[go: up one dir, main page]

JP6106547B2 - Transmission electron microscope - Google Patents

Transmission electron microscope Download PDF

Info

Publication number
JP6106547B2
JP6106547B2 JP2013145963A JP2013145963A JP6106547B2 JP 6106547 B2 JP6106547 B2 JP 6106547B2 JP 2013145963 A JP2013145963 A JP 2013145963A JP 2013145963 A JP2013145963 A JP 2013145963A JP 6106547 B2 JP6106547 B2 JP 6106547B2
Authority
JP
Japan
Prior art keywords
change
focal position
sample
excitation current
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013145963A
Other languages
Japanese (ja)
Other versions
JP2015018721A (en
Inventor
健治 中山
健治 中山
陽一 平山
陽一 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013145963A priority Critical patent/JP6106547B2/en
Publication of JP2015018721A publication Critical patent/JP2015018721A/en
Application granted granted Critical
Publication of JP6106547B2 publication Critical patent/JP6106547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

本発明は、透過電子顕微鏡に関し、特に透過電子顕微鏡の対物レンズのデフォーカスの校正を高い精度で行う透過走査電子顕微鏡に関するものである。   The present invention relates to a transmission electron microscope, and more particularly to a transmission scanning electron microscope that performs calibration of defocus of an objective lens of a transmission electron microscope with high accuracy.

透過電子顕微鏡に代表される電子顕微鏡は、オートフォーカスの機能を有している。オートフォーカスでは、試料像のぼけ量などのパラメータを用いて、試料上に電子線の焦点が合うように対物レンズの励磁電流を調整するものである。   An electron microscope typified by a transmission electron microscope has an autofocus function. In autofocus, the excitation current of the objective lens is adjusted so that the electron beam is focused on the sample using parameters such as the amount of blur of the sample image.

焦点距離の変化量に対する対物レンズの励磁電流量変化の比を表わすデフォーカス校正パラメータは、次に示す校正方法により決定する。まず試料面に対して正焦点に合わせたのちに、ステージ移動により試料位置を単位量ずらし、対物レンズを用いて再度正焦点に合わせ、その電流変化量を得る。   The defocus calibration parameter representing the ratio of the change in the excitation current amount of the objective lens to the change amount of the focal length is determined by the following calibration method. First, after aligning the sample surface with the normal focus, the sample position is shifted by a unit amount by moving the stage, and the object lens is used again to adjust to the normal focus to obtain the current change amount.

特開2012−28324号公報JP 2012-28324 A

上記のデフォーカスパラメータの決定方法では、ステージの位置決め精度によりデフォーカス校正パラメータの精度が落ちる可能性がある。デフォーカスパラメータのずれは、オートフォーカスのずれを引き起こす可能性があり、透過電子顕微鏡の測定精度が悪くなる可能性がある。   In the above defocus parameter determination method, the accuracy of the defocus calibration parameter may be reduced due to the positioning accuracy of the stage. The defocus parameter shift may cause an autofocus shift, which may deteriorate the measurement accuracy of the transmission electron microscope.

特に、透過電子顕微鏡の収差を測定する際には、数十nmオーダーでのデフォーカスを正確に行う必要があり、デフォーカスパラメータのずれは、透過電子顕微鏡の測定精度を悪くする可能性がある。   In particular, when measuring the aberration of a transmission electron microscope, it is necessary to accurately perform defocusing on the order of several tens of nanometers, and the deviation of the defocus parameter may deteriorate the measurement accuracy of the transmission electron microscope. .

本発明は、ステージの位置決め精度に依存せずに対物レンズのデフォーカス校正パラメータを決定する機能を備えた走査透過電子顕微鏡を提供することを目的としている。   An object of the present invention is to provide a scanning transmission electron microscope having a function of determining a defocus calibration parameter of an objective lens without depending on the positioning accuracy of the stage.

本発明の代表的な構成を示すと次の通りである。電子線を放出する電子源と、電子源を試料上で集束する対物レンズと、前記試料を透過した電子を検出する検出器と、前記検出器からの信号を用いてロンチグラム像を表示する表示装置と、前記電子線の収差を補正する収差補正器と、を備えた走査透過電子顕微鏡において、前記対物レンズの励磁電流値を変化させて試料に対する焦点位置を変化させたときの前記ロンチグラム像の変化から求まる励磁電流量変化に対する焦点位置変化量に基づき、前記対物レンズの励磁電流を変化させることを特徴とする走査透過電子顕微鏡。   A typical configuration of the present invention is as follows. An electron source that emits an electron beam, an objective lens that focuses the electron source on the sample, a detector that detects electrons transmitted through the sample, and a display device that displays a Ronchigram image using a signal from the detector A change in the Ronchigram image when the focal position with respect to the sample is changed by changing the excitation current value of the objective lens in a scanning transmission electron microscope comprising the aberration corrector for correcting the aberration of the electron beam A scanning transmission electron microscope characterized in that the excitation current of the objective lens is changed based on a focal position change amount with respect to an excitation current amount change obtained from the equation (1).

本発明の透過電子顕微鏡は、デフォーカス校正の際のステージ移動が不要なため、ステージの位置決め精度に依存することなく高い精度でデフォーカスの校正を行える。これにより、より高精度測定が可能な透過電子顕微鏡を提供することが出来る。   Since the transmission electron microscope of the present invention does not require stage movement during defocus calibration, defocus calibration can be performed with high accuracy without depending on the positioning accuracy of the stage. Thereby, it is possible to provide a transmission electron microscope capable of measuring with higher accuracy.

走査透過電子顕微鏡の主要な構成を示す構成図Configuration diagram showing the main configuration of a scanning transmission electron microscope デフォーカス校正の手順を示すフローチャートFlow chart showing defocus calibration procedure ディスプレイに表示される画面の一例を示す画面図Screen diagram showing an example of the screen displayed on the display 境界判別の指標値の算出処理手順を示すフローチャートFlow chart showing the procedure for calculating the index value for boundary determination

まず、本発明の原理について説明する。本発明においては、収差補正器を備える走査透過電子顕微鏡において、ロンチグラムの六角形状パターンを用いる。なお、ロンチグラムについては、例えば特許文献1に開示がある。非点収差によりロンチグラムの六角形状パターン内に現れる縞状の伸びが、厚い試料の試料内部に焦点位置を合わせると向きが90°異なる像が重なって見えることを利用する。即ち、ロンチグラム像で縞の交差が確認できる場合、焦点位置は試料の上側の境界面(表面)と下側の境界面(裏面)の間のいずれかの位置にあると判断できる。既知の試料の幅と、フォーカス位置をずらしていったときのロンチグラム像の変化から、対物レンズの励磁電流に対するフォーカス位置の変化がわかり、デフォーカスパラメータが決定できる。   First, the principle of the present invention will be described. In the present invention, a Ronchigram hexagonal pattern is used in a scanning transmission electron microscope equipped with an aberration corrector. The Ronchigram is disclosed in, for example, Patent Document 1. Utilizing the fact that the stripe-like stretch appearing in the hexagonal pattern of the Ronchigram due to astigmatism appears to overlap images with different orientations by 90 ° when the focal point is aligned inside the thick sample. That is, when the crossing of the stripes can be confirmed in the Ronchigram image, it can be determined that the focal position is at any position between the upper boundary surface (front surface) and the lower boundary surface (back surface) of the sample. The change in the focus position with respect to the excitation current of the objective lens can be determined from the change in the Ronchigram image when the width of the known sample and the focus position are shifted, and the defocus parameter can be determined.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例となる収差補正器を備えた走査透過電子顕微鏡装置(STEM)の構成例を示す図である。図1において電子銃1から試料台6上の試料に照射された電子線は、試料を透過し、カメラ9などの撮像装置で撮影される。撮影された画像信号は画像処理装置13に送られ、情報処理装置15において保持され、ディスプレイ14に表示される。   FIG. 1 is a diagram illustrating a configuration example of a scanning transmission electron microscope apparatus (STEM) including an aberration corrector according to an embodiment of the present invention. In FIG. 1, the electron beam applied to the sample on the sample stage 6 from the electron gun 1 passes through the sample and is photographed by an imaging device such as a camera 9. The captured image signal is sent to the image processing device 13, held in the information processing device 15, and displayed on the display 14.

透過走査電子顕微鏡は、電子銃1より照射された電子線を集束させる集束レンズ2、電子線を試料に集束させる対物レンズ5、対物レンズ5の収差を補正する収差補正器3、電子線を試料上で走査させるスキャンコイル4、試料を透過・散乱・回折した電子線等を検出する検出器8、電子銃1に高電圧を印加する電子銃制御装置10、レンズおよびコイルを駆動する電子線制御装置11、収差補正器を駆動する収差補正器制御装置12、プログラムの実行や各制御装置への指令などを行う情報処理装置15を備える。   The transmission scanning electron microscope includes a focusing lens 2 that focuses an electron beam irradiated from an electron gun 1, an objective lens 5 that focuses the electron beam on a sample, an aberration corrector 3 that corrects aberrations of the objective lens 5, and an electron beam as a sample. A scan coil 4 that scans above, a detector 8 that detects an electron beam transmitted, scattered, and diffracted through the sample, an electron gun controller 10 that applies a high voltage to the electron gun 1, and an electron beam control that drives the lens and coil An apparatus 11, an aberration corrector control device 12 that drives the aberration corrector, and an information processing device 15 that executes a program, gives instructions to each control device, and the like.

図2は本発明におけるデフォーカス校正の手順を示すフローチャートである。以下各ステップについて説明する。   FIG. 2 is a flowchart showing the procedure of defocus calibration in the present invention. Each step will be described below.

(ステップ201)初めにカメラ9を用いて撮像されるロンチグラム像において平坦化領域が確認できるまで収差補正器3を制御して収差を補正する。このとき試料は厚みが既知のものを用いる。   (Step 201) First, aberration correction is performed by controlling the aberration corrector 3 until a flattened region can be confirmed in a Ronchigram image captured using the camera 9. At this time, a sample having a known thickness is used.

(ステップ202)ステップ201が完了したら、収差補正器3を用いて意図的に2回対称非点収差を導入する。これによりアンダーフォーカスとオーバーフォーカスにおいて向きが90°異なる直線的な縞の形状が観察できる状態となる。   (Step 202) When Step 201 is completed, a two-fold astigmatism is intentionally introduced using the aberration corrector 3. As a result, it becomes possible to observe a linear fringe shape whose directions are different by 90 ° in under focus and over focus.

(ステップ203)次に対物レンズ5を制御し焦点距離を少しずつずらして撮影した画像(スルーフォーカス画像)を撮り、情報処理装置15に保持する。保持した画像は表示装置14に表示される。ユーザは表示された画像からロンチグラム像に縞の交差が確認できる範囲を判別し、情報処理装置15はユーザの判別の結果の入力を受ける。このときの画面例が図3である。   (Step 203) Next, the objective lens 5 is controlled to take an image (through focus image) taken with the focal length shifted little by little, and is held in the information processing device 15. The held image is displayed on the display device 14. The user discriminates the range in which the intersection of the stripes can be confirmed in the Ronchigram image from the displayed image, and the information processing apparatus 15 receives the input of the discrimination result of the user. An example of the screen at this time is shown in FIG.

(ステップ204)ロンチグラム像で縞の交差が確認できる場合、焦点位置は試料の上側の境界面(表面)と下側の境界面(裏面)の間のいずれかの位置にあると判断できる。これは試料内部に焦点があるとき、試料表面側はアンダーフォーカス像、試料裏面側はオーバーフォーカス像を結像し、それらの像が重なって見えるためである。ロンチグラム像の縞の交差を得るため、試料の厚みはロンチグラム像が観察可能な範囲内で厚い方が望ましい。ロンチグラム像の縞の交差の判別をユーザに促す際、情報処理装置15は境界判別の指標となる値を算出し、ディスプレイ14に画像や撮影条件などとあわせて表示する。   (Step 204) When the crossing of the stripes can be confirmed in the Ronchigram image, it can be determined that the focal position is at any position between the upper boundary surface (front surface) and the lower boundary surface (back surface) of the sample. This is because when the sample has a focal point, an underfocus image is formed on the surface side of the sample and an overfocus image is formed on the back side of the sample, and these images appear to overlap. In order to obtain the crossing of the stripes of the Ronchigram image, it is desirable that the thickness of the sample is as thick as possible within the range where the Ronchigram image can be observed. When prompting the user to determine the intersection of the stripes of the Ronchigram image, the information processing device 15 calculates a value that serves as an index for boundary determination and displays it on the display 14 together with the image and the shooting conditions.

最終的に、既知の試料の幅と、フォーカス位置をずらしていったときのロンチグラム像の変化、すなわち、図3のような変化から、対物レンズの励磁電流に対するフォーカス位置の変化がわかり、デフォーカスパラメータが決定できる。求まったデフォーカスパラメータを用いて対物レンズの励磁電流を変化させ、電子線を所望の位置にフォーカスさせることができる。   Finally, the change in the focus position relative to the excitation current of the objective lens can be determined from the change in the Ronchigram image when the width of the known sample and the focus position are shifted, that is, the change as shown in FIG. Parameters can be determined. The excitation current of the objective lens is changed using the obtained defocus parameter, and the electron beam can be focused at a desired position.

なお、上記のステップをプログラム化して情報処理装置15において実行することにより、達成することができる。   It can be achieved by programming the above steps and executing them in the information processing apparatus 15.

図4を用いて、ステップ204のデフォーカスパラメータ決定法についてより詳細に説明する。本方法を用いれば、デフォーカスパラメータの決定を自動化することができる。図4は境界判別の指標値の算出処理のフローチャートである。   The defocus parameter determination method in step 204 will be described in more detail with reference to FIG. If this method is used, the determination of a defocus parameter can be automated. FIG. 4 is a flowchart of an index value calculation process for boundary determination.

(ステップ401)図3の各フォーカス位置での各ロンチグラム像に平滑化処理を行う。   (Step 401) Smoothing processing is performed on each Ronchigram image at each focus position in FIG.

(ステップ402)さらに、平滑化された画像に2値化処理を行う。ステップ401及び402の処理により、画像に含まれる不要な情報を減らし、特徴量を抽出しやすくする。   (Step 402) Further, binarization processing is performed on the smoothed image. By the processing in steps 401 and 402, unnecessary information included in the image is reduced, and feature amounts can be easily extracted.

(ステップ403)次に縞に沿う成分とそれに直交する成分が画像の座標軸に沿うように全画像を同じ角度で回転する。アンダーフォーカス時とオーバーフォーカス時の縞の方向は直交するので、これらがどちらも座標軸に沿うように回転すればよい。   (Step 403) Next, all the images are rotated at the same angle so that the component along the stripe and the component orthogonal thereto are along the coordinate axis of the image. Since the directions of the stripes at the time of underfocus and at the time of overfocus are orthogonal to each other, both of them may be rotated along the coordinate axis.

(ステップ404)次に各画像に縦と横の各方向について差分フィルタなどを適用してエッジを抽出する。ここまでの処理により縞の方向とそれに直交する方向の成分を抽出した画像が得られる。ステップ401〜404は順序により検出の精度などが変わるが、必ずしもこの順序である必要はない。   (Step 404) Next, a difference filter or the like is applied to each image in the vertical and horizontal directions to extract edges. By the processing so far, an image obtained by extracting the component in the direction of the stripe and the direction orthogonal thereto is obtained. In steps 401 to 404, the detection accuracy and the like vary depending on the order, but the order is not necessarily required.

(ステップ405)ステップ404を完了したら、縦と横の各方向についてエッジを抽出した画像の平均輝度値をそれぞれ算出する。   (Step 405) When step 404 is completed, the average luminance value of the image from which the edge is extracted in each of the vertical and horizontal directions is calculated.

(ステップ406)最後に画像ごとに縦と横の平均輝度値の比を算出して、境界判別の指標値とする。この指標値はロンチグラム像の縞が交差して均等含まれていると1に近い値となる。この値の大きさや増加あるいは現象を始めるポイントなどが、境界判別の助けとなる。また、縦と横の平均輝度値の比に所定の値を設定しておき、それを電子線が試料の表面或いは裏面にフォーカスした状態と判断することができる。   (Step 406) Finally, the ratio of the vertical and horizontal average luminance values is calculated for each image, and used as an index value for boundary determination. This index value becomes a value close to 1 when the stripes of the Ronchigram image intersect and are evenly included. The magnitude of this value, the increase, or the point at which the phenomenon starts helps the boundary determination. Further, a predetermined value is set for the ratio between the average luminance value in the vertical and horizontal directions, and it can be determined that the electron beam is focused on the front or back surface of the sample.

ステップ204で入力された像の縞の交差の有無の判別結果から、焦点が試料表面と試料裏面に合っているときの対物レンズ電流を求める。これにより得られる2つの対物レンズの電流値の差をΔI(μA)、用いた試料の厚みをd(nm)とすると、デフォーカス校正パラメータCalib(μA/nm)は、Calib=ΔI/dで表される。   The objective lens current when the focus is on the sample surface and the sample back surface is obtained from the discrimination result of the presence or absence of crossing of the image stripes input in step 204. When the difference between the current values of the two objective lenses thus obtained is ΔI (μA) and the thickness of the sample used is d (nm), the defocus calibration parameter Calib (μA / nm) is Calib = ΔI / d. expressed.

この算出されたデフォーカス校正パラメータCalibを用いると、ステージ移動に依存しない正確なオートフォーカスが可能となり、測定精度も向上する。   By using the calculated defocus calibration parameter Calib, it is possible to perform accurate autofocus independent of stage movement, and to improve measurement accuracy.

本発明の実施例によれば、デフォーカス校正の際の焦点合わせの基準面を試料の表面と裏面にするため、ステージの位置決め精度に依存することなく基準面間の距離が得られる。この基準面間距離と、焦点位置の移動に必要となる対物レンズの電流量変化を得ることで、高い精度でデフォーカスの校正を行える。   According to the embodiment of the present invention, since the reference surface for focusing at the time of defocus calibration is the front surface and the back surface of the sample, the distance between the reference surfaces can be obtained without depending on the positioning accuracy of the stage. By obtaining the distance between the reference planes and the change in the current amount of the objective lens necessary for moving the focal position, it is possible to calibrate the defocus with high accuracy.

1 電子銃
2 収束レンズ
3 収差補正器
4 スキャンコイル
5 対物レンズ
6 試料台
7 投影レンズ
8 検出器
9 カメラ
10 電子銃制御装置
11 電子線制御装置
12 収差補正器制御装置
13 画像処理装置
14 ディスプレイ
15 情報処理装置
DESCRIPTION OF SYMBOLS 1 Electron gun 2 Converging lens 3 Aberration corrector 4 Scan coil 5 Objective lens 6 Sample stand 7 Projection lens 8 Detector 9 Camera 10 Electron gun control device 11 Electron beam control device 12 Aberration corrector control device 13 Image processing device 14 Display 15 Information processing device

Claims (6)

電子線を放出する電子源と、
電子源を試料上で集束する対物レンズと、
前記試料を透過した電子を検出する検出器と、
前記検出器からの信号を用いてロンチグラム像を表示する表示装置と、
前記電子線の収差を補正する収差補正器と、
を備えた走査透過電子顕微鏡において、
前記対物レンズの励磁電流値を変化させて試料に対する焦点位置を変化させたときの前記ロンチグラム像の変化から求まる励磁電流量変化に対する焦点位置変化量に基づき、前記対物レンズの励磁電流を変化させることを特徴とする走査透過電子顕微鏡。
An electron source that emits an electron beam;
An objective lens for focusing the electron source on the sample;
A detector for detecting electrons transmitted through the sample;
A display device for displaying a Ronchigram image using a signal from the detector;
An aberration corrector for correcting the aberration of the electron beam;
In a scanning transmission electron microscope with
Changing the excitation current of the objective lens based on the amount of change in the focal position with respect to the change in the amount of excitation current obtained from the change in the Ronchigram image when the focal position with respect to the sample is changed by changing the excitation current value of the objective lens. Scanning transmission electron microscope.
請求項1の走査透過電子顕微鏡において、
前記対物レンズの励磁電流値を変化させて試料に対する焦点位置を変化させたときの前記ロンチグラム像上に現れる縞の縦横成分の変動から、励磁電流量変化に対する焦点位置変化量を求めることを特徴とする走査透過電子顕微鏡。
The scanning transmission electron microscope of claim 1,
The focal position change amount with respect to the excitation current amount change is obtained from the fluctuation of the vertical and horizontal components of the stripes appearing on the Ronchigram image when the focal position with respect to the sample is changed by changing the excitation current value of the objective lens. Scanning transmission electron microscope.
請求項2の走査透過電子顕微鏡において、
前記ロンチグラム像の縦と横の平均輝度値の比の変動から励磁電流量変化に対する焦点位置変化量を求めることを特徴とする走査透過電子顕微鏡。
The scanning transmission electron microscope of claim 2,
A scanning transmission electron microscope characterized in that a focal position change amount with respect to a change in excitation current amount is obtained from a change in a ratio of vertical and horizontal average luminance values of the Ronchigram image .
電子線を放出する電子源と、
電子源を試料上で集束する対物レンズと、
前記試料を透過した電子を検出する検出器と、
前記検出器からの信号を用いてロンチグラム像を表示する表示装置と、
前記電子線の収差を補正する収差補正器と、
を備えた走査透過電子顕微鏡を用いた焦点位置調整方法において、
前記対物レンズの励磁電流値を変化させて試料に対する焦点位置を変化させたときの前記ロンチグラム像の変化から求まる励磁電流量変化に対する焦点位置変化量に基づき、前記対物レンズの励磁電流を変化させることを特徴とする焦点位置調整方法。
An electron source that emits an electron beam;
An objective lens for focusing the electron source on the sample;
A detector for detecting electrons transmitted through the sample;
A display device for displaying a Ronchigram image using a signal from the detector;
An aberration corrector for correcting the aberration of the electron beam;
In a method for adjusting the focal position using a scanning transmission electron microscope comprising:
Changing the excitation current of the objective lens based on the amount of change in the focal position with respect to the change in the amount of excitation current obtained from the change in the Ronchigram image when the focal position with respect to the sample is changed by changing the excitation current value of the objective lens. A focal position adjustment method characterized by the above.
請求項4の焦点位置調整方法において、
前記対物レンズの励磁電流値を変化させて試料に対する焦点位置を変化させたときの前記ロンチグラム像上に現れる縞の縦横成分の変動から、励磁電流量変化に対する焦点位置変化量を求めることを特徴とする焦点位置調整方法。
The focal position adjustment method according to claim 4, wherein
The focal position change amount with respect to the excitation current amount change is obtained from the fluctuation of the vertical and horizontal components of the stripes appearing on the Ronchigram image when the focal position with respect to the sample is changed by changing the excitation current value of the objective lens. Focus position adjustment method.
請求項5の焦点位置調整方法において、
前記ロンチグラム像の縦と横の平均輝度値の比の変動から励磁電流量変化に対する焦点位置変化量を求めることを特徴とする焦点位置調整方法。
The focus position adjusting method according to claim 5, wherein
A focal position adjustment method for obtaining a focal position change amount with respect to a change in excitation current amount from a change in a ratio between vertical and horizontal average luminance values of the Ronchigram image .
JP2013145963A 2013-07-12 2013-07-12 Transmission electron microscope Expired - Fee Related JP6106547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145963A JP6106547B2 (en) 2013-07-12 2013-07-12 Transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145963A JP6106547B2 (en) 2013-07-12 2013-07-12 Transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2015018721A JP2015018721A (en) 2015-01-29
JP6106547B2 true JP6106547B2 (en) 2017-04-05

Family

ID=52439548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145963A Expired - Fee Related JP6106547B2 (en) 2013-07-12 2013-07-12 Transmission electron microscope

Country Status (1)

Country Link
JP (1) JP6106547B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640848B1 (en) 2016-03-03 2024-02-28 삼성전자주식회사 Method of inspecting a sample, system for inspecting a sample, and method of inspecting semiconductor devies using the same
JP7187384B2 (en) * 2019-05-17 2022-12-12 株式会社日立製作所 inspection equipment
EP3905302B1 (en) * 2020-04-23 2025-03-12 JEOL Ltd. Scanning transmission electron microscope and adjustment method of optical system
JP7267319B2 (en) 2021-01-18 2023-05-01 日本電子株式会社 Aberration measurement method and electron microscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942000B2 (en) * 2006-04-28 2012-05-30 独立行政法人物質・材料研究機構 Measuring method of aberration characteristics of electron microscope and objective lens system
JP5315302B2 (en) * 2010-07-27 2013-10-16 株式会社日立ハイテクノロジーズ Scanning transmission electron microscope and axis adjusting method thereof

Also Published As

Publication number Publication date
JP2015018721A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5103532B2 (en) Charged particle beam device with aberration corrector
WO2011007492A1 (en) Charged particle beam microscope and measuring method using same
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
JP5603421B2 (en) Charged particle beam equipment with automatic aberration correction method
JP2007180013A (en) Aberration measurement method, aberration correction method and electron microscope using Ronchigram
JP2005302359A (en) SEM automatic aberration correction method, aberration visualization method, and automatic aberration correction apparatus
JP6106547B2 (en) Transmission electron microscope
US10566172B2 (en) Charged particle beam apparatus and method for adjusting imaging conditions for the same
JP6914977B2 (en) Scanning transmission electron microscope and aberration correction method
JP5836232B2 (en) Charged particle beam apparatus and aberration correction method
JP5478385B2 (en) Contrast / brightness adjustment method and charged particle beam apparatus
JP6163063B2 (en) Scanning transmission electron microscope and aberration measurement method thereof
JP2010182424A (en) Optical axis control method of charged particle beam and charged particle beam device
TW201825964A (en) Direct focusing with image binning in metrology tools
JP2005147671A (en) Charged particle beam adjustment method and apparatus
JP4829584B2 (en) Method for automatically adjusting electron beam apparatus and electron beam apparatus
JP2013114893A (en) Scanning electron microscope, and automatic focusing method for the same
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP4634324B2 (en) Transmission electron microscope
JP4154939B2 (en) Transmission electron microscope and focusing method
JP2015210396A (en) Aligment device, microscope system, alignment method and alignment program
JP5228463B2 (en) Electron beam apparatus, electron beam shape measuring method and image processing method
JP7381432B2 (en) Charged particle beam device
JP5502622B2 (en) Focusing method in electron microscope and electron microscope
JP2007178764A (en) Automatic focusing method and automatic focusing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees