃の水槽内で電槽化成を行って、B20サイズの制御弁式鉛蓄電池とした。正極格子及び負極格子の材質と製造方法は任意で、鉛粉はボールミル法によるものに限らず、バートン法等によるものでもよく、鉛丹等の含有量は任意である。また鉛粉への添加物の量と種類、不純物の含有量等は任意である。アルミニウムイオンとリチウムイオンを含有させるための化合物の種類は任意である。各試料は、電解液の密度とアルミニウムイオン含有量とリチウムイオン含有量の他は、全て同じ条件で製造した。 Aluminum sulfate and lithium sulfate are added so that the aluminum ion content and the lithium ion content are each 0 to 0.3 mol / L, and the density at 20 ° C. is 1.28 to 1.37 g in a fully charged state after chemical conversion. Dilute sulfuric acid having a density changed so as to be / cm 3 was prepared. This dilute sulfuric acid was poured into a battery case, and the battery case was formed in a 25 ° C. water tank to obtain a B20 size control valve type lead acid battery. The material and manufacturing method of the positive and negative grids are arbitrary, and the lead powder is not limited to the one based on the ball mill method, but may be one based on the Barton method or the like, and the content of the lead tan is arbitrary. Further, the amount and type of additives to the lead powder, the content of impurities, etc. are arbitrary. The kind of compound for containing aluminum ion and lithium ion is arbitrary. Each sample was manufactured under the same conditions except for the density of the electrolytic solution, the aluminum ion content, and the lithium ion content.
電解液の密度と組成が同じ制御弁式蓄電池を3個ずつ用意し、低温HR放電試験を行い、-15℃で300Aで放電した際に端子電圧が6Vに低下するまでの放電持続時間を測定した。低温HR放電試験の後に制御弁式蓄電池を満充電し、0℃でアイドリングストップ寿命試験を行った。電池工業会規格では、アイドリングストップ寿命試験を、25℃で45A×59秒の放電と300A×1秒の放電と14Vで60秒の充電の充放電サイクルを繰り返し、3600サイクル毎に40〜48時間蓄電池を放置するとしている(SBA S 0101:2006)。しかし電解液の密度を増すと、低温でのサルフェーションが著しくなったので、周囲の気温を0℃に変更して試験した。そしてアイドリングストップ寿命試験での充放電を14400サイクルで打ち切り、制御弁式蓄電池を解体して負極の硫酸鉛蓄積量を測定した。 Prepare three control valve storage batteries with the same density and composition of the electrolyte, perform a low-temperature HR discharge test, and measure the discharge duration until the terminal voltage drops to 6V when discharged at -15 ° C at 300A. did. After the low-temperature HR discharge test, the control valve storage battery was fully charged, and an idling stop life test was conducted at 0 ° C. According to the Battery Industry Association Standard, the idling stop life test was repeated at 45 ° C for 59 seconds at 25 ° C, 300 A for 1 second, and charged and discharged for 60 seconds at 14 V for 40 to 48 hours every 3600 cycles. The storage battery is left unattended (SBA S 0101: 2006). However, as the density of the electrolyte increased, sulfation at low temperatures became more prominent. Then, charging / discharging in the idling stop life test was terminated at 14400 cycles, the control valve storage battery was disassembled, and the amount of lead sulfate accumulation in the negative electrode was measured.
3個の制御弁式蓄電池の平均値で結果を表1に示し、アルミニウムイオン含有量を0.05mol/L、リチウムイオン含有量を0.1mol/Lに固定し、電解液の密度を変えた際の結果を図1に示す。電解液の密度が同じで、アルミニウムイオンもリチウムイオンも含有しない比較例を100とする相対値で、結果を示す。なおアルミニウムイオン含有量とリチウムイオン含有量が共に0の場合、電解液の密度が高い程、放電容量は増加するが、サルフェーションが進行し易くなり、かつ低温HR容量が低下する傾向にある。 The results are shown in Table 1 with the average values of the three control valve storage batteries. The aluminum ion content was fixed at 0.05 mol / L, the lithium ion content was fixed at 0.1 mol / L, and the density of the electrolyte was changed. The results are shown in FIG. The result is shown as a relative value with the density of the electrolytic solution being the same and a comparative example having no aluminum ion or lithium ion as 100. When both the aluminum ion content and the lithium ion content are 0, the discharge capacity increases as the electrolyte density increases, but sulfation tends to progress and the low-temperature HR capacity tends to decrease.
主な結果を図1に示す。アルミニウムイオンとリチウムイオンを共に含む電解液では、密度を1.30g/cm3から1.32g/cm3へ増加させると、硫酸鉛の蓄積が著しく少なくなり、低温HR容量が急増する。電解液の密度が1.32g/cm3以上で1.36g/cm3の範囲では、硫酸鉛の蓄積が少なくかつ低温HR容量が大きい。しかし電解液の密度を1.37g/cm3とすると、硫酸鉛の蓄積が増加し、低温HR容量も低下する。 The main results are shown in FIG. In electrolytes containing both aluminum ions and lithium ions, increasing the density from 1.30 g / cm 3 to 1.32 g / cm 3 significantly reduces lead sulfate accumulation and increases the low-temperature HR capacity rapidly. When the density of the electrolytic solution is 1.32 g / cm 3 or more and 1.36 g / cm 3 , the accumulation of lead sulfate is small and the low-temperature HR capacity is large. However, when the density of the electrolyte is 1.37 g / cm 3 , the accumulation of lead sulfate increases and the low-temperature HR capacity also decreases.
電解液の密度を1.32g/cm3に固定し、アルミニウムイオン濃度を0.05mol/Lに固定して、リチウムイオン濃度を変えると、リチウムイオン濃度を0.01mol/Lから0.02mol/Lへ増すことにより、低温HR容量が急増する。また0.2mol/Lまではリチウムイオン濃度と共に硫酸鉛の蓄積量が減少するが、リチウムイオン濃度を0.3mol/Lにすると、低温HR容量がやや低下し、硫酸鉛の蓄積量も増加する。従ってリチウムイオン濃度は0.02mol/L以上0.3mol/L以下とし、好ましくは0.02mol/L以上0.2mol/L以下とする。なおリチウムイオン濃度が0.02mol/L以上0.3mol/L以下で、低温HR容量が増加し、硫酸鉛の蓄積量も少なくなることは、電解液の密度とアルミニウムイオン濃度とを変えても同様である。 When the electrolyte density is fixed at 1.32 g / cm 3 , the aluminum ion concentration is fixed at 0.05 mol / L, and the lithium ion concentration is changed, the lithium ion concentration is increased from 0.01 mol / L to 0.02 mol / L. As a result, the low-temperature HR capacity increases rapidly. In addition, the amount of lead sulfate accumulation decreases with the lithium ion concentration up to 0.2 mol / L, but when the lithium ion concentration is 0.3 mol / L, the low-temperature HR capacity slightly decreases and the amount of lead sulfate accumulation also increases. Accordingly, the lithium ion concentration is 0.02 mol / L or more and 0.3 mol / L or less, preferably 0.02 mol / L or more and 0.2 mol / L or less. It should be noted that when the lithium ion concentration is 0.02 mol / L or more and 0.3 mol / L or less, the low-temperature HR capacity increases and the amount of lead sulfate accumulation decreases, even if the electrolyte concentration and aluminum ion concentration are changed. is there.
電解液の密度を1.32g/cm3に固定し、リチウムイオン濃度を0.1mol/Lに固定して、アルミニウムイオン濃度を変えると、アルミニウムイオン濃度を0.01mol/Lから0.02mol/Lへ増すことにより、硫酸鉛の蓄積量が急減する。またアルミニウムイオン濃度が0.02mol/L以上0.3ml/L以下で低温HR容量も大きく、硫酸鉛の蓄積量も少ない。そしてアルミニウムイオン濃度が0.02mol/L以上0.3mol/L以下で低温HR容量が増加し、硫酸鉛の蓄積量も少なくなることは、電解液の密度とリチウムイオン濃度とを変えても同様である。なおアルミニウムイオン濃度を0.3mol/Lとすると、硫酸鉛の蓄積量が増加し、低温HR容量も低下するので、アルミニウムイオン濃度は0.2mol/L以下が好ましい。 When the electrolyte density is fixed at 1.32 g / cm 3 , the lithium ion concentration is fixed at 0.1 mol / L, and the aluminum ion concentration is changed, the aluminum ion concentration is increased from 0.01 mol / L to 0.02 mol / L. As a result, the amount of lead sulfate accumulated rapidly decreases. The aluminum ion concentration is 0.02mol / L or more and 0.3ml / L or less, the low-temperature HR capacity is large, and the amount of lead sulfate accumulation is small. And when the aluminum ion concentration is 0.02 mol / L or more and 0.3 mol / L or less, the low temperature HR capacity increases and the amount of lead sulfate accumulation decreases, even if the electrolyte density and lithium ion concentration are changed. . If the aluminum ion concentration is 0.3 mol / L, the amount of lead sulfate accumulated increases and the low-temperature HR capacity decreases, so the aluminum ion concentration is preferably 0.2 mol / L or less.
Claims (2)
電解液は20℃の満充電状態における密度が1.32g/cm 3 以上で1.36g/cm 3 以下で、かつリチウムイオンを0.02mol/L以上0.3mol/L以下含有することを特徴とする、鉛蓄電池。 In a lead-acid battery containing a plate group in which a separator is interposed between a positive electrode plate and a negative electrode plate in a battery case,
Electrolyte has a density of 1.32 g / cm 3 or more and 1.36 g / cm 3 or less in a fully charged state at 20 ° C. , and contains lithium ions 0.02 mol / L or more and 0.3 mol / L or less. Storage battery.
The lead storage battery according to claim 1, wherein the lead storage battery is a control valve type lead storage battery in which an electrolyte is held in the electrode plate group and the separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016012098A JP6115841B2 (en) | 2016-01-26 | 2016-01-26 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016012098A JP6115841B2 (en) | 2016-01-26 | 2016-01-26 | Lead acid battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011219317A Division JP5879888B2 (en) | 2011-10-03 | 2011-10-03 | Control valve type lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016103489A JP2016103489A (en) | 2016-06-02 |
JP6115841B2 true JP6115841B2 (en) | 2017-04-19 |
Family
ID=56089610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016012098A Active JP6115841B2 (en) | 2016-01-26 | 2016-01-26 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6115841B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113394523B (en) * | 2021-05-21 | 2022-09-20 | 天能电池集团股份有限公司 | Acid adding and formation method for lead storage battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11329476A (en) * | 1998-05-07 | 1999-11-30 | Japan Storage Battery Co Ltd | Sealed lead-acid battery |
JP2003132937A (en) * | 2001-10-23 | 2003-05-09 | Yuasa Corp | Manufacturing method of lead storage battery |
AU2005336806B2 (en) * | 2005-09-27 | 2010-09-09 | The Furukawa Battery Co., Ltd. | Lead storage battery and process for producing the same |
JP2008243487A (en) * | 2007-03-26 | 2008-10-09 | Furukawa Battery Co Ltd:The | Lead acid battery |
JP6203472B2 (en) * | 2011-10-03 | 2017-09-27 | 株式会社Gsユアサ | Lead acid battery |
-
2016
- 2016-01-26 JP JP2016012098A patent/JP6115841B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016103489A (en) | 2016-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5983985B2 (en) | Lead acid battery | |
JP5748091B2 (en) | Lead acid battery | |
JP5138391B2 (en) | Control valve type lead acid battery | |
CN106058246A (en) | Lead paste formula for positive electrode of lead acid storage battery | |
CN104221189B (en) | Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate | |
JP5879888B2 (en) | Control valve type lead acid battery | |
JP2013134957A (en) | Method for manufacturing lead-acid battery, and lead-acid battery | |
JP2008140645A (en) | Lead acid battery | |
JP6495862B2 (en) | Lead acid battery | |
JP6115841B2 (en) | Lead acid battery | |
JP4325153B2 (en) | Control valve type lead acid battery | |
JP7328129B2 (en) | Positive plate for lead-acid battery, lead-acid battery | |
JP5637503B2 (en) | Lead acid battery | |
JP5578123B2 (en) | Liquid lead-acid battery | |
JP6649690B2 (en) | Lead storage battery | |
JP6589633B2 (en) | Lead acid battery | |
CN105720240B (en) | Lead-acid battery | |
JP6203472B2 (en) | Lead acid battery | |
JP7331856B2 (en) | lead acid battery | |
JP6775764B2 (en) | Lead-acid battery | |
JP6164502B2 (en) | Lead acid battery | |
JP5708959B2 (en) | Lead acid battery | |
JP2021111445A (en) | Lead-acid battery | |
JP2019053998A (en) | Lead acid storage battery | |
JP7287884B2 (en) | Positive plate for lead-acid battery, lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6115841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |