JP6112531B2 - Red phosphorescent phosphor and method for producing the same - Google Patents
Red phosphorescent phosphor and method for producing the same Download PDFInfo
- Publication number
- JP6112531B2 JP6112531B2 JP2011194579A JP2011194579A JP6112531B2 JP 6112531 B2 JP6112531 B2 JP 6112531B2 JP 2011194579 A JP2011194579 A JP 2011194579A JP 2011194579 A JP2011194579 A JP 2011194579A JP 6112531 B2 JP6112531 B2 JP 6112531B2
- Authority
- JP
- Japan
- Prior art keywords
- red
- afterglow
- firing
- phosphor
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000010304 firing Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 17
- 229910052693 Europium Inorganic materials 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 14
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 12
- 229910052746 lanthanum Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 229910052772 Samarium Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 6
- 150000002902 organometallic compounds Chemical class 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052765 Lutetium Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910003668 SrAl Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- -1 organic Acid salts Chemical class 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、紫外線励起により赤色発光を示し、励起後も発光し続ける長残光物質とそれを製造するための製造方法に関する。 The present invention relates to a long afterglow material that emits red light by ultraviolet excitation and continues to emit light after excitation, and a manufacturing method for manufacturing the long afterglow material.
光の励起後も発光が可能な蓄光材料(蓄光蛍光体)は、災害、停電時においても誘導標識や照明としての機能があるため、安全、安心な社会を構築するための材料として期待されている。これまでに長残光を示す蓄光材料として、緑色発光を示すアルミン酸塩SrAl2O4:Eu,Dy(特許文献1参照)、が知られており、災害時の誘導表示板等に応用されている。また、青色蓄光材料としては、Sr1.995MgSi2O7:Eu0.005,Dy0.025Cl0.025が知られている(特許文献2参照)。 Phosphorescent materials that can emit light even after light excitation (phosphorescent phosphors) are expected to be used as materials for building a safe and secure society because they function as guidance signs and lighting even during disasters and power outages. Yes. Up to now, aluminate SrAl 2 O 4 : Eu, Dy (see Patent Document 1) showing green light emission is known as a phosphorescent material showing long afterglow, and is applied to a guidance display board at the time of disaster. ing. Further, Sr 1.995 MgSi 2 O 7 : Eu 0.005 and Dy 0.025 Cl 0.025 are known as blue phosphorescent materials (see Patent Document 2).
一方、赤色蓄光材料としては、比較的残光時間が長いものとして、次の1,2のものが知られている。
1.Y2O2S:Tix,Mgy,Gda(特許文献3参照)、
2.CaS:Eu,Tmで表される化合物を主体とし、Caに対して、Euを10Xmol%含有し、Tmを10Ymol%含有すると共に、-3≦X≦-1、-3≦Y≦0の範囲であり、かつ0≦Y-X≦2であるもの(特許文献4参照)。
しかしながら、これら1,2の赤色蓄光材料は、いずれも発光強度が弱く、しかも硫黄酸化物のため紫外線、熱に対する安定性や、耐候性などの長期安定性に大きな問題がある。
On the other hand, as red phosphorescent materials, the following
1. Y 2 O 2 S: Ti x , Mg y , Gd a (see Patent Document 3),
2. CaS: Mainly composed of compounds represented by Eu and Tm, containing 10 X mol% Eu and 10 Y mol% Tm with respect to Ca, and -3≤X≤-1, -3≤Y ≦ 0 and 0 ≦ YX ≦ 2 (see Patent Document 4).
However, these 1 and 2 red phosphorescent materials all have low emission intensity, and are sulfur oxides, and thus have a great problem in long-term stability such as stability against ultraviolet rays and heat and weather resistance.
このような長期安定性に大きな問題がある前記赤色蓄光材料とは別に、紫外線や熱に対して安定な金属酸化物の赤色蓄光材料も知られている。
1.(Zn1-xMgx)O・n(Ga1-yCry)2O3(組成式中のx、y及びnはそれぞれ下記の条件を満たす数値である。
0≦x≦1.0、1×10-5≦y≦1×10-1、0.95≦n≦1.05)(特許文献5参照)
2.遷移元素及び希土類元素によって付活されたGe−O結合を含み、且つ,赤色に対する残光特性を有するゲルマン酸塩を主体とした化合物の焼成体からなる赤色蓄光蛍光体(特許文献6参照)
3.Ca1-XSrXTiO3:Pr赤色蓄光材料(非特許文献1参照)。
しかしながら、いずれも残光時間が短いため、実用的な応用が困難であった。
In addition to the red phosphorescent material having such a long-term stability problem, a metal oxide red phosphorescent material that is stable against ultraviolet rays and heat is also known.
1. (Zn 1-x Mg x ) O · n (Ga 1-y Cr y ) 2 O 3 (x, y and n in the composition formula are values satisfying the following conditions, respectively.
0 ≦ x ≦ 1.0, 1 × 10-5 ≦ y ≦ 1 × 10 −1 , 0.95 ≦ n ≦ 1.05) (see Patent Document 5)
2. A red phosphorescent phosphor comprising a sintered body of a compound mainly composed of germanate having a Ge-O bond activated by a transition element and a rare earth element and having afterglow characteristics for red (see Patent Document 6)
3. Ca 1-X Sr X TiO 3 : Pr red phosphorescent material (see Non-Patent Document 1).
However, since the afterglow time is short, practical application is difficult.
そこで、本発明は、上記の欠点を解消し、長残光の赤色蓄光特性を有し、さらに化学的に安定で耐侯性に優れた蓄光蛍光体及びその製造方法を提供しようとするものである。 Therefore, the present invention aims to provide a phosphorescent phosphor that eliminates the above-described drawbacks, has a long phosphorescence red phosphorescence characteristic, is chemically stable and has excellent weather resistance, and a method for producing the phosphorescent phosphor. .
本発明者等は、従来の赤色蓄光材料の有する欠点を解消するため、特に酸化物系の蛍光体について鋭意検討の結果、組成式AaBbOc〔式中、Aは、Ca,Sr,Ba,Mgより選ばれる元素の少なくとも一種であり、Bは、Ti,Zr,Sn,Mn,Mo,Ruより選ばれる元素の少なくとも一種であり、a、b、cは、それぞれ次の数値範囲である。0.8≦a≦5,1.0≦b≦4,2.5≦c≦(a+2b)〕で表される酸化物を基本とし、Prと更にLa,Eu,Dy,Smから選ばれる元素を少なくとも一つが含まれる赤色蓄光蛍光体であれば、光励起停止後においても長時間赤色発光することを見出し、赤色蓄光蛍光体に関する本発明を完成することができた。 In order to eliminate the drawbacks of the conventional red phosphorescent material, the present inventors have conducted intensive studies on an oxide-based phosphor. As a result, the composition formula A a B b O c [where A is Ca, Sr , Ba, Mg is at least one element selected from B, B is at least one element selected from Ti, Zr, Sn, Mn, Mo, Ru, and a, b, c are the following numerical ranges, respectively. It is. 0.8 ≦ a ≦ 5, 1.0 ≦ b ≦ 4, 2.5 ≦ c ≦ (a + 2b)], and at least one element selected from Pr and La, Eu, Dy, and Sm. It was found that the red phosphorescent phosphor contained contained that it emitted red light for a long time even after the light excitation was stopped, and the present invention relating to the red phosphorescent phosphor could be completed.
また、それらの金属元素を含む金属有機化合物を溶液で混合し、あるいは、固体原料を遊星ボールミルにより原料のナノサイズ化と均一混合し、これらの原料を、500℃未満の仮焼成工程、500℃以上1500℃未満の焼成工程、更には、1500℃以上の高温焼成工程を2回以上用いることが、長時間の蓄光を有する赤色蓄光蛍光体を製造する上で有効であることを見出し、赤色蓄光蛍光体の製造方法に関する本発明を完成することができた。 In addition, metal organic compounds containing those metal elements are mixed in a solution, or solid raw materials are uniformly mixed with nano-size raw materials using a planetary ball mill, and these raw materials are subjected to a preliminary firing step of less than 500 ° C., 500 ° C. It has been found that it is effective to produce a red phosphor with long-time phosphorescence by using a firing process of less than 1500 ° C. or more and a high-temperature firing process of 1500 ° C. or more twice. The present invention relating to a method for producing a phosphor could be completed.
上記の課題を達成するために、具体的には次の発明を提供する。
(1)組成式AaBbOc〔式中、Aは、Ca,Sr,Ba,Mgより選ばれる元素の少なくとも一種であり、Bは、Ti,Zr,Snより選ばれる元素の少なくとも一種であり、a、b、cは、それぞれ次の数値範囲である。0.8≦a<1,b=1,c=3〕で表される酸化物を基本とし、Prと更にLa,Eu,Dy,Smから選ばれる元素の少なくとも一種を共置換した赤色蓄光蛍光体。
(2)Prの含有量が0mol%<Pr<0.01mol%、La,Eu,Dy,Smの合計含有量Lnが0mol%<Ln<10.0mol%である上記(1)に記載の赤色蓄光蛍光体。
(3)上記(1)又は(2)に記載の赤色蓄光蛍光体を含む赤色蓄光性製品。
(4)上記(1)又は(2)に記載の赤色蓄光蛍光体の製造方法であって、上記組成式で表される割合となるように選択された金属元素を含む原料を、遊星ボールミルによりナノ粒子化する工程、又は、溶媒を用いて溶液化する工程を含むことを特徴とする赤色蓄光蛍光体の製造方法。
(5)金属元素を含む原料として金属有機化合物を用いることを特徴とする上記(4)に記載の赤色蓄光蛍光体の製造方法。
(6)500℃未満の仮焼成工程、500℃以上1500℃未満の焼成工程、及び、少なくとも2回の1500℃以上の焼成工程を含むことを特徴とする上記(4)又は(5)に記載の赤色蓄光蛍光体の製造方法。
(7)最後の1500℃以上の焼成工程において、赤色蓄光性製品とする上記(6)に記載の赤色蓄光性蛍光体の製造方法。
In order to achieve the above object, the following invention is specifically provided.
(1) Composition formula A a B b O c [wherein A is at least one element selected from Ca, Sr, Ba and Mg, and B is at least one element selected from Ti, Zr and Sn. And a, b, and c are the following numerical ranges, respectively. 0.8 ≦ a <1, b = 1, c = 3 ], and a red phosphorescent phosphor obtained by co-substituting at least one element selected from Pr and La, Eu, Dy, and Sm.
(2 ) The red phosphor as described in (1 ) above, wherein the Pr content is 0 mol% <Pr <0.01 mol%, and the total content Ln of La, Eu, Dy, Sm is 0 mol% <Ln <10.0 mol% Phosphor.
( 3 ) A red luminous product containing the red luminous phosphor according to (1) or (2 ) above.
( 4 ) The method for producing a red phosphorescent phosphor according to (1) or (2) above, wherein a raw material containing a metal element selected so as to have a ratio represented by the above composition formula is obtained by a planetary ball mill. A method for producing a red phosphor, comprising a step of forming nanoparticles or a step of forming a solution using a solvent.
( 5 ) The method for producing a red phosphor as described in ( 4 ) above, wherein a metal organic compound is used as a raw material containing a metal element.
( 6 ) Described in ( 4 ) or ( 5 ) above, comprising a preliminary firing step of less than 500 ° C, a firing step of 500 ° C or more and less than 1500 ° C, and at least two firing steps of 1500 ° C or more Manufacturing method of red phosphorescent phosphor.
( 7 ) The manufacturing method of the red luminous phosphor as described in said ( 6 ) made into a red luminous product in the last baking process of 1500 degreeC or more.
本発明の赤色蓄光蛍光体は、長残光の赤色蓄光特性を有すると共に、化学的に安定で耐侯性に優れている。 The red phosphor of the present invention has long afterglow red phosphorescence characteristics, is chemically stable and has excellent weather resistance.
本発明は、組成式AaBbOc〔式中、Aは、Ca,Sr,Ba,Mgより選ばれる元素の少なくとも一種であり、Bは、Ti,Zr,Sn,Mn,Mo,Ruより選ばれる元素の少なくとも一種であり、a、b、cは、それぞれ次の数値範囲である。0.8≦a≦5,1.0≦b≦4,2.5≦c≦(a+2b)〕で表される酸化物を基本とし、Prと更にLa,Eu,Dy,Smから選ばれる元素の少なくとも一種を含有する赤色蓄光蛍光体とその製造方法である。 The present invention relates to a composition formula A a B b O c [wherein A is at least one element selected from Ca, Sr, Ba, Mg, and B is Ti, Zr, Sn, Mn, Mo, Ru. A, b, and c are each in the following numerical range. 0.8 ≦ a ≦ 5, 1.0 ≦ b ≦ 4, 2.5 ≦ c ≦ (a + 2b)], and at least one element selected from Pr and La, Eu, Dy, Sm It is the red luminous fluorescent substance to contain and its manufacturing method.
Pr含有量については、残光輝度の点から、0mol%<Pr<0.01mol%の範囲が適している(より好ましくは、0.001mol%<Pr<0.005mol%)。また、第2のドーピング金属であるLa、Eu,Dy,Smの合計含有量Lnは、残光輝度の観点から、0mol%<Ln<10.0mol%の範囲が適している(より好ましくは、0.01mol%<Ln<6.0mol%)。 Regarding the Pr content, the range of 0 mol% <Pr <0.01 mol% is suitable from the viewpoint of afterglow luminance (more preferably 0.001 mol% <Pr <0.005 mol%). In addition, the total content Ln of La, Eu, Dy, and Sm that are the second doping metals is suitably in the range of 0 mol% <Ln <10.0 mol% from the viewpoint of afterglow luminance (more preferably, 0.01%). mol% <Ln <6.0 mol%).
更に組成式AaBbOcのAサイトは、Ca、Bサイトは、Ti元素を基本とするが、イオン半径の異なるSr,Ba,MgをAサイトに、BサイトにはZr,Sn,Mn,Mo,Ruを用いることで、母物質のバンドギャップを含む電子構造を変えることができるため、光吸収効率を高くすることができる。このため、A,Bサイトの元素組成を制御することで、残光輝度や残光時間を調整することが可能となる。 Further, the A site of the composition formula A a B b O c is based on the Ca and B sites, but the Ti element, but Sr, Ba and Mg having different ionic radii are used as the A site and Zr, Sn, and B are used as the B site. By using Mn, Mo, and Ru, the electronic structure including the band gap of the base material can be changed, so that the light absorption efficiency can be increased. For this reason, the afterglow brightness and the afterglow time can be adjusted by controlling the elemental composition of the A and B sites.
この赤色蓄光材料を作製するためには、金属元素を含む溶媒に溶解する化合物、例えば金属有機化合物、硝酸塩を用いることが好ましく、発明のプロセスで用いる先駆体の金属有機化合物原料については、金属有機酸塩、βジケトナート、金属アルコキシドなどを用いることができる。具体的には、金属酢酸塩、金属2エチルヘキサン酸塩、金属アセチルアセトナート、金属ナフテン酸塩などがあげられるが、溶媒に溶解する金属有機化合物であれば、特に制限なく用いることができる。溶媒は、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ヘプタノール、酢酸エチル、酢酸ブチル、トルエン、キシレン、ベンゼン、アセチルアセトナート、エチレングリコール、水などが好ましい。また、溶媒等に解けない金属を含む化合物、たとえば、金属オレイン酸塩、金属ステアリン酸塩、酸化物、炭酸塩などの固体材料も用いることができるが、この場合は、遊星ボールミルにより均一に混合するとともにナノ粒子化した溶媒を含んでもよい原料を用いることが好ましい。 In order to produce this red phosphorescent material, it is preferable to use a compound that dissolves in a solvent containing a metal element, such as a metal organic compound or nitrate, and for the precursor metal organic compound raw material used in the process of the invention, a metal organic Acid salts, β-diketonates, metal alkoxides, and the like can be used. Specific examples include metal acetate, metal 2-ethylhexanoate, metal acetylacetonate, metal naphthenate, and the like. Any metal organic compound that can be dissolved in a solvent can be used without particular limitation. The solvent is preferably methanol, ethanol, propanol, butanol, hexanol, heptanol, ethyl acetate, butyl acetate, toluene, xylene, benzene, acetylacetonate, ethylene glycol, water or the like. In addition, solid materials such as metal oleates, metal stearates, oxides and carbonates that contain metals that cannot be dissolved in solvents can be used, but in this case, they are mixed uniformly by a planetary ball mill. In addition, it is preferable to use a raw material that may contain a nanoparticulated solvent.
このように混合した原料は、溶媒を用いた湿式混合の場合は、溶媒を除去するために乾燥を行う。また、金属を含む有機金属化合物や硝酸塩を原料に用いた場合は、500℃未満の温度において溶媒、有機成分の除去を行う工程、500℃以上1500℃未満(好ましくは、700℃以上1300℃以下)の焼成工程、1500℃以上(好ましくは、1500℃以上1800℃以下)の焼成工程を少なくとも2回以上行う、多段階の温度を用いた焼成工程を用いることを特徴とする。このような多段階の温度範囲で、金属組成がAaBbOc:0.8≦a≦5,1.0≦b≦4,2.5≦c≦(a+2b)の金属組成式で表され、AがCa,Sr,Ba,Mg,BがTi,Zr,Sn,Mn,Mo,Ruより選ばれる元素を少なくとも一つずつ用いた酸化物を基本とし、Prと更にLa,Eu,Dy,Smから選ばれる元素を少なくとも一つが含まれる赤色蓄光蛍光体が製造できる。このような多段階の焼成は、それによって分解蒸発による組成ずれや不純物相の生成が防止されるので、長残光特性を得る上で望ましい。なお、各焼成間において、焼結体の粉砕、混合、錠剤成形(加圧成形)を行うと、組成ずれや不純物相生成を防止する上でより望ましいが、各焼成間において粉砕や錠剤成形(加圧成形)を行うことなく多段階の焼成を行っても長残特性を得る上で有効である。 In the case of wet mixing using a solvent, the mixed raw materials are dried to remove the solvent. In addition, when an organic metal compound containing metal or nitrate is used as a raw material, the step of removing the solvent and organic components at a temperature of less than 500 ° C, 500 ° C to less than 1500 ° C (preferably 700 ° C to 1300 ° C) ), A baking process using a multi-stage temperature, wherein a baking process of 1500 ° C. or higher (preferably 1500 ° C. or higher and 1800 ° C. or lower) is performed at least twice. In such a multi-stage temperature range, the metal composition is represented by a metal composition formula of A a B b O c : 0.8 ≦ a ≦ 5, 1.0 ≦ b ≦ 4, 2.5 ≦ c ≦ (a + 2b), and A Is based on an oxide using at least one element selected from Ca, Sr, Ba, Mg, and B, each of which is selected from Ti, Zr, Sn, Mn, Mo, and Ru. From Pr and further La, Eu, Dy, and Sm A red phosphorescent phosphor containing at least one selected element can be produced. Such multi-stage baking is desirable for obtaining long afterglow characteristics because it prevents composition shift and impurity phase generation due to decomposition and evaporation. Note that grinding, mixing, and tableting (pressure molding) of the sintered body between each firing are more desirable in preventing composition shift and impurity phase generation, but grinding and tableting between each firing ( Even if multi-stage firing is performed without performing pressure molding, it is effective in obtaining long residual characteristics.
2回以上の1500℃以上の焼成工程のうち、最後の焼成工程において、製造される赤色蓄光蛍光体を適宜の形状の焼結成型体(蓄光性製品)とすることができる。また、最後の焼成工程後、蓄光性焼結成型体を適宜微粉化し、微粉状の赤色蓄光蛍光体(赤色蓄光材料)とすることもできる。該微粉状の赤色蓄光蛍光体は、固体状バインダや液状媒体等と共に種々の物体表面に塗布したり、プラスチックス、ゴム、塩化ビニ−ル、合成樹脂又はガラス等に混合し、赤色蓄光性成型体や蛍光膜とすることもできる。 Of the two or more firing steps at 1500 ° C. or higher, the red phosphorescent phosphor produced in the final firing step can be a sintered molded body (phosphorescent product) having an appropriate shape. Further, after the final firing step, the phosphorescent sintered compact can be appropriately pulverized to obtain a fine powdery red phosphorescent phosphor (red phosphorescent material). The fine red phosphorescent phosphor is applied to various object surfaces together with solid binders and liquid media, or mixed with plastics, rubber, vinyl chloride, synthetic resin or glass, etc. Or a fluorescent film.
以下、本発明の特徴を実施例に基づいて、さらに詳しく説明する。なお、以下の説明は、本発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本発明の技術思想に基づく変形、実施態様、他の例は、本発明に含まれるものである。 Hereinafter, the features of the present invention will be described in more detail based on examples. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.
図1は、PrとDy,Eu,La,Sm,Luのいずれか一つとなる金属元素を2mol%共置換した試料に、それぞれに対して主発光波長365nmの紫外線を2分間照射し、照射停止後の残光特性を測定したものであり、その測定方法は、ランプを各蛍光体試料に照射し、ランプを切った後の蓄光材料の残光特性(ランプを切った後の経過時間とその時の各蓄光材料の刻々の発光強度との相関)を輝度計で時間と共に残光輝度を測定して求めるものである。 Fig. 1 shows a sample in which Pr and Dy, Eu, La, Sm, and Lu are co-substituted with 2 mol% of a metal element, and each sample is irradiated with ultraviolet light having a main emission wavelength of 365 nm for 2 minutes to stop irradiation. Afterglow characteristics were measured, and the measurement method was to irradiate each phosphor sample with a lamp, and the afterglow characteristics of the phosphorescent material after the lamp was turned off (elapsed time after the lamp was turned off and at that time) (Correlation with the light emission intensity of each of the phosphorescent materials) is obtained by measuring the afterglow luminance with time using a luminance meter.
図1から明らかなように、Laを共置換した蓄光材料は、共置換しないCa0.998TiO3:Pr0.002蓄光材料に比べて極めて顕著な残光特性を有することが分かる。また、Eu、Sm、Dyを共置換した蓄光材料も、比較例のCa0.998TiO3:Pr0.002に比べて優れた残光特性を有しており、これらの材料を用いることで所望の残光時間や残光強度を調整できる。
また、図2に示すように実施例2のLaの置換量を変えることにより、更にすぐれた残光特性を有する赤色蓄光性蛍光体が得られる。
As is apparent from FIG. 1, it can be seen that the phosphorescent material co-substituted with La has extremely remarkable afterglow characteristics as compared with the non-co-substituted Ca 0.998 TiO 3 : Pr 0.002 phosphorescent material. In addition, phosphorescent materials co-substituted with Eu, Sm, and Dy also have excellent afterglow characteristics compared to Ca 0.998 TiO 3 : Pr 0.002 of the comparative example, and the desired afterglow can be achieved by using these materials. Time and afterglow intensity can be adjusted.
In addition, as shown in FIG. 2, by changing the amount of substitution of La in Example 2, a red phosphorescent phosphor having better afterglow characteristics can be obtained.
図3は、Prを0.2mol%とLaを2mol%共置換した試料を400℃で焼成後、1300℃で焼成なしに1500℃で直接焼成した試料、更に1500℃で再度焼成を2回、3回行った試料の残光特性である。図からわかるように金属組成が同じであっても、焼成プロセスが異なると、実施例1で作製したCa0.998TiO3:Pr0.002,Ca0.978TiO3:Pr0.002La0.02と比べて残光特性が劣っていることがわかる。 Fig. 3 shows a sample in which 0.2 mol% of Pr and 2 mol% of La are co-substituted, calcined at 400 ° C, calcined directly at 1500 ° C without calcining at 1300 ° C, and again calcined twice at 1500 ° C. It is the afterglow characteristic of the sample performed repeatedly. As can be seen from the figure, even if the metal composition is the same, if the firing process is different, the afterglow characteristics are higher than those of Ca 0.998 TiO 3 : Pr 0.002 and Ca 0.978 TiO 3 : Pr 0.002 La 0.02 prepared in Example 1. It turns out that it is inferior.
図4は、Prを0.2mol%とLaを2mol%共置換した金属組成の原料を、400℃で焼成後、1300℃で焼成し、その後1500℃で焼成せずに作製した焼成赤色蓄光蛍光体の残光特性である。1500℃の焼成を行わない場合、残光特性は、共置換の効果がないことがわかる。 Fig. 4 shows a fired red phosphor stored in a raw material with a metal composition in which 0.2 mol% of Pr and 2 mol% of La are co-substituted, fired at 400 ° C, fired at 1300 ° C, and then not fired at 1500 ° C. Afterglow characteristics. When firing at 1500 ° C. is not performed, the afterglow characteristic is found to have no co-substitution effect.
(実施例1)
Ca0.978TiO3:Pr0.002Ln0.02のLnにDy,Eu,La,Sm,Luのいずれか一つとなる金属を含む金属酸化物を形成する金属元素を含む2-エチルヘキサン酸を所定の金属組成になるように混合し、大気中、400℃で6時間、溶媒と有機成分を除去した。ついで、大気中、1300℃で2時間焼成を行い、焼成後、乳鉢で粉砕、均一混合した。この粉末を錠剤成形し、大気中1500℃で2時間焼成した。同様に、焼成後、乳鉢で再度粉砕、均一混合し、この粉末を錠剤成形した。この成形体を大気中1500℃で2時間焼成した。得られた焼結体を365nmの光で2分励起した後、残光輝度を測定したところ、図1に示すように、Laを共置換した場合において、10分後の残光強度が5.2mcd/m2を示した。次いで、Eu、Sm、Dyを共置換した場合が、添加しない場合Ca0.998TiO3:Pr0.002に比べて残光強度が高い蓄光材料が得られた。
Example 1
Ca 0.978 TiO 3 : Pr 0.002 Ln 0.02 Ln 2-ethylhexanoic acid containing a metal element that forms a metal oxide containing a metal that is one of Dy, Eu, La, Sm, and Lu And the solvent and organic components were removed in the atmosphere at 400 ° C. for 6 hours. Next, firing was performed at 1300 ° C. for 2 hours in the atmosphere. After firing, the mixture was pulverized and mixed uniformly in a mortar. This powder was tableted and fired at 1500 ° C. for 2 hours in air. Similarly, after firing, the powder was pulverized again and mixed uniformly in a mortar, and this powder was tableted. The molded body was fired in the atmosphere at 1500 ° C. for 2 hours. After the obtained sintered body was excited with 365 nm light for 2 minutes and the afterglow luminance was measured, as shown in FIG. 1, when La was co-substituted, the afterglow intensity after 10 minutes was 5.2 mcd. / m 2 is shown. Next, when Eu, Sm, and Dy were co-substituted, when not added, a phosphorescent material having higher afterglow intensity was obtained compared to Ca 0.998 TiO 3 : Pr 0.002 .
(実施例2)
Ca0.958TiO3:Pr0.002La0.04を形成する金属元素を含む2-エチルヘキサン酸を所定の金属組成になるように混合し、大気中、400℃で6時間溶媒と有機成分を除去した。ついで、大気中、1300℃で2時間焼成を行い、焼成後、乳鉢で粉砕、均一混合した。この粉末を錠剤成形し、大気中1500℃で2時間焼成した。同様に、焼成後、乳鉢で再度粉砕、均一混合し、この粉末を錠剤成形した。この成形体を大気中、1500℃で2時間焼成した。得られた焼結体を365nmの光で2分間励起した後、図2に示すように、10分後の残光強度が9.8mcd/m2を示した。
(Example 2)
2-ethylhexanoic acid containing a metal element forming Ca 0.958 TiO 3 : Pr 0.002 La 0.04 was mixed so as to have a predetermined metal composition, and the solvent and organic components were removed in the atmosphere at 400 ° C. for 6 hours. Next, firing was performed at 1300 ° C. for 2 hours in the atmosphere. After firing, the mixture was pulverized and mixed uniformly in a mortar. This powder was tableted and fired at 1500 ° C. for 2 hours in air. Similarly, after firing, the powder was pulverized again and mixed uniformly in a mortar, and this powder was tableted. The molded body was fired at 1500 ° C. for 2 hours in the air. After the obtained sintered body was excited with 365 nm light for 2 minutes, the afterglow intensity after 10 minutes showed 9.8 mcd / m 2 as shown in FIG.
(比較例1)
実施例1のCa0.978TiO3:Pr0.002La0.02を形成する焼成工程で1300℃の焼成工程を含まず、1500℃以上で焼成したところ残光特性が著しく低下した(図3の「焼成1回」参照)。更に、2回、3回の焼成で残光特性が向上したが(図3の「焼成1回」、「焼成2回」参照)、その残光輝度は、実施例1のプロセスで作製した赤色蓄光蛍光体の残光特性と比べて低い。
(Comparative Example 1)
The firing process for forming Ca 0.978 TiO 3 : Pr 0.002 La 0.02 in Example 1 did not include a firing process at 1300 ° C., and after firing at 1500 ° C. or more, the afterglow characteristics were significantly reduced (see FIG. "reference). Furthermore, afterglow characteristics were improved by two or three firings (see “one firing” and “two firings” in FIG. 3), but the afterglow brightness was red produced by the process of Example 1. Low afterglow characteristics of phosphorescent phosphors.
(比較例2)
実施例1のCa0.978TiO3:Pr0.002La0.02を形成する焼成工程で1300℃の焼成を1回行い、1500℃の焼成工程を行わない場合、残光特性が著しく低下し,共置換の効果が見られなかった(図4参照)。
(Comparative Example 2)
In the firing process of forming Ca 0.978 TiO 3 : Pr 0.002 La 0.02 in Example 1, after firing at 1300 ° C. once and without the firing process at 1500 ° C., the afterglow characteristics are significantly reduced, and the effect of co-substitution Was not seen (see FIG. 4).
本発明の赤色蓄光蛍光体は、極めて高輝度で、長残光性を示し、耐侯性にも優れ、かつ、化学的に安定なため、従来のY2O2S:Eu系赤色蓄光性蛍光体に比べて、広い用途への利用が可能である。例えば、種々の物品の表面に塗布したり、プラスチックス、ゴム、塩化ビニ−ル、合成樹脂又はガラス等に混合し、成型体もしくは蛍光膜として、道路標識、視認表示、装飾品、レジャー用品、時計、OA機器、教育機器、安全標識及び建築材等に利用することができる。また、この蓄光性焼成蛍光体を蛍光ランプの蛍光膜として用いるときには、残光性の優れた蛍光ランプとして使用することができる。 The red phosphorescent phosphor of the present invention has extremely high brightness, long persistence, excellent weather resistance, and is chemically stable, so the conventional Y 2 O 2 S: Eu red phosphorescent phosphor Compared to the body, it can be used for a wide range of purposes. For example, it can be applied to the surface of various articles, mixed with plastics, rubber, vinyl chloride, synthetic resin or glass, etc., as a molded body or fluorescent film, road signs, visual indications, ornaments, leisure goods, It can be used for watches, office automation equipment, educational equipment, safety signs and building materials. Further, when this phosphorescent fired phosphor is used as a fluorescent film of a fluorescent lamp, it can be used as a fluorescent lamp with excellent afterglow.
Claims (3)
前記酸化物材料の金属元素を含有する原料を準備する工程と、
前記原料を500℃未満の温度で焼成する第1焼成工程と、
前記第1焼成工程後に500℃以上1500℃未満の温度で焼成する第2焼成工程と、
前記第2焼成工程後に1500℃以上の焼成を少なくとも2回繰り返す第3焼成工程と、
を備える赤色蓄光蛍光体の製造方法。 Composition formula A a B b O c [wherein A is at least one element selected from Ca, Sr, Ba, Mg, and B is at least one element selected from Ti, Zr, Sn, a, b, and c are the following numerical ranges, respectively. 0.8 ≦ a <1, b = 1, c = 3], and an ultraviolet ray is applied to an oxide material in which Pr and at least one element selected from La, Eu, Dy, and Sm are co-substituted. Is a method for producing a red phosphorescent phosphor exhibiting red afterglow,
Preparing a raw material containing a metal element of the oxide material;
A first firing step of firing the raw material at a temperature of less than 500 ° C .;
A second baking step of baking at a temperature of 500 ° C. or higher and lower than 1500 ° C. after the first baking step;
A third baking step in which baking at 1500 ° C. or higher is repeated at least twice after the second baking step;
A method for producing a red phosphorescent phosphor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011194579A JP6112531B2 (en) | 2011-09-07 | 2011-09-07 | Red phosphorescent phosphor and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011194579A JP6112531B2 (en) | 2011-09-07 | 2011-09-07 | Red phosphorescent phosphor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013056952A JP2013056952A (en) | 2013-03-28 |
JP6112531B2 true JP6112531B2 (en) | 2017-04-12 |
Family
ID=48133097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011194579A Active JP6112531B2 (en) | 2011-09-07 | 2011-09-07 | Red phosphorescent phosphor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6112531B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000017258A (en) * | 1998-06-29 | 2000-01-18 | Futaba Corp | Phosphor |
JP2006022210A (en) * | 2004-07-08 | 2006-01-26 | Kyushu Univ | Composite oxide phosphor and method for producing composite oxide phosphor |
JP4810152B2 (en) * | 2005-07-25 | 2011-11-09 | 三井金属鉱業株式会社 | Red phosphor and white light emitting device |
JP2007146102A (en) * | 2005-11-07 | 2007-06-14 | Kyushu Institute Of Technology | Inorganic oxide phosphor |
JP5379724B2 (en) * | 2010-03-03 | 2013-12-25 | ノリタケ伊勢電子株式会社 | Low-speed electron beam phosphor and fluorescent display device |
-
2011
- 2011-09-07 JP JP2011194579A patent/JP6112531B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013056952A (en) | 2013-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5503288B2 (en) | Aluminum silicate orange-red phosphor mixed with divalent and trivalent cations | |
TWI491707B (en) | Abos: m-based phosphors and light sources containing these phosphors | |
TWI466985B (en) | Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same | |
JP5704457B2 (en) | Deep red phosphor, illumination light source, and method for producing deep red phosphor | |
JP6465417B2 (en) | Luminescent phosphor and method for producing the same | |
JP2012520818A (en) | Alumina, illuminant, mixed compound thereof, and production method thereof | |
CN105219387A (en) | Metatitanic acid alkali red illuminating material of a kind of additive Mn and its preparation method and application | |
KR101339102B1 (en) | Sr-Al-O BASED LONG-AFTERGLOW PHOSPHORS AND METHOD FOR MANUFACTURING THE SAME | |
CN103396796B (en) | Antimonate long-afterglow fluorescent powder and preparation method thereof | |
JP5682053B2 (en) | Deep red phosphor, illumination light source, and method for producing deep red phosphor | |
CN101693833A (en) | Red long afterglow luminescent material with high brightness and preparation method thereof | |
EP2565253B1 (en) | Silicate luminescent material and production method thereof | |
CN115594214B (en) | A Cu ion-doped gallate-based green long-afterglow material and its preparation method | |
EP2540799A1 (en) | Green luminescent material of terbiuim doped gadolinium borate and preparing method thereof | |
JP6112531B2 (en) | Red phosphorescent phosphor and method for producing the same | |
CN1301308C (en) | High luminosity aluminate long luminous material and preparation process thereof | |
JPWO2007034609A1 (en) | Ultraviolet emission afterglow phosphor | |
KR102001718B1 (en) | Oxyide phosphor | |
KR100387659B1 (en) | Manufacturing method of strontium aluminate phosphor by the sol-gel method | |
JP6741614B2 (en) | Rare earth activated alkaline earth silicate compound Afterglow phosphor | |
JP2016035032A (en) | Phosphor, phosphor-containing composition, light-emitting device, illumination device, and liquid crystal display device | |
CN109294576B (en) | Single-ion doped white fluorescent powder applied to WLED device and preparation method thereof | |
KR102312191B1 (en) | Silicate blue light emitter, a method of manufacturing the same and a light emitting device including the same | |
KR102185903B1 (en) | Color-tuning phosphor of rare-earth hydroxide and its preparation method | |
KR20110054793A (en) | Manufacturing method of phosphor for cathode ray lighting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150513 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151007 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20151014 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20151211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6112531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |