[go: up one dir, main page]

JP6106309B1 - Reinforcing fiber structure and manufacturing method thereof - Google Patents

Reinforcing fiber structure and manufacturing method thereof Download PDF

Info

Publication number
JP6106309B1
JP6106309B1 JP2016094671A JP2016094671A JP6106309B1 JP 6106309 B1 JP6106309 B1 JP 6106309B1 JP 2016094671 A JP2016094671 A JP 2016094671A JP 2016094671 A JP2016094671 A JP 2016094671A JP 6106309 B1 JP6106309 B1 JP 6106309B1
Authority
JP
Japan
Prior art keywords
bag
fiber
core member
reinforcing fiber
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016094671A
Other languages
Japanese (ja)
Other versions
JP2017202604A (en
Inventor
善光 中川
善光 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakagawa Sangyo Co Ltd
Original Assignee
Nakagawa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakagawa Sangyo Co Ltd filed Critical Nakagawa Sangyo Co Ltd
Priority to JP2016094671A priority Critical patent/JP6106309B1/en
Application granted granted Critical
Publication of JP6106309B1 publication Critical patent/JP6106309B1/en
Priority to CN201780028694.1A priority patent/CN109153221B/en
Priority to PCT/JP2017/017285 priority patent/WO2017195710A1/en
Priority to TW106206403U priority patent/TWM557749U/en
Publication of JP2017202604A publication Critical patent/JP2017202604A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/02Tubular fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

【課題】芯部材と強化繊維が一体的に融合して所定にした強化繊維構造物が効率的に製造でき、曲げ加工すれば曲げ強度にも強い強化繊維構造物及びその製造方法を提供する。【解決手段】 強化繊維3の芯糸に熱融着糸がカバーリングされた強化繊維3により芯部材2が圧着、溶着又は焼成により被覆されてなる。前記強化繊維3に袋織り・袋編みで形成された袋状部分3aが設けられ、芯部材2入れられて圧着、溶着又は焼成により被覆されてなるので、熱圧着等により熱融着糸が溶融して芯部材に融合接着する。【選択図】 図1The present invention provides a reinforcing fiber structure capable of efficiently producing a predetermined reinforcing fiber structure by integrally fusing a core member and reinforcing fibers, and having a high bending strength when bent, and a method for producing the same. SOLUTION: A core member 2 is coated with a reinforcing fiber 3 in which a heat-bonding yarn is covered with a core yarn of the reinforcing fiber 3 by pressure bonding, welding or firing. Since the reinforcing fiber 3 is provided with a bag-like portion 3a formed by bag weaving and knitting, the core member 2 is put and coated by crimping, welding or firing, so that the heat-sealed yarn is melted by thermocompression bonding or the like. Then, fusion bonding is performed on the core member. [Selection] Figure 1

Description

本発明は、強化繊維に金属製部材、繊維強化プラスチック部材、繊維強化セラミックス部材、又は、繊維強化ガラス部材等を圧着、溶着又は焼成して所定の厚みや所定形状に加工した強化繊維構造物及びその製造方法に関する。   The present invention relates to a reinforced fiber structure in which a metal member, a fiber reinforced plastic member, a fiber reinforced ceramic member, a fiber reinforced glass member, or the like is pressed, welded, or fired on a reinforced fiber and processed into a predetermined thickness or a predetermined shape. It relates to the manufacturing method.

カーボン繊維(炭素繊維)は軽量で、高強度で、高い弾性率を有しており、航空機構造部材、自動車用部品、スポーツ・レジャー用品のプリプレグや積層材の基材として使用されている。強化繊維(Carbon fiber)は、アクリル繊維またはピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して作った繊維である。アクリル繊維を使った強化繊維はPAN系(Polyacrylonitrile)、ピッチを使った強化繊維はピッチ系(PITCH)と区分される。強化繊維を単独の材料として利用することは少なく、合成樹脂などの母材と組み合わせた複合材料として用いることが主である。強化繊維を用いた複合材料としては強化(繊維)プラスチック、強化繊維強化炭素複合材料などがある。強化(繊維)プラスチックは、ガラス繊維やナイロン・ビニロンなどを補強材として加えて成形したプラスチック製品であり、衝撃に強く、自動車車体・ボートや飛行機の船体や建材・ヘルメット・釣具などに広く使用されている。   Carbon fiber (carbon fiber) is lightweight, has high strength, and has a high elastic modulus, and is used as a base material for aircraft structural members, automotive parts, prepregs for sports / leisure products, and laminated materials. Carbon fiber is a fiber made by carbonizing acrylic fiber or pitch (by-products such as petroleum, coal and coal tar) at a high temperature. Reinforcing fibers using acrylic fibers are classified as PAN (Polyacrylonitrile), and reinforcing fibers using pitch are classified as pitch (PITCH). Reinforcing fibers are rarely used as a single material, and are mainly used as a composite material combined with a base material such as a synthetic resin. Examples of composite materials using reinforcing fibers include reinforced (fiber) plastics and reinforced fiber reinforced carbon composite materials. Reinforced (fiber) plastic is a plastic product formed by adding glass fiber, nylon, vinylon, etc. as a reinforcing material. It is resistant to impact and is widely used in automobile bodies, boats, airplane hulls, building materials, helmets, fishing gear, etc. ing.

強化繊維の複合材料としては、例えば、特許文献1〜4等が既に開示されている。
特許文献1は、樹脂製の不燃性ないしは難燃性のハニカム芯の両面に炭素繊維強化複合材料を有するサンドイッチ板で構成された航空機座席用背もたれが開示されている。
特許文献2は、「(請求項1)鋳込み前に金型内に配置し、マトリックス金属とともに鋳造して繊維強化金属複合材料を構成する棒状または筒状のプリフォーム材であって、プリフォーム材の軸方向と一致する方向に繊維軸を引揃えた補強繊維からなる内層と、内層を被覆する補強繊維の筒状編組体または筒状製織体(以下、両者をまとめて筒状織・編物という)からなる被覆層とを、交互に複数層を重ねてなることを特徴とするプリフォーム材。」と、(請求項2)最外層が被覆層であることを特徴とする請求項1記載のプリフォーム材。」と、(請求項3)内層を構成する補強繊維は強化繊維であり、被覆層を構成する筒状織・編物は繊維の交差角が10〜45度で編成された袋編物または製織された筒状織物であることを特徴とする請求項1または2記載のプリフォーム。」が開示されている。
特許文献3は、管状金属合金とFRPプリプレグを相互に接着させ、引っ張り応力、及び、圧縮応力に対応した軽量で強固な構造体を構成するものであり(課題)、その要約書には「管状金属部品60の外周面に化学エッチングによるミクロンオーダーの粗度があり、且つその表面は電子顕微鏡観察で、高さ又は深さ及び幅が10〜500nmで長さが10nm以上の仕切り状凸部、又は溝状凹部が10〜数百nm周期で全面に存在する超微細凹凸形状を形成し、その表面が金属酸化物又は金属リン酸化物の薄層21とする。これに管状の繊維強化プラスチック材61をエポキシ系樹脂剤62により接着させ、管状複合体を形成する。」内容が記載されている。
特許文献4は、非常に大きなFRP製品に使用される長尺の斜向糸繊維織物を簡単に得ることができる実用性,生産性に秀れた技術を提供するものであり(課題)、「FRP用の繊維織物の製造方法であって、斜向糸供給部3を有するブレーダー2に軸芯方向に移動可能なマンドレル1を挿入し、この斜向糸供給部3は、マンドレル1の外周面上に該マンドレル1の軸芯に対して所定角度±θで斜向糸Sを供給するように構成され、この斜向糸供給部3から複数本の斜向糸Sを供給してマンドレル1の外周面上に筒状織物4を織成し、続いて、該筒状織物4をマンドレル1の軸芯方向に切り開いて前記複数の斜向糸Sが配設された長尺の斜向糸繊維織物5を製造する」内容が記載されている。
For example, Patent Documents 1 to 4 have already been disclosed as composite materials of reinforcing fibers.
Patent Document 1 discloses a backrest for an aircraft seat composed of a sandwich plate having a carbon fiber reinforced composite material on both surfaces of a resin non-combustible or flame retardant honeycomb core.
Patent Document 2 states that “(Claim 1) is a rod-shaped or cylindrical preform material that is placed in a mold before casting and cast with a matrix metal to form a fiber-reinforced metal composite material. An inner layer composed of reinforcing fibers in which the fiber axes are aligned in a direction coinciding with the axial direction, and a tubular braid or tubular woven body of reinforcing fibers covering the inner layer (hereinafter, both are collectively referred to as a tubular woven / knitted fabric) And a coating material comprising a plurality of layers alternately stacked with each other), and (claim 2) the outermost layer is a coating layer. Preform material. (Claim 3) The reinforcing fiber constituting the inner layer is a reinforcing fiber, and the tubular woven / knitted fabric constituting the covering layer is knitted or woven with a bag knitted or woven with a fiber crossing angle of 10 to 45 degrees. The preform according to claim 1, wherein the preform is a tubular woven fabric. Is disclosed.
In Patent Document 3, a tubular metal alloy and an FRP prepreg are bonded to each other to form a lightweight and strong structure corresponding to tensile stress and compressive stress (problem). The outer peripheral surface of the metal component 60 has a roughness on the order of microns by chemical etching, and the surface thereof is observed with an electron microscope, and has a partition-like convex portion having a height or depth and width of 10 to 500 nm and a length of 10 nm or more. Alternatively, a groove-like recess is formed on the entire surface with a period of 10 to several hundred nm, and the surface thereof is a thin layer 21 of a metal oxide or metal phosphate, and this is a tubular fiber-reinforced plastic material. 61 is bonded by an epoxy resin agent 62 to form a tubular composite. ”The contents are described.
Patent Document 4 provides a technology excellent in practicality and productivity that can easily obtain a long slanted yarn fiber fabric used for a very large FRP product (problem). A method for manufacturing a fiber fabric for FRP, in which a mandrel 1 that is movable in the axial direction is inserted into a braider 2 having an oblique yarn supply unit 3, and the oblique yarn supply unit 3 is an outer peripheral surface of the mandrel 1. The oblique thread S is supplied to the mandrel 1 at a predetermined angle ± θ with respect to the axis of the mandrel 1. A plurality of oblique threads S are supplied from the oblique thread supply unit 3 to A tubular fabric 4 is woven on the outer peripheral surface, and then the tubular fabric 4 is cut in the axial direction of the mandrel 1 and the long oblique yarn fiber fabric 5 in which the plurality of oblique yarns S are disposed. "Manufacturing" is described.

実公平2−12912号公報No. 2-12912 特開平9−53132号公報JP-A-9-53132 特開2008−307842号公報JP 2008-307842 A 特開2001−310393号公報JP 2001-310393 A

ところで、カーボン繊維(炭素繊維)は、その比重が1.8前後であり、鉄の7.8に比べて約1/4と非常に軽量であり、アルミニウムの2.7に比べても軽量である。またカーボン繊維の比強度(引張強度を比重で割った値)は鉄の10倍、比弾性(引張弾性率を比重で割った値)は、鉄の7倍と高強度である。そのため航空機構造部材や自動車用部品のプリプレグや積層材の基材として使用されているが、反面、曲げ強度には弱いとされ、曲げ加工も容易ではないとされている。なお、炭素繊維を建築構造物や自動車や船舶・飛行機などの構造物などに使用するに際して、複数枚の炭素繊維を重ね合わせて圧着する製造方法がある。また、炭素繊維に熱硬化性樹脂を含浸させた半硬化状態のシート状成形用中間材料(プリプレグ)を積層させる技術が提案されている。
しかしながら、複数枚の炭素繊維を重ね合わせて圧着する方法では、硬度の点で十分ではなく、また、何枚も重ねるには製造にも時間がかかるばかりか、炭素繊維と炭素繊維の間に空気が入り込むなどの問題を生じる(特許文献1ではこの課題を有する)。
特許文献2ないし4は、所定形状に成型して主に更なる強度の強い強化繊維の複合材料であり(曲げ強度に強い部材ではあるが)、その製造方法は、マトリックス金属とともに鋳造して繊維強化金属複合材料を構成するものや(特許文献2)、管状の繊維強化プラスチック材61をエポキシ系樹脂剤62により接着させるものや(特許文献3)、斜向糸供給部3を有するブレーダー2に軸芯方向に移動可能なマンドレル1を挿入する等するものであり(特許文献4)、その製造方法が難しい面を有する。
なお、特許文献1〜4のような繊維強化複合材料を廃棄処分するとき、これを焼却等しても、分解して処理するようなことは無理で、無機材料や有機材料が混合した状態で残る問題を有する。
By the way, the carbon fiber (carbon fiber) has a specific gravity of about 1.8, and is very light, about 1/4 compared with 7.8 of iron, and lighter than 2.7 of aluminum. is there. The specific strength (value obtained by dividing tensile strength by specific gravity) of carbon fiber is 10 times that of iron, and the specific elasticity (value obtained by dividing tensile elastic modulus by specific gravity) is 7 times that of iron. For this reason, it is used as a prepreg for aircraft structural members and automotive parts, and as a base material for laminated materials. On the other hand, it is considered to be weak in bending strength and is not easily bent. In addition, when using carbon fiber for structures, such as a building structure, a motor vehicle, a ship, and an airplane, there exists a manufacturing method which piles up and crimps | bonds a plurality of carbon fibers. In addition, a technique of laminating a semi-cured sheet-form molding intermediate material (prepreg) in which carbon fibers are impregnated with a thermosetting resin has been proposed.
However, the method of laminating and bonding a plurality of carbon fibers is not sufficient in terms of hardness, and it takes time to manufacture a plurality of carbon fibers. (For example, Patent Document 1 has this problem).
Patent Documents 2 to 4 are composite materials of reinforcing fibers that are molded into a predetermined shape and mainly stronger (although it is a member that is strong in bending strength). For the one constituting the reinforced metal composite material (Patent Document 2), the one in which the tubular fiber-reinforced plastic material 61 is adhered by the epoxy resin agent 62 (Patent Document 3), and the braider 2 having the oblique yarn supply unit 3 For example, a mandrel 1 that can move in the axial direction is inserted (Patent Document 4), and its manufacturing method is difficult.
In addition, when disposing of fiber reinforced composite materials such as Patent Documents 1 to 4, even if they are incinerated, it is impossible to disassemble and treat them in a state where inorganic materials and organic materials are mixed. Has remaining problems.

そこで本発明の目的は、芯部材と強化繊維が一体的に融合して所定にした強化繊維構造物が効率的に製造でき、曲げ加工すれば曲げ強度にも強くなり、しかも分解処理も容易な強化繊維構造物及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to efficiently manufacture a reinforcing fiber structure in which a core member and a reinforcing fiber are integrally fused and can be efficiently manufactured. If bending is performed, the bending strength is enhanced and the decomposition process is easy. An object of the present invention is to provide a reinforcing fiber structure and a method for manufacturing the same.

本発明は、強化繊維の芯糸に熱融着糸がカバーリングされた強化繊維により芯部材が圧着、溶着又は焼成により被覆されてなることを特徴とする。
本発明によれば、圧着、溶着又は焼成の際に熱融着糸が溶融して芯部材に付着するために、芯部材と強化繊維が一体的(強化繊維の熱融着糸が溶けて芯部材と融合する状態)な所定の大きさや厚みの強化繊維構造物が容易に製造できる。すなわち、熱圧着等により熱融着糸が溶融して芯部材に融合接着するので、芯部材と強化繊維が一体的な強化繊維構造物が効率的に製造できる。
The present invention is characterized in that the core member is covered by pressure bonding, welding, or firing with a reinforcing fiber in which a heat-sealing yarn is covered with a core yarn of the reinforcing fiber.
According to the present invention, the core member and the reinforcing fiber are integrated with each other (the core fiber and the reinforcing fiber are melted together to melt the core so that the heat-sealing yarn melts and adheres to the core member at the time of pressure bonding, welding, or firing. A reinforcing fiber structure having a predetermined size and thickness can be easily manufactured. That is, since the heat-sealing yarn is melted and bonded to the core member by thermocompression bonding or the like, a reinforcing fiber structure in which the core member and the reinforcing fiber are integrated can be efficiently manufactured.

従来の強化繊維では何枚も重ね合わせなければ所定の厚さと硬度を得られなかった。また、従来の強化繊維は曲げ強度が弱いとされていた。しかし、本発明によれば、前記強化繊維よりも厚さが厚いものを使用することで、所定厚さの曲げ強度の強い強化繊維構造物が容易に製造できる。   In the case of conventional reinforcing fibers, a predetermined thickness and hardness cannot be obtained unless a number of sheets are overlapped. In addition, the conventional reinforcing fiber is said to have low bending strength. However, according to the present invention, a reinforcing fiber structure having a predetermined thickness and a high bending strength can be easily manufactured by using a fiber having a thickness greater than that of the reinforcing fiber.

本発明としては、前記強化繊維に袋織り・袋編みで形成された複数の袋状部分が設けられ、前記芯部材が入れられて圧着、溶着又は焼成により被覆されてなることを特徴とする。
本発明によれば、前記強化繊維に袋織り・袋編みで形成された複数の袋状部分が前記芯部材の大きさに対応して設けられているので、圧着、溶着又は焼成の際に前記芯部材の移動が防止されるとともに、芯部材の外周に密着した強化繊維が容易に製造できる。
The present invention is characterized in that the reinforcing fiber is provided with a plurality of bag-shaped portions formed by bag weaving and bag knitting, and the core member is placed and covered by pressure bonding, welding or firing.
According to the present invention, a plurality of bag-shaped portions formed by bag weaving / bag knitting on the reinforcing fiber are provided corresponding to the size of the core member. While the movement of the core member is prevented, it is possible to easily manufacture the reinforcing fibers that are in close contact with the outer periphery of the core member.

本発明としては、前記芯部材が金属製部材、繊維強化プラスチック部材、繊維強化セラミックス部材、又は、繊維強化ガラス部材であり、これらの板状部材の硬度が前記強化繊維の硬度よりも低いことを特徴とする。
本発明によれば、前記芯部材の硬度が低くても、前記強化繊維の硬度がより強いので、前記芯部材の強度が低い点を補うことができる。これにより、建築用の強化構造物等への使用が可能になる。芯部材として金属製部材を使用すると、導電性の構造(回路基板等)にも使用できる。
According to the present invention, the core member is a metal member, a fiber reinforced plastic member, a fiber reinforced ceramic member, or a fiber reinforced glass member, and the hardness of these plate-like members is lower than the hardness of the reinforced fiber. Features.
According to this invention, even if the hardness of the said core member is low, since the hardness of the said reinforced fiber is stronger, the point with the low intensity | strength of the said core member can be supplemented. Thereby, the use to the reinforced structure for construction etc. becomes possible. When a metal member is used as the core member, it can be used for a conductive structure (circuit board or the like).

本発明としては、前記強化繊維を袋織り・袋編みで袋状部分を形成して、この袋状部分に芯部材である金属製部材、繊維強化プラスチック部材、繊維強化セラミックス部材、又は、繊維強化ガラス部材を配置して、所定形状に曲げ加工して、圧着、溶着又は焼成して被覆してなることを特徴とする。
本発明によれば、圧着、溶着又は焼成の際に前記芯部材の移動が防止されるとともに、芯部材の外周に密着した強化繊維が効率的に製造できる。すなわち、袋状部分に板状の芯部材を入れた状態のまま焼成等を行なうと工程の削減が図られるとともに、芯部材に沿って袋状部分が芯部材を被覆する状態になり、被覆の精度向上が図られる。
According to the present invention, a bag-like part is formed by bag-woven or bag-knitting the reinforcing fiber, and a metal member, a fiber-reinforced plastic member, a fiber-reinforced ceramic member, or a fiber-reinforced member is formed in the bag-like part. A glass member is arranged, bent into a predetermined shape, and coated by pressure bonding, welding or firing.
According to the present invention, the core member can be prevented from moving during crimping, welding, or firing, and the reinforcing fibers that are in close contact with the outer periphery of the core member can be efficiently produced. That is, when baking or the like is performed with the plate-shaped core member in the bag-shaped portion, the number of processes is reduced, and the bag-shaped portion covers the core member along the core member. The accuracy is improved.

本発明としては、前記強化繊維の芯糸がアクリル繊維を使用したPAN系またはピッチ系の炭素繊維であり、熱融着糸がカバーリングされた繊維であり、前記芯部材が金属製部材、繊維強化プラスチック部材、繊維強化セラミックス部材、又は、繊維強化ガラス部材であり、これらの表面を凹凸や波型にして前記強化繊維による圧着、溶着又は焼成により被覆の強度が高められることを特徴とする。
本発明によれば、これらの表面を凹凸や波型にして前記強化繊維による圧着、溶着又は焼成により被覆の強度が高められる。前記強化繊維に袋織り・袋編みで形成された複数の袋状部分が設けられることで、互いの凹凸表面の融合状態がより強固になる。
ここで、本発明としては、前記強化繊維の芯糸がアクリル繊維を使用したPAN系またはピッチ系の炭素繊維であり、熱融着糸がカバーリングされた繊維であり、前記芯部材が金属製部材、繊維強化プラスチック部材、繊維強化セラミックス部材、又は、繊維強化ガラス部材であり、前記強化繊維よりも硬度が低くしても良い。
本発明によれば、前記芯部材の硬度が低くても、前記強化繊維の硬度がより強いので、前記芯部材の強度が低い点を補うことができる。これにより、建築用の強化構造物等への使用が可能になる。
なお、前記芯部材である金属製部材や強化プラスチック部材等が前記強化繊維よりも融点が高くすることで、強化繊維のみを圧着、溶着又は焼成して、金属製部材や強化プラスチック部材等の形状を変化させずにその硬度と厚さを維持して所定の大きさと厚みの構造物(均一な素材の構造物)を製造できる。また、芯部材が強化繊維を含ませた繊維強化プラスチック部材、繊維強化セラミックス部材、強化ガラスに、前記被覆される強化繊維や袋織り・袋編される強化繊維と同じ強化繊維を使用することで、より一層一体的な融合状態に加工することが可能である。また、使用後に廃棄処理するときは、金属製部材や繊維強化プラスチック部材を分離処理することも容易である。
In the present invention, the core fiber of the reinforcing fiber is a PAN-based or pitch-based carbon fiber using an acrylic fiber, and a heat-sealed yarn is covered fiber, and the core member is a metal member, fiber It is a reinforced plastic member, a fiber reinforced ceramic member, or a fiber reinforced glass member, and is characterized in that the strength of the coating is increased by pressing, welding or firing with the reinforced fiber by making the surface uneven or corrugated.
According to the present invention, the strength of the coating can be increased by making these surfaces uneven and corrugated and pressing, welding or firing with the reinforcing fibers. By providing the reinforcing fibers with a plurality of bag-like portions formed by bag weaving and bag knitting, the fusion state of the uneven surfaces of each other becomes stronger.
Here, in the present invention, the core yarn of the reinforcing fiber is a PAN-based or pitch-based carbon fiber using an acrylic fiber, the heat-sealed yarn is a covered fiber, and the core member is made of metal. It is a member, a fiber reinforced plastic member, a fiber reinforced ceramic member, or a fiber reinforced glass member, and the hardness may be lower than that of the reinforced fiber.
According to this invention, even if the hardness of the said core member is low, since the hardness of the said reinforced fiber is stronger, the point with the low intensity | strength of the said core member can be supplemented. Thereby, the use to the reinforced structure for construction etc. becomes possible.
In addition, the metal member or the reinforced plastic member, which is the core member, has a melting point higher than that of the reinforced fiber, so that only the reinforcing fiber is crimped, welded, or baked, so that the shape of the metal member, the reinforced plastic member, etc. It is possible to manufacture a structure having a predetermined size and thickness (a structure of a uniform material) while maintaining the hardness and thickness without changing the thickness. In addition, by using the same reinforcing fiber as the above-mentioned reinforcing fiber to be coated and bag-woven / bag-knitted reinforcing fiber for fiber-reinforced plastic member, fiber-reinforced ceramic member, and reinforcing glass whose core member contains reinforcing fiber. It is possible to process into a more integrated fusion state. Moreover, when discarding after use, it is easy to separate the metal member and the fiber reinforced plastic member.

本発明によれば、圧着、溶着又は焼成の際に熱融着糸が溶融して芯部材に付着・融合するために、芯部材と強化繊維が一体的な所定の大きさや厚みの強化繊維構造物が効率的に製造でき、曲げ強度に強く、耐久性能の高い強化繊維構造物になる。例えば芯部材としてアルミニウムを使用してその周囲にカーボン繊維を圧着させた場合、アルミニウムは展延性に富み、比較的強度が低いが、周囲に圧着されたカーボン繊維が比強度、比弾性ともに優れた高強度素材のためアルミニウムの強度を補う強化繊維構造物となる。このため、建築構造物として使用されるL型鋼、H型鋼またはコの字型鋼として好適なものとなり、また、自動車の車体や船舶や飛行機などの船体の構造物(外壁や内壁)等として適用可能である。また、芯部材に金属製部材を選択した場合には、電気伝導する構造物としても適用可能である。また、使用後に廃棄処理するときは、金属製部材や繊維強化プラスチック部材を分離処理して、これらを再利用することも容易に可能である。
また、本発明によれば、前記強化繊維に袋織り・袋編みで形成された複数の袋状部分が設けられているので、圧着、溶着又は焼成の際に前記芯部材の移動が防止されて、芯部材の外周に密着・融合した強化繊維が容易に製造できる。従来の複数枚の炭素繊維を重ね合わせて圧着する方法で生じていた、炭素繊維と炭素繊維の間に空気が入り込むなどの問題が生じ難く、製造工程も単純化され時間の短縮が図られる。
また、本発明は、前記強化繊維は綾織又は朱子織の織物組織がさらに袋織りされている。そのため平織であれば経糸と緯糸は一本ずつ組織されるため経糸の本数は緯糸と同数となるが、綾織や朱子織では平織よりも密度を高めることができる。例えば朱子織であれば、経糸の本数はよこ糸の本数よりも約2.5倍は多くすることができ、綾織組織よりもさらに経糸密度を高めることができる。
According to the present invention, the core member and the reinforcing fiber are integrally formed with a reinforcing fiber structure having a predetermined size and thickness so that the heat-sealing yarn melts and adheres to and fuses with the core member during pressure bonding, welding, or firing. The product can be manufactured efficiently, has a strong bending strength, and has a high durability. For example, when aluminum is used as the core member and carbon fibers are crimped around it, aluminum is highly malleable and relatively low in strength, but the carbon fibers crimped around it have both excellent specific strength and specific elasticity. It is a high-strength material, resulting in a reinforced fiber structure that supplements the strength of aluminum. For this reason, it is suitable as L-shaped steel, H-shaped steel or U-shaped steel used as a building structure, and can be applied as a hull structure (outer wall or inner wall) such as a car body or a ship or an airplane. It is. Further, when a metal member is selected as the core member, it can also be applied as a structure that conducts electricity. Moreover, when discarding after use, it is also possible to separate and reuse metal members and fiber reinforced plastic members.
Further, according to the present invention, since the reinforcing fiber is provided with a plurality of bag-shaped portions formed by bag weaving / bag knitting, movement of the core member is prevented during pressure bonding, welding, or firing. Thus, a reinforcing fiber adhered and fused to the outer periphery of the core member can be easily manufactured. Problems such as air entering between the carbon fibers and the carbon fibers, which have been caused by the conventional method of laminating and pressing a plurality of carbon fibers, are less likely to occur, the manufacturing process is simplified, and the time is shortened.
Further, according to the present invention, the reinforcing fiber is further woven into a bag with a twill or satin weave texture. Therefore, in the case of a plain weave, warp and weft are organized one by one, so the number of warps is the same as that of weft. However, the density of twill or satin weave can be higher than that of plain weave. For example, in the case of satin weave, the number of warp yarns can be increased by about 2.5 times the number of weft yarns, and the warp density can be further increased as compared with the twill weave structure.

本発明を適用した第1の実施形態の強化繊維と袋状部分に金属製板を収納した状態を示す斜視図である。It is a perspective view which shows the state which accommodated the metal plate in the reinforced fiber and bag-like part of 1st Embodiment to which this invention is applied. 上記実施形態の強化繊維構造物と袋状部分を有する強化繊維を示す側面図である。It is a side view which shows the reinforced fiber which has a reinforced fiber structure and a bag-shaped part of the said embodiment. 上記実施形態の強化繊維構造物と袋状部分を有する強化繊維示す斜視図である。It is a perspective view which shows the reinforced fiber which has the reinforced fiber structure and bag-like part of the said embodiment. 上記実施形態の他の例の強化繊維構造物を示す図であり、(a)は袋状部分に金属製板を収納した状態を断面図であり、(b)は圧着した状態を示す断面図である。It is a figure which shows the reinforced fiber structure of the other example of the said embodiment, (a) is sectional drawing in which the metal plate was accommodated in the bag-shaped part, (b) is sectional drawing which shows the state crimped | bonded It is. 本発明の第2の実施形態の強化繊維構造物を示す図である。It is a figure which shows the reinforced fiber structure of the 2nd Embodiment of this invention. 上記実施形態の他の例の強化繊維構造物を示す図であり、(a)は袋状部分に金属製板を収納した状態を断面図であり、(b)は圧着した状態を示す断面図である。It is a figure which shows the reinforced fiber structure of the other example of the said embodiment, (a) is sectional drawing in which the metal plate was accommodated in the bag-shaped part, (b) is sectional drawing which shows the state crimped | bonded It is. 上記実施形態の他の例の強化繊維構造物を示す図であり、(a)は袋状部分に金属製板を収納した状態を断面図であり、(b)は圧着した状態を示す断面図である。It is a figure which shows the reinforced fiber structure of the other example of the said embodiment, (a) is sectional drawing in which the metal plate was accommodated in the bag-shaped part, (b) is sectional drawing which shows the state crimped | bonded It is. 上記第1の実施例の他の例の実施形態の強化繊維構造物を示す図であり、(a)は袋状部分に金属製板を収納した状態を断面図であり、(b)は圧着した状態を示す断面図である。It is a figure which shows the reinforcing fiber structure of embodiment of the other example of the said 1st Example, (a) is sectional drawing which accommodated the metal plate in the bag-shaped part, (b) is crimping | compression-bonding It is sectional drawing which shows the state which carried out. 本発明の第3の実施形態の強化繊維構造物を示す図であり、(a)は袋状部分に金属製板を収納した状態を断面図であり、(b)は圧着した状態を示す断面図である。It is a figure which shows the reinforced fiber structure of the 3rd Embodiment of this invention, (a) is sectional drawing which accommodated the metal plate in the bag-shaped part, (b) is a cross section which shows the state crimped | bonded FIG. 本発明の第3の実施形態の強化繊維構造物を示す図であり、(a)は袋状部分に金属製板を収納した状態を断面図であり、(b)は圧着した状態を示す断面図である。It is a figure which shows the reinforced fiber structure of the 3rd Embodiment of this invention, (a) is sectional drawing which accommodated the metal plate in the bag-shaped part, (b) is a cross section which shows the state crimped | bonded FIG. 上記第3の実施形態の応用例を示す図である。It is a figure which shows the example of application of the said 3rd Embodiment. 上記第3の実施形態の応用例を示す図である。It is a figure which shows the example of application of the said 3rd Embodiment. 上記第2の実施形態の応用例を示す図である。It is a figure which shows the application example of the said 2nd Embodiment. 上記第2の実施形態の応用例を示す図である。It is a figure which shows the application example of the said 2nd Embodiment.

本発明を適用した具体的な実施の形態について、図面を参照しながら以下、詳細に説明する。   Specific embodiments to which the present invention is applied will be described below in detail with reference to the drawings.

(第1の実施の形態)
図1(a)(b)は、強化繊維を芯糸にして熱融着糸がカバーリングされた熱融着糸を織り込んだ袋状部分3aを有する強化繊維の斜視図である。
第1の実施の形態では、強化繊維の芯糸(カーボン繊維)に熱融着糸(ナイロン)がカバーリングされた強化繊維3が使用され、この強化繊維3で袋状部分3aが袋織りにより形成されている。袋状部分3aの大きさは、芯部材2である金属製部材(アルミニウム、或いはアルミニウム合金)が入る程度の大きさになっている。アルミニウム板等の金属製部材3を二枚使用してL字に折り曲げられた芯部材2が袋状部分3aに入れられている(図2(a)(b))。芯部材2の厚さY2は、強化繊維(炭素繊維)2の厚さY1よりも厚く、強化繊維部材である(図3(a)(b))。なお、後述するように、二枚の芯部材を袋状部材3a,3aに入れてから焼成等を行ない、そのほぼ中央3bからL字状に折り曲げ加工しても良い(図4(a)(b))。そして、中央連結部3bは焼成して、その他は溶着をしても良い。
本実施の形態袋状部分3aは、その左右の端部3cは開口しているが、片側のみ開口させて、その開口3cから芯部材2を差し込んでも良い。なお、本発明は、前記強化繊維3が表裏の間に芯部材2が介材して接合されたものでも良く、つまり被覆される状態であれば良い。本実施の形態では、金属製板3の長さが袋状部分2よりも長いが、金属製部材3の長さが袋状部分3aよりも短かければ、金属製部材全体が入る状態になる。袋状部分3aは複数設けられているが、一つでも良く、ここに複数枚の金属製部材3が配置されて良い。また、厚さ方向に複数の袋状部分3aを形成して、各袋状部分3aに芯部材2を入れて積層状態にしても良い(図7(b))。
ここで、袋織りは、二重織りの一つであり、布の両端が表裏接合され、筒状(パイプ状)になる織り方であり、裁断してみると袋状に織られる。袋状にすることにより、厚みと弾力がでる。袋織りとはその織物がチューブ(円環或いは筒)状に織りあがる。上下に2枚つなぎ合わせたような織りあがりになり、円環の周方向に耐張力の高い、継ぎ目のない織物が得られる。袋編みは、両面(表裏)を袋状に編む方法であり、厚みと弾力がでるとともに、ソフト感がでる。袋織りでも袋編みでも良いが、編み目が細かくなることや、袋状部分3aに空気が入り込み難くできることや、伸縮力が低い袋織りの方が熱圧着性に優れ、金属製板(アルミニウム、或いはアルミニウム合金)2の移動が防止される。ニットには、大きく分けて緯編みと経編みがあり、緯編みは編目が横方向に連続して出来た編地であり、経編みは縦方向に連続した編目を作り出す編み方で、織物にも近いハリ・コシがあり、安定した編み地を作ることができる。袋編みは伸縮性に優れるので、図7(a)に示すように、芯部材2の形状が複雑な形状でも、一つの強化繊維による袋状部材3aに金属製部材(芯部材)2を収納することができ、その形状の金属製部材(芯部材)2に沿って被覆することができる。なお、袋織りのカバー袋編みの二重構造として、伸縮性の調整をすることも可能である。
(First embodiment)
FIGS. 1A and 1B are perspective views of a reinforcing fiber having a bag-like portion 3a in which a heat-sealing yarn having a reinforcing fiber as a core yarn and covering the heat-sealing yarn is woven.
In the first embodiment, a reinforcing fiber 3 in which a heat-bonding yarn (nylon) is covered is used as the reinforcing fiber core yarn (carbon fiber), and the bag-like portion 3a is formed by bag weaving. Is formed. The size of the bag-like portion 3a is such a size that a metal member (aluminum or aluminum alloy) as the core member 2 can enter. A core member 2 bent into an L shape using two metal members 3 such as an aluminum plate is placed in a bag-like portion 3a (FIGS. 2A and 2B). The thickness Y2 of the core member 2 is thicker than the thickness Y1 of the reinforcing fiber (carbon fiber) 2 and is a reinforcing fiber member (FIGS. 3A and 3B). As will be described later, the two core members may be baked after being put in the bag-like members 3a and 3a, and may be bent into an L shape from substantially the center 3b (FIG. 4 (a) ( b)). And the center connection part 3b may be baked and others may be welded.
Although the left and right end portions 3c of the bag-like portion 3a of the present embodiment are open, only one side may be opened and the core member 2 may be inserted from the opening 3c. In the present invention, the reinforcing fiber 3 may be one in which the core member 2 is joined between the front and back surfaces, that is, as long as it is covered. In the present embodiment, the length of the metal plate 3 is longer than that of the bag-like portion 2, but if the length of the metal member 3 is shorter than that of the bag-like portion 3a, the entire metal member enters. . A plurality of bag-like portions 3a are provided, but one may be provided, and a plurality of metal members 3 may be disposed here. Alternatively, a plurality of bag-like portions 3a may be formed in the thickness direction, and the core member 2 may be put in each bag-like portion 3a to be laminated (FIG. 7B).
Here, bag weaving is one type of double weaving, and is a weaving method in which both ends of a cloth are joined to each other to form a tube (pipe shape), and when cut, it is woven into a bag shape. By making it into a bag shape, thickness and elasticity are achieved. With bag weaving, the fabric weaves in the shape of a tube (ring or cylinder). The result is a weaving process in which two pieces are joined together in the top and bottom, and a seamless fabric with high tensile strength in the circumferential direction of the ring is obtained. Bag knitting is a method in which both sides (front and back) are knitted into a bag shape, giving it a thickness and elasticity, as well as a soft feeling. Bag weaving or bag knitting may be used, but the stitches become finer, air can hardly enter the bag-like portion 3a, and the bag weaving with low stretchability is superior in thermocompression bonding, and the metal plate (aluminum or The movement of the aluminum alloy 2 is prevented. There are two types of knit: weft knitting and warp knitting. Weft knitting is a knitted fabric with continuous stitches in the horizontal direction. Warp knitting is a knitting method that creates continuous stitches in the vertical direction. There is also a close elasticity and can make a stable knitted fabric. Since the bag knitting is excellent in elasticity, the metal member (core member) 2 is stored in the bag-shaped member 3a made of one reinforcing fiber even if the shape of the core member 2 is complicated as shown in FIG. And can be coated along the metal member (core member) 2 having the shape. It is also possible to adjust the stretchability as a double structure of bag woven cover and bag knitting.

前記強化繊維3として、炭素繊維、炭化繊維、ポリアミド繊維およびガラス繊維の種類からなる。炭素繊維は、PAN系またはピッチ系の強化繊維やガラス繊維を用いることができる。繊維強化プラスチックとは、連続又は不連続強化繊維で強化された熱可塑性樹脂または熱硬化性プラスチック複合材である。本明細書中では、所定形状に加工したものを(曲げ加工を含む)、繊維強化プラスチック部材、繊維強化セラミックス部材、又は、繊維強化ガラス部材と表記する。   The reinforcing fiber 3 is made of carbon fiber, carbonized fiber, polyamide fiber, and glass fiber. As the carbon fiber, a PAN-based or pitch-based reinforcing fiber or glass fiber can be used. A fiber reinforced plastic is a thermoplastic resin or thermosetting plastic composite reinforced with continuous or discontinuous reinforcing fibers. In this specification, what was processed into a predetermined shape (including bending) is referred to as a fiber reinforced plastic member, a fiber reinforced ceramic member, or a fiber reinforced glass member.

強化プラスチック部材に使用されるプラスチックとしては、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂などの熱硬化性樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂等の熱可塑性樹脂が挙げられる。また、繊維強化プラスチックとしては、チタンを含む金属と組み合わせても良い。   Examples of the plastic used for the reinforced plastic member include thermosetting resins such as epoxy resins, polyester resins, vinyl ester resins, and phenol resins, and thermoplastic resins such as polyamide resins, polyolefin resins, dicyclopentadiene resins, and polyurethane resins. It is done. Further, the fiber reinforced plastic may be combined with a metal containing titanium.

繊維強化セラミックス(fiber-reinforced ceramics; FRC)とは、セラミックスのもろいという性質をセラミック繊維を配合することにより靭性化させた強化セラミックスである。マトリックスには高温高強度のセラミックス(アルミナ、炭化ケイ素、窒化ケイ素、炭素など)が用いられ、強化材としての繊維には炭素繊維、炭化ケイ素繊維、アルミナ繊維などが用いられる。また、セラミックウィスカ等で強化された繊維プリフォームにおける繊維表面に、各種特性向上を目的とした表面処理を実施して表面処理層して形成させるものもある。繊維強化セラミック複合材料の場合、セラミックポリマーの含浸・焼成、CVD法等によりセラミック材を織物内部等に形成させるものでも良い。また、繊維強化プラスチック複合材の場合、熱硬化性樹脂を流し込んで加熱し固める。繊維強化ガラス系複合材の場合は、ガラス材料を加熱して溶かし、加圧することによりガラス材料を織物内部にしみ込ませるものでも良い。芯部材2が金属製部材では、板状のアルミニウム、アルミニウム合金を使用したが、アルミニウム等の金属材料と前記セラミック繊維や前記炭素繊維・炭化繊維を混練して反応しないように層を形成させる処理で作成することもできる。   Fiber-reinforced ceramics (FRC) are reinforced ceramics in which the brittle nature of ceramics is toughened by blending ceramic fibers. High-temperature high-strength ceramics (alumina, silicon carbide, silicon nitride, carbon, etc.) are used for the matrix, and carbon fibers, silicon carbide fibers, alumina fibers, etc. are used for the fibers as the reinforcing material. In addition, there is a type in which a surface treatment layer is formed by performing a surface treatment for improving various properties on a fiber surface in a fiber preform reinforced with ceramic whisker or the like. In the case of a fiber reinforced ceramic composite material, a ceramic material may be formed inside the fabric by impregnation / firing of a ceramic polymer, a CVD method, or the like. In the case of a fiber reinforced plastic composite material, a thermosetting resin is poured and heated to be hardened. In the case of a fiber reinforced glass composite material, the glass material may be melted by heating, and the glass material may be soaked into the fabric by pressurization. In the case where the core member 2 is a metal member, plate-like aluminum or aluminum alloy is used, but a layer is formed so as not to react by kneading the metal material such as aluminum with the ceramic fiber or the carbon fiber / carbonized fiber. Can also be created.

第1の実施の形態を建築構造物に使用されるL字型形鋼やH型形鋼として使用するときは、アルミニウム板等の金属製部材2を二枚使用してL字やH形状に配置してから圧着、溶着(或いは焼成)する(図6(a)(b))。芯部材2は、強化繊維(炭素繊維)2よりも厚さが厚く高い硬度の強化繊維を用いることで、L型鋼、H型鋼やアンカーなどの建築構造物を容易に製造できる。芯部材としてアルミニウムを使用することや、或いは、芯部材を薄くすると、軽量化が図られるが、表面は炭素繊維3で被覆されるために、曲げ強度にも強い。H型に成型するときは、コ字形状を組み合わせて、一つの袋状部分3aに収納して成型することができる(図8(a)(b))。
また、図7(a)に示すように、凹凸の複雑な形状でも、内部空間部7を形成することで、一つの強化繊維による袋状部材3aに金属製部材(芯部材)2を収納することができ、芯部材2の形状を変えても、その形状の金属製部材(芯部材)2に沿って被覆することができる。被覆後は、その状態で圧着、溶着又は焼成すると、強化繊維3の熱融着糸が溶融して芯部材2の表面に融合付着して、表面は硬度が高くなる。ここで、圧着、溶着又は焼成しても、製造した製品に袋状部分3aが確認できた。本実施の形態では、左右の端部を揃えない状態(房)3cとしており、これにより端部(開口部分)3cの位置が確認し易くしている。
図7(b)は、芯部材2Dが袋状部材3(3a)で被覆されて積層状態になっており、その表裏に一般の炭素繊維6を熱圧着させた例である。片面や表裏に一般の炭素繊維(強化樹脂板)6を熱圧着させて、内装用の壁材や床材としての応用が可能である。これらの熱圧着に際しては、プレス機により圧着するほか、型を使用して、圧着する方法で行う。
When the first embodiment is used as an L-shaped steel or an H-shaped steel used in a building structure, it uses two metal members 2 such as aluminum plates to form an L shape or an H shape. After placement, crimping and welding (or firing) are performed (FIGS. 6A and 6B). The core member 2 can easily manufacture building structures such as L-shaped steel, H-shaped steel, and anchors by using reinforcing fibers having a thickness higher than that of the reinforcing fibers ( carbon fibers) 2 and higher hardness. If aluminum is used as the core member, or if the core member is thinned, the weight can be reduced, but the surface is covered with the carbon fiber 3, and therefore the bending strength is strong. When molding into an H-shape, the U-shapes can be combined and stored in one bag-shaped portion 3a (FIGS. 8A and 8B).
Moreover, as shown to Fig.7 (a), the metal member (core member) 2 is accommodated in the bag-shaped member 3a by one reinforcement fiber by forming the internal space part 7 also in the complicated shape of an unevenness | corrugation. Even if the shape of the core member 2 is changed, the metal member (core member) 2 having the shape can be covered. After the coating, when pressure bonding, welding, or firing is performed in that state, the heat-sealing yarn of the reinforcing fiber 3 is melted and fused and adhered to the surface of the core member 2, and the surface has high hardness. Here, the bag-like portion 3a could be confirmed in the manufactured product even after pressure bonding, welding, or firing. In the present embodiment, the left and right end portions are not aligned (a tuft) 3c, which makes it easy to confirm the position of the end portion (opening portion) 3c.
FIG. 7B shows an example in which the core member 2D is covered with the bag-like member 3 (3a) and is in a laminated state, and general carbon fibers 6 are thermocompression bonded to the front and back. A general carbon fiber (reinforced resin plate) 6 can be thermocompression bonded on one side or front and back, and can be applied as a wall material or flooring material for interior use. These thermocompression bondings are performed by a method of performing pressure bonding using a mold in addition to pressure bonding by a press machine.

(第2の実施の形態)
図5(b)(c)は、前記強化繊維は綾織又は朱子織の織物組織を袋織りした袋状部の断面図である。図5(a)は、平織りと綾織りと、朱子織りを説明する図である。
第2の実施の形態では、前記強化繊維3は綾織又は朱子織の織物組織を袋織りしたものである。平織りでは、経糸と緯糸は一本ずつ組織されるため経糸の本数は緯糸と同数となるが、綾織や朱子織は平織よりも繊維密度を高めることができる(地合が密で厚く,地質は柔らかく,皺(しわ)がよりにくい。)。例えば朱子織であれば経糸の本数はよこ糸3dの本数よりも約2.5倍は多くすることができる。そこで、袋織りされた袋状部分3aの外側の繊維密度が、袋状部分3aの内側部(芯部材2の圧着面)の繊維密度よりも大きくされているため、強化繊維は外からの物理的外力・損傷に強く耐久性のある構造であり、芯部材2の移動を防止できるとともに、袋状部分3aの内側部(芯部材の圧着面)に空気が入り込むなどの問題が生じ難くなる。なお、圧着強度を高めるために、芯部材2の表裏面に凹凸や波形を施したり、芯部材2に貫通孔を形成して、貫通孔を介して表裏の強化繊維を連結させても良い。芯部材2の表裏面に凹凸や波形2zを施し、袋状部分3aを綾織や朱子織りとすることで、圧着や焼成等の相乗効果により(互いの凹凸2zと凹凸2zの重合状態が得られることで)、より硬度の向上が図られる。
(Second Embodiment)
5 (b) and 5 (c) are cross-sectional views of a bag-like portion in which the reinforcing fibers are woven in a twill or satin weave. Fig.5 (a) is a figure explaining plain weave, twill weave, and satin weave.
In the second embodiment, the reinforcing fiber 3 is a bag weave of twill or satin weave. In plain weaving, warp and weft are organized one by one, so the number of warps is the same as weft, but twill or satin weave can increase fiber density than plain weave (the texture is dense and thick, the geology is Soft and less wrinkled.) For example, in the case of satin weaving, the number of warps can be increased by about 2.5 times the number of wefts 3d. Therefore, the fiber density on the outside of the bag-shaped portion 3a woven by the bag is made larger than the fiber density on the inner side of the bag-shaped portion 3a (the crimping surface of the core member 2). The structure is durable and resistant to external force and damage, can prevent the core member 2 from moving, and is less prone to problems such as air entering the inner side of the bag-like portion 3a (the crimping surface of the core member). In addition, in order to raise the crimping | compression-bonding intensity | strength, you may give an unevenness | corrugation and a waveform to the front and back of the core member 2, or form a through-hole in the core member 2, and connect the reinforcing fiber of the front and back through a through-hole. By applying unevenness and corrugations 2z to the front and back surfaces of the core member 2 and making the bag-like portion 3a a twill or satin weave, a synergistic effect such as crimping or firing (a polymerization state of the mutual unevenness 2z and unevenness 2z is obtained. Therefore, the hardness can be further improved.

ここで、平織り(plain weave)は、経糸とよこ糸が1本ごとに交互に浮き沈みして交錯する組織である(図5(a))。
綾織り(twill weave:斜文織)は、平織りのように交互に浮き沈みせず、組織点が斜めに連続して、綾線を表示させる。通常は右上がりを表とする場合が多い。糸3dの太さと密度が同じ場合、綾線は45°になることが多い(図示右下から左上の方向の斜線となって織物表面に現れる)。朱子織り(satin weave:繻子織り)は、経糸とよこ糸5本以上で、交錯点は一定の間隔で隣り合わないようになり、経糸とよこ糸の数は同じで、最小の組織で一度だけ交錯する。5枚朱子(5 harness satin)は、朱子織りの中で最も簡単な組織で、表裏関係を除けば、交錯点が三飛びのものと二飛びの二種類がある。交錯点の配置がよく、朱子線が目立たないため、綺麗な織物ができる(図5(a))。朱子織としては五枚朱子の他、八枚朱子、十枚朱子、十二枚朱子、十六枚朱子、二十四枚朱子などが考えられるがこれらに限定されない。たとえば経五枚朱子であれば、経糸は緯糸と1回だけ交わり、4本の緯糸の上に、経糸が浮いた織物となる。経八枚朱子であれば、経糸は緯糸の7本の上に浮いた織物となる。糸が長く浮くことにより、糸を密に並べることが可能となり、糸間の隙間がなくなる。このことにより地が厚く、柔らかで皺がよりにくく、平らで滑らかとなり光沢が生まれる。
Here, the plain weave is a structure in which warp yarns and weft yarns are alternately raised and submerged one by one (FIG. 5A).
The twill weave does not float up and down alternately like a plain weave, and the texture points are continuously displayed diagonally to display a twill line. In many cases, the table is usually going to the right. When the thickness and density of the yarn 3d are the same, the twill line is often 45 ° (appears on the fabric surface as a diagonal line from the lower right to the upper left in the figure). The satin weave is made up of 5 or more warps and wefts, the crossing points are not adjacent to each other at regular intervals, the number of warp and wefts is the same, and they intersect only once with the smallest structure. . 5 harness satin is the simplest organization in satin weaving, and there are two types of crossing points, 3 jumps and 2 jumps, except for the front / back relationship. The arrangement of the crossing points is good and the satin lines are inconspicuous, so a beautiful fabric can be made (FIG. 5A). As the satin weave, in addition to the five sheets of lions, eight sheets, ten pieces, twelve pieces, twelve pieces, twenty-four pieces, and the like are not limited to these. For example, in the case of warp five satin, the warp intersects with the weft once and becomes a woven fabric in which the warp floats on four wefts. If it is warp eight satin, the warp will be a fabric that floats on seven wefts. When the yarn floats for a long time, it becomes possible to arrange the yarns closely and there is no gap between the yarns. This makes the ground thicker, softer and less wrinkled, flat and smooth and glossy.

上記綾織と朱子織を使用することで、強化繊維3の表裏で繊維密度を変更したり、袋状部分3aの外側の繊維密度と袋状部分の内側で繊維密度を変更したりすることが出来る。図5(b)に示すように、袋状部分3aの外側の繊維密度を袋状部分3aの内側(芯部材の圧着面側)の繊維密度よりも大きくすると(Z1<Z2)、強化繊維は外からの物理的外力・損傷に強く耐久性のある構造となる。一方、図5(c)に示すように、袋状部分3aの外側の繊維密度を袋状部分の内側の繊維密度よりも小さくするため(Z1<Z2)、芯部材2の移動を防止する効果が高くなる。強化繊維の表裏で繊維密度を変更することでも、これらと同じ作用効果を生じさせることが出来る。   By using the twill weave and satin weave, the fiber density can be changed on the front and back of the reinforcing fiber 3, or the fiber density outside the bag-like portion 3a and the fiber density inside the bag-like portion can be changed. . As shown in FIG. 5B, when the fiber density outside the bag-shaped portion 3a is larger than the fiber density inside the bag-shaped portion 3a (on the crimping surface side of the core member) (Z1 <Z2), the reinforcing fibers are The structure is strong and durable against physical external force and damage from the outside. On the other hand, as shown in FIG. 5 (c), in order to make the fiber density outside the bag-like portion 3a smaller than the fiber density inside the bag-like portion (Z1 <Z2), the effect of preventing the core member 2 from moving. Becomes higher. By changing the fiber density between the front and back of the reinforcing fiber, the same effect can be produced.

(第3の実施の形態)
図9(a)(b)と、図10(a)〜(d)は、強化繊維を芯糸にして熱融着糸がカバーリングされた熱融着糸3aを織り込んだ袋状部分3aを有する強化繊維の斜視図である。
第3の実施の形態は、強化繊維3が所定間隔で袋状部分3aが形成されており、袋状部分3a以外の箇所(連結部)3bで折り曲げ加工する。本実施の形態では、2枚の金属製板2を使用して、各々袋状部分3aに入れられるが、これら袋状部分3aと袋状部分3aとの間の部分3bを利用して折り曲げ加工する。2枚以上でも良く、図12(a)(b)に示すように、5枚の芯部材2を各々袋状部分3aに収納して所定角度で折り曲げることができる。第1の実施の形態の場合と異なり、上記中間部3bには金属製部材2が配置されていないために曲げ加工が容易である(図10(b))。上記中間部3bには金属製部材2が配置されていないが、袋織りや袋編みにて表裏が接合されていると、これらの表裏が熱圧着や焼成により溶着する。なお、上記中間部3bには、更に強化繊維を重ね合わせたり、薄い金属製部材2を配置したりしても良い(図10(d))。また、補強用の強化繊維を介在させたり、バインダーをこの中間部分3bにのみ使用して補強したり、又、この中間部分は焼成加工により曲げ加工して、その後は熱圧着加工を施すなどの加工をしても良い。
ここで、所定角度に曲げるときは、図13(a)(b)に示すように、芯部材2の先端に回転機構(軸2j)配置したり、図14(a)(b)に示すように、回転機構(軸2jと軸受け2i)で所定角度に回転可能にすることができる。
次に、例えば自動車の外壁として使用する場合の曲げ加工する場合(湾曲・屈曲フレームを製造する場合等)は、芯部材2Fに厚さの薄い部分2Faを設けて、この厚さの薄い部分2Faを利用して焼成するなどして湾曲させることができる(図11(b))。袋状部分3aに板状の芯部材2を入れた状態でL字状に曲げてから折り曲げても良いが(図11(a))、袋状部分3aに板状の芯部材2を入れた状態のまま焼成等を行なうと工程の削減が図られるとともに、芯部材2に沿って袋状部分3aが芯部材2を被覆することとなる。なお、先に加熱プレス機など所定厚みに形成しておき、前記湾曲部分2Faのみを焼成して所定の湾曲・屈曲のカーブ状態に加工しても良い。いずれの場合も、袋状部分3aはこれらの曲げ加工に追従して変化するために、その曲げ加工状態に沿っての良好な被覆状態が得られる。
(Third embodiment)
FIGS. 9 (a) and 9 (b) and FIGS. 10 (a) to 10 (d) show a bag-like portion 3a in which a heat-sealing yarn 3a having a reinforcing fiber as a core yarn and covered with a heat-sealing yarn is woven. It is a perspective view of the reinforced fiber which has.
In the third embodiment, the bag-like portions 3a are formed at a predetermined interval between the reinforcing fibers 3, and the reinforcing fibers 3 are bent at a portion (connecting portion) 3b other than the bag-like portion 3a. In the present embodiment, the two metal plates 2 are used to be put into the bag-like portions 3a, respectively, and the bending process is performed using the portion 3b between the bag-like portion 3a and the bag-like portion 3a. To do. Two or more sheets may be used, and as shown in FIGS. 12A and 12B, the five core members 2 can be housed in the bag-shaped portion 3a and bent at a predetermined angle. Unlike the case of 1st Embodiment, since the metal member 2 is not arrange | positioned at the said intermediate part 3b, a bending process is easy (FIG.10 (b)). Although the metal member 2 is not disposed in the intermediate portion 3b, if the front and back are joined by bag weaving or bag knitting, these front and back are welded by thermocompression bonding or firing. Note that reinforcing fibers may be further stacked on the intermediate portion 3b, or a thin metal member 2 may be disposed (FIG. 10D). Further, reinforcing reinforcing fibers are interposed, the binder is used only for the intermediate portion 3b to reinforce, the intermediate portion is bent by baking, and then subjected to thermocompression bonding. It may be processed.
Here, when bending to a predetermined angle, as shown in FIGS. 13 (a) and 13 (b), a rotation mechanism (shaft 2j) is arranged at the tip of the core member 2, or as shown in FIGS. 14 (a) and 14 (b). In addition, the rotation mechanism (the shaft 2j and the bearing 2i) can be rotated at a predetermined angle.
Next, for example, in the case of bending when used as an outer wall of an automobile (for example, when manufacturing a curved / bent frame), a thin portion 2Fa is provided on the core member 2F, and this thin portion 2Fa is provided. It can be bent by firing using (FIG. 11B). Although it may be bent after being bent into an L shape with the plate-shaped core member 2 in the bag-shaped portion 3a (FIG. 11 (a)), the plate-shaped core member 2 is inserted into the bag-shaped portion 3a. When firing or the like is performed in the state, the number of steps is reduced, and the bag-like portion 3 a covers the core member 2 along the core member 2. Alternatively, a predetermined thickness such as a heating press may be formed first, and only the curved portion 2Fa may be fired and processed into a predetermined curved / bent curved state. In any case, since the bag-like portion 3a changes following these bending processes, a good covering state along the bending process state can be obtained.

溶着方法としては、加熱手段を備えた加圧成形装置、圧縮成形装置、真空圧着成形装置等を用いることができる。圧着は、熱溶着、熱プレスや加熱ロールプレス等のプレス機を用いることができる。加熱条件は、金属製部材の融点よりも低い温度が好ましい。また、比較的低い温度で熱圧着した後に、部分的に(例えば曲げ加工する箇所に)焼成して曲げても良い。上記加熱プレス成形の前に、バインダー成分が溶融する温度にて予備加熱してから、本加熱したり、上記部分的な焼成(折り曲げ箇所や調整のための曲げ加工)を行なってもよい。
プレス等による溶着に際しては、バインダー(結合剤)を使用する。バインダーとしては、ポリエステル、ポリビニルアルコール、ポリエチレンビニルアルコール、ポリアセテート、エチレンビニルアセテート、ポリアクリル酸、ポリアクリル酸エステル、ポリウレタン、メラミン樹脂、フェノール樹脂、エポキシ樹脂などを用いることができる。これらのバインダーを塗布して加熱溶着することで、前記芯部材2の硬度よりも前記強化繊維3の硬度を高くしても良い。
As the welding method, a pressure molding device, a compression molding device, a vacuum pressure molding device, or the like provided with a heating means can be used. For the pressure bonding, a press machine such as heat welding, a heat press or a heated roll press can be used. The heating condition is preferably a temperature lower than the melting point of the metal member. Further, after thermocompression bonding at a relatively low temperature, it may be partially baked and bent (for example, at a bending portion). Prior to the hot press molding, preliminary heating may be performed at a temperature at which the binder component melts, followed by main heating or partial firing (bending portion or bending for adjustment).
A binder (binder) is used for welding by pressing or the like. As the binder, polyester, polyvinyl alcohol, polyethylene vinyl alcohol, polyacetate, ethylene vinyl acetate, polyacrylic acid, polyacrylic ester, polyurethane, melamine resin, phenol resin, epoxy resin, or the like can be used. The hardness of the reinforcing fiber 3 may be made higher than the hardness of the core member 2 by applying these binders and heat-welding them.

ここで、芯部材2が強化繊維を含ませた繊維強化プラスチック部材等であるとき、前記被覆される強化繊維3と同じ強化繊維を使用することが好ましい。すなわち、芯部材2である繊維強化プラスチック部材に含ませる強化繊維が炭素繊維である場合、前記被覆される強化繊維3を同じ強化繊維である炭素繊維を使用することが好ましい。袋織り・袋編される袋状部分3aのみだけでも同じ強化繊維3aとしても良い。具体的な実施例としては、前記強化繊維の芯糸がアクリル繊維を使用したPAN系またはピッチ系の炭素繊維であり、強化繊維を含ませた繊維強化プラスチック部材等とする。これにより熱融着糸3aが芯部材2の表面により一層溶融し易くなり、付着力(融合状態)が良好になる。繊維強化セラミックス部材、又は、繊維強化ガラス部材についても同様である。   Here, when the core member 2 is a fiber reinforced plastic member or the like containing reinforcing fibers, it is preferable to use the same reinforcing fibers as the reinforcing fibers 3 to be coated. That is, when the reinforcing fiber included in the fiber reinforced plastic member that is the core member 2 is a carbon fiber, it is preferable to use the carbon fiber that is the same reinforcing fiber as the reinforcing fiber 3 to be coated. The same reinforcing fiber 3a may be used only by the bag-shaped portion 3a to be woven and knitted. As a specific example, the reinforcing fiber core yarn is a PAN-based or pitch-based carbon fiber using an acrylic fiber, and is a fiber-reinforced plastic member or the like including the reinforcing fiber. As a result, the heat-fusible yarn 3a is more easily melted on the surface of the core member 2, and the adhesion (fused state) is improved. The same applies to fiber reinforced ceramic members or fiber reinforced glass members.

以上、本実施形態では、建築構造物に使用されるL字型形鋼やH型形鋼として使用する例を主に説明したが、本発明は自動車や車両の構造部材(胴体や内壁)、飛行機・飛行船の構造部材(胴体や内壁)や、これらの外壁のみならず内壁や床材等、自動車や車両の部品(座席フレーム等)、飛行機・飛行船の部品(座席フレーム等)や、建材、外壁材等に広く適用可能である。また、芯部材2として金属製部材を使用すると、導電性の構造(回路基板等)にも使用できる。   As mentioned above, in this embodiment, although the example mainly used as an L-shaped steel and an H-shaped steel used for a building structure was explained, the present invention is a structural member (body or inner wall) of an automobile or a vehicle, Structural members (fuselage and inner walls) of airplanes and airships, not only these outer walls, but also inner walls and flooring, automobile and vehicle parts (seat frames, etc.), airplane / airship parts (seat frames, etc.), building materials, Widely applicable to outer wall materials. Further, when a metal member is used as the core member 2, it can also be used for a conductive structure (circuit board or the like).

1 強化繊維構造物、
2,2A,2B,2C,2D,2E,2F 芯部材(金属製部材等)、
2z 芯部材の表裏面の凹凸(波形)、
3 強化繊維(袋状部分)、
3a 袋状部分、 3c 房(袋状部材の開口部)、3b 中央(折り曲げ部)、
3d 強化繊維の糸、
5 強化繊維構造物(焼成後、圧着後)
1 Reinforced fiber structure,
2, 2A, 2B, 2C, 2D, 2E, 2F Core member (metal member, etc.)
2z Unevenness (waveform) on the front and back surfaces of the core member,
3 Reinforcing fiber (bag-like part),
3a bag-like portion, 3c tuft (opening portion of bag-like member), 3b center (folded portion),
3d yarn of reinforcing fiber,
5 Reinforced fiber structure (after firing, after crimping)

Claims (9)

炭素繊維のに熱融着糸がカバーリングされた強化繊維を用いて、袋織りで継ぎ目のない製織された袋状部分が設けられて円環の周方向に耐張力の高い前記袋状部分とされ、芯部材が前記袋状部分に挿入されて圧着、溶着又は焼成により被覆されて前記芯部材の外周表面が前記袋状部分の被覆により一体的に強化されていることを特徴とする強化繊維構造物。 The bag-like shape having a high tensile strength in the circumferential direction of an annulus provided with a bag-like portion that is seamlessly woven by bag-weaving using a reinforcing fiber having a carbon fiber core yarn covered with a heat-sealing yarn The core member is inserted into the bag-shaped portion and covered by pressure bonding, welding or firing, and the outer peripheral surface of the core member is integrally strengthened by the cover of the bag-shaped portion. Reinforced fiber structure. 前記袋状部分は炭素繊維の芯糸に熱融着糸がカバーリングされた強化繊維を用いて袋織りで製織するものであり、前記芯部材の比強度および/または比弾性は前記前記袋状部材の炭素繊維の芯糸の比強度および/または比弾性よりも弱いが、圧着、溶着又は焼成により被覆されて前記芯部材の外周表面が前記袋状部分の炭素繊維の比強度および/または比弾性に被覆にされていることを特徴とする請求項1記載の強化繊維構造物。   The bag-shaped portion is woven by bag weaving using a reinforcing fiber having a carbon fiber core yarn covered with a heat-sealing yarn, and the specific strength and / or specific elasticity of the core member is determined by the bag shape. Although it is weaker than the specific strength and / or specific elasticity of the core yarn of the carbon fiber of the member, the outer peripheral surface of the core member is coated by pressure bonding, welding or firing, and the specific strength and / or ratio of the carbon fiber of the bag-like portion 2. The reinforcing fiber structure according to claim 1, wherein the reinforcing fiber structure is elastically coated. 前記袋状部分は炭素繊維の芯糸に熱融着糸がカバーリングされた強化繊維を用いて袋織りで製織するものであり、前記芯部材の展延性は前記袋状部材の炭素繊維の芯糸の展延性よりも大きいが、圧着、溶着又は焼成により被覆されて前記芯部材の外周表面が前記袋状部分の炭素繊維の展延性に被覆されていることを特徴とする請求項1記載の強化繊維構造物。   The bag-shaped portion is woven by bag weaving using a reinforcing fiber having a carbon fiber core yarn covered with a heat-sealing yarn, and the spreadability of the core member is the carbon fiber core of the bag-shaped member. 2. The fiber according to claim 1, wherein the outer peripheral surface of the core member is coated with the carbon fiber spreadability of the bag-like portion by being coated by pressure bonding, welding, or firing, although larger than the spreadability of the yarn. Reinforced fiber structure. 前記袋状部分は炭素繊維の芯糸に熱融着糸がカバーリングされた強化繊維を用いて袋織りで製織するものであり、圧着、溶着又は焼成により被覆されて前記芯部材の外周表面が前記袋状部分の厚さに被覆され、前記袋状部分の厚さは前記芯部材の厚さに応じて厚く形成することを特徴とする請求項1記載の強化繊維構造物。   The bag-like portion is woven by bag weaving using a reinforcing fiber in which a carbon fiber core yarn is covered with a heat-sealing yarn, and is covered by crimping, welding, or firing so that the outer peripheral surface of the core member is covered. The reinforcing fiber structure according to claim 1, wherein the reinforcing fiber structure is covered with a thickness of the bag-like portion, and the thickness of the bag-like portion is increased according to the thickness of the core member. 前記袋状部分は綾織又は朱子織で形成され、前記芯部材の圧着面側と前記袋状部分の外側とで前記綾織又は前記朱子織による繊維密度が異なることを特徴とする請求項1ないし4のいずれか1項記載の強化繊維構造物。   5. The bag-shaped portion is formed of a twill weave or a satin weave, and the fiber density of the twill weave or the satin weave is different between the crimping surface side of the core member and the outside of the bag-shaped portion. The reinforcing fiber structure according to any one of the above. 炭素繊維のに熱融着糸がカバーリングされた強化繊維を用いて、袋織りで継ぎ目のない製織された袋状部分が設けられて円環の周方向に耐張力の高い前記袋状部分とされ、芯部材が前記袋状部分に挿入されて圧着、溶着又は焼成により被覆されて前記芯部材の外周表面が前記袋状部分の厚さに被覆され、前記袋状部分の厚さは前記芯部材の厚さに応じて厚く形成することを特徴とする強化繊維構造物の製造方法。 The bag-like shape having a high tensile strength in the circumferential direction of an annulus provided with a bag-like portion that is seamlessly woven by bag-weaving using a reinforcing fiber having a carbon fiber core yarn covered with a heat-sealing yarn The core member is inserted into the bag-shaped portion and covered by pressure bonding, welding or firing, and the outer peripheral surface of the core member is covered with the thickness of the bag-shaped portion, and the thickness of the bag-shaped portion is The method for producing a reinforced fiber structure is characterized in that the fiber is formed thick according to the thickness of the core member. 前記袋状部分は炭素繊維の芯糸に熱融着糸がカバーリングされた強化繊維を用いて袋織りで製織するものであり、平織、綾織又は朱子織で形成することを特徴とする請求項6記載の強化繊維構造物の製造方法。   The bag-shaped portion is woven by bag weaving using a reinforcing fiber having a carbon fiber core yarn covered with a heat-sealing yarn, and is formed by plain weaving, twill weaving or satin weaving. 6. A method for producing a reinforcing fiber structure according to 6. 前記袋状部分は綾織又は朱子織で形成され、前記芯部材の圧着面側と前記袋状部分の外側とで前記綾織又は前記朱子織による繊維密度が異なるようにすることを特徴とする請求項7記載の強化繊維構造物の製造方法。   The bag-shaped portion is formed of a twill weave or a satin weave, and the fiber density of the twill weave or the satin weave is different between the crimping surface side of the core member and the outside of the bag-shaped portion. 8. A method for producing a reinforcing fiber structure according to 7. 前記芯部材がその断面のL型、コの字型、或いは、円弧形状であり、その所定形状に前記袋状部分を沿わせたL型、コの字型、或いは円弧形状にしてから、圧着、溶着又は焼成により被覆することを特徴とする請求項6から8のいずれか一項記載の強化繊維構造物の製造方法。   The core member is L-shaped, U-shaped, or arc-shaped in cross section, and is L-shaped, U-shaped, or arc-shaped with the bag-shaped portion along the predetermined shape, and then crimped. The method for producing a reinforced fiber structure according to any one of claims 6 to 8, wherein coating is performed by welding or firing.
JP2016094671A 2016-05-10 2016-05-10 Reinforcing fiber structure and manufacturing method thereof Expired - Fee Related JP6106309B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016094671A JP6106309B1 (en) 2016-05-10 2016-05-10 Reinforcing fiber structure and manufacturing method thereof
CN201780028694.1A CN109153221B (en) 2016-05-10 2017-05-02 Reinforced fiber structure and method for manufacturing same
PCT/JP2017/017285 WO2017195710A1 (en) 2016-05-10 2017-05-02 Reinforcement fiber structure and method for producing same
TW106206403U TWM557749U (en) 2016-05-10 2017-05-05 Reinforcing fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094671A JP6106309B1 (en) 2016-05-10 2016-05-10 Reinforcing fiber structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP6106309B1 true JP6106309B1 (en) 2017-03-29
JP2017202604A JP2017202604A (en) 2017-11-16

Family

ID=59366162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094671A Expired - Fee Related JP6106309B1 (en) 2016-05-10 2016-05-10 Reinforcing fiber structure and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP6106309B1 (en)
CN (1) CN109153221B (en)
TW (1) TWM557749U (en)
WO (1) WO2017195710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195710A1 (en) * 2016-05-10 2017-11-16 中川産業株式会社 Reinforcement fiber structure and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565217B (en) * 2019-08-21 2021-11-05 武汉纺织大学 A kind of direct winding and holding spinning method of fusion-bonded stable and wear-resistant yarn
CN110983599B (en) * 2019-12-24 2021-06-11 东莞市永沣织带有限公司 Manufacturing process of knitted card sleeve
JP7528311B1 (en) 2023-05-29 2024-08-05 櫻護謨株式会社 hose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320727A (en) * 1998-05-20 1999-11-24 Sumitomo Bakelite Co Ltd Protective material
JP2010121250A (en) * 2008-11-21 2010-06-03 Hyogo Prefecture Fiber-reinforced composite material and composite molded product thereof
JP2013091870A (en) * 2011-10-26 2013-05-16 Hyogo Prefecture Fiber reinforced composite fabric material and article made therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082984A (en) * 1992-08-22 1994-03-02 尤景三 Method for manufacturing plastic composite golf clubs
JP2543429Y2 (en) * 1993-12-14 1997-08-06 ヤマハ株式会社 Racket frame
JP2006257573A (en) * 2005-03-16 2006-09-28 Calsonic Kansei Corp Carbon fiber fabric
JP4965347B2 (en) * 2007-06-18 2012-07-04 大成プラス株式会社 Tubular composite and manufacturing method thereof
JP5569194B2 (en) * 2010-07-02 2014-08-13 株式会社Ihi Method for manufacturing shroud segment
JP6106309B1 (en) * 2016-05-10 2017-03-29 中川産業株式会社 Reinforcing fiber structure and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320727A (en) * 1998-05-20 1999-11-24 Sumitomo Bakelite Co Ltd Protective material
JP2010121250A (en) * 2008-11-21 2010-06-03 Hyogo Prefecture Fiber-reinforced composite material and composite molded product thereof
JP2013091870A (en) * 2011-10-26 2013-05-16 Hyogo Prefecture Fiber reinforced composite fabric material and article made therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195710A1 (en) * 2016-05-10 2017-11-16 中川産業株式会社 Reinforcement fiber structure and method for producing same

Also Published As

Publication number Publication date
CN109153221B (en) 2021-04-13
TWM557749U (en) 2018-04-01
WO2017195710A1 (en) 2017-11-16
CN109153221A (en) 2019-01-04
JP2017202604A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP5406850B2 (en) How to weave a closed structure with intersecting walls
KR101851381B1 (en) Multidirectionally reinforced shape woven preforms for composite structures
TWI361234B (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
JP6106309B1 (en) Reinforcing fiber structure and manufacturing method thereof
JP5618447B2 (en) Woven preform with integral off-axis stiffener
CA2864427C (en) Pi-shaped preform with bias fibers
JP5547210B2 (en) Quasi-isotropic three-dimensional preform and manufacturing method thereof
KR20100096117A (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
MX2011004183A (en) Pi-shaped preform with non-linear legs and method to manufacture it.
EP3400328B1 (en) Preform with integrated gap fillers
TR201816482T4 (en) CARBON FIBER REINFORCED COMPOSITE WEAVING AND METHOD FOR MANUFACTURING IT.
JP2014511948A (en) Corner-compatible preform and method for forming the same
JP2012096475A (en) Reinforcement fiber base material, preform of reinforcement fiber composite material, and reinforcement fiber composite material
Manjunath et al. Emerging Trends in Three‐Dimensional Woven Preforms for Composite Reinforcements
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
JP2005138547A (en) Multi-axially reinforced fiber laminate
JP2018069604A (en) Prepreg laminate and manufacturing method thereof
KR20040023146A (en) Rapier band of integrated structure and preparation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6106309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees